TDA7496SSA 5W+5W AMPLIFIER PRODUCT PREVIEW ■ 5+5W OUTPUT POWER RL = 8Ω @THD = 10% VCC = 22V MULTIPOWER BI50II TECHNOLOGY ■ ST-BY AND MUTE FUNCTIONS ■ LOW TURN-ON TURN-OFF POP NOISE ■ NO BOUCHEROT CELL ■ NO ST_BY RC INPUT NETWORK ■ SINGLE SUPPLY RANGING UP TO 35V ■ SHORT CIRCUIT PROTECTION ■ THERMAL OVERLOAD PROTECTION ■ INTERNALLY FIXED GAIN ■ SOFT CLIPPING ■ CLIPWATT 15 PACKAGE Clipwatt 15 ORDERING NUMBER: TDA7496SSA tions. Features of the TDA7496SSA include, Stand-by and Mute functions. DESCRIPTION The TDA7496SSA is a stereo 5+5W class AB power amplifier assembled i the @Clipwatt 15 package, specially designed for high quality sound TV applica- The TDA7496SSA is pin to pin compatible with TDA7496, TDA7496S, TDA7496SA, TDA7495, TDA7495SA, TDA7494S, TDA7494SA, TDA96SA. BLOCK DIAGRAM VS 13 1 INR 470nF 30K 1000µF 14 + OUTR OP AMP S1 ST-BY S_GND 9 8 +5V STBY MUTE/STBY PROTECTIONS PW_GND 10K 60K 11 10 MUTE S_GND 1µF +5V S2 MUTE 5 INL 470nF + 30K 12 - 1000µF OP AMP SVR 7 OUTL 15 PW_GND 470µF D99AU1015 September 2003 This is preliminary information on a new product now in development. Details are subject to change without notice. 1/12 TDA7496SSA ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit 35 V 8 Vpp 15 W VS DC Supply Voltage VIN Maximum Input Voltage Ptot Total Power Dissipation (Tamb = 70°C) Tamb Ambient Operating Temperature (1) 0 to 70 °C Tstg,TJ Storage and Junction Temperature -40 to 150 °C 7 V Value Unit Typ. = 4.5; Max. = 5 °C/W 48 °C/W V3 Volume Control DC Voltage PIN CONNECTION (top view) 15 PW_GND 14 OUTR 13 VS 12 OUTL 11 PW_GND 10 MUTE 9 STBY 8 S_GND 7 SVR 6 N.C. 5 INL 4 N.C. 3 N.C. 2 N.C. 1 INR D02AU1412A THERMAL DATA Symbol Parameter Rth j-case Thermal Resistance junction-case Rth j-amb Thermal Resistance junction-ambient Max. ELECTRICAL CHARACTERISTCS (Refer to the test circuit VS = 22V, RL = 8Ω, f = 1KHz, Rg = 50Ω, Tamb = 25°C) Symbol Test Condition Min. Typ. Max. Unit 32 V 50 mA Vs Supply Voltage Range Iq Total Quiescent Current 25 Output DC Offset Referred to SVR No Input Signal Potential 200 mV Quiescent Output Voltage 11 V DCVos VO 2/12 Parameter 10 TDA7496SSA ELECTRICAL CHARACTERISTCS (continued) (Refer to the test circuit VS = 22V, RL = 8Ω, f = 1KHz, Rg = 50Ω, Tamb = 25°C) Symbol PO Parameter Output Power Test Condition THD = 10%; RL = 8Ω; THD = 1%; RL = 8Ω; Min. Typ. 5 5.5 4 W 2.1 1.0 W THD = 10%; RL = 4Ω; VS = 12V THD = 1%; RL = 4Ω; VS = 12V THD Total Harmonic Distortion Gv = 30dB; PO = 1W; f = 1KHz Ipeak Output Peak Current (internally limited) VIN Input Signal GV Closed Loop Gain VOl Ctrl >4.5V 0.4 1.0 28.5 BW eN 1.3 30 Total Output Noise Slew Rate Ri Input Resistance Supply Voltage Rejection Unit % A 2.8 Vrms 31.5 dB 0.6 SR SVR Max. MHz f = 20Hz to 22KHz PLAY 500 800 µV f = 20Hz to 22KHz MUTE 60 150 µV f = 1KHz; max volume CSVR = 470µF; VRIP = 1Vrms 5 8 V/µs 22.5 30 KΩ 35 39 dB TM Thermal Muting 150 °C TS Thermal Shut-down 160 °C MUTE & INPUT SELECTION FUNCTIONS VST-ON Stand-by ON Threshold VST-OFF Stand-by OFF Threshold 3.5 V 1.5 VMUTEON Mute ON threshold 3.5 V VMUTEOFF Mute OFF threshold AMUTE Mute Attenuation IqST-BY Quiescent Current @ Stand-by IstbyBIAS Stand-by bias current 1.5 50 Play or Mute ImuteBIAS Mute Bias Current 65 0.6 Stand by ON: VST-BY = 5V; Vmute = 5V -20 V V dB 1 mA 80 µA -5 µA Mute 1 5 µA Play 0.2 2 µA 3/12 TDA7496SSA APPLICATION SUGGESTIONS The recommended values of the external components are those shown on the application circuit of figure 1. Different values can be used, the following table can help the designer. COMPONENT SUGGESTION VALUE R2 10K C1 1000µF C2 470nF Input DC decoupling Lower low frequency cutoff Higher low frequency cutoff C3 470nF Input DC decoupling Lower low frequency cutoff Higher low frequency cutoff C4 470µF Ripple rejection Better SVR C6 1000µF Output DC decoupling Lower low frequency cutoff Higher low frequency cutoff C7 1µF Mute time constant Larger mute on/off time C8 1000µF Output DC decoupling Lower low frequency cutoff Higher low frequency cutoff C9 100nF Supply voltage bypass LARGER THAN SUGGESTION PURPOSE Mute time constant SMALLER THAN SUGGESTION Larger mute on/off time Smaller mute on/off time Supply voltage bypass Danger of oscillation Worse SVR Smaller mute on/off time Danger of oscillation Figure 1. Application Circui +VS C1 1000µF C9 0.1µF VS PW_GND 13 11 1 INR C2 470nF + 30K 15 PW_GND PW_GND 14 - OUTR C8 1000µF OP AMP S1 STBY S_GND 9 8 MUTE/STBY PROTECTIONS C7 1µF 5 INL C3 470nF + 30K OP AMP SVR S2 MUTE 12 OUTL C6 1000µF 7 C4 470µF D99AU1017 4/12 S_GND R2 10K 10 +5V PW_GND +5V TDA7496SSA MUTE STAND-BY TRUTH TABLE MUTE St-BY OPERATING CONDITION H H STAND-BY L H STAND-BY H L MUTE L L PLAY Turn ON/OFF Sequences (for optimizing the POP performances) Figure 1. USING ONLY THE MUTE FUNCTION VS (V) ST-BY pin#9 (V) 5 VSVR pin#7(V) 2.5V MUTE pin#10 (V) 5 INPUT (mV) VOUT (V) OFF STBY MUTE PLAY MUTE STBY OFF IQ (mA) D97AU684 USING ONLY THE MUTE FUNCTION To semplify the application, the stand-by pin can be connected directly to Ground. During the ON/OFF transitions is recommended to respect the following conditions: – At the turn-on the transition mute to mute - play must be made when the SVR pin is higher than 2.5V – At the turn-off the TDA7496SSA must be brought to mute from the play condition when the SVR pin is higher than 2.5V. 5/12 TDA7496SSA Figure 2. P.C.B. and Component layoutPCB and Component Layout Figure 3. 6/12 TDA7496SSA Figure 4. Quiescent Current vs. Supply Voltage Iq (mA) D03AU1494 30 Vi=0 Figure 7. Output DC Offset vs. Supply Voltage Vodc-Vsvr (mV) 280 D03AU1496/mod Vi=0 260 28 240 26 220 24 200 180 22 160 20 140 18 120 100 16 10 12 14 16 18 20 22 24 26 Supply Voltage (V) 28 30 Figure 5. Output DC Voltage vs. Supply Voltage Vodc (V) 16 15 14 13 12 11 10 9 8 7 6 5 4 10 32 D03AU1495 14 16 18 20 22 24 Supply Voltage (V) 26 28 30 32 Figure 8. Output Power vs Supply Voltage Output Power (W) 3.2 D03AU1498 Rl=4Ω F=1KHz 2.8 Vi=0 12 2.4 THD=10% 2.0 1.6 1.2 THD=1% 0.8 0.4 0 10 12 14 16 18 20 22 24 Supply Voltage (V) 26 28 30 Figure 6. Output Power vs. Supply Voltage Output Power (W) 10 32 13 13.5 14 D03AU1499 Vs=22V Rl=8Ω 1 THD=10% 6 11.5 12 12.5 Supply Voltage (V) Distortion (%) Rl=8Ω F=1KHz 7 11 Figure 9. Distortion vs Output Power D03AU1497 8 10.5 5 F=15KHz 4 0.1 3 THD=1% 2 F=1KHz 1 0 10 12 14 16 18 20 Supply Voltage (V) 22 24 26 0.01 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Output Power (W) 7/12 TDA7496SSA Figure 10. Distortion vs Output Power Figure 13. Mute Attenuation vs Vpin 10 Distortion (%) D03AU1500 Mute Attenuation (dB) D03AU1503 0 -20 F=15KHz 1 Rl=8Ω 0dB @ Pout=1W -40 Vs=12V Rl=4Ω 0.1 -60 -80 F=1KHz 0.01 -100 -120 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Output Power (W) Figure 11. Closed Loop Gain vs. Frequency Closed loop Gain (dB) 30 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 Vpin # 10 (V) PINS DESCRIPTION D03AU1501 Figure 14. PIN SVR VS 28 Rl=8Ω Pout=0.5W Cin=470nF Cout=1000µF Csvr=470µF 26 24 VS VS OUT L + - 20K 6K 1K 20K 6K 1K 30K SVR 22 30K 20 0.02 0.2 2 Frequency (KHz) 20 + 100µA Figure 12. St-By Attenuation vs Vpin 9 D97AU585A Figure 15. PINS: INL,INR St-by Attenuation (dB) D03AU1502 VS 0 -20 -40 Rl=8Ω 0dB @ Pout=1W -60 6K INn -80 30K -100 -120 -140 8/12 D97AU589 SVR 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Vpin # 9 (V) 4.0 4.5 5.0 500µA OUT R TDA7496SSA Figure 17. PIN ST-BY Figure 19. PINS: OUT R, OUT L VS VS 10µA STBY OUT 200 65K D97AU594 D97AU588 Figure 18. PIN: MUTE Figure 20. PINS: PW-GND, S-GND VS MUTE 200 VS 10K GND D97AU593 50µA D97AU592 HEAT SINK DIMENSIONING: In order to avoid the thermal protection intervention, that is placed approximatively at Tj = 150°C, it is important the dimensioning of the Heat Sinker RTh (°C/W). The parameters that influence the dimensioning are: – Maximum dissipated power for the device (Pdmax) – Max thermal resistance Junction to case (RTh j-c) – Max. ambient temperature Tamb max – Quiescent current Iq (mA) Example: VCC = 22V, Rload = 8ohm, RTh j-c = 5 °C/W , Tamb max = 50°C 2 V cc - + I q ⋅ V cc Pdmax = (N° channels) · ----------------------------2 2 Π ⋅ R lo ad Pdmax = 2 · ( 3.0 ) + 0.5 = 6.5 W 150 – T am b max 150 – 50 - – R T h j-c = ---------------------- – 5.0 = 10°C /W (Heat Sinker) R Th c-a = ---------------------------------------6.5 P d max In figure 21 is shown the Power derating curve for the device. 9/12 TDA7496SSA Figure 21. Power derating curve 20 15 Pd (W) (a) 10 (b) a) Infinite Heatsink b) 7 °C/ W c) 10 °C/ W (c) 5 0 0 40 80 120 160 Tamb (°C) Clipwatt Assembling Suggestions The suggested mounting method of Clipwatt on external heat sink, requires the use of a clip placed as much as possible in the plastic body center, as indicated in the example of figure 22. A thermal grease can be used in order to reduce the additional thermal resistance of the contact between package and heatsink. A pressing force of 7 - 10 Kg gives a good contact and the clip must be designed in order to avoid a maximum contact pressure of 15 Kg/mm2 between it and the plastic body case. As example, if a 15Kg force is applied by the clip on the package , the clip must have a contact area of 1mm2 at least. Figure 22. Example of right placement of the clip 10/12 TDA7496SSA mm inch DIM. MIN. TYP. MAX. MIN. TYP. MAX. A 3.2 0.126 B 1.05 0.041 C 0.15 0.006 D 1.55 0.061 Weight: 1.92gr E 0.49 0.55 0.019 0.022 F 0.67 0.73 0.026 0.029 G 1.14 1.27 1.4 0.045 0.050 0.055 G1 17.57 17.78 17.91 0.692 0.700 0.705 H1 12 0.480 H2 18.6 0.732 H3 19.85 0.781 L 17.95 0.707 L1 14.45 0.569 L2 10.7 OUTLINE AND MECHANICAL DATA 11 11.2 0.421 0.433 L3 5.5 0.217 M 2.54 0.100 M1 2.54 0.100 0.441 Clipwatt15 0044538 11/12 TDA7496SSA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2003 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 12/12