MELEXIS TH72001

TH72001
315MHz
FSK Transmitter
Features
!
!
!
!
!
!
!
!
Fully integrated PLL-stabilized VCO
Frequency range from 290 MHz to 350 MHz
Single-ended RF output
FSK through crystal pulling allows modulation
from DC to 40 kbit/s
High FSK deviation possible for wideband data
transmission
Wide power supply range from 1.95 V to 5.5 V
Very low standby current
On-chip low voltage detector
! High over-all frequency accuracy
! FSK deviation and center frequency independently adjustable
! Adjustable output power range from
-12 dBm to +11 dBm
! Adjustable current consumption from
3.2 mA to 10.3 mA
! Conforms to FCC part 15 and similar standards
! 8-pin Small Outline Integrated Circuit (SOIC)
Ordering Information
Part Number
Temperature Code
Package Code
Delivery Form
TH72001
K (-40°C to 125°C)
DC (SOIC8)
98 pc/tube
2500 pc/T&R
Application Examples
!
!
!
!
!
!
!
!
!
Pin Description
General digital data transmission
Tire Pressure Monitoring Systems (TPMS)
Remote Keyless Entry (RKE)
Wireless access control
Alarm and security systems
Garage door openers
Remote Controls
Home and building automation
Low-power telemetry systems
8 VEE
FSKDTA 1
FSKSW 2
ROI 3
ENTX 4
TH72001
7 OUT
6 VCC
5 PSEL
General Description
The TH72001 FSK transmitter IC is designed for applications in the 315 MHz industrial-scientific-medical
(ISM) band. It can also be used for any other system with carrier frequencies ranging from
290 MHz to 350 MHz.
The transmitter's carrier frequency fc is determined by the frequency of the reference crystal fref. The integrated PLL synthesizer ensures that carrier frequencies, ranging from 290 MHz to 350 MHz, can be
achieved. This is done by using a crystal with a reference frequency according to: fref = fc/N, where N = 32 is
the PLL feedback divider ratio.
3901072001
Rev. 007
Page 1 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
Document Content
1
Theory of Operation ...................................................................................................3
1.1
General............................................................................................................................. 3
1.2
Block Diagram .................................................................................................................. 3
2
Functional Description ..............................................................................................4
2.1
Crystal Oscillator .............................................................................................................. 4
2.2
FSK Modulation ................................................................................................................ 4
2.3
Crystal Pulling................................................................................................................... 4
2.4
Output Power Selection.................................................................................................... 5
2.5
Lock Detection.................................................................................................................. 5
2.6
Low Voltage Detection...................................................................................................... 5
2.7
Mode Control Logic .......................................................................................................... 6
2.8
Timing Diagrams .............................................................................................................. 6
3
Pin Definition and Description ..................................................................................7
4
Electrical Characteristics ..........................................................................................8
4.1
Absolute Maximum Ratings .............................................................................................. 8
4.2
Normal Operating Conditions ........................................................................................... 8
4.3
Crystal Parameters ........................................................................................................... 8
4.4
DC Characteristics............................................................................................................ 9
4.5
AC Characteristics .......................................................................................................... 10
4.6
Output Power Steps ....................................................................................................... 10
5
Typical Operating Characteristics ..........................................................................11
5.1
DC Characteristics.......................................................................................................... 11
5.2
AC Characteristics .......................................................................................................... 14
6
Test Circuit ...............................................................................................................17
6.1
7
Test circuit component list to Fig. 18 .............................................................................. 17
Package Description ................................................................................................18
7.1
Soldering Information ..................................................................................................... 18
8
Reliability Information..............................................................................................19
9
ESD Precautions ......................................................................................................19
10
Disclaimer .................................................................................................................20
3901072001
Rev. 007
Page 2 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
1 Theory of Operation
1.1 General
As depicted in Fig.1, the TH72001 transmitter consists of a fully integrated voltage-controlled oscillator
(VCO), a divide-by-32 divider (div32), a phase-frequency detector (PFD) and a charge pump (CP). An internal loop filter determines the dynamic behavior of the PLL and suppresses reference spurious signals. A
Colpitts crystal oscillator (XOSC) is used as the reference oscillator of a phase-locked loop (PLL) synthesizer. The VCO’s output signal feeds the power amplifier (PA). The RF signal power Pout can be adjusted in
four steps from Pout = –12 dBm to +11 dBm, either by changing the value of resistor RPS or by varying the
voltage VPS at pin PSEL. The open-collector output (OUT) can be used either to directly drive a loop antenna
or to be matched to a 50Ohm load. Bandgap biasing ensures stable operation of the IC at a power supply
range of 1.95 V to 5.5 V.
1.2 Block Diagram
RPS
VCC
6
PSEL
5
PLL
ENTX
ROI
4
mode
control
32
3
PA
7
OUT
antenna
matching
network
PFD
XOSC
XBUF
XTAL
CP
VCO
low
voltage
detector
FSKSW 2
CX2
CX1
1
8
FSKDTA
VEE
Fig. 1:
3901072001
Rev. 007
Block diagram with external components
Page 3 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
2 Functional Description
2.1 Crystal Oscillator
A Colpitts crystal oscillator with integrated functional capacitors is used as the reference oscillator for the PLL
synthesizer. The equivalent input capacitance CRO offered by the crystal oscillator input pin ROI is about
18pF. The crystal oscillator is provided with an amplitude control loop in order to have a very stable frequency over the specified supply voltage and temperature range in combination with a short start-up time.
2.2 FSK Modulation
FSK modulation can be achieved by pulling the
crystal oscillator frequency. A CMOScompatible data stream applied at the pin
FSKDTA digitally modulates the XOSC via an
integrated NMOS switch. Two external pulling
capacitors CX1 and CX2 allow the FSK deviation Δf and the center frequency fc to be adjusted independently. At FSKDTA = 0, CX2 is
connected in parallel to CX1 leading to the lowfrequency component of the FSK spectrum
(fmin); while at FSKDTA = 1, CX2 is deactivated
and the XOSC is set to its high frequency fmax.
An external reference signal can be directly ACcoupled to the reference oscillator input pin
ROI. Then the transmitter is used without a
crystal. Now the reference signal sets the carrier frequency and may also contain the FSK (or
FM) modulation.
Fig. 2:
Crystal pulling circuitry
VCC
ROI
XTAL
FSKSW
CX2
CX1
VEE
FSKDTA
Description
0
fmin= fc - Δf (FSK switch is closed)
1
fmax= fc + Δf (FSK switch is open)
2.3 Crystal Pulling
A crystal is tuned by the manufacturer to the
required oscillation frequency f0 at a given load
capacitance CL and within the specified calibration tolerance. The only way to pull the oscillation frequency is to vary the effective load capacitance CLeff seen by the crystal.
Figure 3 shows the oscillation frequency of a
crystal as a function of the effective load capacitance. This capacitance changes in accordance with the logic level of FSKDTA around
the specified load capacitance. The figure illustrates the relationship between the external
pulling capacitors and the frequency deviation.
It can also be seen that the pulling sensitivity
increases with the reduction of CL. Therefore,
applications with a high frequency deviation
require a low load capacitance. For narrow
band FSK applications, a higher load capacitance could be chosen in order to reduce the
frequency drift caused by the tolerances of the
chip and the external pulling capacitors.
f
XTAL
L1
f max
C1
CL eff
R1
fc
f min
CX1 CRO
CX1+CRO
Fig. 3:
3901072001
Rev. 007
C0
CL
(CX1+CX2) CRO
CX1+CX2+CRO
CL eff
Crystal pulling characteristic
Page 4 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
2.4 Output Power Selection
The transmitter is provided with an output power selection feature. There are four predefined output power
steps and one off-step accessible via the power selection pin PSEL. A digital power step adjustment was
chosen because of its high accuracy and stability. The number of steps and the step sizes as well as the
corresponding power levels are selected to cover a wide spectrum of different applications.
The implementation of the output power control
logic is shown in figure 4. There are two
matched current sources with an amount of
about 8 µA. One current source is directly applied to the PSEL pin. The other current source
is used for the generation of reference voltages
with a resistor ladder. These reference voltages
are defining the thresholds between the power
steps. The four comparators deliver thermometer-coded control signals depending on the
voltage level at the pin PSEL. In order to have a
certain amount of ripple tolerance in a noisy
environment the comparators are provided with
a little hysteresis of about 20 mV. With these
control signals, weighted current sources of the
power amplifier are switched on or off to set the
desired output power level (Digitally Controlled
Current Source). The LOCK signal and the
output of the low voltage detector are gating
this current source.
RPS
PSEL
&
&
&
&
&
OUT
Fig. 4:
Block diagram of output power control circuitry
There are two ways to select the desired output power step. First by applying a DC voltage at the pin PSEL,
then this voltage directly selects the desired output power step. This kind of power selection can be used if
the transmission power must be changed during operation. For a fixed-power application a resistor can be
used which is connected from the PSEL pin to ground. The voltage drop across this resistor selects the desired output power level. For fixed-power applications at the highest power step this resistor can be omitted.
The pin PSEL is in a high impedance state during the “TX standby” mode.
2.5 Lock Detection
The lock detection circuitry turns on the power amplifier only after PLL lock. This prevents from unwanted
emission of the transmitter if the PLL is unlocked.
2.6 Low Voltage Detection
The supply voltage is sensed by a low voltage detect circuitry. The power amplifier is turned off if the supply
voltage drops below a value of about 1.85 V. This is done in order to prevent unwanted emission of the
transmitter if the supply voltage is too low.
3901072001
Rev. 007
Page 5 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
2.7 Mode Control Logic
The mode control logic allows two different
modes of operation as listed in the following
table. The mode control pin ENTX is pulleddown internally. This guarantees that the whole
circuit is shut down if this pin is left floating.
ENTX
Mode
Description
0
TX standby
TX disabled
1
TX active
TX enable
2.8 Timing Diagrams
After enabling the transmitter by the ENTX signal, the power amplifier remains inactive for the time ton, the
transmitter start-up time. The crystal oscillator starts oscillation and the PLL locks to the desired output frequency within the time duration ton. After successful PLL lock, the LOCK signal turns on the power amplifier,
and then the RF carrier can be FSK modulated.
high
ENTX
low
high
LOCK
low
high
FSKDTA
low
RF carrier
t
t on
Fig. 5:
3901072001
Rev. 007
Timing diagram for FSK modulation
Page 6 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
3 Pin Definition and Description
Pin No.
1
Name
FSKDTA
I/O Type
Functional Schematic
0: ENTX=1
1: ENTX=0
input
1.5kΩ
FSKDTA
1
2
FSKSW
Description
FSK data input,
CMOS compatible with operation mode dependent
pull-up circuit
TX standby: no pull-up
TX active: pull-up
analog I/O
XOSC FSK pulling pin,
MOS switch
FSKSW
2
3
ROI
analog I/O
XOSC connection to XTAL,
Colpitts type crystal oscillator
25k
ROI
3
36p
36p
4
ENTX
input
mode control input,
CMOS-compatible with internal pull-down circuit
1.5kΩ
ENTX
4
5
PSEL
power select input, highimpedance comparator logic
analog I/O
IPSEL
PSEL
1.5kΩ
TX standby: IPSEL = 0
TX active: IPSEL = 8µA
5
6
VCC
supply
7
OUT
output
positive power supply
VCC
OUT
power amplifier output,
open collector
7
VEE
8
VEE
3901072001
Rev. 007
VEE
ground
negative power supply
Page 7 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
4 Electrical Characteristics
4.1 Absolute Maximum Ratings
Parameter
Symbol
Condition
Min
Max
Unit
Supply voltage
VCC
0
7.0
V
Input voltage
VIN
-0.3
VCC+0.3
V
Storage temperature
TSTG
-65
150
°C
Junction temperature
TJ
150
°C
Thermal Resistance
RthJA
163
K/W
Power dissipation
Pdiss
0.12
W
Electrostatic discharge
VESD
human body model (HBM)
according to CDF-AECQ100-002
±2.0
kV
4.2 Normal Operating Conditions
Parameter
Symbol
Condition
Min
Max
Unit
Supply voltage
VCC
1.95
5.5
V
Operating temperature
TA
-40
125
°C
Input low voltage CMOS
VIL
ENTX, FSKDTA pins
0.3*VCC
V
Input high voltage CMOS
VIH
ENTX, FSKDTA pins
XOSC frequency
fref
set by the crystal
VCO frequency
fc
FSK deviation
Data rate
0.7*VCC
V
9
10.9
MHz
fc = 32 • fref
290
350
MHz
Δf
depending on CX1, CX2
and crystal parameters
±2.5
±30
kHz
R
NRZ
40
kbit/s
Min
Max
Unit
9
10.9
MHz
10
15
pF
4.3 Crystal Parameters
Parameter
Symbol
Condition
Crystal frequency
f0
Load capacitance
CL
Static capacitance
C0
7
pF
Series resistance
R1
70
Ω
aspur
-10
dB
Spurious response
3901072001
Rev. 007
fundamental mode, AT
Page 8 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
4.4 DC Characteristics
all parameters under normal operating conditions, unless otherwise stated;
typical values at TA = 23 °C and VCC = 3 V
Parameter
Symbol
Condition
Min
Typ
Max
Unit
0.2
200
nA
4
µA
Operating Currents
Standby current
ISBY
ENTX=0, TA=85°C
ENTX=0, TA=125°C
Supply current in power step 0
ICC0
ENTX=1
1.5
2.3
3.8
mA
Supply current in power step 1
ICC1
ENTX=1
2.1
3.2
4.9
mA
Supply current in power step 2
ICC2
ENTX=1
3.0
4.4
6.2
mA
Supply current in power step 3
ICC3
ENTX=1
4.5
6.2
8.5
mA
Supply current in power step 4
ICC4
ENTX=1
7.3
10.3
13.3
mA
Input low voltage CMOS
VIL
ENTX, FSKDTA pins
-0.3
0.3*Vcc
V
Input high voltage CMOS
VIH
ENTX, FSKDTA pins
0.7*VCC
VCC+0.3
V
20
µA
Digital Pin Characteristics
Pull down current
ENTX pin
IPDEN
ENTX=1
Low level input current
ENTX pin
IINLEN
ENTX=0
0.02
µA
High level input current
FSKDTA pin
IINHDTA
FSKDTA=1
0.02
µA
Pull up current
FSKDTA pin active
IPUDTAa
FSKDTA=0
ENTX=1
12
µA
Pull up current
FSKDTA pin standby
IPUDTAs
FSKDTA=0
ENTX=0
0.02
µA
MOS switch On resistance
RON
FSKDTA=0
ENTX=1
70
Ω
MOS switch Off resistance
ROFF
FSKDTA=1
ENTX=1
Power select current
IPSEL
ENTX=1
Power select voltage step 0
VPS0
ENTX=1
Power select voltage step 1
VPS1
ENTX=1
Power select voltage step 2
VPS2
Power select voltage step 3
Power select voltage step 4
0.2
0.1
2.0
1.5
FSK Switch Resistance
20
1
MΩ
Power Select Characteristics
7.0
8.6
9.9
µA
0.035
V
0.14
0.24
V
ENTX=1
0.37
0.60
V
VPS3
ENTX=1
0.78
1.29
V
VPS4
ENTX=1
1.55
ENTX=1
1.75
V
Low Voltage Detection Characteristic
Low voltage detect threshold
3901072001
Rev. 007
VLVD
Page 9 of 20
1.85
1.95
V
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
4.5 AC Characteristics
all parameters under normal operating conditions, unless otherwise stated;
typical values at TA = 23 °C and VCC = 3 V; test circuit shown in Fig. 18, fc = 315 MHz
Parameter
Symbol
Condition
Min
Typ
Max
Unit
-70
dBm
-9.5 1)
dBm
1)
dBm
CW Spectrum Characteristics
Output power in step 0
(Isolation in off-state)
Poff
ENTX=1
Output power in step 1
P1
ENTX=1
Output power in step 2
P2
Output power in step 3
P3
Output power in step 4
P4
-13
ENTX=1
-2.5
ENTX=1
2.5
ENTX=1
Phase noise
L(fm)
@ 200kHz offset
Spurious emissions according
to EN 300 220-1 (2000.09)
table 13
Pspur
5
-12
-3
3
9
-88
-0.5
5
1)
11
dBm
1)
dBm
-83
dBc/Hz
47MHz< f <74MHz
87.5MHz< f <118MHz
174MHz< f <230MHz
470MHz< f <862MHz
B=100kHz
-54
dBm
f < 1GHz, B=100kHz
-36
dBm
f > 1GHz, B=1MHz
-30
dBm
1.5
ms
±3
ppm
±10
ppm
±20
ppm
Start-up Parameters
Start-up time
ton
from standby to
transmit mode
1.2
Frequency Stability
Frequency stability vs. supply
voltage
dfVCC
Frequency stability vs. temperature
dfTA
Frequency stability vs. variation range of CRO
dfCRO
crystal at constant
temperature
1) output matching network tuned for 5V supply
4.6 Output Power Steps
Power step
0
1
2
3
4
RPS / kΩ
<3
22
56
120
not connected
3901072001
Rev. 007
Page 10 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
5 Typical Operating Characteristics
5.1 DC Characteristics
I SBY
Standby current
5µA
4µA
125°C
3µA
2µA
1µA
200nA
85°C
150nA
100nA
50nA
25°C
0
2.0
2.5
3.0
3.5
4.0
Vcc
Fig. 6:
4.5
5.0
5.5
6.0
[V]
Standby current limits
power step 0
3.0
125°C
105°C
2.8
85°C
25°C
2.4
Icc
[mA]
2.6
0°C
2.2
-20°C
2.0
-40°C
1.8
1.8
2.2
2.6
3.0
Fig. 7:
3901072001
Rev. 007
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Supply current in power step 0
Page 11 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
power step 1
4.0
125°C
105°C
[mA]
3.4
Icc
3.7
3.1
85°C
25°C
0°C
-20°C
2.8
-40°C
2.5
1.8
2.2
2.6
3.0
Fig. 8:
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Supply current in power step 1
power step 2
5.5
125°C
105°C
85°C
4.5
25°C
Icc
[mA]
5.0
0°C
4.0
-20°C
-40°C
3.5
1.8
2.2
2.6
3.0
Fig. 9:
3901072001
Rev. 007
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Supply current in power step 2
Page 12 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
power step 3
7.5
125°C
105°C
85°C
[mA]
6.5
Icc
7.0
6.0
25°C
0°C
-20°C
5.5
-40°C
5.0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 10: Supply current in power step 3
power step 4
12.0
125°C
105°C
85°C
11.5
[mA]
10.5
Icc
11.0
10.0
25°C
0°C
-20°C
9.5
-40°C
9.0
8.5
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 11: Supply current in power step 4
3901072001
Rev. 007
Page 13 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
5.2 AC Characteristics
•
Data according to test circuit in Fig. 18
power step 1
-11.5
[dBm]
-12.5
Pout
-12.0
-13.0
25°C
85°C
125°C
-40°C
-13.5
-14.0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 12: Output power in step 1
power step 2
-1.0
Pout
[dBm]
-2.0
25°C
85°C
125°C
-40°C
-3.0
-4.0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 13: Output power in step 2
3901072001
Rev. 007
Page 14 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
power step 3
5.0
[dBm]
3.0
Pout
4.0
2.0
25°C
85°C
125°C
1.0
-40°C
0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 14: Output power in step 3
power step 4
11.0
[dBm]
7.0
Pout
9.0
5.0
25°C
85°C
125°C
-40°C
3.0
1.0
1.8
2.2
2.6
3.0
3.4
3.8
4.2
Vcc [V]
4.6
5.0
5.4
5.8
Fig. 15: Output power in step 4
3901072001
Rev. 007
Page 15 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
Fig. 16: RF output signal with PLL reference spurs
Fig. 17: Single sideband phase noise
3901072001
Rev. 007
Page 16 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
6 Test Circuit
CM1
CM2
CM3
LM
LT
CB1
RPS
OUT
PSEL
VCC
ROI
CX2
ENTX
OUT
FSKSW
VEE
FSKDTA
5
6
7
8
XTAL
CX1
CB0
1 2
VCC
GND
VCC
ENTX
GND
1 2 3
GND
VCC
DATA
1 2 3
Fig. 18: Test circuit for FSK with 50 Ω matching network
6.1 Test circuit component list to Fig. 18
Part
Size
Value @
315 MHz
Tolerance
CM1
0805
10 pF
±5%
impedance matching capacitor
CM2
0805
15 pF
±5%
impedance matching capacitor
CM3
0805
82 pF
±5%
impedance matching capacitor
LM
0805
47 nH
±5%
impedance matching inductor, note 2
Description
LT
0805
33 nH
±5%
output tank inductor, note 2
CX1
0805
15 pF
±5%
XOSC capacitor (Δf = ±20 kHz), note 1
CX2
0805
47 pF
±5%
RPS
0805
see section 4.6
±5%
XOSC capacitor (Δf = ±20 kHz), note 1
power-select resistor
CB0
1206
220 nF
±20%
de-coupling capacitor
CB1
0805
330 pF
±10%
XTAL
HC49/S
9.84375MHz
±30ppm calibr.
±30ppm temp.
de-coupling capacitor
fundamental wave crystal,
CL = 12 pF, C0, max = 7 pF, R1 = 60 Ω
Note 1: value depending on crystal parameters
Note 2: for high-power applications high-Q wire-wound inductors should be used
3901072001
Rev. 007
Page 17 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
7 Package Description
The device TH72001 is RoHS compliant.
D
e
7°
ZD
E
H
8
DETAIL - A
1
L
B
DETAIL - A
A
A2
0.38 x 45°
BSC
(0.015x45°)
A1
C
.10 (.004)
Fig. 19: SOIC8
all Dimension in mm, coplanarity < 0.1mm
D
E
H
A
A1
min
4.80
max
4.98
A2
3.81
5.80
1.52
0.10
1.37
3.99
6.20
1.72
0.25
1.57
e
1.27
B
0.36
0.46
ZD
0.53
C
L
α
0.19
0.41
0°
0.25
1.27
8°
0.075 0.016
0°
0.098 0.050
8°
all Dimension in inch, coplanarity < 0.004”
min
0.189 0.150 0.2284 0.060 0.0040 0.054
max
0.196 0.157 0.2440 0.068 0.0098 0.062
0.050
0.014
0.018
0.021
7.1 Soldering Information
•
3901072001
Rev. 007
The device TH72001 is qualified for MSL3 with soldering peak temperature 260 deg C
according to JEDEC J-STD-20
Page 18 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
8 Reliability Information
This Melexis device is classified and qualified regarding soldering technology, solderability and moisture
sensitivity level, as defined in this specification, according to following test methods:
Reflow Soldering SMD’s (Surface Mount Devices)
•
•
IPC/JEDEC J-STD-020
“Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)”
EIA/JEDEC JESD22-A113
“Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)”
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
•
EN60749-20
“Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat”
EIA/JEDEC JESD22-B106 and EN60749-15
“Resistance to soldering temperature for through-hole mounted devices”
Iron Soldering THD’s (Through Hole Devices)
•
EN60749-15
“Resistance to soldering temperature for through-hole mounted devices”
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)
•
EIA/JEDEC JESD22-B102 and EN60749-21
“Solderability”
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be
agreed upon with Melexis.
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of
adhesive strength between device and board.
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualification of RoHS compliant products (RoHS = European directive on the Restriction Of the
Use of Certain Hazardous Substances) please visit the quality page on our website:
http://www.melexis.com/quality_leadfree.aspx
9 ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
3901072001
Rev. 007
Page 19 of 20
Data Sheet
June/07
TH72001
315MHz
FSK Transmitter
10 Disclaimer
1) The information included in this documentation is subject to Melexis intellectual and other property rights.
Reproduction of information is permissible only if the information will not be altered and is accompanied
by all associated conditions, limitations and notices.
2) Any use of the documentation without the prior written consent of Melexis other than the one set forth in
clause 1 is an unfair and deceptive business practice. Melexis is not responsible or liable for such altered
documentation.
3) The information furnished by Melexis in this documentation is provided ’as is’. Except as expressly warranted in any other applicable license agreement, Melexis disclaims all warranties either express, implied, statutory or otherwise including but not limited to the merchantability, fitness for a particular purpose, title and non-infringement with regard to the content of this documentation.
4) Notwithstanding the fact that Melexis endeavors to take care of the concept and content of this documentation, it may include technical or factual inaccuracies or typographical errors. Melexis disclaims any
responsibility in connection herewith.
5) Melexis reserves the right to change the documentation, the specifications and prices at any time and
without notice. Therefore, prior to designing this product into a system, it is necessary to check with
Melexis for current information.
6) Melexis shall not be liable to recipient or any third party for any damages, including but not limited to
personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the information in this documentation.
7) The product described in this documentation is intended for use in normal commercial applications. Applications requiring operation beyond ranges specified in this documentation, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application.
8) Any supply of products by Melexis will be governed by the Melexis Terms of Sale, published on
www.melexis.com.
© Melexis NV. All rights reserved.
For the latest version of this document, go to our website at:
www.melexis.com
Or for additional information contact Melexis Direct:
Europe, Asia:
Americas:
Asia:
Phone: +32 1367 0495
Phone: +1 603 223 2362
Phone: +32 1367 0495
E-mail: [email protected]
E-mail: [email protected]
E-mail: [email protected]
ISO/TS 16949 and ISO14001 Certified
3901072001
Rev. 007
Page 20 of 20
Data Sheet
June/07