STMICROELECTRONICS TDA7496SSA

TDA7496SSA
5W+5W AMPLIFIER
PRODUCT PREVIEW
■
5+5W OUTPUT POWER
RL = 8Ω @THD = 10% VCC = 22V
MULTIPOWER BI50II TECHNOLOGY
■
ST-BY AND MUTE FUNCTIONS
■
LOW TURN-ON TURN-OFF POP NOISE
■
NO BOUCHEROT CELL
■
NO ST_BY RC INPUT NETWORK
■
SINGLE SUPPLY RANGING UP TO 35V
■
SHORT CIRCUIT PROTECTION
■
THERMAL OVERLOAD PROTECTION
■
INTERNALLY FIXED GAIN
■
SOFT CLIPPING
■
CLIPWATT 15 PACKAGE
Clipwatt 15
ORDERING NUMBER: TDA7496SSA
tions.
Features of the TDA7496SSA include, Stand-by and
Mute functions.
DESCRIPTION
The TDA7496SSA is a stereo 5+5W class AB power
amplifier assembled i the @Clipwatt 15 package,
specially designed for high quality sound TV applica-
The TDA7496SSA is pin to pin compatible with
TDA7496, TDA7496S, TDA7496SA, TDA7495,
TDA7495SA, TDA7494S, TDA7494SA, TDA96SA.
BLOCK DIAGRAM
VS
13
1
INR
470nF
30K
1000µF
14
+
OUTR
OP AMP
S1 ST-BY
S_GND
9
8
+5V
STBY
MUTE/STBY
PROTECTIONS
PW_GND
10K
60K
11
10
MUTE
S_GND
1µF
+5V
S2 MUTE
5
INL
470nF
+
30K
12
-
1000µF
OP AMP
SVR
7
OUTL
15
PW_GND
470µF
D99AU1015
September 2003
This is preliminary information on a new product now in development. Details are subject to change without notice.
1/12
TDA7496SSA
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
35
V
8
Vpp
15
W
VS
DC Supply Voltage
VIN
Maximum Input Voltage
Ptot
Total Power Dissipation (Tamb = 70°C)
Tamb
Ambient Operating Temperature (1)
0 to 70
°C
Tstg,TJ
Storage and Junction Temperature
-40 to 150
°C
7
V
Value
Unit
Typ. = 4.5; Max. = 5
°C/W
48
°C/W
V3
Volume Control DC Voltage
PIN CONNECTION (top view)
15
PW_GND
14
OUTR
13
VS
12
OUTL
11
PW_GND
10
MUTE
9
STBY
8
S_GND
7
SVR
6
N.C.
5
INL
4
N.C.
3
N.C.
2
N.C.
1
INR
D02AU1412A
THERMAL DATA
Symbol
Parameter
Rth j-case
Thermal Resistance junction-case
Rth j-amb
Thermal Resistance junction-ambient Max.
ELECTRICAL CHARACTERISTCS
(Refer to the test circuit VS = 22V, RL = 8Ω, f = 1KHz, Rg = 50Ω, Tamb = 25°C)
Symbol
Test Condition
Min.
Typ.
Max.
Unit
32
V
50
mA
Vs
Supply Voltage Range
Iq
Total Quiescent Current
25
Output DC Offset Referred to SVR No Input Signal
Potential
200
mV
Quiescent Output Voltage
11
V
DCVos
VO
2/12
Parameter
10
TDA7496SSA
ELECTRICAL CHARACTERISTCS (continued)
(Refer to the test circuit VS = 22V, RL = 8Ω, f = 1KHz, Rg = 50Ω, Tamb = 25°C)
Symbol
PO
Parameter
Output Power
Test Condition
THD = 10%; RL = 8Ω;
THD = 1%; RL = 8Ω;
Min.
Typ.
5
5.5
4
W
2.1
1.0
W
THD = 10%; RL = 4Ω; VS = 12V
THD = 1%; RL = 4Ω; VS = 12V
THD
Total Harmonic Distortion
Gv = 30dB; PO = 1W; f = 1KHz
Ipeak
Output Peak Current
(internally limited)
VIN
Input Signal
GV
Closed Loop Gain
VOl Ctrl >4.5V
0.4
1.0
28.5
BW
eN
1.3
30
Total Output Noise
Slew Rate
Ri
Input Resistance
Supply Voltage Rejection
Unit
%
A
2.8
Vrms
31.5
dB
0.6
SR
SVR
Max.
MHz
f = 20Hz to 22KHz PLAY
500
800
µV
f = 20Hz to 22KHz MUTE
60
150
µV
f = 1KHz; max volume
CSVR = 470µF; VRIP = 1Vrms
5
8
V/µs
22.5
30
KΩ
35
39
dB
TM
Thermal Muting
150
°C
TS
Thermal Shut-down
160
°C
MUTE & INPUT SELECTION FUNCTIONS
VST-ON
Stand-by ON Threshold
VST-OFF
Stand-by OFF Threshold
3.5
V
1.5
VMUTEON Mute ON threshold
3.5
V
VMUTEOFF Mute OFF threshold
AMUTE
Mute Attenuation
IqST-BY
Quiescent Current @ Stand-by
IstbyBIAS
Stand-by bias current
1.5
50
Play or Mute
ImuteBIAS
Mute Bias Current
65
0.6
Stand by ON: VST-BY = 5V;
Vmute = 5V
-20
V
V
dB
1
mA
80
µA
-5
µA
Mute
1
5
µA
Play
0.2
2
µA
3/12
TDA7496SSA
APPLICATION SUGGESTIONS
The recommended values of the external components are those shown on the application circuit of figure 1.
Different values can be used, the following table can help the designer.
COMPONENT
SUGGESTION
VALUE
R2
10K
C1
1000µF
C2
470nF
Input DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C3
470nF
Input DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C4
470µF
Ripple rejection
Better SVR
C6
1000µF
Output DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C7
1µF
Mute time constant
Larger mute on/off time
C8
1000µF
Output DC decoupling
Lower low frequency cutoff Higher low frequency cutoff
C9
100nF
Supply voltage bypass
LARGER THAN
SUGGESTION
PURPOSE
Mute time constant
SMALLER THAN
SUGGESTION
Larger mute on/off time
Smaller mute on/off time
Supply voltage bypass
Danger of oscillation
Worse SVR
Smaller mute on/off time
Danger of oscillation
Figure 1. Application Circui
+VS
C1
1000µF
C9
0.1µF
VS
PW_GND
13
11
1
INR
C2 470nF
+
30K
15
PW_GND
PW_GND
14
-
OUTR
C8 1000µF
OP AMP
S1 STBY
S_GND
9
8
MUTE/STBY
PROTECTIONS
C7
1µF
5
INL
C3 470nF
+
30K
OP AMP
SVR
S2 MUTE
12
OUTL
C6 1000µF
7
C4 470µF
D99AU1017
4/12
S_GND
R2 10K
10
+5V
PW_GND
+5V
TDA7496SSA
MUTE STAND-BY TRUTH TABLE
MUTE
St-BY
OPERATING CONDITION
H
H
STAND-BY
L
H
STAND-BY
H
L
MUTE
L
L
PLAY
Turn ON/OFF Sequences (for optimizing the POP performances)
Figure 1. USING ONLY THE MUTE FUNCTION
VS (V)
ST-BY
pin#9 (V)
5
VSVR
pin#7(V)
2.5V
MUTE
pin#10 (V)
5
INPUT
(mV)
VOUT
(V)
OFF
STBY MUTE
PLAY
MUTE STBY
OFF
IQ
(mA)
D97AU684
USING ONLY THE MUTE FUNCTION
To semplify the application, the stand-by pin can be connected directly to Ground. During the ON/OFF transitions is recommended to respect the following conditions:
– At the turn-on the transition mute to mute - play must be made when the SVR pin is higher than 2.5V
– At the turn-off the TDA7496SSA must be brought to mute from the play condition when the SVR pin
is higher than 2.5V.
5/12
TDA7496SSA
Figure 2. P.C.B. and Component layoutPCB and Component Layout
Figure 3.
6/12
TDA7496SSA
Figure 4. Quiescent Current vs. Supply Voltage
Iq
(mA)
D03AU1494
30
Vi=0
Figure 7. Output DC Offset vs. Supply Voltage
Vodc-Vsvr
(mV)
280
D03AU1496/mod
Vi=0
260
28
240
26
220
24
200
180
22
160
20
140
18
120
100
16
10
12
14
16
18 20 22 24 26
Supply Voltage (V)
28
30
Figure 5. Output DC Voltage vs. Supply Voltage
Vodc
(V)
16
15
14
13
12
11
10
9
8
7
6
5
4
10
32
D03AU1495
14
16
18 20 22 24
Supply Voltage (V)
26
28
30
32
Figure 8. Output Power vs Supply Voltage
Output Power
(W)
3.2
D03AU1498
Rl=4Ω
F=1KHz
2.8
Vi=0
12
2.4
THD=10%
2.0
1.6
1.2
THD=1%
0.8
0.4
0
10
12
14
16
18 20 22 24
Supply Voltage (V)
26
28
30
Figure 6. Output Power vs. Supply Voltage
Output Power
(W)
10
32
13
13.5
14
D03AU1499
Vs=22V
Rl=8Ω
1
THD=10%
6
11.5
12 12.5
Supply Voltage (V)
Distortion
(%)
Rl=8Ω
F=1KHz
7
11
Figure 9. Distortion vs Output Power
D03AU1497
8
10.5
5
F=15KHz
4
0.1
3
THD=1%
2
F=1KHz
1
0
10
12
14
16
18
20
Supply Voltage (V)
22
24
26
0.01
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Output Power (W)
7/12
TDA7496SSA
Figure 10. Distortion vs Output Power
Figure 13. Mute Attenuation vs Vpin 10
Distortion
(%)
D03AU1500
Mute Attenuation
(dB)
D03AU1503
0
-20
F=15KHz
1
Rl=8Ω
0dB @ Pout=1W
-40
Vs=12V
Rl=4Ω
0.1
-60
-80
F=1KHz
0.01
-100
-120
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Output Power (W)
Figure 11. Closed Loop Gain vs. Frequency
Closed loop
Gain
(dB)
30
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2
Vpin # 10 (V)
PINS DESCRIPTION
D03AU1501
Figure 14. PIN SVR
VS
28
Rl=8Ω
Pout=0.5W
Cin=470nF
Cout=1000µF
Csvr=470µF
26
24
VS
VS
OUT L
+
-
20K
6K
1K
20K
6K
1K
30K
SVR
22
30K
20
0.02
0.2
2
Frequency (KHz)
20
+
100µA
Figure 12. St-By Attenuation vs Vpin 9
D97AU585A
Figure 15. PINS: INL,INR
St-by Attenuation
(dB)
D03AU1502
VS
0
-20
-40
Rl=8Ω
0dB @ Pout=1W
-60
6K
INn
-80
30K
-100
-120
-140
8/12
D97AU589
SVR
0
0.5
1.0 1.5
2.0 2.5 3.0 3.5
Vpin # 9 (V)
4.0 4.5
5.0
500µA
OUT R
TDA7496SSA
Figure 17. PIN ST-BY
Figure 19. PINS: OUT R, OUT L
VS
VS
10µA
STBY
OUT
200
65K
D97AU594
D97AU588
Figure 18. PIN: MUTE
Figure 20. PINS: PW-GND, S-GND
VS
MUTE
200
VS
10K
GND
D97AU593
50µA
D97AU592
HEAT SINK DIMENSIONING:
In order to avoid the thermal protection intervention, that is placed approximatively at Tj = 150°C, it is important
the dimensioning of the Heat Sinker RTh (°C/W).
The parameters that influence the dimensioning are:
– Maximum dissipated power for the device (Pdmax)
– Max thermal resistance Junction to case (RTh j-c)
– Max. ambient temperature Tamb max
– Quiescent current Iq (mA)
Example:
VCC = 22V, Rload = 8ohm, RTh j-c = 5 °C/W , Tamb max = 50°C
2
V cc
- + I q ⋅ V cc
Pdmax = (N° channels) · ----------------------------2
2 Π ⋅ R lo ad
Pdmax = 2 · ( 3.0 ) + 0.5 = 6.5 W
150 – T am b max
150 – 50
- – R T h j-c = ---------------------- – 5.0 = 10°C /W
(Heat Sinker) R Th c-a = ---------------------------------------6.5
P d max
In figure 21 is shown the Power derating curve for the device.
9/12
TDA7496SSA
Figure 21. Power derating curve
20
15
Pd (W)
(a)
10
(b)
a)
Infinite Heatsink
b)
7 °C/ W
c)
10 °C/ W
(c)
5
0
0
40
80
120
160
Tamb (°C)
Clipwatt Assembling Suggestions
The suggested mounting method of Clipwatt on external heat sink, requires the use of a clip placed as much as
possible in the plastic body center, as indicated in the example of figure 22.
A thermal grease can be used in order to reduce the additional thermal resistance of the contact between package and heatsink.
A pressing force of 7 - 10 Kg gives a good contact and the clip must be designed in order to avoid a maximum
contact pressure of 15 Kg/mm2 between it and the plastic body case.
As example, if a 15Kg force is applied by the clip on the package , the clip must have a contact area of 1mm2
at least.
Figure 22. Example of right placement of the clip
10/12
TDA7496SSA
mm
inch
DIM.
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
A
3.2
0.126
B
1.05
0.041
C
0.15
0.006
D
1.55
0.061
Weight: 1.92gr
E
0.49
0.55
0.019
0.022
F
0.67
0.73
0.026
0.029
G
1.14
1.27
1.4
0.045
0.050
0.055
G1
17.57
17.78
17.91
0.692
0.700
0.705
H1
12
0.480
H2
18.6
0.732
H3
19.85
0.781
L
17.95
0.707
L1
14.45
0.569
L2
10.7
OUTLINE AND
MECHANICAL DATA
11
11.2
0.421
0.433
L3
5.5
0.217
M
2.54
0.100
M1
2.54
0.100
0.441
Clipwatt15
0044538
11/12
TDA7496SSA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2003 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
12/12