TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com TMS320C6743 Fixed/Floating-Point Digital Signal Processor Check for Samples: TMS320C6743 1 TMS320C6743 Fixed/Floating-Point Digital Signal Processor 1.1 Features 12 • Highlights – Up to 375-MHz FIxed/Floating-Point VLIW DSP Core – Enhanced Direct-Memory-Access Controller (EDMA3) – Two External Memory Interfaces – Two Configurable 16550 type UART Modules – One Serial Peripheral Interface (SPI) – Multimedia Card (MMC)/Secure Digital (SD) – Two Master/Slave Inter-Integrated Circuit Modules (I2C) – RMII Ethernet Media Access COntroller (EMAC) – Three Event Capture (eCAP) Modules – Two Quadrature Encoding (eQEP) Modules – Two Multi-Channel Audio Serial Ports (McASP) – Programmable Real-Time Unit Subsystem (PRUSS) – Two 64-bit Timers (each configurable as 32-bit) • Applications – Industrial Control – Networking – High-Speed Encoding – Professional Audio™ • Software Support – TI DSP/BIOS™ – Chip Support Library and DSP Library • TMS320C674x Floating Point VLIW DSP Core – Load-Store Architecture With Non-Aligned Support – 64 General-Purpose Registers (32 Bit) – Six ALU (32-/40-Bit) Functional Units • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks • Supports up to Two Floating Point (SP or DP) Reciprocal Approximation (RCPxP) and Square-Root Reciprocal Approximation (RSQRxP) Operations Per • • • • • Cycle – Two Multiply Functional Units • Mixed-Precision IEEE Floating Point Multiply Supported up to: – 2 SP x SP -> SP Per Clock – 2 SP x SP -> DP Every Two Clocks – 2 SP x DP -> DP Every Three Clocks – 2 DP x DP -> DP Every Four Clocks • Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples – Instruction Packing Reduces Code Size – All Instructions Conditional – Hardware Support for Modulo Loop Operation – Protected Mode Operation – Exceptions Support for Error Detection and Program Redirection C674x Instruction Set Features – Superset of the C67x+™ and C64x+™ ISAs – 3000/2250 C674x MIPS/MFLOPS – Byte-Addressable (8-/16-/32-/64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions C674x Two Level Cache Memory Architecture – 32K-Byte L1P Program RAM/Cache – 32K-Byte L1D Data RAM/Cache – 128K-Byte L2 Unified Mapped RAM/Cache – Flexible RAM/Cache Partition (L1 and L2) Enhanced Direct-Memory-Access Controller 3 (EDMA3): – 2 Transfer Controllers – 32 Independent DMA Channels – 8 Quick DMA Channels – Programmable Transfer Burst Size 3.3V LVCMOS IOs Two External Memory Interfaces: – EMIFA • NOR (8-Bit-Wide Data) 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009–2011, Texas Instruments Incorporated TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 • • • • • • 2 • NAND (8-Bit-Wide Data) – EMIFB • 16-bit SDRAM, up to 256 MB Two Configurable 16550 type UART Modules: – UART0 With Modem Control Signals – 16-byte FIFO – 16x or 13x Oversampling Option One Serial Peripheral Interface (SPI) With One Chip-Select Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Two Master/Slave Inter-Integrated Circuit (I2C Bus™) Programmable Real-Time Unit Subsystem (PRUSS) – Two Independent Programmable Realtime Unit (PRU) Cores • 32-Bit Load/Store RISC architecture • 4K Byte instruction RAM per core • 512 Bytes data RAM per core • PRU Subsystem (PRUSS) can be disabled via software to save power • Register 30 of each PRU is exported from the subsystem in addition to the normal R31 output of the PRU cores. – Standard power management mechanism • Clock gating • Entire subsystem under a single PSC clock gating domain – Dedicated interrupt controller – Dedicated switched central resource Two Multichannel Audio Serial Ports: www.ti.com • • • • • • • • • – Supports TDM, I2S, and Similar Formats – FIFO buffers for Transmit and Receive 10/100 Mb/s Ethernet MAC (EMAC): – IEEE 802.3 Compliant (3.3-V I/O Only) – RMII Media Independent Interface – Management Data I/O (MDIO) Module One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers) One 64-Bit General-Purpose/Watch Dog Timer (Configurable as Two 32-Bit Timers) Three Enhanced Pulse Width Modulators (eHRPWM): – Dedicated 16-Bit Time-Base Counter With Period And Frequency Control – 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs – Dead-Band Generation – PWM Chopping by High-Frequency Carrier – Trip Zone Input Three 32-Bit Enhanced Capture Modules (eCAP): – Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) outputs – Single Shot Capture of up to Four Event Time-Stamps Two 32-Bit Enhanced Quadrature Encoder Pulse Modules (eQEP) 256-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZKB Suffix], 1.0-mm Ball Pitch 176-Pin Thin Quad Flat Pack (TQFP) [PTP Suffix], 0.5-mm Pin Pitch Commercial or Automotive Temperature TMS320C6743 Fixed/Floating-Point Digital Signal Processor Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 www.ti.com SPRS565B – APRIL 2009 – REVISED JUNE 2011 The C6743 is a Low-power digital signal processor based on C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000™ platform of DSPs. The C6743 enables OEMs and ODMs to quickly bring to market devices featuring high processing performance . The C6743 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 128KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; two inter-integrated circuit (I2C) Bus interfaces; 2 multichannel audio serial port (McASP) with 14/9 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one configurable as watchdog); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 2 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the C6743 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. Copyright © 2009–2011, Texas Instruments Incorporated TMS320C6743 Fixed/Floating-Point Digital Signal Processor Submit Documentation Feedback Product Folder Link(s): TMS320C6743 3 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 1.2 www.ti.com Functional Block Diagram JTAG Interface DSP Subsystem System Control C674x DSP CPU PLL/Clock Generator w/OSC Input Clock(s) GeneralPurpose Timer GeneralPurpose Timer (Watchdog) AET Power/Sleep Controller 32 KB L1 Pgm Pin Multiplexing 32 KB L1 RAM BOOT ROM Switched Central Resource (SCR) Peripherals GPIO DMA Audio Ports EDMA3 McASP w/FIFO (2) (1) 4 eCAP (3) I2C (2) Connectivity Control Timers ePWM (3) Serial Interfaces eQEP (2) (10/100) EMAC (RMII) MDIO MMC/SD (8b) SPI (1) UART (2) External Memory Interfaces EMIFA(8b) NAND/Flash EMIFB SDRAM Only (16b) Not all peripherals are available at the same time due to multiplexing. TMS320C6743 Fixed/Floating-Point Digital Signal Processor Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. NOTE: Page numbers for previous revisions may differ from page numbers in the current version. This data manual revision history highlights the changes made to the SPRS565A device-specific data manual to make it an SPRS565B revision. Revision History See ADDITIONS/MODIFICATIONS/DELETIONS Global These modifications were made globally: • Changed MDCLK to MDIO_CLK. • Removed specifics regarding L2 or Boot ROM Section 1.1 Features • • Section 1.2 Functional Block Diagram Removed L2 RAM as not supported. Section 2.1 Device Characteristics Table 2-1, Characteristics of the C6743 Processor: • Added PRU Subsystem (PRUSS) under Peripherals. • Updated On-Chip Memory, Size bytes to 448KB RAM. • Updated JTAG BSDL_ID, DEVIDR0 values for each Silicon Revision. • Updated CPU Frequency to 375. Section 2.3.2.3 C674x CPU Table 2-3, C674x L1/L2 Memory Protection Registers: • Added table Section 2.4 Memory Map Summary Table 2-4, C6743 Top Level Memory Map: • Added PRUSS MEM MAP column. • Removed size entries for Reserved sections • Combined consecutive Reserved sections. • Added Memory Protection Unit 1 and 2. • Added note regarding L2 ROM. Section 2.5.1 Pin Map (Bottom View) Figure 2-3, Pin Map (ZKB): • Updated pin names: A3, B3, B5, C6, D4, F3, F4, G4, H1, H4, J5, K1, P3, P4, R3, R4, R6 Added Highlights. Updated bullet describing the watch dog timer. Figure 2-4, Pin Map (PTP): • Updated pin names: 1, 2, 7, 8, 22, 70, 132, 136, 137, 138, 139 Section 2.6 Terminal Functions Table 2-5, Reset and JTAG Terminal Functions: • Added ZKB J5 pin, EMU0/GP7[15]. • Changed GP7[14] PULL to IPD, and added note. Table 2-17, Multichannel Audio Serial Ports (McASPs) Terminal Functions: • Changed EMA_OE/AXR0[13]/GP2[7] to PTP pin 22. • Removed UART1_RXD from PTP pin 122. Table 2-20, General-Purpose IO Only Terminal Functions: • Added ZKB J5 pin, EMU0/GP7[15]. Table 2-21, Reserved and No Connect Terminal Functions: • Changed RSV4 ZKB pin to H1. • Removed RSV5. • Added No Connect pins; renamed table (and section) to reflect such. Table 2-22, Supply and Ground Terminal Functions: • Cleaned up sorting for CVDD and VSS ZKB pin lists. • Moved PTP pin 136 and KZB pins F3, H4 from VSS to NC rows ofTable 2-21. Section 3 Device Configuration Section 3.1, Boot Modes: • Added new section. Section 3.2, SYSCFG Module: • Removed bullet concerning AMUTEIN as not supported. Copyright © 2009–2011, Texas Instruments Incorporated TMS320C6743 Fixed/Floating-Point Digital Signal Processor Submit Documentation Feedback Product Folder Link(s): TMS320C6743 5 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Revision History (continued) See ADDITIONS/MODIFICATIONS/DELETIONS Section 4 Device Operating Conditions Section 4.1, Absolute Maximum Ratings Over Operating Junction Temperature Range: • Added ESD Stress Voltage, VESD with table notes. • Added notes applicable to ESD, HBM, and CDM. Section 4.2, Recommended Operating Conditions: • Updated CVDD and RVDD NOM values. • Added VHYS Input Hysteresis. • Updated tt. • Updated TJ MAX. • Changed Automotive Temperature range MAX to 125°C. • Updated DSP operating frequency to 375. • Added note regarding MAX of tt. • Removed RTC_VSS from note regarding VSS. Section 4.3, Notes on Recommended Power-On Hours (POH): • Added section. Section 4.4, Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted): • Updated values for VOH and VOL. • Updated Ii VI = VSS to DVDD with pullup values. • Added IOZ parameter. • Updated VIH and VIL, OSCIN values. • Added notes regarding II and VIH/ VIL. Section 5.1 Parameter Information Section 5.1.1, Parameter Information Device-Specific Information: • Updated Figure 5-1 note text, starting with "Input requirements in this data sheet are tested...". Section 5.1.1.1, Signal Transition Levels: • Added statement defining 1.2V I/O. Section 5.3 Power Supplies Section 5.3.1, Power-On Sequence: • Changed section to expand details. Section 5.3.2, Power-Off Sequence. • Added new section. Section 5.4 Reset Section 5.4.1, Power-On Reset (POR): • Added information on tri-stated pins to first paragraph. • Added three paragraphs before "A summary of the effects of Power-On Reset...". • Removed RESETOUT. Section 5.4.2, Warm Reset: • Removed RESETOUT. Section 5.4.3, Reset Electrical Data Timings: • Removed RESETOUT. • Updated TRST in Figure 5-4. • Removed parameter 5 reference from Figure 5-5. Section 5.5 Crystal Oscillator or External Clock Input • • Updated first paragraph of description in regards to C1 and C2. Added second paragraph clarifying CLKMODE bit setting. Table 5-3, OSCIN Timing Requirements for an Externally Driven Clock: • Changed table name. • Changed CLKIN to OSCIN. • Added tt(OSCIN) MAX value and removed MIN value. • Added tj(OSCIN) data. • Added note regarding MAX of tt(OSCIN). 6 TMS320C6743 Fixed/Floating-Point Digital Signal Processor Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Revision History (continued) See ADDITIONS/MODIFICATIONS/DELETIONS Section 5.6.1 PLL Device-Specific Information Figure 5-9, PLL Topology: • Updated to remove OBSCLK area. Table 5-4, Allowed PLL Operating Conditions: • Updated PLLRST, PLLOUT, and POSTDIV MIN values. • Updated Lock time MAX equation. • Updated PLLREF MAX value. • Updated table note. Table 5-6, PLL Controller 0 Registers: • Changed addresses 0x01C1 1104 and 0x01C1 1124 to Reserved. Section 5.6.2 Device Clock Generation Table 5-5, System PLLC0 Output Clocks: • Added SPI0 for SYSCLK2. • Added I2C0 for AUXCLK. Section 5.7 DSP Interrupts Table 5-7, C6743 DSP Interrupts: • Added PRUSS interrupts (6, 17, 22, 35, 39, 44, 50, 66). Section 5.8 General-Purpose Input/Output (GPIO) Section 5.8.2, GPIO Peripheral Input/Output Electrical Data/Timing: • Removed "For example,..." from the C=SYSCLK4 note for Table 5-10 and Table 5-11. Section 5.9 EDMA Table 5-17, EDMA Events: • Updated Channel Controller event 20 to PRU_EVTOUT6 and event 21 to PRU_EVTOUT7. Section 5.10.4 EMIFA Electrical Data/Timing Table 5-19: • Added tc(CLK) parameter. Section 5.8.3, GPIO Peripheral External Interrupts Electrical Data/Timing : • Removed "For example,..." from the C=SYSCLK4 note for Table 5-12. Figure 5-13, Asynchronous Memory Read Timing for EMIFA, through Figure 5-16, EMA_WAIT Write Timing Requirements: • Added EMA_A_RW. • Changed EMA_CE[5:2] to EMA_CS[5:2] • Removed unused parameters from Figure 5-13 and Figure 5-14. Section 5.11 External Memory Interface B (EMIFB) Section 5.11.1 • Updated bullets for clarification. Section 5.12 Memory Protection Units Added section. Section 5.13.2 MMC/SD Electrical Data/Timing Table 5-30, Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module: • Updated td(CLKL-DAT) MAX value. Section 5.14.2 EMAC Electrical Data/Timing Table 5-35, RMII Timing Requirements: • Changed REF_CLK to RMII_MHZ_50_CLK. • Added table note regarding jitter tolerance. Table 5-21, EMIFB Supported SDRAM Configurations: • Corrected note: changed EMIFA to EMIFB. Table 5-36, RMII Switching Characteristics • Corrected table title. • Changed REF_CLK to RMII_MHZ_50_CLK. Section 5.15 Section 5.15.2, Management Data Input/Output (MDIO) Electrical Data/Timing: Management Data Input/Output • Changed MDIO to MDIO_D for data input/output. (MDIO) • Changed MDCLK to MDIO_CLK. • Updated th(MDIO_CLKH-MDIO) MIN value in Table 5-38. Section 5.16 Table 5-40, C6743 McASP Configurations: Multichannel Audio Serial Ports • Removed AMUTE0 from list of McASP0 pins. (McASP0, McASP1) Section 5.16.2, McASP Electrical Data/Timing: • Updated MIN and MAX values in tables for McASP0 and McASP1. Copyright © 2009–2011, Texas Instruments Incorporated TMS320C6743 Fixed/Floating-Point Digital Signal Processor Submit Documentation Feedback Product Folder Link(s): TMS320C6743 7 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Revision History (continued) See ADDITIONS/MODIFICATIONS/DELETIONS Section 5.17.2 SPI Electrical Data/Timing Table 5-49, General Timing Requirements for SPI0 Master Modes: • Updated tc(SPC)M MIN value.. Table 5-50, General Timing Requirements for SPI0 Slave Modes • Updated tc(SPC)S MIN value and deleted MAX value. • Updated tw(SPCH)S MIN value. • Updated tw(SPCL)S MIN value. • Updated td(SPC_SOMI)S MAX values. Table 5-51, Additional SPI0 Master Timings, 4-Pin Enable Option: • Updated td(SPC_ENA)M MAX values. Table 5-53, Additional SPI0 Master Timings, 5-Pin Option: • Updated td(SPC_ENA)M MAX values. • Updated td(ENA_SPC)M MAX values. Table 5-54, Additional SPI0 Slave Timings, 4-Pin Enable Option: • Updated td(SPC_ENAH)S MAX values. Table 5-55, Additional SPI0 Slave Timings, 4-Pin Chip Select Option: • Updated td(SCSL_SPC)S MIN value. • Updated tdis(SCSH_SOMI)S MAX values. Table 5-56, Additional SPI0 Slave Timings, 5-Pin Option: • Updated td(SCSL_SPC)S MIN value. • Updated td(SPC_SCSH)S MIN values. • Updated other MAX values. Section 5.18 Enhanced Capture (eCAP) Peripheral Updated description. Section 5.20 Table 5-63, eHRPWM Module Control and Status Registers Grouped by Submodule: Enhanced Pulse Width • Updated HRCNFG register byte addresses. Modulator (eHRPWM) Modules Table 5-65, eHRPWM Switching Characteristics: • Added "no additional programmable delay" to Test Conditions for td(PWM)tza and td(TZ-PWM)HZ. Section 5.20.2 Trip-Zone Input Timing Table 5-67, High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz): • Updated note describing MEP step size. Section 5.21.1 Timer Electrical Data/Timing Table 5-69, Timing Requirements for Timer Input: • Updated tt(TM64Px_IN12) MAX value. • Updated notes to remove "For example,...". • Added note describing tt(TM64Px_IN12) MAX value. Table 5-70, Switching Characteristics Over Recommended Operating Conditions for Timer Output : • Updated note to remove "For example,...".. Section 5.23 Universal Asynchronous Receiver/Transmitter (UART) Introductory text: • Added bullet regarding Autoflow control signals. • Removed bullet regarding Modem control. Section 5.23.2, UART Electrical Data/Timing: • Updated f(baud) parameter MAX value and added corresponding notes to Table 5-76. 8 Section 5.24.1 PSC Peripheral Registers Description(s) Table 5-78, PSC0 Default Module Configuration: • Updated LPSC 13 for PRUSS. Section 5.25 Programmable Real-Time Unit Subsystem (PRUSS) Added section. Section 5.27 IEEE 1149.1 JTAG Added section. TMS320C6743 Fixed/Floating-Point Digital Signal Processor Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Revision History (continued) See ADDITIONS/MODIFICATIONS/DELETIONS Section 6 Device and Documentation Support Section 6.1.2, Device and Development-Support Tool Nomenclature, Figure 6-1: • Added Device name. • Added Silicon Revisions A through C. • Added Device Speed Range for 375MHZ. • Updated Temperature Range (Junction). Section 6.2, Documentation Support: • Added TMS320C6743 DSP System Reference Guide (SPRUGJ0). 2 Device Overview 2.1 Device Characteristics Table 2-1 provides an overview of the C6743 Low power digital signal processor. The table shows significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count. Table 2-1. Characteristics of the C6743 Processor HARDWARE FEATURES C6743 SDRAM only, 16-bit bus width, up to 256 Mbit (PTP) EMIFB EMIFA Asynchronous (8-bit bus width) RAM, Flash, NOR, NAND Flash Card Interface Peripherals MMC and SD cards supported. EDMA3 32 independent channels, 8 QDMA channels, 2 Transfer controllers Timers 2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable as Watch Dog) UART 2 (One with RTS and CTS flow control) SPI Not all peripherals pins 2 I C are available at the same time (for more Multichannel Audio Serial Port detail, see the Device [McASP] Configurations section). 10/100 Ethernet MAC with Management Data I/O eHRPWM One with one hardware chip select 2 (both Master/Slave) 2 (each with transmit/receive, FIFO buffer, 14/9 serializers) 1 (RMII Interface) 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs eQEP 2 32-bit QEP channels with 4 inputs/channel General-Purpose Input/Output Port PRU Subsystem (PRUSS) On-Chip Memory SDRAM only, 16-bit bus width, up to 512 Mbit (ZKB) 8 banks of 16-bit 2 Programmable PRU Cores Size (Bytes) 320KB RAM Organization DSP 32KB L1 Program (L1P)/Cache (up to 32KB) 32KB L1 Data (L1D)/Cache (up to 32KB) 128KB Unified Mapped RAM/Cache (L2) DSP Memories can be made accessible to EDMA3, and other peripherals. C674x CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) 0x1400 C674x Megamodule Revision Revision ID Register (MM_REVID[15:0]) 0x0000 JTAG BSDL_ID DEVIDR0 register CPU Frequency MHz 0x8B7DF02F (Silicon Revision 1.0) 0x8B7DF02F (Silicon Revision 1.1) 0x9B7DF02F (Silicon Revision 2.0) C674x DSP 375(/200) MHz Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 9 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 2-1. Characteristics of the C6743 Processor (continued) HARDWARE FEATURES Voltage C6743 Core (V) 1.2 V I/O (V) 3.3 V 24 mm x 24 mm, 176-Pin, 0.5 mm pitch, TQFP (PTP) Package Product Status (1) (1) 2.2 Product Preview (PP), Advance Information (AI), or Production Data (PD) 17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB) PD PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Device Compatibility The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both the C64x+ and C67x+ DSP families. 2.3 DSP Subsystem The DSP Subsystem includes the following features: • C674x DSP CPU • 32KB L1 Program (L1P)/Cache (up to 32KB) • 32KB L1 Data (L1D)/Cache (up to 32KB) • 128KB Unified Mapped RAM/Cache (L2) • Boot ROM (cannot be used for application code) • Little endian 10 Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 32K Bytes L1P RAM/ Cache 128K Bytes L2 RAM Boot ROM 256 256 256 256 Cache Control Memory Protect Cache Control Memory Protect L1P Bandwidth Mgmt L2 Bandwidth Mgmt 256 256 256 Instruction Fetch 256 Power Down Interrupt Controller C64x Fixed/Floating-Point CPU IDMA Register File A Register File B 64 64 256 CFG Bandwidth Mgmt Memory Protect EMC L1D Cache Control 32 MDMA 8 x 32 64 Configuration Peripherals Bus SDMA 64 64 64 High Performance Switch Fabric 32K Bytes L1D RAM/ Cache Figure 2-1. C674x Megamodule Block Diagram Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 11 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 2.3.1 www.ti.com C674x DSP CPU Description The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 2-2. The two general-purpose register files (A and B) each contain 32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register). The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory. Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms on a variety of signed and unsigned 32-bit data types. The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions. The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support. Other new features include: • SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible. • Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools. • Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication. • Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration). • Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions. • Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a free-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls. 12 Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents: • TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (SPRU732) • TMS320C64x Technical Overview (SPRU395) Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 13 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com src1 Odd register file A (A1, A3, A5...A31) src2 .L1 odd dst Even register file A (A0, A2, A4...A30) (D) even dst long src ST1b ST1a 8 32 MSB 32 LSB long src 8 even dst odd dst .S1 src1 Data path A (D) src2 .M1 dst2 dst1 src1 32 32 src2 LD1b LD1a (A) (B) (C) 32 MSB 32 LSB dst DA1 .D1 src1 src2 2x 1x DA2 .D2 LD2a LD2b Odd register file B (B1, B3, B5...B31) src2 src1 dst 32 LSB 32 MSB src2 .M2 Even register file B (B0, B2, B4...B30) (C) src1 dst2 32 (B) dst1 32 (A) src2 src1 .S2 odd dst even dst long src Data path B ST2a ST2b (D) 8 32 MSB 32 LSB long src even dst .L2 8 (D) odd dst src2 src1 Control Register A. B. C. D. On .M unit, dst2 is 32 MSB. On .M unit, dst1 is 32 LSB. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files. Figure 2-2. TMS320C674x CPU (DSP Core) Data Paths 14 Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.3.2 DSP Memory Mapping The DSP memory map is shown in Section 2.4. 2.3.2.1 External Memories The DSP has access to the following External memories: • Asynchronous EMIF / NAND / NOR Flash (EMIFA) • SDRAM (EMIFB) 2.3.2.2 DSP Internal Memories The DSP has access to the following DSP memories: • L2 RAM • L1P RAM • L1D RAM 2.3.2.3 C674x CPU The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 128 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. Table 2-2 shows a memory map of the C674x CPU cache registers for the device. Table 2-2. C674x Cache Registers HEX ADDRESS RANGE REGISTER NAME DESCRIPTION 0x0184 0000 L2CFG L2 Cache configuration register 0x0184 0020 L1PCFG L1P Size Cache configuration register 0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register 0x0184 0040 L1DCFG L1D Size Cache configuration register 0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register - Reserved EDMAWEIGHT L2 EDMA access control register 0x0184 0048 - 0x0184 0FFC 0x0184 1000 0x0184 1004 - 0x0184 1FFC - Reserved 0x0184 2000 L2ALLOC0 L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2 0x0184 200C L2ALLOC3 L2 allocation register 3 - Reserved 0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register 0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 2010 - 0x0184 3FFF 0x0184 4018 L2IBAR L2 invalidate base address register 0x0184 401C L2IWC L2 invalidate word count register 0x0184 4020 L1PIBAR L1P invalidate base address register 0x0184 4024 L1PIWC L1P invalidate word count register 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register 0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - Reserved 0x0184 4040 L1DWBAR L1D Block Writeback Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 15 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 2-2. C674x Cache Registers (continued) HEX ADDRESS RANGE REGISTER NAME DESCRIPTION 0x0184 4044 L1DWWC L1D Block Writeback 0x0184 4048 L1DIBAR L1D invalidate base address register 0x0184 404C L1DIWC L1D invalidate word count register - Reserved 0x0184 5000 L2WB L2 writeback all register 0x0184 5004 L2WBINV L2 writeback invalidate all register 0x0184 5008 L2INV L2 Global Invalidate without writeback - Reserved L1PINV L1P Global Invalidate - Reserved 0x0184 5040 L1DWB L1D Global Writeback 0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate 0x0184 5048 L1DINV L1D Global Invalidate without writeback 0x0184 8000 – 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 – 0x3FFF FFFF 0x0184 8100 – 0x0184 817F MAR64 – MAR95 Reserved 0x4000 0000 – 0x5FFF FFFF 0x0184 8180 – 0x0184 8187 MAR96 - MAR97 Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 – 0x61FF FFFF 0x0184 8188 – 0x0184 818F MAR98 – MAR99 Memory Attribute Registers for EMIFA Async Data (CS3) 0x6200 0000 – 0x63FF FFFF 0x0184 4050 - 0x0184 4FFF 0x0184 500C - 0x0184 5027 0x0184 5028 0x0184 502C - 0x0184 5039 0x0184 8190 – 0x0184 8197 MAR100 – MAR101 Reserved 0x6400 0000 – 0x65FF FFFF 0x0184 8198 – 0x0184 819F MAR102 – MAR103 Reserved 0x6600 0000 – 0x67FF FFFF 0x0184 81A0 – 0x0184 81FF MAR104 – MAR127 Reserved 0x6800 0000 – 0x7FFF FFFF MAR128 Reserved 0x8000 0000 – 0x81FF FFFF 0x0184 8204 – 0x0184 82FF MAR129 – MAR191 Reserved 0x8200 0000 – 0xBFFF FFFF 0x0184 8300 – 0x0184 837F MAR192 – MAR223 Memory Attribute Registers for EMIFB SDRAM Data (CS2) 0xC000 0000 – 0xDFFF FFFF 0x0184 8380 – 0x0184 83FF MAR224 – MAR255 Reserved 0xE000 0000 – 0xFFFF FFFF 0x0184 8200 Table 2-3. C674x L1/L2 Memory Protection Registers HEX ADDRESS RANGE REGISTER NAME DESCRIPTION 0x0184 A000 L2MPFAR L2 memory protection fault address register 0x0184 A004 L2MPFSR L2 memory protection fault status register 0x0184 A008 L2MPFCR L2 memory protection fault command register - Reserved 0x0184 A100 L2MPLK0 L2 memory protection lock key bits [31:0] 0x0184 A104 L2MPLK1 L2 memory protection lock key bits [63:32] 0x0184 A108 L2MPLK2 L2 memory protection lock key bits [95:64] 0x0184 A10C L2MPLK3 L2 memory protection lock key bits [127:96] 0x0184 A110 L2MPLKCMD L2 memory protection lock key command register 0x0184 A114 L2MPLKSTAT L2 memory protection lock key status register - Reserved 0x0184 A200 L2MPPA0 L2 memory protection page attribute register 0 (controls memory address 0x0080 0000 - 0x0080 1FFF) 0x0184 A204 L2MPPA1 L2 memory protection page attribute register 1 (controls memory address 0x0080 2000 - 0x0080 3FFF) 0x0184 A208 L2MPPA2 L2 memory protection page attribute register 2 (controls memory address 0x0080 4000 - 0x0080 5FFF) 0x0184 A20C L2MPPA3 L2 memory protection page attribute register 3 (controls memory address 0x0080 6000 - 0x0080 7FFF) 0x0184 A00C - 0x0184 A0FF 0x0184 A118 - 0x0184 A1FF 16 Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 2-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE REGISTER NAME DESCRIPTION 0x0184 A210 L2MPPA4 L2 memory protection page attribute register 4 (controls memory address 0x0080 8000 - 0x0080 9FFF) 0x0184 A214 L2MPPA5 L2 memory protection page attribute register 5 (controls memory address 0x0080 A000 - 0x0080 BFFF) 0x0184 A218 L2MPPA6 L2 memory protection page attribute register 6 (controls memory address 0x0080 C000 - 0x0080 DFFF) 0x0184 A21C L2MPPA7 L2 memory protection page attribute register 7 (controls memory address 0x0080 E000 - 0x0080 FFFF) 0x0184 A220 L2MPPA8 L2 memory protection page attribute register 8 (controls memory address 0x0081 0000 - 0x0081 1FFF) 0x0184 A224 L2MPPA9 L2 memory protection page attribute register 9 (controls memory address 0x0081 2000 - 0x0081 3FFF) 0x0184 A228 L2MPPA10 L2 memory protection page attribute register 10 (controls memory address 0x0081 4000 - 0x0081 5FFF) 0x0184 A22C L2MPPA11 L2 memory protection page attribute register 11 (controls memory address 0x0081 6000 - 0x0081 7FFF) 0x0184 A230 L2MPPA12 L2 memory protection page attribute register 12 (controls memory address 0x0081 8000 - 0x0081 9FFF) 0x0184 A234 L2MPPA13 L2 memory protection page attribute register 13 (controls memory address 0x0081 A000 - 0x0081 BFFF) 0x0184 A238 L2MPPA14 L2 memory protection page attribute register 14 (controls memory address 0x0081 C000 - 0x0081 DFFF) 0x0184 A23C L2MPPA15 L2 memory protection page attribute register 15 (controls memory address 0x0081 E000 - 0x0081 FFFF) 0x0184 A240 L2MPPA16 L2 memory protection page attribute register 16 (controls memory address 0x0082 0000 - 0x0082 1FFF) 0x0184 A244 L2MPPA17 L2 memory protection page attribute register 17 (controls memory address 0x0082 2000 - 0x0082 3FFF) 0x0184 A248 L2MPPA18 L2 memory protection page attribute register 18 (controls memory address 0x0082 4000 - 0x0082 5FFF) 0x0184 A24C L2MPPA19 L2 memory protection page attribute register 19 (controls memory address 0x0082 6000 - 0x0082 7FFF) 0x0184 A250 L2MPPA20 L2 memory protection page attribute register 20 (controls memory address 0x0082 8000 - 0x0082 9FFF) 0x0184 A254 L2MPPA21 L2 memory protection page attribute register 21 (controls memory address 0x0082 A000 - 0x0082 BFFF) 0x0184 A258 L2MPPA22 L2 memory protection page attribute register 22 (controls memory address 0x0082 C000 - 0x0082 DFFF) 0x0184 A25C L2MPPA23 L2 memory protection page attribute register 23 (controls memory address 0x0082 E000 - 0x0082 FFFF) 0x0184 A260 L2MPPA24 L2 memory protection page attribute register 24 (controls memory address 0x0083 0000 - 0x0083 1FFF) 0x0184 A264 L2MPPA25 L2 memory protection page attribute register 25 (controls memory address 0x0083 2000 - 0x0083 3FFF) 0x0184 A268 L2MPPA26 L2 memory protection page attribute register 26 (controls memory address 0x0083 4000 - 0x0083 5FFF) 0x0184 A26C L2MPPA27 L2 memory protection page attribute register 27 (controls memory address 0x0083 6000 - 0x0083 7FFF) 0x0184 A270 L2MPPA28 L2 memory protection page attribute register 28 (controls memory address 0x0083 8000 - 0x0083 9FFF) 0x0184 A274 L2MPPA29 L2 memory protection page attribute register 29 (controls memory address 0x0083 A000 - 0x0083 BFFF) 0x0184 A278 L2MPPA30 L2 memory protection page attribute register 30 (controls memory address 0x0083 C000 - 0x0083 DFFF) 0x0184 A27C L2MPPA31 L2 memory protection page attribute register 31 (controls memory address 0x0083 E000 - 0x0083 FFFF) Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 17 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 2-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE 18 REGISTER NAME DESCRIPTION 0x0184 A280 L2MPPA32 L2 memory protection page attribute register 32 (controls memory address 0x0070 0000 - 0x0070 7FFF) 0x0184 A284 L2MPPA33 L2 memory protection page attribute register 33 (controls memory address 0x0070 8000 - 0x0070 FFFF) 0x0184 A288 L2MPPA34 L2 memory protection page attribute register 34 (controls memory address 0x0071 0000 - 0x0071 7FFF) 0x0184 A28C L2MPPA35 L2 memory protection page attribute register 35 (controls memory address 0x0071 8000 - 0x0071 FFFF) 0x0184 A290 L2MPPA36 L2 memory protection page attribute register 36 (controls memory address 0x0072 0000 - 0x0072 7FFF) 0x0184 A294 L2MPPA37 L2 memory protection page attribute register 37 (controls memory address 0x0072 8000 - 0x0072 FFFF) 0x0184 A298 L2MPPA38 L2 memory protection page attribute register 38 (controls memory address 0x0073 0000 - 0x0073 7FFF) 0x0184 A29C L2MPPA39 L2 memory protection page attribute register 39 (controls memory address 0x0073 8000 - 0x0073 FFFF) 0x0184 A2A0 L2MPPA40 L2 memory protection page attribute register 40 (controls memory address 0x0074 0000 - 0x0074 7FFF) 0x0184 A2A4 L2MPPA41 L2 memory protection page attribute register 41 (controls memory address 0x0074 8000 - 0x0074 FFFF) 0x0184 A2A8 L2MPPA42 L2 memory protection page attribute register 42 (controls memory address 0x0075 0000 - 0x0075 7FFF) 0x0184 A2AC L2MPPA43 L2 memory protection page attribute register 43 (controls memory address 0x0075 8000 - 0x0075 FFFF) 0x0184 A2B0 L2MPPA44 L2 memory protection page attribute register 44 (controls memory address 0x0076 0000 - 0x0076 7FFF) 0x0184 A2B4 L2MPPA45 L2 memory protection page attribute register 45 (controls memory address 0x0076 8000 - 0x0076 FFFF) 0x0184 A2B8 L2MPPA46 L2 memory protection page attribute register 46 (controls memory address 0x0077 0000 - 0x0077 7FFF) 0x0184 A2BC L2MPPA47 L2 memory protection page attribute register 47 (controls memory address 0x0077 8000 - 0x0077 FFFF) 0x0184 A2C0 L2MPPA48 L2 memory protection page attribute register 48 (controls memory address 0x0078 0000 - 0x0078 7FFF) 0x0184 A2C4 L2MPPA49 L2 memory protection page attribute register 49 (controls memory address 0x0078 8000 - 0x0078 FFFF) 0x0184 A2C8 L2MPPA50 L2 memory protection page attribute register 50 (controls memory address 0x0079 0000 - 0x0079 7FFF) 0x0184 A2CC L2MPPA51 L2 memory protection page attribute register 51 (controls memory address 0x0079 8000 - 0x0079 FFFF) 0x0184 A2D0 L2MPPA52 L2 memory protection page attribute register 52 (controls memory address 0x007A 0000 - 0x007A 7FFF) 0x0184 A2D4 L2MPPA53 L2 memory protection page attribute register 53 (controls memory address 0x007A 8000 - 0x007A FFFF) 0x0184 A2D8 L2MPPA54 L2 memory protection page attribute register 54 (controls memory address 0x007B 0000 - 0x007B 7FFF) 0x0184 A2DC L2MPPA55 L2 memory protection page attribute register 55 (controls memory address 0x007B 8000 - 0x007B FFFF) 0x0184 A2E0 L2MPPA56 L2 memory protection page attribute register 56 (controls memory address 0x007C 0000 - 0x007C 7FFF) 0x0184 A2E4 L2MPPA57 L2 memory protection page attribute register 57 (controls memory address 0x007C 8000 - 0x007C FFFF) 0x0184 A2E8 L2MPPA58 L2 memory protection page attribute register 58 (controls memory address 0x007D 0000 - 0x007D 7FFF) 0x0184 A2EC L2MPPA59 L2 memory protection page attribute register 59 (controls memory address 0x007D 8000 - 0x007D FFFF) Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 2-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE REGISTER NAME DESCRIPTION 0x0184 A2F0 L2MPPA60 L2 memory protection page attribute register 60 (controls memory address 0x007E 0000 - 0x007E 7FFF) 0x0184 A2F4 L2MPPA61 L2 memory protection page attribute register 61 (controls memory address 0x007E 8000 - 0x007E FFFF) 0x0184 A2F8 L2MPPA62 L2 memory protection page attribute register 62 (controls memory address 0x007F 0000 - 0x007F 7FFF) 0x0184 A2FC L2MPPA63 L2 memory protection page attribute register 63 (controls memory address 0x007F 8000 - 0x007F FFFF) 0x0184 A300 - 0x0184 A3FF - Reserved 0x0184 A400 L1PMPFAR L1P memory protection fault address register 0x0184 A404 L1PMPFSR L1P memory protection fault status register 0x0184 A408 L1PMPFCR L1P memory protection fault command register - Reserved 0x0184 A500 L1PMPLK0 L1P memory protection lock key bits [31:0] 0x0184 A504 L1PMPLK1 L1P memory protection lock key bits [63:32] 0x0184 A40C - 0x0184 A4FF 0x0184 A508 L1PMPLK2 L1P memory protection lock key bits [95:64] 0x0184 A50C L1PMPLK3 L1P memory protection lock key bits [127:96] 0x0184 A510 L1PMPLKCMD L1P memory protection lock key command register 0x0184 A514 L1PMPLKSTAT L1P memory protection lock key status register 0x0184 A518 - 0x0184 A5FF - Reserved 0x0184 A600 - 0x0184 A63F - Reserved. 0x0184 A640 L1PMPPA16 L1P memory protection page attribute register 16 (controls memory address 0x00E0 0000 - 0x00E0 07FF) 0x0184 A644 L1PMPPA17 L1P memory protection page attribute register 17 (controls memory address 0x00E0 0800 - 0x00E0 0FFF) 0x0184 A648 L1PMPPA18 L1P memory protection page attribute register 18 (controls memory address 0x00E0 1000 - 0x00E0 17FF) 0x0184 A64C L1PMPPA19 L1P memory protection page attribute register 19 (controls memory address 0x00E0 1800 - 0x00E0 1FFF) 0x0184 A650 L1PMPPA20 L1P memory protection page attribute register 20 (controls memory address 0x00E0 2000 - 0x00E0 27FF) 0x0184 A654 L1PMPPA21 L1P memory protection page attribute register 21 (controls memory address 0x00E0 2800 - 0x00E0 2FFF) 0x0184 A658 L1PMPPA22 L1P memory protection page attribute register 22 (controls memory address 0x00E0 3000 - 0x00E0 37FF) 0x0184 A65C L1PMPPA23 L1P memory protection page attribute register 23 (controls memory address 0x00E0 3800 - 0x00E0 3FFF) 0x0184 A660 L1PMPPA24 L1P memory protection page attribute register 24 (controls memory address 0x00E0 4000 - 0x00E0 47FF) 0x0184 A664 L1PMPPA25 L1P memory protection page attribute register 25 (controls memory address 0x00E0 4800 - 0x00E0 4FFF) 0x0184 A668 L1PMPPA26 L1P memory protection page attribute register 26 (controls memory address 0x00E0 5000 - 0x00E0 57FF) 0x0184 A66C L1PMPPA27 L1P memory protection page attribute register 27 (controls memory address 0x00E0 5800 - 0x00E0 5FFF) 0x0184 A670 L1PMPPA28 L1P memory protection page attribute register 28 (controls memory address 0x00E0 6000 - 0x00E0 67FF) 0x0184 A674 L1PMPPA29 L1P memory protection page attribute register 29 (controls memory address 0x00E0 6800 - 0x00E0 6FFF) 0x0184 A678 L1PMPPA30 L1P memory protection page attribute register 30 (controls memory address 0x00E0 7000 - 0x00E0 77FF) (1) (1) These addresses correspond to the L1P memory protection page attribute registers 0-15 (L1PMPPA0-L1PMPPA15) of the C674x megamaodule. These registers are not supported for this device. Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 19 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 2-3. C674x L1/L2 Memory Protection Registers (continued) HEX ADDRESS RANGE 0x0184 A67C 0x0184 A67F – 0x0184 ABFF REGISTER NAME DESCRIPTION L1PMPPA31 L1P memory protection page attribute register 31 (controls memory address 0x00E0 7800 - 0x00E0 7FFF) - Reserved 0x0184 AC00 L1DMPFAR L1D memory protection fault address register 0x0184 AC04 L1DMPFSR L1D memory protection fault status register 0x0184 AC08 L1DMPFCR L1D memory protection fault command register - Reserved 0x0184 AD00 L1DMPLK0 L1D memory protection lock key bits [31:0] 0x0184 AD04 L1DMPLK1 L1D memory protection lock key bits [63:32] 0x0184 AD08 L1DMPLK2 L1D memory protection lock key bits [95:64] 0x0184 AD0C L1DMPLK3 L1D memory protection lock key bits [127:96] 0x0184 AD10 L1DMPLKCMD L1D memory protection lock key command register 0x0184 AD14 L1DMPLKSTAT L1D memory protection lock key status register 0x0184 AD18 - 0x0184 ADFF - Reserved 0x0184 AE00 - 0x0184 AE3F - Reserved. 0x0184 AE40 L1DMPPA16 L1D memory protection page attribute register 16 (controls memory address 0x00F0 0000 - 0x00F0 07FF) 0x0184 AE44 L1DMPPA17 L1D memory protection page attribute register 17 (controls memory address 0x00F0 0800 - 0x00F0 0FFF) 0x0184 AE48 L1DMPPA18 L1D memory protection page attribute register 18 (controls memory address 0x00F0 1000 - 0x00F0 17FF) 0x0184 AE4C L1DMPPA19 L1D memory protection page attribute register 19 (controls memory address 0x00F0 1800 - 0x00F0 1FFF) 0x0184 AE50 L1DMPPA20 L1D memory protection page attribute register 20 (controls memory address 0x00F0 2000 - 0x00F0 27FF) 0x0184 AE54 L1DMPPA21 L1D memory protection page attribute register 21 (controls memory address 0x00F0 2800 - 0x00F0 2FFF) 0x0184 AE58 L1DMPPA22 L1D memory protection page attribute register 22 (controls memory address 0x00F0 3000 - 0x00F0 37FF) 0x0184 AE5C L1DMPPA23 L1D memory protection page attribute register 23 (controls memory address 0x00F0 3800 - 0x00F0 3FFF) 0x0184 AE60 L1DMPPA24 L1D memory protection page attribute register 24 (controls memory address 0x00F0 4000 - 0x00F0 47FF) 0x0184 AE64 L1DMPPA25 L1D memory protection page attribute register 25 (controls memory address 0x00F0 4800 - 0x00F0 4FFF) 0x0184 AE68 L1DMPPA26 L1D memory protection page attribute register 26 (controls memory address 0x00F0 5000 - 0x00F0 57FF) 0x0184 AE6C L1DMPPA27 L1D memory protection page attribute register 27 (controls memory address 0x00F0 5800 - 0x00F0 5FFF) 0x0184 AE70 L1DMPPA28 L1D memory protection page attribute register 28 (controls memory address 0x00F0 6000 - 0x00F0 67FF) 0x0184 AE74 L1DMPPA29 L1D memory protection page attribute register 29 (controls memory address 0x00F0 6800 - 0x00F0 6FFF) 0x0184 AE78 L1DMPPA30 L1D memory protection page attribute register 30 (controls memory address 0x00F0 7000 - 0x00F0 77FF) 0x0184 AE7C L1DMPPA31 L1D memory protection page attribute register 31 (controls memory address 0x00F0 7800 - 0x00F0 7FFF) - Reserved 0x0184 AC0C - 0x0184 ACFF 0x0184 AE80 – 0x0185 FFFF (2) 20 (2) These addresses correspond to the L1D memory protection page attribute registers 0-15 (L1DMPPA0-L1DMPPA15) of the C674x megamaodule. These registers are not supported for this device. Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.4 Memory Map Summary Table 2-4. C6743 Top Level Memory Map START ADDRESS END ADDRESS SIZE 0x0000 0000 0x0000 0FFF 4K 0x0000 1000 0x006F FFFF 0x0070 0000 0x007F FFFF 0x0080 0000 0x0081 FFFF 0x0082 0000 0x0083 FFFF 0x0084 0000 0x00DF FFFF 0x00E0 0000 0x00E0 7FFF 0x00E0 8000 0x00EF FFFF DSP MEM MAP EDMA MEM MAP PRUSS MEM MAP PRUSS Local Address Space 1024K DSP L2 ROM (1) 128K DSP L2 RAM 32K DSP L1P RAM 32K DSP L1D RAM 0x00F0 0000 0x00F0 7FFF 0x00F0 8000 0x017F FFFF 0x0180 0000 0x0180 FFFF 64K DSP Interrupt Controller 0x0181 0000 0x0181 0FFF 4K DSP Powerdown Controller 0x0181 1000 0x0181 1FFF 4K DSP Security ID 0x0181 2000 0x0181 2FFF 4K DSP Revision ID 0x0181 3000 0x0181 FFFF 0x0182 0000 0x0182 FFFF 64K DSP EMC 0x0183 0000 0x0183 FFFF 64K DSP Internal Reserved 0x0184 0000 0x0184 FFFF 64K DSP Memory System 0x0185 0000 0x01BF FFFF 0x01C0 0000 0x01C0 7FFF 32K EDMA3 CC 0x01C0 8000 0x01C0 83FF 1024 EDMA3 TC0 0x01C0 8400 0x01C0 87FF 1024 EDMA3 TC1 0x01C0 8800 0x01C0 FFFF 0x01C1 0000 0x01C1 0FFF 4K PSC 0 0x01C1 1000 0x01C1 1FFF 4K PLL Controller 0x01C1 2000 0x01C1 3FFF 0x01C1 4000 0x01C1 4FFF 4K BootConfig 0x01C1 5000 0x01C1 FFFF 0x01C2 0000 0x01C2 0FFF 4K Timer64P 0 0x01C2 1000 0x01C2 1FFF 4K Timer64P 1 0x01C2 2000 0x01C2 2FFF 4K I2C 0 0x01C2 3000 0x01C2 FFFF 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 0x01C4 1000 0x01C4 1FFF 4K SPI 0 0x01C4 2000 0x01C4 2FFF 4K UART 0 0x01C4 3000 0x01CF FFFF 0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Ctrl 0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data 0x01D0 3000 0x01D0 3FFF 0x01D0 4000 0x01D0 4FFF 4K McASP 1 Control (1) MASTER PERIPHERAL MEM MAP The DSP L2 ROM is used for boot purposes and cannot be programmed with application code. Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 21 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 2-4. C6743 Top Level Memory Map (continued) START ADDRESS END ADDRESS SIZE DSP MEM MAP EDMA MEM MAP PRUSS MEM MAP 0x01D0 5000 0x01D0 5FFF 4K McASP 1 AFIFO Ctrl 0x01D0 6000 0x01D0 6FFF 4K McASP 1 Data 0x01D0 7000 0x01D0 CFFF 0x01D0 D000 0x01D0 DFFF 4K UART2 0x01D0 E000 0x01E1 3FFF 0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 0x01E1 6000 0x01E1 FFFF 0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM 0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers 0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers 0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port 0x01E2 5000 0x01E2 5FFF 0x01E2 6000 0x01E2 6FFF 4K GPIO 0x01E2 7000 0x01E2 7FFF 4K PSC 1 0x01E2 8000 0x01E2 8FFF 4K 12C 1 0x01E2 9000 0x01EF FFFF 0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0 0x01F0 1000 0x01F0 1FFF 4K HRPWM 0 0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1 0x01F0 3000 0x01F0 3FFF 4K HRPWM 1 0x01F0 4000 0x01F0 4FFF 4K eHRPWM 2 0x01F0 5000 0x01F0 5FFF 4K HRPWM 2 0x01F0 6000 0x01F0 6FFF 4K ECAP 0 0x01F0 7000 0x01F0 7FFF 4K ECAP 1 0x01F0 8000 0x01F0 8FFF 4K ECAP 2 0x01F0 9000 0x01F0 9FFF 4K EQEP 0 0x01F0 A000 0x01F0 AFFF 4K EQEP 1 0x01F0 B000 0x116F FFFF 0x1170 0000 0x117F FFFF 1024K DSP L2 ROM (2) 0x1180 0000 0x1181 FFFF 128K DSP L2 RAM 32K DSP L1P RAM 32K DSP L1D RAM 0x1182 0000 0x1183 FFFF 0x1184 0000 0x11DF FFFF 0x11E0 0000 0x11E0 7FFF 0x11E0 8000 0x11EF FFFF 0x11F0 0000 0x11F0 7FFF 0x11F0 8000 0x5FFF FFFF 0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2) 0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3) 0x6400 0000 0x67FF FFFF 32K EMIFA Control Regs 32K EMIFB Control Regs 256M EMIFB SDRAM Data 0x6800 0000 0x6800 7FFF 0x6800 8000 0xAFFF FFFF 0xB000 0000 0xB000 7FFF 0xB000 8000 0xBFFF FFFF 0xC000 0000 0xCFFF FFFF 0xD000 0000 0xFFFF FFFF (2) 22 MASTER PERIPHERAL MEM MAP The DSP L2 ROM is used for boot purposes and cannot be programmed with application code. Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.5 Pin Assignments Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. 2.5.1 Pin Map (Bottom View) Figure 2-3 and Figure 2-4 show the pin assignments for ZKB package and PTP packages, respectively. 1 2 3 7 4 5 6 NC SPI0_CLK/ EQEP1I/ GP5[2]/ BOOT[2] EQEP1S/ GP5[7]/ BOOT[7] 8 9 11 10 12 13 14 15 16 GP0[9] VSS VSS T EMA_CS[3]/ GP2[6] NC EMA_A[0]/ GP1[0] EMA_A[4]/ GP1[4] EMA_A[8]/ GP1[8] NC EMA_D[0]/ MMCSD_DAT[0]/ GP0[0]/ BOOT[12] EMA_OE/ AXR0[13]/ GP2[7] EMA_BA[0]/ GP1[14] EMA_A[1]/ MMCSD_CLK/ GP1[1] EMA_A[5]/ GP1[5] EMA_A[9]/ GP1[9] NC EMA_D[2]/ MMCSD_DAT[2]/ GP0[2] GP0[10] EMA_D[1]/ MMCSD_DAT[1]/ GP0[1] DVDD R SPI0_SIMO[0]/ EMA_CS[2]// EMA_BA[1]/ EQEP0S/ GP2[5]/ GP5[1]/ GP1[13] BOOT[15] BOOT[1] EMA_A[2]/ MMCSD_CMD/ GP1[2] EMA_A[6]/ GP1[6] EMA_A[11]/ GP1[11] NC EMA_D[4]/ MMCSD_DAT[4]/ GP0[4] GP0[12] EMA_D[3]/ MMCSD_DAT[3]/ GP0[3] GP0[11] P EMA_A[10]/ GP1[10] EMA_A[3]/ GP1[3] EMA_A[7]/ GP1[7] EMA_A[12]/ GP1[12] GP0[8] EMA_D[6]/ MMCSD_DAT[6]/ GP0[6] GP0[14] EMA_D[5]/ MMCSD_DAT[5]/ GP0[5] GP0[13] N VSS DVDD DVDD VSS VSS DVDD EMA_WE/ AXR0[12]/ GP2[3]/ BOOT[14] NC EMA_D[7]/ MMCSD_DAT[7]/ GP0[7]/ BOOT[13] GP0[15] M CVDD VSS VSS VSS VSS DVDD DVDD EMB_CAS NC NC NC L DVDD CVDD CVDD VSS VSS CVDD CVDD DVDD NC EMB_WE_ DQM[0]/ GP5[15] EMB_WE NC K TRST EMU0/ GP7[15] CVDD CVDD VSS VSS CVDD CVDD CVDD EMB_D[5]/ GP6[5] NC EMB_D[6]/ GP6[6] EMB_D[7]/ GP6[7] J TCK NC NC RVDD CVDD VSS VSS CVDD CVDD RVDD EMB_D[3]/ GP6[3] NC NC EMB_D[4]/ GP6[4] H AXR1[0]/ GP4[0] T VSS VSS R DVDD AXR1[1]/ GP4[1] / SPI0_ENA/ SPI0_SOMI[0]/ UART0_RXD/ UART2_RXD/ UART0_CTS/ EQEP0I/ I2C0_SDA EQEP0A/ GP5[12] GP5[0]/ TM64P0_IN12/ GP5[3]/ BOOT[0] GP5[8]/BOOT[8] BOOT[3] P AXR1[3]/ EQEP1A/ GP4[3] AXR1[2]/ GP4[2] UART0_TXD/ UART2_TXD/ I2C0_SCL/ GP5[13] TM64P0_OUT12/ GP5[9]/BOOT[9] I2C1_SCL/ GP5[5]/ BOOT[5] N AXR1[5]/ EPWM2B/ GP4[5] AXR1[4]/ EQEP1B/ GP4[4] NC SPI0_SCS[0]/ UART0_RTS/ EQEP0B/ GP5[4]/ BOOT[4] I2C1_SDA/ GP5[6]/ BOOT[6] EMA_WAIT[0]/ GP2[10] NC M NC AXR1[8]/ EPWM1A/ GP4[8] AXR1[7]/ EPWM1B/ GP4[7] AXR1[6]/ EPWM2A/ GP4[6] DVDD VSS L AHCLKR1/ GP4[11] ACLKR1/ ECAP2/ APWM2/ GP4[12] AFSR1/ GP4[13] NC DVDD K GP7[14] AHCLKX1/ EPWM0B/ GP3[14] ACLKX1/ EPWM0A/ GP3[15] AFSX1/ EPWMSYNCI/ EPWMSYNCO/ GP4[10] J TMS TDI TDO H RSV4 NC G CVDD VSS RESET VSS DVDD CVDD CVDD VSS VSS CVDD CVDD DVDD EMB_D[1]/ GP6[1] NC NC EMB_D[2]/ GP6[2] G F OSCOUT OSCIN NC VSS DVDD CVDD RSV1 VSS VSS VSS DVDD DVDD EMB_D[15]/ GP6[15] NC NC EMB_D[0]/ GP6[0] F E PLL0_VSSA OSCVSS NC NC DVDD VSS VSS DVDD DVDD VSS VSS DVDD EMB_D[13]/ GP6[13] NC NC EMB_D[14]/ GP6[14] E D PLL0_VDDA NC NC AMUTE1/ EPWMTZ/ GP4[14] AFSX0/ GP2[13]/ BOOT[10] AXR0[10]/ GP3[10] AXR0[6]/ RMII_RXER/ GP3[6] AXR0[2]/ RMII_TXEN/ GP3[2] EMB_CS[0] EMB_A[0]/ GP7[2] EMB_A[4]/ GP7[6] EMB_A[8]/ GP7[10] EMB_D[9]/ GP6[9] EMB_D[10]/ GP6[10] EMB_D[11]/ GP6[11] EMB_D[12]/ GP6[12] D C NC NC NC AFSR0/ GP3[12] ACLKX0/ ECAP0/ APWM0/ GP2[12] AXR0[9]/ GP3[9] AXR0[5]/ AXR0[1]/ RMII_RXD[1]/ RMII_TXD[1]/ GP3[5] GP3[1] EMB_BA[0]/ GP7[1] EMB_A[1]/ GP7[3] EMB_A[5]/ GP7[7] EMB_A[9]/ GP7[11] EMB_SDCKE EMB_CLK EMB_WE_ DQM[1]/ GP5[14] EMB_D[8]/ GP6[8] C B RSV2 VSS VSS ACLKR0/ ECAP1/ APWM1/ GP2[15] AHCLKX0/ AHCLKX2/ GP2[11] AXR0[8]/ MDIO_D/ GP3[8] AXR0[0]/ AXR0[4]/ RMII_RXD[0]/ RMII_TXD[0]/ GP3[4] GP3[0] EMB_BA[1]/ GP7[0] EMB_A[2]/ GP7[4] EMB_A[6]/ GP7[8] EMB_A[11]/ GP7[13] NC NC EMB_A[12]/ GP3[13] DVDD B A VSS VSS VSS AHCLKR0/ RMII_MHZ_ 50_CLK/ GP2[14]/ BOOT[11] AXR0[11]/ GP3[11] AXR0[7]/ MDIO_CLK/ GP3[7] AXR0[3]/ RMII_CRS_DV/ GP3[3] EMB_RAS EMB_A[10]/ GP7[12] EMB_A[3]/ GP7[5] EMB_A[7]/ GP7[9] NC NC NC VSS VSS A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Note: NC = No Connect Figure 2-3. Pin Map (ZKB) Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 RSV2 NC NC NC NC NC NC NC PLL0_VDDA PLL0_VSSA OSCIN OSCVSS OSCOUT RESET CVDD RSV4 RSV3 TRST DVDD TMS TDI CVDD TCK TDO GP7[14] DVDD RVDD AHCLKX1/EPWM0B/GP3[14] CVDD ACLKX1/EPWM0A/GP3[15] AFSX1/EPWMSYNCI/EPWMSYNC0/GP4[10] DVDD ACLKR1/ECAP2/APWM2/GP4[12] AFSR1/GP4[13] CVDD AXR1[8]/EPWM1A/GP4[8] AXR1[7]/EPWM1B/GP4[7] AXR1[6]/EPWM2A/GP4[6] AXR1[5]/EPWM2B/GP4[5] DVDD AXR1[4]/EQEP1B/GP4[4] AXR1[3]/EQEP1A/GP4[3] AXR1[2]/GP4[2] AXR1[1]/GP4[1] 24 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 CVDD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] I2C1_SCL/GP5[5]/BOOT[5] I2C1_SDA/GP5[6]/BOOT[6] DVDD EQEP1S/GP5[7]/BOOT[7] SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] EMA_WAIT[0]/GP2[10] CVDD EMA_CS[3]/GP2[6] EMA_OE/AXR0[13]/GP2[7] EMA_CS[2]/GP2[5]/BOOT[15] DVDD EMA_BA[0]/GP1[14] EMA_BA[1]/GP1[13] EMA_A[10]/GP1[10] CVDD EMA_A[0]/GP1[0] EMA_A[1]/MMCSD_CLK/GP1[1] EMA_A[2]/MMCSD_CMD/GP1[2] EMA_A[3]/GP1[3] DVDD EMA_A[4]/GP1[4] EMA_A[5]/GP1[5] EMA_A[6]/GP1[6] EMA_A[7]/GP1[7] CVDD EMA_A[8]/GP1[8] EMA_A[9]/GP1[9] EMA_A[11]/GP1[11] EMA_A[12]/GP1[12] DVDD EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] AXR1[0]/GP4[0] UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] GP5[10] DVDD GP5[11] UART2_RXD/GP5[12] UART2_TXD/GP5[13] SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 AMUTE1/EPWMTZ/GP4[14] AFSR0/GP3[12] ACLKR0/ECAP1/APWM1/GP2[15] AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] DVDD AFSX0/GP2[13]/BOOT[10] ACLKX0/ECAP0/APWM0/GP2[12] AHCLKX0/GP2[11] AXR0[11]/GP3[11] AXR0[10]/GP3[10] AXR0[9]/GP3[9] AXR0[8]/MDIO_D/GP3[8] AXR0[7]/MDIO_CLK/GP3[7] DVDD AXR0[6]/RMII_RXER/GP3[6] AXR0[5]/RMII_RXD[1]/GP3[5] AXR0[4]/RMII_RXD[0]/GP3[4] AXR0[3]/RMII_CRS_DV/GP3[3] CVDD AXR0[2]/RMII_TXEN/GP3[2] AXR0[1]/RMII_TXD[1]/GP3[1] AXR0[0]/RMII_TXD[0]/GP3[0] EMB_RAS DVDD EMB_CS[0] EMB_BA[0]/GP7[1] EMB_BA[1]/GP7[0] EMB_A[10]/GP7[12] CVDD EMB_A[0]/GP7[2] EMB_A[1]/GP7[3] EMB_A[2]/GP7[4] EMB_A[3]/GP7[5] DVDD EMB_A[4]/GP7[6] EMB_A[5]/GP7[7] EMB_A[6]/GP7[8] EMB_A[7]/GP7[9] EMB_A[8]/GP7[10] CVDD EMB_A[9]/GP7[11] EMB_A[11]/GP7[13] DVDD EMB_A[12]/GP3[13] TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Thermal Pad (177) Device Overview Submit Documentation Feedback Product Folder Link(s): TMS320C6743 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 EMB_SDCKE DVDD EMB_CLK EMB_WE_DQM[1]/GP5[14] EMB_D[8]/GP6[8] EMB_D[9]/GP6[9] EMB_D[10]/GP6[10] DVDD EMB_D[11]/GP6[11] EMB_D[12]/GP6[12] EMB_D[13]/GP6[13] CVDD EMB_D[14]/GP6[14] DVDD EMB_D[15]/GP6[15] EMB_D[0]/GP6[0] EMB_D[1]/GP6[1] DVDD EMB_D[2]/GP6[2] CVDD EMB_D[3]/GP6[3] RVDD EMB_D[4]/GP6[4] DVDD EMB_D[5]/GP6[5] EMB_D[6]/GP6[6] EMB_D[7]/GP6[7] CVDD EMB_WE_DQM[0]/GP5[15] EMB_WE DVDD EMB_CAS CVDD EMA_WE/AXR0[12]/GP2[3]/BOOT[14] EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] DVDD EMA_D[6]/MMCSD_DAT[6]/GP0[6] EMA_D[5]/MMCSD_DAT[5]/GP0[5] CVDD EMA_D[4]/MMCSD_DAT[4]/GP0[4] EMA_D[3]/MMCSD_DAT[3]/GP0[3] DVDD EMA_D[2]/MMCSD_DAT[2]/GP0[2] EMA_D[1]/MMCSD_DAT[1]/GP0[1] Figure 2-4. Pin Map (PTP) Copyright © 2009–2011, Texas Instruments Incorporated TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.6 Terminal Functions Table 2-5 to Section 2.6.18 identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description. 2.6.1 Device Reset and JTAG Table 2-5. Reset and JTAG Terminal Functions SIGNAL NAME PIN NO TYPE (1) PULL (2) MUXED DESCRIPTION PTP ZKB RESET 146 G3 I TMS 152 J1 I IPU JTAG test mode select TDI 153 J2 I IPU JTAG test data input TDO 156 J3 O IPU JTAG test data output TCK 155 H3 I IPU JTAG test clock TRST 150 J4 I IPD JTAG test reset - J5 I/O IPD RESET Device reset input JTAG EMU0/GP7[15] (1) (2) GPIO Emulation Signal I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.6.2 High-Frequency Oscillator and PLL Table 2-6. High-Frequency Oscillator and PLL Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) DESCRIPTION 1.2-V OSCILLATOR OSCIN 143 F2 I Oscillator input OSCOUT 145 F1 O Oscillator output OSCVSS 144 E2 GND Oscillator ground (for filter only) 1.2-V PLL PLL0_VDDA 141 D1 PWR PLL analog VDD (1.2-V filtered supply) PLL0_VSSA 142 E1 GND PLL analog VSS (for filter) (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 25 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 2.6.3 www.ti.com External Memory Interface A (ASYNC) Table 2-7. External Memory Interface A (EMIFA) Terminal Functions PIN NO TYPE (1) PULL (2) MUXED M15 I/O IPU MMC/SD, GPIO, BOOT N13 I/O IPU 51 N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/GP0[4] 49 P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/GP0[3] 48 P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/GP0[2] 46 R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/GP0[1] 45 R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 44 T13 I/O IPU EMA_A[12]/GP1[12] 42 N11 O IPU EMA_A[11]/ GP1[11] 41 P11 O IPU EMA_A[10]/GP1[10] 27 N8 O IPU EMA_A[9]/GP1[9] 40 R11 O IPU EMA_A[8]/GP1[8] 39 T11 O IPU EMA_A[7]/GP1[7] 37 N10 O IPD EMA_A[6]/GP1[6] 36 P10 O IPD EMA_A[5]/GP1[5] 35 R10 O IPD EMA_A[4]/GP1[4] 34 T10 O IPD EMA_A[3]/GP1[3] 32 N9 O IPD EMA_A[2]/MMCSD_CMD/GP1[2] 31 P9 O IPU EMA_A[1]/MMCSD_CLK/GP1[1] 30 R9 O IPU EMA_A[0]/GP1[0] 29 T9 O IPD EMA_BA[1]/GP1[13] 26 P8 O IPU EMA_BA[0]/GP1[14] 25 R8 O IPU EMA_CS[3] /GP2[6] 21 T7 O EMA_CS[2] /GP2[5]/BOOT[15] 23 P7 O EMA_WE /AXR0[12]/GP2[3]/BOOT[14] 55 M13 EMA_OE /AXR0[13]/GP2[7] 22 EMA_WAIT[0]/ GP2[10] 19 SIGNAL NAME PTP ZKB EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 54 EMA_D[6]/MMCSD_DAT[6]/GP0[6] 52 EMA_D[5]/MMCSD_DAT[5]/GP0[5] (1) (2) 26 MMC/SD, GPIO DESCRIPTION EMIFA data bus MMC/SD, GPIO, BOOT GPIO MMCSD, GPIO EMIFA address bus EMIFA address bus GPIO EMIFA bank address IPU GPIO IPU GPIO, BOOT EMIFA Async Chip Select O IPU MCASP0, GPIO, BOOT EMIFA write enable R7 O IPU McASP0, GPIO EMIFA output enable N6 I IPU GPIO EMIFA wait input/interrupt I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.6.4 External Memory Interface B (SDRAM only) Table 2-8. External Memory Interface B (EMIFB) Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION EMB_D[15]/GP6[15] 74 F13 I/O IPD EMB_D[14]/GP6[14] 76 E16 I/O IPD EMB_D[13]/GP6[13] 78 E13 I/O IPD EMB_D[12]/GP6[12] 79 D16 I/O IPD EMB_D[11]/GP6[11] 80 D15 I/O IPD EMB_D[10]/GP6[10] 82 D14 I/O IPD EMB_D[9]/GP6[9] 83 D13 I/O IPD EMB_D[8]/GP6[8] 84 C16 I/O IPD EMB_D[7]/GP6[7] 62 J16 I/O IPD EMB_D[6]/GP6[6] 63 J15 I/O IPD EMB_D[5]/GP6[5] 64 J13 I/O IPD EMB_D[4]/GP6[4] 66 H16 I/O IPD EMB_D[3]/GP6[3] 68 H13 I/O IPD EMB_D[2]/GP6[2] 70 G16 I/O IPD EMB_D[1]/GP6[1] 72 G13 I/O IPD EMB_D[0]/GP6[0] 73 F16 I/O IPD EMB_A[12]/GP3[13] 89 B15 O IPD EMB_A[11]/GP7[13] 91 B12 O IPD EMB_A[10]/GP7[12] 105 A9 O IPD EMB_A[9]/GP7[11] 92 C12 O IPD EMB_A[8]/GP7[10] 94 D12 O IPD EMB_A[7]/GP7[9] 95 A11 O IPD EMB_A[6]/GP7[8] 96 B11 O IPD EMB_A[5]/GP7[7] 97 C11 O IPD EMB_A[4]/GP7[6] 98 D11 O IPD EMB_A[3]/GP7[5] 100 A10 O IPD EMB_A[2]/GP7[4] 101 B10 O IPD EMB_A[1]/GP7[3] 102 C10 O IPD EMB_A[0]/GP7[2] 103 D10 O IPD EMB_BA[1]/GP7[0] 106 B9 O IPU EMB_BA[0]/GP7[1] 107 C9 O IPU EMB_CLK 86 C14 O IPU EMIF SDRAM clock EMB_SDCKE 88 C13 O IPU EMIFB SDRAM clock enable EMB_WE 59 K15 I/O IPU EMB_RAS 110 A8 O IPU EMB_CAS 57 L13 O IPU EMIFB column address strobe EMB_CS[0] 108 D9 O IPU EMIFB SDRAM chip select 0 EMB_WE_DQM[1] 85 C15 O IPU EMB_WE_DQM[0] 60 K14 O IPU (1) (2) GPIO EMIFB SDRAM data bus GPIO EMIFB SDRAM row/column address bus EMIFB SDRAM row/column address GPIO EMIFB SDRAM bank address GPIO GPIO EMIFB write enable EMIFB SDRAM row address strobe EMIFB write enable/data mask for EMB_D I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 27 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 2.6.5 www.ti.com Serial Peripheral Interface Modules (SPI0) Table 2-9. Serial Peripheral Interface (SPI) Terminal Functions PIN NO SIGNAL NAME PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION SPI0 SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 N4 I/O IPU UART0, EQEP0B, GPIO, BOOT SPI0 chip select SPI0_ENA /UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 R5 I/O IPU UART0, EQEP0A, GPIO, BOOT SPI0 enable SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 T5 I/O IPD eQEP1, GPIO, BOOT SPI0 clock SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 P6 I/O IPD eQEP0, GPIO, BOOT SPI0 data slave-in-master-out SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 R6 I/O IPD eQEP0, GPIO, BOOT SPI0 data slave-out-master-in (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.6.6 Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2) The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed. Table 2-10. Enhanced Capture Module (eCAP) Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION eCAP0 ACLKX0/ECAP0/APWM0/GP2[12] 126 C5 I/O IPD McASP0, GPIO enhanced capture 0 input or auxiliary PWM 0 output IPD McASP0, GPIO enhanced capture 1 input or auxiliary PWM 1 output IPD McASP1, GPIO enhanced capture 2 input or auxiliary PWM 2 output eCAP1 ACLKR0/ECAP1/APWM1/GP2[15] 130 B4 I/O eCAP2 ACLKR1/ECAP2/APWM2/GP4[12] (1) (2) 28 165 L2 I/O I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.6.7 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2) Table 2-11. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions SIGNAL NAME PIN NO PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION eHRPWM0 ACLKX1/EPWM0A/GP3[15] 162 K3 I/O IPD AHCLKX1/EPWM0B/GP3[14] 160 K2 I/O IPD McASP1, GPIO eHRPWM0 A output (with high-resolution) eHRPWM0 B output AMUTE1/EPWMTZ/GP4[14] 132 D4 I/O IPD McASP1, eHRPWM1, GPIO, eHRPWM2 AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] 163 K4 I/O IPD McASP1, eHRPWM0, GPIO eHRPWM0 trip zone input Sync input to eHRPWM0 module or sync output to external PWM eHRPWM1 AXR1[8]/EPWM1A/GP4[8] 168 M2 I/O IPD AXR1[7]/EPWM1B/GP4[7] 169 M3 I/O IPD AMUTE1/EPWMTZ/GP4[14] 132 D4 I/O IPD McASP1, GPIO eHRPWM1 A (with high-resolution) eHRPWM1 B output McASP1, eHRPWM0, GPIO, eHRPWM2 eHRPWM1 trip zone input eHRPWM2 AXR1[6]/EPWM2A/GP4[6] 170 M4 I/O IPD AXR1[5]/EPWM2B/GP4[5] 171 N1 I/O IPD AMUTE1/EPWMTZ/GP4[14] 132 D4 I/O IPD (1) (2) McASP1, GPIO eHRPWM2 A (with high-resolution) eHRPWM2 B output McASP1, eHRPWM0, GPIO, eHRPWM2 eHRPWM2 trip zone input I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 29 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 2.6.8 www.ti.com Enhanced Quadrature Encoder Pulse Module (eQEP) Table 2-12. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions PIN NO SIGNAL NAME PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION eQEP0 SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 R5 I IPU SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 N4 I IPU SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 R6 I IPD SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 P6 I IPD SPIO, UART0, GPIO, BOOT SPI0, GPIO, BOOT eQEP0A quadrature input eQEP0B quadrature input eQEP0 index eQEP0 strobe eQEP1 eQEP1A quadrature input AXR1[3]/EQEP1A/GP4[3] 174 P1 I IPD AXR1[4]/EQEP1B/GP4[4] 173 N2 I IPD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 T5 I IPD SPI0, GPIO, BOOT eQEP1 index EQEP1S/GP5[7]/BOOT[7] 16 T6 I IPD GPIO, BOOT eQEP1 strobe McASP1, GPIO (1) (2) 30 eQEP1B quadrature input I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.6.9 Boot Table 2-13. Boot Terminal Functions (1) PIN NO SIGNAL NAME EMA_CS[2]/GP2[5]/BOOT[15] PTP ZKB 23 P7 TYPE (2) PULL (3) I IPU EMIFA, GPIO BOOT[15] EMIFA, McASP0, GPIO BOOT[14] EMA_WE/AXR0[12]/GP2[3]/BOOT[14] 55 M13 I IPU EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] 54 M15 I IPU EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 44 T13 I IPU MUXED DESCRIPTION EMIFA, MMC/SD, GPIO BOOT[13] BOOT[12] AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 A4 I IPD McASP0, EMAC, GPIO AFSX0/GP2[13]/BOOT[10] 127 D5 I IPD McASP0, GPIO BOOT[10] BOOT[9] BOOT[11] UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 P3 I IPU UART0, I2C0, Timer0, GPIO UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 R3 I IPU UART0, I2C0, Timer0, GPIO BOOT[8] EQEP1S/GP5[7]/BOOT[7] 16 T6 I IPD eQEP1, GPIO BOOT[7] I2C1_SDA/GP5[6]/BOOT[6] 14 N5 I IPU I2C1_SCL/GP5[5]/BOOT[5] 13 P5 I IPU BOOT[6] I2C1, GPIO BOOT[5] SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 N4 I IPU SPI0, UART0, eQEP0, GPIO SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 R5 I IPU SPI0, UART0, eQEP0, GPIO SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 T5 I IPD SPIO, eQEP1, GPIO BOOT[2] SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 P6 I IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 R6 I IPD (1) (2) (3) SPI0, eQEP0, GPIO BOOT[4] BOOT[3] BOOT[1] BOOT[0] Boot decoding will be defined in the ROM datasheet. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 31 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.6.10 Universal Asynchronous Receiver/Transmitters (UART0, UART2) Table 2-14. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions PIN NO SIGNAL NAME PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION UART0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 R3 I IPU I2C0, BOOT, Timer0, GPIO, UART0 receive data UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 P3 O IPU I2C0, Timer0, GPIO, BOOT UART0 transmit data SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4] 9 N4 O IPU SPI0_ENA/ UART0_CTS /EQEP0A/GP5[3]/BOOT[3] 12 R5 I IPU UART0 clear-to-send input UART2 receive data SPIO, eQEP0, GPIO, BOOT UART0 ready-to-send output UART2 UART2_RXD/GP5[12] 7 R4 I IPU UART2_TXD/GP5[13] 8 P4 O IPU GPIO (1) (2) UART2 transmit data I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.6.11 Inter-Integrated Circuit Modules (I2C0, I2C1) Table 2-15. Inter-Integrated Circuit (I2C) Terminal Functions PIN NO SIGNAL NAME PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION I2C0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 R3 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial data UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 P3 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial clock I2C1_SDA/GP5[6]/BOOT[6] 14 N5 I/O IPU I2C1_SCL/GP5[5]/BOOT[5] 13 P5 I/O IPU I2C1 (1) (2) 32 GPIO, BOOT I2C1 serial data I2C1 serial clock I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.6.12 Timers Table 2-16. Timers Terminal Functions PIN NO SIGNAL NAME PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION TIMER0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 R3 I IPU UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 P3 O IPU Timer0 lower input UART0, I2C0, GPIO, BOOT Timer0 lower output TIMER1 (Watchdog ) No external pins. The Timer1 peripheral pins are not pinned out as external pins. (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.6.13 Multichannel Audio Serial Ports (McASP0, McASP1) Table 2-17. Multichannel Audio Serial Ports (McASPs) Terminal Functions PIN NO SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION PTP ZKB 22 R7 I/O IPU EMIFA, GPIO EMA_WE/AXR0[12]/GP2[3]/BOOT[14] 55 M13 I/O IPU EMIFA, GPIO, BOOT AXR0[11]/ GP3[11] 124 A5 I/O IPD GPIO AXR0[10]/GP3[10] 123 D6 I/O IPD GPIO AXR0[9]/GP3[9] 122 C6 I/O IPD GPIO AXR0[8]/MDIO_D/GP3[8] 121 B6 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 A6 I/O IPD AXR0[6]/RMII_RXER/GP3[6] 118 D7 I/O IPD AXR0[5]/RMII_RXD[1]/GP3[5] 117 C7 I/O IPD AXR0[4]/RMII_RXD[0]/GP3[4] 116 B7 I/O IPD AXR0[3]/RMII_CRS_DV/GP3[3] 115 A7 I/O IPD AXR0[2]/RMII_TXEN/GP3[2] 113 D8 I/O IPD AXR0[1]/RMII_TXD[1]/GP3[1] 112 C8 I/O IPD AXR0[0]/RMII_TXD[0]/GP3[0] 111 B8 I/O IPD AHCLKX0/GP2[11] 125 B5 I/O IPD GPIO McASP0 transmit master clock ACLKX0/ECAP0/APWM0/GP2[12] 126 C5 I/O IPD eCAP0, GPIO McASP0 transmit bit clock AFSX0/GP2[13]/BOOT[10] 127 D5 I/O IPD GPIO, BOOT McASP0 transmit frame sync AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 A4 I/O IPD EMAC, GPIO, BOOT McASP0 receive master clock ACLKR0/ECAP1/APWM1/GP2[15] 130 B4 I/O IPD eCAP1, GPIO McASP0 receive bit clock AFSR0/GP3[12] 131 C4 I/O IPD GPIO McASP0 receive frame sync McASP0 EMA_OE/AXR0[13]/GP2[7] (1) (2) MDIO, GPIO McASP0 serial data EMAC, GPIO I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 33 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 2-17. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued) SIGNAL NAME PIN NO TYPE (1) PULL (2) MUXED DESCRIPTION PTP ZKB AXR1[8]/EPWM1A/GP4[8] 168 M2 I/O IPD eHRPWM1 A, GPIO AXR1[7]/EPWM1B/GP4[7] 169 M3 I/O IPD eHRPWM1 B, GPIO AXR1[6]/EPWM2A/GP4[6] 170 M4 I/O IPD eHRPWM2 A, GPIO AXR1[5]/EPWM2B/GP4[5] 171 N1 I/O IPD eHRPWM2 B, GPIO AXR1[4]/EQEP1B/GP4[4] 173 N2 I/O IPD AXR1[3]/EQEP1A/GP4[3] 174 P1 I/O IPD AXR1[2]/GP4[2] 175 P2 I/O IPD AXR1[1]/GP4[1] 176 R2 I/O IPD AXR1[0]/GP4[0] 1 T3 I/O IPD AHCLKX1/EPWM0B/GP3[14] 160 K2 I/O IPD eHRPWM0, GPIO McASP1 transmit master clock ACLKX1/EPWM0A/GP3[15] 162 K3 I/O IPD eHRPWM0, GPIO McASP1 transmit bit clock AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] 163 K4 I/O IPD eHRPWM0, GPIO McASP1 transmit frame sync - L1 I/O IPD GPIO McASP1 receive master clock ACLKR1/ECAP2/APWM2/GP4[12] 165 L2 I/O IPD eCAP2, GPIO McASP1 receive bit clock AFSR1/GP4[13] 166 L3 I/O IPD GPIO McASP1 receive frame sync AMUTE1/EPWMTZ/GP4[14] 132 D4 O IPD eHRPWM0, eHRPWM1, GPIO, eHRPWM2 McASP1 mute output McASP1 AHCLKR1/GP4[11] 34 Device Overview eQEP, GPIO McASP1 serial data GPIO Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.6.14 Ethernet Media Access Controller (EMAC) Table 2-18. Ethernet Media Access Controller (EMAC) Terminal Functions PIN NO SIGNAL NAME PTP ZKB TYPE (1) PULL (2) MUXED DESCRIPTION RMII AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 A4 I/O IPD AXR0[6]/RMII_RXER/GP3[6] 118 D7 I IPD AXR0[5]/RMII_RXD[1]/GP3[5] 117 C7 I IPD AXR0[4]/RMII_RXD[0]/GP3[4] 116 B7 I IPD AXR0[3]/RMII_CRS_DV/GP3[3] 115 A7 I IPD AXR0[2]/RMII_TXEN/GP3[2] 113 D8 O IPD AXR0[1]/RMII_TXD[1]/GP3[1] 112 C8 O IPD AXR0[0]/RMII_TXD[0]/GP3[0] 111 B8 O IPD McASP0, GPIO, BOOT EMAC 50-MHz clock input or output EMAC RMII receiver error EMAC RMII receive data McASP0, GPIO EMAC RMII carrier sense data valid EMAC RMII transmit enable EMAC RMII trasmit data MDIO AXR0[8]/MDIO_D/GP3[8] 121 B6 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 A6 O IPD (1) (2) McASP0, GPIO MDIO data clock I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.6.15 Multimedia Card/Secure Digital (MMC/SD) Table 2-19. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions PIN NO TYPE (1) PULL (2) R9 O IPU P9 I/O IPU 54 M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/GP0[6] 52 N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/GP0[5] 51 N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/GP0[4] 49 P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/GP0[3] 48 P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/GP0[2] 46 R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/GP0[1] 45 R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/GP0[0]/BOOT[12] 44 T13 I/O IPU SIGNAL NAME PTP ZKB EMA_A[1]/MMCSD_CLK/GP1[1] 30 EMA_A[2]/MMCSD_CMD/GP1[2] 31 EMA_D[7]/MMCSD_DAT[7]/GP0[7]/BOOT[13] (1) (2) MUXED EMIFA, GPIO DESCRIPTION MMCSD_CLK MMCSD_CMD EMIFA, GPIO, BOOT EMIFA, GPIO MMC/SD data EMIFA, GPIO, BOOT I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 35 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.6.16 General-Purpose IO Only Terminal Functions Table 2-20. General-Purpose IO Only Terminal Functions PIN NO TYPE (1) PULL (2) M16 I/O/Z IPD N14 I/O/Z IPD - N16 I/O/Z IPD GP0[12] - P14 I/O/Z IPD GP0[11] - P16 I/O/Z IPD GP0[10] - R14 I/O/Z IPD GP0[9] - T14 I/O/Z IPD GP0[8] - N12 I/O/Z IPD GP5[11] 6 - I/O/Z IPD SIGNAL NAME PTP ZKB GP0[15] - GP0[14] - GP0[13] GP5[10] GP7[14] (3) 4 - I/O/Z IPD 157 K1 I/O IPD - J5 I/O IPD EMU0/GP7[15] (1) (2) (3) MUXED None DESCRIPTION General-Purpose IO Emulation I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor GP7[14] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will be stable only after the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an unknown state after reset. 2.6.17 Reserved and No Connect Terminal Functions Table 2-21. Reserved and No Connect Terminal Functions SIGNAL NAME PIN NO TYPE (1) DESCRIPTION PTP ZKB RSV1 - F7 PWR Reserved. (Leave unconnected, do not connect to power or ground.) RSV2 133 B1 PWR Reserved. For proper device operation, this pin must be tied directly to CVDD. RSV3 149 - PWR Reserved. For proper device operation, this pin must be tied directly to CVDD. RSV4 148 H1 I Reserved. This pin may be tied high or low. 134, 135, 137, 138, 140 A12, A13, A14, B13, B14, C1, C2, C3, D2, D3, E3, E4, E14, E15, F14, F15, G14, G15, H2, H5, H14, H15, J14, K13, K16, L4, L14, L15, L16, M1, M14, N3, N7, P12, R12, T4, T8, T12 - No Connect (leave unconnected) 136, 139 F3, H4, - This pin may be left unconnected or connected to VSS. NC (1) PWR = Supply voltage. 36 Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2.6.18 Supply and Ground Terminal Functions Table 2-22. Supply and Ground Terminal Functions PIN NO SIGNAL NAME PTP ZKB TYPE (1) DESCRIPTION CVDD (Core supply) F6, G1, G6, G7, G10, 10, 20, 28, 38, 50, 56, G11, H7, H10, H11, J6, 61, 69, 77, 93, 104, J7, J10, J11, J12, K6, 114, 147, 154, 161, 167 K7, K10, K11, L6 PWR 1.2-V core supply voltage pins RVDD (Internal RAM supply) 67, 159 H6, H12 PWR 1.2V internal ram supply voltage pins DVDD (I/O supply) 5, 15, 24, 33, 43, 47, 53, 58, 65, 71, 75, 81, 87, 90, 99, 109, 119, 128, 151, 158, 164, 172, B16, E5, E8, E9, E12, F5, F11, F12, G5, G12, K5, K12, L5, L11, L12, M5, M8, M9, M12, R1, R16 PWR 3.3-V I/O supply voltage pins. 177 A1, A2, A3, A15, A16, B2, B3, E6, E7, E10, E11, F4, F8, F9, F10, G2, G4, G8, G9, H8, H9, J8, J9, K8, K9, L7, L8, L9, L10, M6, M7, M10, M11, T1, T2, T15, T16 GND Ground pins. VSS (Ground) (1) PWR = Supply voltage, GND - Ground. Device Overview Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 37 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 3 Device Configuration 3.1 Boot Modes This device supports a variety of boot modes through an internal ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins. See Using the D800K001 Bootloader Application Report (SPRAB04) for more details on the ROM Boot Loader. The following boot modes are supported: • NAND Flash boot – 8-bit NAND • NOR Flash boot – NOR Direct boot (8-bit or 16-bit) – NOR Legacy boot (8-bit or 16-bit) – NOR AIS boot (8-bit or 16-bit) • I2C0 / I2C1 Boot – EEPROM (Master Mode) – External Host (Slave Mode) • SPI0 Boot – Serial Flash (Master Mode) – SERIAL EEPROM (Master Mode) – External Host (Slave Mode) • UART0 / UART2 Boot – External Host 3.2 SYSCFG Module The following system level features of the chip are controlled by the SYSCFG peripheral: • Readable Device, Die, and Chip Revision ID • Control of Pin Multiplexing • Priority of bus accesses different bus masters in the system • Capture at power on reset the chip BOOT[15:0] pin values and make them available to software • Special case settings for peripherals: – Locking of PLL controller settings – Default burst sizes for EDMA3 TC0 and TC1 – Selection of the source for the eCAP module input capture (including on chip sources) – Clock source selection for EMIFA and EMIFB • Selects the source of emulation suspend signal (from DSP) of peripherals supporting this function. Since the SYSCFG peripheral controls global operation of the device, its registers are protected against erroneous accesses by several mechanisms: • A special key sequence must be written to KICK0, KICK1 registers before any other registers are writeable. • Additionally, many registers are accessible only by a host (DSP) when it is operating in its privileged mode. (ex. from the kernel, but not from user space code). 38 Device Configuration Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 3-1. System Configuration (SYSCFG) Module Register Access BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01C1 4000 REVID Revision Identification Register ACCESS — 0x01C1 4008 DIEIDR0 Device Identification Register 0 — 0x01C1 400C DIEIDR1 Device Identification Register 1 — 0x01C1 4010 DIEIDR2 Device Identification Register 2 — 0x01C1 4014 DIEIDR3 Device Identification Register 3 — 0x01C1 4018 DEVIDR0 Device Identification Register 0 — 0x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode 0x01C1 4038 KICK0R Kick 0 Register Privileged mode 0x01C1 403C KICK1R Kick 1 Register Privileged mode 0x01C1 4040 HOST0CFG Host 0 Configuration Register 0x01C1 4044 HOST1CFG Host 1 Configuration Register 0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode 0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode — — 0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode 0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode 0x01C1 40F0 EOI End of Interrupt Register Privileged mode 0x01C1 40F4 FLTADDRR Fault Address Register Privileged mode 0x01C1 40F8 FLTSTAT Fault Status Register 0x01C1 4110 MSTPRI0 Master Priority 0 Register Privileged mode 0x01C1 4114 MSTPRI1 Master Priority 1 Register Privileged mode 0x01C1 4118 MSTPRI2 Master Priority 2 Register Privileged mode 0x01C1 4120 PINMUX0 Pin Multiplexing Control 0 Register Privileged mode 0x01C1 4124 PINMUX1 Pin Multiplexing Control 1 Register Privileged mode — 0x01C1 4128 PINMUX2 Pin Multiplexing Control 2 Register Privileged mode 0x01C1 412C PINMUX3 Pin Multiplexing Control 3 Register Privileged mode 0x01C1 4130 PINMUX4 Pin Multiplexing Control 4 Register Privileged mode 0x01C1 4134 PINMUX5 Pin Multiplexing Control 5 Register Privileged mode 0x01C1 4138 PINMUX6 Pin Multiplexing Control 6 Register Privileged mode 0x01C1 413C PINMUX7 Pin Multiplexing Control 7 Register Privileged mode 0x01C1 4140 PINMUX8 Pin Multiplexing Control 8 Register Privileged mode 0x01C1 4144 PINMUX9 Pin Multiplexing Control 9 Register Privileged mode 0x01C1 4148 PINMUX10 Pin Multiplexing Control 10 Register Privileged mode 0x01C1 414C PINMUX11 Pin Multiplexing Control 11 Register Privileged mode 0x01C1 4150 PINMUX12 Pin Multiplexing Control 12 Register Privileged mode 0x01C1 4154 PINMUX13 Pin Multiplexing Control 13 Register Privileged mode 0x01C1 4158 PINMUX14 Pin Multiplexing Control 14 Register Privileged mode 0x01C1 415C PINMUX15 Pin Multiplexing Control 15 Register Privileged mode 0x01C1 4160 PINMUX16 Pin Multiplexing Control 16 Register Privileged mode 0x01C1 4164 PINMUX17 Pin Multiplexing Control 17 Register Privileged mode 0x01C1 4168 PINMUX18 Pin Multiplexing Control 18 Register Privileged mode 0x01C1 416C PINMUX19 Pin Multiplexing Control 19 Register Privileged mode 0x01C1 4170 SUSPSRC Suspend Source Register Privileged mode 0x01C1 4174 CHIPSIG Chip Signal Register — — 0x01C1 4178 CHIPSIG_CLR Chip Signal Clear Register 0x01C1 417C CFGCHIP0 Chip Configuration 0 Register Privileged mode 0x01C1 4180 CFGCHIP1 Chip Configuration 1 Register Privileged mode 0x01C1 4184 CFGCHIP2 Chip Configuration 2 Register Privileged mode Device Configuration Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 39 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 3-1. System Configuration (SYSCFG) Module Register Access (continued) BYTE ADDRESS 3.3 REGISTER NAME REGISTER DESCRIPTION 0x01C1 4188 CFGCHIP3 Chip Configuration 3 Register Privileged mode ACCESS 0x01C1 418C CFGCHIP4 Chip Configuration 4 Register Privileged mode Pullup/Pulldown Resistors Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors. An external pullup/pulldown resistor needs to be used in the following situations: • Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state. • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail. For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device boot and configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration pins adds convenience to the user in debugging and flexibility in switching operating modes. Tips for choosing an external pullup/pulldown resistor: • Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors. • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels. • Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net. • For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin). • Remember to include tolerances when selecting the resistor value. • For pullup resistors, also remember to include tolerances on the IO supply rail. • For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH) for the device, see Section 4.2, Recommended Operating Conditions. • For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal functions table. 40 Device Configuration Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 4 Device Operating Conditions 4.1 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted) (1) Supply voltage ranges Input voltage ranges Core (CVDD, RVDD, PLL0_VDDA ) -0.5 V to 1.4 V (2) I/O, 3.3V (DVDD) (2) -0.5 V to 3.8V VI I/O, 1.2V (OSCIN) -0.3 V to CVDD + 0.3V VI I/O, 3.3V (Steady State) -0.3V to DVDD + 0.3V VI I/O, 3.3V (Transient Overshoot/Undershoot) Output voltage ranges Clamp Current VO I/O, 3.3V (Steady State) Storage temperature range, Tstg (default) (2) (3) (4) (5) 20% of DVDD for up to 20% of the signal period ±20mA Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode protection cells. (default) (1) -0.5 V to DVDD + 0.3V VO I/O, 3.3V (Transient Overshoot/Undershoot ) Operating Junction Temperature ranges, TJ ESD Stress Voltage, VESD (3) 20% of DVDD for up to 20% of the signal period 0°C to 90°C (T version) Human Body Model (HBM) -40°C to 125°C -55°C to 150°C (4) Charged Device Model (CDM) (5) >500V >2000V Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary precautions are taken. Pins listed as 1000V may actually have higher performance. Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance. Device Operating Conditions Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 41 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 4.2 www.ti.com Recommended Operating Conditions MIN NOM MAX UNIT CVDD Supply voltage, Core (CVDD, PLL0_VDDA ) 1.14 1.2 1.32 V RVDD Supply Voltage, Internal RAM 1.14 1.2 1.32 V DVDD Supply voltage, I/O, 3.3V (DVDD) 3.15 3.3 3.45 V VSS Supply ground (VSS, PLL0_VSSA, OSCVSS (1)) 0 0 0 V High-level input voltage, I/O, 3.3V 2 VIH High-level input voltage, OSCIN 0.7*CVDD Low-level input voltage, OSCIN VHYS Input Hysteresis tt Transition time, 10%-90%, All Inputs (unless otherwise specified in the electrical data sections) TJ Operating junction temperature range FSYSCLK1,6 DSP Operating Frequency (SYSCLK1,6) 42 0.8 V 0.3*CVDD V 160 mV (2) ns 0 90 °C -40 125 °C Default 0 375 or 200 MHz Automotive (T suffix) 0 375 or 200 MHz Default (2) V Low-level input voltage, I/O, 3.3V VIL (1) V Automotive (T suffix) 0.25P or 10 When an external crystal is used oscillator (OSC_VSS) ground must be kept separate from other grounds and connected directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. Device Operating Conditions Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 4.3 Notes on Recommended Power-On Hours (POH) The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products. To avoid significant degradation, the device power-on hours (POH) must be limited to the following: Table 4-1. Recommended Power-On Hours SILICON REVISION SPEED GRADE OPERATING JUNCTION TEMPERATURE (Tj) NOMINAL CVDD VOLTAGE (V) POWER-ON HOURS [POH] (HOURS) A 300 MHZ 0 to 90 °C 1.2V 100,000 B 200 MHZ 0 to 90 °C 1.2V 100,000 B 200 MHZ -40° to 125° 1.2V 20,000 B 375 MHz 0 to 90 °C 1.2V 100,000 B 375 MHZ -40 to 125 °C 1.2V 20,000 Note: Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions. The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI’s standard terms and conditions for TI semiconductor products. Device Operating Conditions Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 43 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 4.4 www.ti.com Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted) PARAMETER VOH High-level output voltage (3.3V I/O) VOL II Low-level output voltage (3.3V I/O) (1) Input current TEST CONDITIONS DVDD= 3.15V, IOH = 4 mA DVDD= 3.15V, IOH = 100 μA MIN TYP MAX 2.4 UNIT V 2.95 V DVDD= 3.15V, IOL = -4mA 0.4 V DVDD= 3.15V, IOL = -100 μA 0.2 V VI = VSS to DVDD without opposing internal resistor ±35 μA VI = VSS to DVDD with opposing internal pullup resistor (2) -30 -200 μA VI = VSS to DVDD with opposing internal pulldown resistor (2) 50 300 μA IOH High-level output current All peripherals -4 mA IOL Low-level output current All peripherals 4 mA I/O Off-state output current VO = VDD or VSS; Internal pull disabled ±35 μA LVCMOS signals 3 pF OSCIN 2 pF LVCMOS signals 3 pF IOZ (3) CI Input capacitance CO Output capacitance (1) (2) (3) 44 II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II indicates the input leakage current and off-state (Hi-Z) output leakage current. Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current. Device Operating Conditions Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5 Peripheral Information and Electrical Specifications 5.1 Parameter Information 5.1.1 Parameter Information Device-Specific Information Tester Pin Electronics 42 Ω 3.5 nH Transmission Line Z0 = 50 Ω (see note) 4.0 pF A. 1.85 pF Data Sheet Timing Reference Point Output Under Test Device Pin (see note) The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal. Figure 5-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 5.1.1.1 Signal Transition Levels All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O, Vref = 1.65 V. For 1.2 V I/O, Vref = 0.6 V. Vref Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOLMAX and VOH MIN for output clocks. Vref = VIH MIN (or VOH MIN) Vref = VIL MAX (or VOL MAX) Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 45 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 5.2 www.ti.com Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. 5.3 5.3.1 Power Supplies Power-On Sequence The device should be powered-on in the following order: 1. Logic supplies: (a) CVDD core logic supply (b) Other static logic supplies (RVDD, PLL0_VDDA). Groups 1a) and 1b) may be powered up together; or 1a) first, followed by 1b). 2. All digital IO supplies (DVDD). There is no specific required voltage ramp rate for any of the supplies. Note: Future devices may support higher performance at a higher core logic voltage (CVDD). If future migration is desired, the current design should provide separate supplies for 1a) and 1b). If not, then 1a) and 1b) may be provided by a single supply. RESET must be maintained active until all power supplies have reached their nominal values. 5.3.2 Power-Off Sequence The power supplies can be powered-off in any order as long as the 3.3V supplies do not remain powered with the other supplies unpowered. 46 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.4 5.4.1 Reset Power-On Reset (POR) A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT, which remains active through the reset sequence, and GP7[14]. During reset, GP7[14] is configured as a reserved function, and its behavior is not guaranteed; the user should be aware that this pin will drive a level, and in fact may toggle, during reset. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state. TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted. RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. A • • • summary of the effects of Power-On Reset is given below: All internal logic (including emulation logic and the PLL logic) is reset to its default state Internal memory is not maintained through a POR All device pins go to a high-impedance state CAUTION A watchdog reset triggers a POR. 5.4.2 Warm Reset A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT, which remains active through the reset sequence, and GP7[14]. During reset, GP7[14] is configured as a reserved function, and its behavior is not guaranteed; the user should be aware that this pin will drive a level, and in fact may toggle, during reset. During emulation, the emulator will maintain TRST high so only warm reset (not POR) is available during emulation debug and development. A • • • summary of the effects of Warm Reset is given below: All internal logic (except for the emulation logic and the PLL logic) is reset to its default state Internal memory is maintained through a warm reset All device pins go to a high-impedance state Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 47 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 5.4.3 www.ti.com Reset Electrical Data Timings Table 5-1 assumes testing over the recommended operating conditions. Table 5-1. Reset Timing Requirements ( (1)) NO. tw(RSTL) Pulse width, RESET/TRST low 2 tsu(BPV-RSTH) th(RSTH-BPV) 3 (1) MIN 1 MAX UNIT 100 ns Setup time, boot pins valid before RESET/TRST high 20 ns Hold time, boot pins valid after RESET/TRST high 20 ns For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this table refer to RESET only (TRST is held high). Power Supplies Ramping Power Supplies Stable Clock Source Stable OSCIN 1 RESET TRST 3 2 Boot Pins Config Figure 5-4. Power-On Reset (RESET and TRST active) Timing Power Supplies Stable OSCIN TRST 1 RESET 3 2 Boot Pins Driven or Hi-Z Config Figure 5-5. Warm Reset (RESET active, TRST high) Timing 48 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.5 Crystal Oscillator or External Clock Input The device includes two choices to provide an external clock input, which is fed to the on-chip PLL to generate high-frequency system clocks. These options are illustrated in Figure 5-6 and Figure 5-7. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2. The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1, the internal oscillator is disabled. • Figure 5-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. • Figure 5-7 illustrates the option that uses an external 1.2V clock input. C2 OSCIN Clock Input to PLL X1 OSCOUT C1 OSCVSS Figure 5-6. On-Chip 1.2V Oscillator Table 5-2. Oscillator Timing Requirements NO fosc PARAMETER Oscillator frequency range (OSCIN/OSCOUT) OSCIN NC MIN MAX UNIT 12 30 MHz Clock Input to PLL OSCOUT OSCVSS Figure 5-7. External 1.2V Clock Source Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 49 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-3. OSCIN Timing Requirements for Externally Driven Clock MIN MAX UNIT fOSCIN NO OSCIN frequency range (OSCIN) 12 50 MHz tc(OSCIN) Cycle time, external clock driven on OSCIN 20 ns tw(OSCINH) Pulse width high, external clock on OSCIN 0.4 tc(OSCIN) ns tw(OSCINL) Pulse width low, external clock on OSCIN 0.4 tc(OSCIN) tt(OSCIN) Transition time, OSCIN tj(OSCIN) Period jitter, OSCIN (1) ns 0.25P or 10 (1) 0.02P ns ns Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. 5.6 Clock PLLs The device has one PLL controller that provides clock to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device. The PLL controller provides the following: • Glitch-Free Transitions (on changing clock settings) • Domain Clocks Alignment • Clock Gating • PLL power down The various clock outputs given by the controller are as follows: • Domain Clocks: SYSCLK [1:n] • Auxiliary Clock from reference clock source: AUXCLK Various dividers that can be used are as follows: • Post-PLL Divider: POSTDIV • SYSCLK Divider: D1, ¼, Dn Various other controls supported are as follows: • PLL Multiplier Control: PLLM • Software programmable PLL Bypass: PLLEN 5.6.1 PLL Device-Specific Information The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL. The PLL requires some external filtering components to reduce power supply noise as shown in Figure 5-8. 1.14V - 1.32V PLL0_VDDA 50R 0.1 µF VSS 50R 0.01 µF PLL0_VSSA Ferrite Bead: Murata BLM31PG500SN1L or Equivalent Figure 5-8. PLL External Filtering Components The input to the PLL is either from the on-chip oscillator or from an external clock on the OSCIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 5-9 illustrates the PLL Topology. 50 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com The PLL is disabled by default after a device reset. It must be configured by software according to the allowable operating conditions listed in Table 5-4 before enabling the DSP to run from the PLL by setting PLLEN = 1. CLKMODE OSCIN PLLEN Square Wave 1 Crystal 0 Pre-Div PLL Post-Div PLLM 1 PLLDIV1 (/1) SYSCLK1 0 PLLDIV2 (/2) SYSCLK2 PLLDIV3 (/3) SYSCLK3 PLLDIV4 (/4) SYSCLK4 PLLDIV5 (/3) SYSCLK5 PLLDIV7 (/6) SYSCLK7 AUXCLK 0 DIV4.5 1 EMIFA Internal Clock Source CFGCHIP3[EMA_CLKSRC] DIV4.5 1 0 EMIFB Internal Clock Source CFGCHIP3[EMB_CLKSRC] Figure 5-9. PLL Topology Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 51 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-4. Allowed PLL Operating Conditions NO PARAMETER Default Value MIN 1 PLLRST: Assertion time during initialization N/A Lock time: The time that the application has to wait for the PLL to acquire locks before setting PLLEN, after changing PREDIV, PLLM, or OSCIN N/A 3 PREDIV /1 4 PLL input frequency ( PLLREF) 2 5 (1) PLL multiplier values (PLLM) (1) MAX UNIT 1000 N/A ns N/A 2000 N M where N = Pre-Divider Ratio OSCIN cycles M = PLL Multiplier /1 /32 12 30 (if internal oscillator is used) 50 (if external clock source is used) x20 x4 x32 6 PLL output frequency. ( PLLOUT ) N/A 300 600 7 POSTDIV /1 /1 /32 MHz MHz The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 300 and 600 MHz, but the frequency going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given voltage operating point. 5.6.2 Device Clock Generation PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock alignment, and test points. PLLC0 generates several clocks from the PLL0 output clock for use by the various modules. These are summarized in Table 5-5. The clock ratios between SYSCLK1, SYSCLK2, SYSCLK4 and SYSCLK6 must always be maintained as shown in the table. Table 5-5. System PLLC0 Output Clocks OUTPUT CLOCK USED BY DEFAULT RATIO (RELATIVE TO SYSCLK1) NOTES SYSCLK1 DSP /1 No Required Ratio SYSCLK2 EDMA, DSP ports, EMIFB (ports to switch fabric), ECAP 0/1/2, EPWM 0/1/2, EQEP 0/1, McASP/FIFO 0/1, UART 2, HRPWM 0/1/2, SPI0 /2 SYSCLK1 / 2 SYSCLK3 EMIFA /3 No Required Ratio SYSCLK4 SYSCFG, Interrupt Controller, PLLC0, PSC 0, EMAC/MDIO, GPIO, I2C 1, PSC 1 /4 SYSCLK1 / 4 SYSCLK5 EMIFB /3 No Required Ratio SYSCLK7 RMII clock to EMAC /6 No Required Ratio ; Should be set to 50 MHz AUXCLK McASP AuxClk, Timer64P0,Timer64P1, I2C0, N/A No Required Ratio DIV4p5 133MHz clock source for EMIFB PLL output/4.5 No Required Ratio • • • 52 The divide values in the PLL Controller 0 for SYSCLK1/SYSCLK6, SYSCLK2 and SYSCLK4 are not fixed so that user can change the divide values for power saving reasons. But users are responsible to guarantee that the divide ratios between these clock domains must be fixed to 1:2:4. Although the PLL is capable of running at 600 MHz, the SYSCLK dividers in the PLLC0 are not (maximum 400 MHz). For this reason, the post-divider in the PLLC0 should be configured for /2 to provide 300 MHz to each of the SYSCLK dividers. The DIV4p5 (/4.5) hardware clock divider is provided to generate 133 MHz from the 600 MHz PLL clock for use as clocks to the EMIFs. Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.6.3 PLL Controller 0 Registers Table 5-6. PLL Controller 0 Registers ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01C1 1000 REVID Revision Identification Register 0x01C1 10E4 RSTYPE Reset Type Status Register 0x01C1 1100 PLLCTL PLL Control Register 0x01C1 1104 - Reserved 0x01C1 1110 PLLM PLL Multiplier Control Register 0x01C1 1114 PREDIV PLL Pre-Divider Control Register 0x01C1 1118 PLLDIV1 PLL Controller Divider 1 Register 0x01C1 111C PLLDIV2 PLL Controller Divider 2 Register 0x01C1 1120 PLLDIV3 PLL Controller Divider 3 Register 0x01C1 1124 - Reserved 0x01C1 1128 POSTDIV PLL Post-Divider Control Register 0x01C1 1138 PLLCMD PLL Controller Command Register 0x01C1 113C PLLSTAT PLL Controller Status Register 0x01C1 1140 ALNCTL PLL Controller Clock Align Control Register 0x01C1 1144 DCHANGE PLLDIV Ratio Change Status Register 0x01C1 1148 CKEN Clock Enable Control Register 0x01C1 114C CKSTAT Clock Status Register 0x01C1 1150 SYSTAT SYSCLK Status Register 0x01C1 1160 PLLDIV4 PLL Controller Divider 4 Register 0x01C1 1164 PLLDIV5 PLL Controller Divider 5 Register 0x01C1 1168 PLLDIV6 PLL Controller Divider 6 Register 0x01C1 116C PLLDIV7 PLL Controller Divider 7 Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 53 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 5.7 www.ti.com DSP Interrupts The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for each of the 12 CPU interrupts is user programmable and is listed in Table 5-7. Also, the interrupt controller controls the generation of the CPU exception, NMI, and emulation interrupts. Table 5-8 summarizes the C674x interrupt controller registers and memory locations. Table 5-7. C6743 DSP Interrupts 54 EVT# INTERRUPT NAME 0 EVT0 SOURCE C674x Int Ctl 0 1 EVT1 C674x Int Ctl 1 2 EVT2 C674x Int Ctl 2 3 EVT3 C674x Int Ctl 3 4 T64P0_TINT12 5 SYSCFG_CHIPINT2 6 PRU_EVTOUT0 7 EHRPWM0 8 EDMA3_CC0_INT1 Timer64P0 - TINT12 SYSCFG_CHIPSIG Register PRU Interrupt HiResTimer/PWM0 Interrupt EDMA3 CC0 Region 1 interrupt 9 EMU-DTDMA C674x-ECM 10 EHRPWM0TZ HiResTimer/PWM0 Trip Zone Interrupt 11 EMU-RTDXRX C674x-RTDX 12 EMU-RTDXTX C674x-RTDX 13 IDMAINT0 C674x-EMC 14 IDMAINT1 C674x-EMC 15 MMCSD_INT0 MMCSD MMC/SD Interrupt 16 MMCSD_INT1 MMCSD SDIO Interrupt 17 PRU_EVTOUT1 18 EHRPWM1 19-21 - 22 PRU_EVTOUT2 23 EHRPWM1TZ PRU Interrupt HiResTimer/PWM1 Interrupt Reserved PRU Interrupt HiResTimer/PWM1 Trip Zone Interrupt 24 EHRPWM2 25 EHRPWM2TZ HiResTimer/PWM2 Interrupt 26 EMAC_C0RXTHRESH 27 EMAC_C0RX EMAC - Core 0 Receive Interrupt 28 EMAC_C0TX EMAC - Core 0 Transmit Interrupt 29 EMAC_C0MISC 30 EMAC_C1RXTHRESH 31 EMAC_C1RX EMAC - Core 1 Receive Interrupt 32 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 33 EMAC_C1MISC HiResTimer/PWM2 Trip Zone Interrupt EMAC - Core 0 Receive Threshold Interrupt EMAC - Core 0 Miscellaneous Interrupt EMAC - Core 1 Receive Threshold Interrupt EMAC - Core 1 Miscellaneous Interrupt 34 - 35 PRU_EVTOUT3 Reserved 36 IIC0_INT I2C0 37 SP0_INT SPI0 38 UART0_INT 39 PRU_EVTOUT5 PRU Interrupt 40 T64P1_TINT12 Timer64P1 Interrupt 12 41 GPIO_B1INT GPIO Bank 1 Interrupt 42 IIC1_INT PRU Interrupt UART0 I2C1 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-7. C6743 DSP Interrupts (continued) EVT# INTERRUPT NAME SOURCE 43 - Reserved 44 PRU_EVTOUT6 45 ECAP0 46 - PRU Interrupt ECAP0 Reserved 47 ECAP1 48 T64P1_TINT34 ECAP1 Timer64P1 Interrupt 34 49 GPIO_B2INT GPIO Bank 2 Interrupt 50 PRU_EVTOUT7 51 ECAP2 52 GPIO_B3INT 53 EQEP1 54 GPIO_B4INT 55 EMIFA_INT 56 EDMA3_CC0_ERRINT EDMA3 Channel Controller 0 57 EDMA3_TC0_ERRINT EDMA3 Transfer Controller 0 58 EDMA3_TC1_ERRINT EDMA3 Transfer Controller 1 59 GPIO_B5INT PRU Interrupt ECAP2 GPIO Bank 3 Interrupt EQEP1 GPIO Bank 4 Interrupt EMIFA GPIO Bank 5 Interrupt 60 EMIFB_INT EMIFB Memory Error Interrupt 61 MCASP_INT McASP0,1 Combined RX/TX Interrupts 62 GPIO_B6INT GPIO Bank 6 Interrupt 63 - 64 T64P0_TINT34 Timer64P0 Interrupt 34 65 GPIO_B0INT GPIO Bank 0 Interrupt 66 PRU_EVTOUT4 67 SYSCFG_CHIPINT3 68 EQEP0 EQEP0 69 UART2_INT UART2 70 PSC0_ALLINT PSC0 71 PSC1_ALLINT PSC1 72 GPIO_B7INT 73 - Reserved PRU Interrupt SYSCFG_CHIPSIG Register GPIO Bank 7 Interrupt Reserved 74 PROTERR 75-77 - 78 T64P0_CMPINT0 Timer64P0 - Compare 0 79 T64P0_CMPINT1 Timer64P0 - Compare 1 80 T64P0_CMPINT2 Timer64P0 - Compare 2 81 T64P0_CMPINT3 Timer64P0 - Compare 3 82 T64P0_CMPINT4 Timer64P0 - Compare 4 83 T64P0_CMPINT5 Timer64P0 - Compare 5 84 T64P0_CMPINT6 Timer64P0 - Compare 6 85 T64P0_CMPINT7 Timer64P0 - Compare 7 86 T64P1_CMPINT0 Timer64P1 - Compare 0 87 T64P1_CMPINT1 Timer64P1 - Compare 1 88 T64P1_CMPINT2 Timer64P1 - Compare 2 89 T64P1_CMPINT3 Timer64P1 - Compare 3 90 T64P1_CMPINT4 Timer64P1 - Compare 4 91 T64P1_CMPINT5 Timer64P1 - Compare 5 Copyright © 2009–2011, Texas Instruments Incorporated SYSCFG Protection Shared Interrupt Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 55 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-7. C6743 DSP Interrupts (continued) 56 EVT# INTERRUPT NAME 92 T64P1_CMPINT6 SOURCE Timer64P1 - Compare 6 93 T64P1_CMPINT7 94-95 - 96 INTERR C674x-Int Ctl C674x-EMC 97 EMC_IDMAERR 98-112 - 113 PMC_ED Timer64P1 - Compare 7 Reserved Reserved C674x-PMC 114-115 - 116 UMC_ED1 Reserved C674x-UMC 117 UMC_ED2 C674x-UMC 118 PDC_INT C674x-PDC 119 SYS_CMPA C674x-SYS 120 PMC_CMPA C674x-PMC 121 PMC_CMPA C674x-PMC 122 DMC_CMPA C674x-DMC 123 DMC_CMPA C674x-DMC 124 UMC_CMPA C674x-UMC 125 UMC_CMPA C674x-UMC 126 EMC_CMPA C674x-EMC 127 EMC_BUSERR C674x-EMC Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-8. C674x DSP Interrupt Controller Registers BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x0180 0000 EVTFLAG0 Event flag register 0 0x0180 0004 EVTFLAG1 Event flag register 1 0x0180 0008 EVTFLAG2 Event flag register 2 0x0180 000C EVTFLAG3 Event flag register 3 0x0180 0020 EVTSET0 Event set register 0 0x0180 0024 EVTSET1 Event set register 1 0x0180 0028 EVTSET2 Event set register 2 0x0180 002C EVTSET3 Event set register 3 0x0180 0040 EVTCLR0 Event clear register 0 0x0180 0044 EVTCLR1 Event clear register 1 0x0180 0048 EVTCLR2 Event clear register 2 0x0180 004C EVTCLR3 Event clear register 3 0x0180 0080 EVTMASK0 Event mask register 0 0x0180 0084 EVTMASK1 Event mask register 1 0x0180 0088 EVTMASK2 Event mask register 2 0x0180 008C EVTMASK3 Event mask register 3 0x0180 00A0 MEVTFLAG0 Masked event flag register 0 0x0180 00A4 MEVTFLAG1 Masked event flag register 1 0x0180 00A8 MEVTFLAG2 Masked event flag register 2 0x0180 00AC MEVTFLAG3 Masked event flag register 3 0x0180 00C0 EXPMASK0 Exception mask register 0 0x0180 00C4 EXPMASK1 Exception mask register 1 0x0180 00C8 EXPMASK2 Exception mask register 2 0x0180 00CC EXPMASK3 Exception mask register 3 0x0180 00E0 MEXPFLAG0 Masked exception flag register 0 0x0180 00E4 MEXPFLAG1 Masked exception flag register 1 0x0180 00E8 MEXPFLAG2 Masked exception flag register 2 0x0180 00EC MEXPFLAG3 Masked exception flag register 3 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 57 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 5.8 www.ti.com General-Purpose Input/Output (GPIO) The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]). See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. The GPIO peripheral supports the following: • Up to 128 Pins on ZKB and up to 109 Pins on PTP package configurable as GPIO • External Interrupt and DMA request Capability – Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or falling edges on the pin. – The interrupt requests within each bank are combined (logical or) to create eight unique bank level interrupt requests. – The bank level interrupt service routine may poll the INTSTATx register for its bank to determine which pin(s) have triggered the interrupt. – GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62 and 72 respectively – Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28, and 29 respectively. • Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming). • Separate Input/Output registers • Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s). • Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain I/O cell, allows wired logic be implemented. The memory map for the GPIO registers is shown in Table 5-9. 5.8.1 GPIO Register Description(s) Table 5-9. GPIO Registers GPIO BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E2 6000 REV Peripheral Revision Register 0x01E2 6004 - Reserved 0x01E2 6008 BINTEN GPIO Interrupt Per-Bank Enable Register 0x01E2 6010 DIR01 GPIO Banks 0 and 1 Direction Register 0x01E2 6014 OUT_DATA01 GPIO Banks 0 and 1 Output Data Register GPIO Banks 0 and 1 58 0x01E2 6018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register 0x01E2 601C CLR_DATA01 GPIO Banks 0 and 1 Clear Data Register 0x01E2 6020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register 0x01E2 6024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register 0x01E2 6028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register 0x01E2 602C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-9. GPIO Registers (continued) GPIO BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E2 6030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register 0x01E2 6034 INTSTAT01 GPIO Banks 0 and 1 Interrupt Status Register GPIO Banks 2 and 3 0x01E2 6038 DIR23 GPIO Banks 2 and 3 Direction Register 0x01E2 603C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register 0x01E2 6040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register 0x01E2 6044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register 0x01E2 6048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register 0x01E2 604C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register 0x01E2 6050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register 0x01E2 6054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register 0x01E2 6058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register 0x01E2 605C INTSTAT23 GPIO Banks 2 and 3 Interrupt Status Register 0x01E2 6060 DIR45 GPIO Banks 4 and 5 Direction Register 0x01E2 6064 OUT_DATA45 GPIO Banks 4 and 5 Output Data Register GPIO Banks 4 and 5 0x01E2 6068 SET_DATA45 GPIO Banks 4 and 5 Set Data Register 0x01E2 606C CLR_DATA45 GPIO Banks 4 and 5 Clear Data Register 0x01E2 6070 IN_DATA45 GPIO Banks 4 and 5 Input Data Register 0x01E2 6074 SET_RIS_TRIG45 GPIO Banks 4 and 5 Set Rising Edge Interrupt Register 0x01E2 6078 CLR_RIS_TRIG45 GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register 0x01E2 607C SET_FAL_TRIG45 GPIO Banks 4 and 5 Set Falling Edge Interrupt Register 0x01E2 6080 CLR_FAL_TRIG45 GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register 0x01E2 6084 INTSTAT45 GPIO Banks 4 and 5 Interrupt Status Register 0x01E2 6088 DIR67 GPIO Banks 6 and 7 Direction Register 0x01E2 608C OUT_DATA67 GPIO Banks 6 and 7 Output Data Register 0x01E2 6090 SET_DATA67 GPIO Banks 6 and 7 Set Data Register 0x01E2 6094 CLR_DATA67 GPIO Banks 6 and 7 Clear Data Register 0x01E2 6098 IN_DATA67 GPIO Banks 6 and 7 Input Data Register 0x01E2 609C SET_RIS_TRIG67 GPIO Banks 6 and 7 Set Rising Edge Interrupt Register 0x01E2 60A0 CLR_RIS_TRIG67 GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register 0x01E2 60A4 SET_FAL_TRIG67 GPIO Banks 6 and 7 Set Falling Edge Interrupt Register 0x01E2 60A8 CLR_FAL_TRIG67 GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register 0x01E2 60AC INTSTAT67 GPIO Banks 6 and 7 Interrupt Status Register GPIO Banks 6 and 7 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 59 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 5.8.2 www.ti.com GPIO Peripheral Input/Output Electrical Data/Timing Table 5-10. Timing Requirements for GPIO Inputs (1) (see Figure 5-10) NO. MIN MAX 1 tw(GPIH) Pulse duration, GPIx high 2C (1) (2) 2 tw(GPIL) Pulse duration, GPIx low 2C (1) (2) (1) UNIT ns The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. (2) Table 5-11. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see Figure 5-10) NO. PARAMETER MIN MAX (1) (2) 3 tw(GPOH) Pulse duration, GPOx high 2C 4 tw(GPOL) Pulse duration, GPOx low 2C (1) (1) (2) UNIT ns ns This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity. C=SYSCLK4 period in ns. (2) 2 1 GPn[m] as input 4 3 GPn[m] as output Figure 5-10. GPIO Port Timing 5.8.3 GPIO Peripheral External Interrupts Electrical Data/Timing Table 5-12. Timing Requirements for External Interrupts (1) (see Figure 5-11) NO. 1 2 (1) (2) MIN MAX tw(ILOW) tw(IHIGH) 2C (1) Width of the external interrupt pulse low Width of the external interrupt pulse high 2C (2) UNIT ns (1) (2) The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. 2 1 GPn[m] as input Figure 5-11. GPIO External Interrupt Timing 60 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.9 EDMA Table 5-13 is the list of EDMA3 Channel Contoller Registers and Table 5-14 is the list of EDMA3 Transfer Controller registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. Table 5-13. EDMA3 Channel Controller (EDMA3CC) Registers BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01C0 0000 PID Peripheral Identification Register 0x01C0 0004 CCCFG EDMA3CC Configuration Register 0x01C0 0200 QCHMAP0 QDMA Channel 0 Mapping Register 0x01C0 0204 QCHMAP1 QDMA Channel 1 Mapping Register Global Registers (1) 0x01C0 0208 QCHMAP2 QDMA Channel 2 Mapping Register 0x01C0 020C QCHMAP3 QDMA Channel 3 Mapping Register 0x01C0 0210 QCHMAP4 QDMA Channel 4 Mapping Register 0x01C0 0214 QCHMAP5 QDMA Channel 5 Mapping Register 0x01C0 0218 QCHMAP6 QDMA Channel 6 Mapping Register 0x01C0 021C QCHMAP7 QDMA Channel 7 Mapping Register 0x01C0 0240 DMAQNUM0 DMA Channel Queue Number Register 0 0x01C0 0244 DMAQNUM1 DMA Channel Queue Number Register 1 0x01C0 0248 DMAQNUM2 DMA Channel Queue Number Register 2 0x01C0 024C DMAQNUM3 DMA Channel Queue Number Register 3 0x01C0 0260 QDMAQNUM QDMA Channel Queue Number Register 0x01C0 0284 QUEPRI Queue Priority Register (1) 0x01C0 0300 EMR Event Missed Register 0x01C0 0308 EMCR Event Missed Clear Register 0x01C0 0310 QEMR QDMA Event Missed Register 0x01C0 0314 QEMCR QDMA Event Missed Clear Register 0x01C0 0318 CCERR EDMA3CC Error Register 0x01C0 031C CCERRCLR EDMA3CC Error Clear Register 0x01C0 0320 EEVAL Error Evaluate Register 0x01C0 0340 DRAE0 DMA Region Access Enable Register for Region 0 0x01C0 0348 DRAE1 DMA Region Access Enable Register for Region 1 0x01C0 0350 DRAE2 DMA Region Access Enable Register for Region 2 0x01C0 0358 DRAE3 DMA Region Access Enable Register for Region 3 0x01C0 0380 QRAE0 QDMA Region Access Enable Register for Region 0 0x01C0 0384 QRAE1 QDMA Region Access Enable Register for Region 1 0x01C0 0388 QRAE2 QDMA Region Access Enable Register for Region 2 0x01C0 038C QRAE3 QDMA Region Access Enable Register for Region 3 0x01C0 0400 - 0x01C0 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15 0x01C0 0440 - 0x01C0 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15 0x01C0 0600 QSTAT0 Queue 0 Status Register 0x01C0 0604 QSTAT1 Queue 1 Status Register 0x01C0 0620 QWMTHRA Queue Watermark Threshold A Register 0x01C0 0640 CCSTAT EDMA3CC Status Register On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 61 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-13. EDMA3 Channel Controller (EDMA3CC) Registers (continued) BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION Global Channel Registers 0x01C0 1000 ER Event Register 0x01C0 1008 ECR Event Clear Register 0x01C0 1010 ESR Event Set Register 0x01C0 1018 CER Chained Event Register 0x01C0 1020 EER Event Enable Register 0x01C0 1028 EECR Event Enable Clear Register 0x01C0 1030 EESR Event Enable Set Register 0x01C0 1038 SER Secondary Event Register 0x01C0 1040 SECR Secondary Event Clear Register 0x01C0 1050 IER Interrupt Enable Register 0x01C0 1058 IECR Interrupt Enable Clear Register 0x01C0 1060 IESR Interrupt Enable Set Register 0x01C0 1068 IPR Interrupt Pending Register 0x01C0 1070 ICR Interrupt Clear Register 0x01C0 1078 IEVAL Interrupt Evaluate Register 0x01C0 1080 QER QDMA Event Register 0x01C0 1084 QEER QDMA Event Enable Register 0x01C0 1088 QEECR QDMA Event Enable Clear Register 0x01C0 108C QEESR QDMA Event Enable Set Register 0x01C0 1090 QSER QDMA Secondary Event Register 0x01C0 1094 QSECR QDMA Secondary Event Clear Register Shadow Region 0 Channel Registers 62 0x01C0 2000 ER Event Register 0x01C0 2008 ECR Event Clear Register 0x01C0 2010 ESR Event Set Register 0x01C0 2018 CER Chained Event Register 0x01C0 2020 EER Event Enable Register 0x01C0 2028 EECR Event Enable Clear Register 0x01C0 2030 EESR Event Enable Set Register 0x01C0 2038 SER Secondary Event Register 0x01C0 2040 SECR Secondary Event Clear Register 0x01C0 2050 IER Interrupt Enable Register 0x01C0 2058 IECR Interrupt Enable Clear Register 0x01C0 2060 IESR Interrupt Enable Set Register 0x01C0 2068 IPR Interrupt Pending Register 0x01C0 2070 ICR Interrupt Clear Register 0x01C0 2078 IEVAL Interrupt Evaluate Register 0x01C0 2080 QER QDMA Event Register 0x01C0 2084 QEER QDMA Event Enable Register 0x01C0 2088 QEECR QDMA Event Enable Clear Register 0x01C0 208C QEESR QDMA Event Enable Set Register 0x01C0 2090 QSER QDMA Secondary Event Register 0x01C0 2094 QSECR QDMA Secondary Event Clear Register Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-13. EDMA3 Channel Controller (EDMA3CC) Registers (continued) BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION Shadow Region 1 Channel Registers 0x01C0 2200 ER Event Register 0x01C0 2208 ECR Event Clear Register 0x01C0 2210 ESR Event Set Register 0x01C0 2218 CER Chained Event Register 0x01C0 2220 EER Event Enable Register 0x01C0 2228 EECR Event Enable Clear Register 0x01C0 2230 EESR Event Enable Set Register 0x01C0 2238 SER Secondary Event Register 0x01C0 2240 SECR Secondary Event Clear Register 0x01C0 2250 IER Interrupt Enable Register 0x01C0 2258 IECR Interrupt Enable Clear Register 0x01C0 2260 IESR Interrupt Enable Set Register 0x01C0 2268 IPR Interrupt Pending Register 0x01C0 2270 ICR Interrupt Clear Register 0x01C0 2278 IEVAL Interrupt Evaluate Register 0x01C0 2280 QER QDMA Event Register 0x01C0 2284 QEER QDMA Event Enable Register 0x01C0 2288 QEECR QDMA Event Enable Clear Register 0x01C0 228C QEESR QDMA Event Enable Set Register 0x01C0 2290 QSER QDMA Secondary Event Register 0x01C0 2294 QSECR QDMA Secondary Event Clear Register — Parameter RAM (PaRAM) 0x01C0 4000 - 0x01C0 4FFF Table 5-14. EDMA3 Transfer Controller (EDMA3TC) Registers TRANSFER CONTROLLER 0 BYTE ADDRESS TRANSFER CONTROLLER 1 BYTE ADDRESS 0x01C0 8000 0x01C0 8400 PID Peripheral Identification Register 0x01C0 8004 0x01C0 8404 TCCFG EDMA3TC Configuration Register 0x01C0 8100 0x01C0 8500 TCSTAT EDMA3TC Channel Status Register 0x01C0 8120 0x01C0 8520 ERRSTAT Error Status Register 0x01C0 8124 0x01C0 8524 ERREN Error Enable Register 0x01C0 8128 0x01C0 8528 ERRCLR Error Clear Register 0x01C0 812C 0x01C0 852C ERRDET Error Details Register 0x01C0 8130 0x01C0 8530 ERRCMD Error Interrupt Command Register 0x01C0 8140 0x01C0 8540 RDRATE Read Command Rate Register 0x01C0 8240 0x01C0 8640 SAOPT Source Active Options Register 0x01C0 8244 0x01C0 8644 SASRC Source Active Source Address Register 0x01C0 8248 0x01C0 8648 SACNT Source Active Count Register 0x01C0 824C 0x01C0 864C SADST Source Active Destination Address Register 0x01C0 8250 0x01C0 8650 SABIDX Source Active B-Index Register 0x01C0 8254 0x01C0 8654 SAMPPRXY Source Active Memory Protection Proxy Register 0x01C0 8258 0x01C0 8658 SACNTRLD Source Active Count Reload Register 0x01C0 825C 0x01C0 865C SASRCBREF Source Active Source Address B-Reference Register 0x01C0 8260 0x01C0 8660 SADSTBREF Source Active Destination Address B-Reference Register 0x01C0 8280 0x01C0 8680 DFCNTRLD Destination FIFO Set Count Reload Register 0x01C0 8284 0x01C0 8684 DFSRCBREF Destination FIFO Set Source Address B-Reference Register Copyright © 2009–2011, Texas Instruments Incorporated REGISTER NAME REGISTER DESCRIPTION Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 63 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-14. EDMA3 Transfer Controller (EDMA3TC) Registers (continued) TRANSFER CONTROLLER 0 BYTE ADDRESS TRANSFER CONTROLLER 1 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01C0 8288 0x01C0 8688 DFDSTBREF Destination FIFO Set Destination Address B-Reference Register 0x01C0 8300 0x01C0 8700 DFOPT0 Destination FIFO Options Register 0 0x01C0 8304 0x01C0 8704 DFSRC0 Destination FIFO Source Address Register 0 0x01C0 8308 0x01C0 8708 DFCNT0 Destination FIFO Count Register 0 0x01C0 830C 0x01C0 870C DFDST0 Destination FIFO Destination Address Register 0 0x01C0 8310 0x01C0 8710 DFBIDX0 Destination FIFO B-Index Register 0 0x01C0 8314 0x01C0 8714 DFMPPRXY0 Destination FIFO Memory Protection Proxy Register 0 0x01C0 8340 0x01C0 8740 DFOPT1 Destination FIFO Options Register 1 0x01C0 8344 0x01C0 8744 DFSRC1 Destination FIFO Source Address Register 1 0x01C0 8348 0x01C0 8748 DFCNT1 Destination FIFO Count Register 1 0x01C0 834C 0x01C0 874C DFDST1 Destination FIFO Destination Address Register 1 0x01C0 8350 0x01C0 8750 DFBIDX1 Destination FIFO B-Index Register 1 0x01C0 8354 0x01C0 8754 DFMPPRXY1 Destination FIFO Memory Protection Proxy Register 1 0x01C0 8380 0x01C0 8780 DFOPT2 Destination FIFO Options Register 2 0x01C0 8384 0x01C0 8784 DFSRC2 Destination FIFO Source Address Register 2 0x01C0 8388 0x01C0 8788 DFCNT2 Destination FIFO Count Register 2 0x01C0 838C 0x01C0 878C DFDST2 Destination FIFO Destination Address Register 2 0x01C0 8390 0x01C0 8790 DFBIDX2 Destination FIFO B-Index Register 2 0x01C0 8394 0x01C0 8794 DFMPPRXY2 Destination FIFO Memory Protection Proxy Register 2 0x01C0 83C0 0x01C0 87C0 DFOPT3 Destination FIFO Options Register 3 0x01C0 83C4 0x01C0 87C4 DFSRC3 Destination FIFO Source Address Register 3 0x01C0 83C8 0x01C0 87C8 DFCNT3 Destination FIFO Count Register 3 0x01C0 83CC 0x01C0 87CC DFDST3 Destination FIFO Destination Address Register 3 0x01C0 83D0 0x01C0 87D0 DFBIDX3 Destination FIFO B-Index Register 3 0x01C0 83D4 0x01C0 87D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy Register 3 Table 5-15 shows an abbreviation of the set of registers which make up the parameter set for each of 128 EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 5-16 shows the parameter set entry registers with relative memory address locations within each of the parameter sets. Table 5-15. EDMA Parameter Set RAM HEX ADDRESS RANGE Parameters Set 0 (8 32-bit words) 0x01C0 4020 - 0x01C0 403F Parameters Set 1 (8 32-bit words) 0x01C0 4040 - 0x01cC0 405F Parameters Set 2 (8 32-bit words) 0x01C0 4060 - 0x01C0 407F Parameters Set 3 (8 32-bit words) 0x01C0 4080 - 0x01C0 409F Parameters Set 4 (8 32-bit words) 0x01C0 40A0 - 0x01C0 40BF Parameters Set 5 (8 32-bit words) ... 64 DESCRIPTION 0x01C0 4000 - 0x01C0 401F ... 0x01C0 4FC0 - 0x01C0 4FDF Parameters Set 126 (8 32-bit words) 0x01C0 4FE0 - 0x01C0 4FFF Parameters Set 127 (8 32-bit words) Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-16. Parameter Set Entries HEX OFFSET ADDRESS WITHIN THE PARAMETER SET ACRONYM PARAMETER ENTRY 0x0000 OPT Option 0x0004 SRC Source Address 0x0008 A_B_CNT 0x000C DST A Count, B Count 0x0010 SRC_DST_BIDX Source B Index, Destination B Index 0x0014 LINK_BCNTRLD Link Address, B Count Reload 0x0018 SRC_DST_CIDX Source C Index, Destination C Index 0x001C CCNT Destination Address C Count Table 5-17. EDMA Events EVENT EVENT NAME / SOURCE EVENT EVENT NAME / SOURCE 0 McASP0 Receive 16 MMCSD Receive 1 McASP0 Transmit 17 MMCSD Transmit 2 McASP1 Receive 18 - 3 McASP1 Transmit 19 - 4 - 20 PRU_EVTOUT6 5 - 21 PRU_EVTOUT7 6 GPIO Bank 0 Interrupt 22 GPIO Bank 2 Interrupt 7 GPIO Bank 1 Interrupt 23 GPIO Bank 3 Interrupt 8 UART0 Receive 24 I2C0 Receive 9 UART0 Transmit 25 I2C0 Transmit 10 Timer64P0 Event Out 12 26 I2C1 Receive 11 Timer64P0 Event Out 34 27 I2C1 Transmit 12 - 28 GPIO Bank 4 Interrupt 13 - 29 GPIO Bank 5 Interrupt 14 SPI0 Receive 30 UART2 Receive 15 SPI0 Transmit 31 UART2 Transmit Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 65 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.10 External Memory Interface A (EMIFA) EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. 5.10.1 EMIFA Asynchronous Memory Support EMIFA supports asynchronous: • SRAM memories • NAND Flash memories • NOR Flash memories The EMIFA data bus width is up to 16-bits on the ZKB package and 8 bits on the PTP package. Both devices support up to fifteen address lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]) . All four chip selects are available on the ZKB package. Two of the four are available on the PTP package (EMA_CS[3:2]). Each chip select has the following individually programmable attributes: • Data Bus Width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turn around time • Extended Wait Option With Programmable Timeout • Select Strobe Option • NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes. 5.10.2 EMIFA Connection Examples A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 5-12. This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to bootload it. 66 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com EMA_A[1] EMA_A[2] EMA_D[7:0] EMA_CS[2] EMA_CS[3] EMA_WE EMA_OE EMIFA EMA_WAIT ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane DVDD EMA_CS[4] EMA_CS[5] Figure 5-12. C6743 EMIFA Connection Diagram: Multiple NAND Flash Planes 5.10.3 External Memory Interface (EMIF) Registers Table 5-18 is a list of the EMIF registers. Table 5-18. External Memory Interface (EMIFA) Registers BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x6800 0000 MIDR Module ID Register 0x6800 0004 AWCC Asynchronous Wait Cycle Configuration Register 0x6800 0008 SDCR SDRAM Configuration Register (Not supported) 0x6800 000C SDRCR SDRAM Refresh Control Register (Not supported) 0x6800 0010 CE2CFG Asynchronous 1 Configuration Register 0x6800 0014 CE3CFG Asynchronous 2 Configuration Register 0x6800 0018 CE4CFG Asynchronous 3 Configuration Register 0x6800 001C CE5CFG Asynchronous 4 Configuration Register 0x6800 0020 SDTIMR SDRAM Timing Register (Not supported) 0x6800 003C SDSRETR SDRAM Self Refresh Exit Timing Register (Not supported) 0x6800 0040 INTRAW EMIFA Interrupt Raw Register 0x6800 0044 INTMSK EMIFA Interrupt Mask Register 0x6800 0048 INTMSKSET EMIFA Interrupt Mask Set Register 0x6800 004C INTMSKCLR EMIFA Interrupt Mask Clear Register 0x6800 0060 NANDFCR NAND Flash Control Register 0x6800 0064 NANDFSR NAND Flash Status Register 0x6800 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space) 0x6800 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space) 0x6800 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space) 0x6800 007C NANDF4ECC NAND Flash 4 ECC Register (CS5 Space) 0x6800 00BC NAND4BITECCLOAD NAND Flash 4-Bit ECC Load Register 0x6800 00C0 NAND4BITECC1 NAND Flash 4-Bit ECC Register 1 0x6800 00C4 NAND4BITECC2 NAND Flash 4-Bit ECC Register 2 0x6800 00C8 NAND4BITECC3 NAND Flash 4-Bit ECC Register 3 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 67 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-18. External Memory Interface (EMIFA) Registers (continued) BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x6800 00CC NAND4BITECC4 NAND Flash 4-Bit ECC Register 4 0x6800 00D0 NANDERRADD1 NAND Flash 4-Bit ECC Error Address Register 1 0x6800 00D4 NANDERRADD2 NAND Flash 4-Bit ECC Error Address Register 2 0x6800 00D8 NANDERRVAL1 NAND Flash 4-Bit ECC Error Value Register 1 0x6800 00DC NANDERRVAL2 NAND Flash 4-Bit ECC Error Value Register 2 5.10.4 EMIFA Electrical Data/Timing Table 5-19 and Table 5-20 assume testing over recommended operating conditions. Table 5-19. EMIFA Asynchronous Memory Timing Requirements (1) NO. MIN NOM MAX UNIT READS and WRITES E tc(CLK) Cycle time, EMIFA module clock 10 ns 2 tw(EM_WAIT) Pulse duration, EM_WAIT assertion and deassertion 2E ns READS 12 tsu(EMDV-EMOEH) Setup time, EMA_D[15:0] valid before EM_OE high 3 ns 13 th(EMOEH-EMDIV) Hold time, EMA_D[15:0] valid after EM_OE high 0 ns 14 tsu (EMOEL-EMWAIT) Setup time, EM_WAIT asserted before end of Strobe Phase (2) 4E+3 ns 28 tsu (EMWEL-EMWAIT) Setup time, EM_WAIT asserted before end of Strobe Phase (2) 4E+3 ns WRITES (1) (2) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended wait states. Figure 5-15 and Figure 5-16 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Table 5-20. EMIFA Asynchronous Memory Switching Characteristics (1) NO. PARAMETER (2) (3) MIN NOM MAX UNIT (TA)*E-3 (TA)*E (TA)*E+3 ns READS and WRITES 1 td(TURNAROUND) Turn around time READS 3 4 5 tc(EMRCYCLE) tsu(EMCEL-EMOEL) th(EMOEH-EMCEH) EMIF read cycle time (EW = 0) (RS+RST+RH)*E-3 (RS+RST+RH)*E (RS+RST+RH)*E+3 ns EMIF read cycle time (EW = 1) (RS+RST+RH+(EWC*16))*E-3 (RS+RST+RH+(EWC*16))*E (RS+RST+RH+(EWC*16))*E+3 ns Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0) (RS)*E-3 (RS)*E (RS)*E+3 ns Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1) -3 0 +3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0) (RH)*E-3 (RH)*E (RH)*E+3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns (RS)*E-3 (RS)*E (RS)*E+3 ns 6 tsu(EMBAV-EMOEL) Output setup time, EMA_BA[1:0] valid to EMA_OE low 7 th(EMOEH-EMBAIV) Output hold time, EMA_OE high to EMA_BA[1:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns tsu(EMBAV-EMOEL) Output setup time, EMA_A[13:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 8 (1) (2) (3) 68 TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256]. E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-20. EMIFA Asynchronous Memory Switching Characteristics(1) (2) NO. PARAMETER 9 th(EMOEH-EMAIV) 10 tw(EMOEL) 11 td(EMWAITH-EMOEH) Output hold time, EMA_OE high to EMA_A[13:0] invalid (3) (continued) MIN NOM MAX (RH)*E-3 (RH)*E (RH)*E+3 UNIT ns EMA_OE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns EMA_OE active low width (EW = 1) (RST+(EWC*16))*E-3 (RST+(EWC*16))*E (RST+(EWC*16))*E+3 ns 3E-3 4E 4E+3 ns (WS+WST+WH)*E-3 (WS+WST+WH)*E (WS+WST+WH)*E+3 ns (WS+WST+WH+(EWC*16))*E-3 (WS+WST+WH+(EWC*16))*E (WS+WST+WH+(EWC*16))*E+3 ns Delay time from EMA_WAIT deasserted to EMA_OE high WRITES EMIF write cycle time (EW = 0) 15 16 17 tc(EMWCYCLE) tsu(EMCEL-EMWEL) th(EMWEH-EMCEH) EMIF write cycle time (EW = 1) Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0) (WS)*E-3 (WS)*E (WS)*E+3 ns Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1) -3 0 +3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0) (WH)*E-3 (WH)*E (WH)*E+3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns tsu(EMDQMV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 19 th(EMWEH-EMDQMIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 20 tsu(EMBAV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 21 th(EMWEH-EMBAIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 22 tsu(EMAV-EMWEL) Output setup time, EMA_A[13:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 23 th(EMWEH-EMAIV) Output hold time, EMA_WE high to EMA_A[13:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 24 tw(EMWEL) 18 EMA_WE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns EMA_WE active low width (EW = 1) (WST+(EWC*16))*E-3 (WST+(EWC*16))*E (WST+(EWC*16))*E+3 ns td(EMWAITH-EMWEH) Delay time from EMA_WAIT deasserted to EMA_WE high 3E-3 4E 4E+3 ns 26 tsu(EMDV-EMWEL) Output setup time, EMA_D[15:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 27 th(EMWEH-EMDIV) Output hold time, EMA_WE high to EMA_D[15:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 25 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 69 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 3 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_WE_DQM[1:0] 1 EMA_A_RW 4 8 5 9 6 7 10 EMA_OE 13 12 EMA_D[15:0] EMA_WE Figure 5-13. Asynchronous Memory Read Timing for EMIFA 15 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_WE_DQM[1:0] EMA_A_RW 16 17 18 19 20 21 22 23 1 24 EMA_WE 26 27 EMA_D[15:0] EMA_OE Figure 5-14. Asynchronous Memory Write Timing for EMIFA 70 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com EMA_CS[5:2] SETUP STROBE Extended Due to EMA_WAIT STROBE HOLD EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] EMA_A_RW 14 11 EMA_OE 2 EMA_WAIT Asserted 2 Deasserted Figure 5-15. EMA_WAIT Read Timing Requirements Figure 5-16. EMA_WAIT Write Timing Requirements Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 71 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.11 External Memory Interface B (EMIFB) Figure 5-17, EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and its connections within the device. Multiple requesters have access to EMIFB through a switched central resource (indicated as crossbar in the figure). The EMIFB implements a split transaction internal bus, allowing concurrence between reads and writes from the various requesters. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. EMIFB Registers CPU EDMA Crossbar Master Peripherals EMB_CS EMB_CAS Cmd/Write EMB_RAS FIFO EMB_WE EMB_CLK EMB_SDCKE Read EMB_BA[1:0] FIFO EMB_A[x:0] EMB_D[x:0] EMB_WE_DQM[x:0] SDRAM Interface Figure 5-17. EMIFB Functional Block Diagram EMIFB supports a 3.3V LVCMOS Interface. 72 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.11.1 Interfacing to SDRAM The EMIFB supports a glueless interface to SDRAM devices with the following characteristics: • Pre-charge bit is A[10] • Supports 8, 9, 10 or 11 column address bits. • Supports up to 13 row address bits is 13. • Supports 1, 2 or 4 internal banks. Table 5-21 shows the supported SDRAM configurations for EMIFB. Table 5-21. EMIFB Supported SDRAM Configurations (1) SDRAM Memory Number of Data Memories Bus Width (bits) 16 8 (1) EMIFB Data Bus Size Rows Columns Banks Total Memory (Mbits) Total Memory (Mbytes) Memory Density (Mbits) 1 16 13 8 1 32 4 32 1 16 13 8 2 64 8 64 1 16 13 8 4 128 16 128 1 16 13 9 1 64 8 64 1 16 13 9 2 128 16 128 1 16 13 9 4 256 32 256 1 16 13 10 1 128 16 128 1 16 13 10 2 256 32 256 1 16 13 10 4 512 64 512 1 16 13 11 1 256 32 256 1 16 13 11 2 512 64 512 1 16 13 11 4 1024 128 1024 2 16 13 8 1 32 4 16 2 16 13 8 2 64 8 32 2 16 13 8 4 128 16 64 2 16 13 9 1 64 8 32 2 16 13 9 2 128 16 64 2 16 13 9 4 256 32 128 2 16 13 10 1 128 16 64 2 16 13 10 2 256 32 128 2 16 13 10 4 512 64 256 2 16 13 11 1 256 32 128 2 16 13 11 2 512 64 256 2 16 13 11 4 1024 128 512 The shaded cells indicate configurations that are possible on the EMIFB interface but as of this writing SDRAM memories capable of supporting these densities are not available in the market. Figure 5-18 shows an interface between the EMIFB and a 2M × 16 × 4 bank SDRAM device. In addition, and Figure 5-19 shows an interface between the EMIFB and two 4M × 16 × 4 bank SDRAM devices. Refer to Table 5-22, as an example that shows additional list of commonly-supported SDRAM devices and the required connections for the address pins. Note that in Table 5-22, page size/column size (not indicated in the table) is varied to get the required addressability range. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 73 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[11:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] SDRAM 2M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] Figure 5-18. EMIFB to 2M × 16 × 4 Bank SDRAM Interface EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[12:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] EMB_WE_DQM[2] EMB_WE_DQM[3] EMB_D[31:16] SDRAM 4M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] SDRAM 4M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] Figure 5-19. EMIFB to Dual 4M × 16 × 4 Bank SDRAM Interface 74 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-22. Example of 16/32-Bit EMIFB Address Pin Connections SDRAM SIZE WIDTH BANKS MEMORY 64M bits ×16 4 SDRAM A[11:0] EMIFB EMB_A[11:0] 128M bits ×32 4 SDRAM A[10:0] EMIFB EMB_A[10:0] ×16 4 SDRAM A[11:0] EMIFB EMB_A[11:0] ×32 256M bits 512M bits ADDRESS PINS 4 SDRAM A[11:0] EMIFB EMB_A[11:0] ×16 4 SDRAM A[12:0] EMIFB EMB_A[12:0] ×32 4 SDRAM A[11:0] EMIFB EMB_A[11:0] ×16 4 SDRAM A[12:0] EMIFB EMB_A[12:0] ×32 4 SDRAM A[12:0] EMIFB EMB_A[12:0] Table 5-23 is a list of the EMIFB registers. Table 5-23. EMIFB Base Controller Registers BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0xB000 0000 MIDR Module ID Register 0xB000 0008 SDCFG SDRAM Configuration Register 0xB000 000C SDRFC SDRAM Refresh Control Register 0xB000 0010 SDTIM1 SDRAM Timing Register 1 0xB000 0014 SDTIM2 SDRAM Timing Register 2 0xB000 001C SDCFG2 SDRAM Configuration 2 Register 0xB000 0020 BPRIO Peripheral Bus Burst Priority Register 0xB000 0040 PC1 Performance Counter 1 Register 0xB000 0044 PC2 Performance Counter 2 Register 0xB000 0048 PCC Performance Counter Configuration Register 0xB000 004C PCMRS Performance Counter Master Region Select Register 0xB000 0050 PCT Performance Counter Time Register 0xB000 00C0 IRR Interrupt Raw Register 0xB000 00C4 IMR Interrupt Mask Register 0xB000 00C8 IMSR Interrupt Mask Set Register 0xB000 00CC IMCR Interrupt Mask Clear Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 75 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.11.2 EMIFB Electrical Data/Timing Table 5-24. EMIFB SDRAM Interface Timing Requirements NO. MIN MAX UNIT 19 tsu(EMA_DV-EM_CLKH) Input setup time, read data valid on EMB_D[31:0] before EMB_CLK rising 0.8 ns 20 th(CLKH-DIV) Input hold time, read data valid on EMB_D[31:0] after EMB_CLK rising 1.5 ns Table 5-25. EMIFB SDRAM Interface Switching Characteristics NO. 76 PARAMETER MIN 7.5 1 tc(CLK) Cycle time, EMIF clock EMB_CLK 2 tw(CLK) Pulse width, EMIF clock EMB_CLK high or low 3 td(CLKH-CSV) Delay time, EMB_CLK rising to EMB_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMB_CLK rising to EMB_CS[0] invalid 5 td(CLKH-DQMV) Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid 7 td(CLKH-AV) Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] invalid 9 td(CLKH-DV) Delay time, EMB_CLK rising to EMB_D[31:0] valid 10 toh(CLKH-DIV) Output hold time, EMB_CLK rising to EMB_D[31:0] invalid 11 td(CLKH-RASV) Delay time, EMB_CLK rising to EMB_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMB_CLK rising to EMB_RAS invalid 13 td(CLKH-CASV) Delay time, EMB_CLK rising to EMB_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMB_CLK rising to EMB_CAS invalid 15 td(CLKH-WEV) Delay time, EMB_CLK rising to EMB_WE valid 16 toh(CLKH-WEIV) Output hold time, EMB_CLK rising to EMB_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated 18 tena(CLKH-DLZ) Output hold time, EMB_CLK rising to EMB_D[31:0] driving MAX ns 3 ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 ns ns 5.1 0.9 UNIT ns ns Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 1 BASIC SDRAM WRITE OPERATION 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] EMB_A[12:0] 9 10 EMB_D[31:0] 11 12 EMB_RAS 13 EMB_CAS 15 16 EMB_WE Figure 5-20. EMIFB Basic SDRAM Write Operation BASIC SDRAM READ OPERATION 1 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] EMB_A[12:0] 19 17 20 2 EM_CLK Delay 18 EMB_D[31:0] 11 12 EMB_RAS 13 14 EMB_CAS EMB_WE Figure 5-21. EMIFB Basic SDRAM Read Operation Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 77 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.12 Memory Protection Units The MPU performs memory protection checking. It receives requests from a bus master in the system and checks the address against the fixed and programmable regions to see if the access is allowed. If allowed, the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails the protection check) then the MPU does not pass the transfer to the output bus but rather services the transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an interrupt about the fault. The following features are supported by the MPU: • Provides memory protection for fixed and programmable address ranges. • Supports multiple programmable address region. • Supports secure and debug access privileges. • Supports read, write, and execute access privileges. • Supports privid(8) associations with ranges. • Generates an interrupt when there is a protection violation, and saves violating transfer parameters. • MMR access is also protected. Table 5-26. MPU1 Registers BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E1 4000 REVID Revision ID 0x01E1 4004 CONFIG Configuration 0x01E1 4010 IRAWSTAT Interrupt raw status/set 0x01E1 4014 IENSTAT Interrupt enable status/clear 0x01E1 4018 IENSET Interrupt enable 0x01E1 401C IENCLR Interrupt enable clear - Reserved 0x01E1 4200 PROG1_MPSAR Programmable range 1, start address 0x01E1 4204 PROG1_MPEAR Programmable range 1, end address 0x01E1 4208 PROG1_MPPA Programmable range 1, memory page protection attributes - Reserved 0x01E1 4210 PROG2_MPSAR Programmable range 2, start address 0x01E1 4214 PROG2_MPEAR Programmable range 2, end address 0x01E1 4218 PROG2_MPPA Programmable range 2, memory page protection attributes - Reserved 0x01E1 4220 PROG3_MPSAR Programmable range 3, start address 0x01E1 4224 PROG3_MPEAR Programmable range 3, end address 0x01E1 4228 PROG3_MPPA Programmable range 3, memory page protection attributes 0x01E1 4020 - 0x01E1 41FF 0x01E1 420C - 0x01E1 420F 0x01E1 421C - 0x01E1 421F 0x01E1 422C - 0x01E1 422F - Reserved 0x01E1 4230 PROG4_MPSAR Programmable range 4, start address 0x01E1 4234 PROG4_MPEA Programmable range 4, end address 0x01E1 4238 PROG4_MPPA Programmable range 4, memory page protection attributes - Reserved 0x01E1 4240 PROG5_MPSAR Programmable range 5, start address 0x01E1 4244 PROG5_MPEAR Programmable range 5, end address 0x01E1 4248 PROG5_MPPA Programmable range 5, memory page protection attributes - Reserved 0x01E1 4250 PROG6_MPSAR Programmable range 6, start address 0x01E1 4254 PROG6_MPEAR Programmable range 6, end address 0x01E1 4258 PROG6_MPPA Programmable range 6, memory page protection attributes - Reserved FLTADDRR Fault address 0x01E1 423C - 0x01E1 423F 0x01E1 424C - 0x01E1 424F 0x01E1 425C - 0x01E1 42FF 0x01E1 4300 78 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-26. MPU1 Registers (continued) BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E1 4304 FLTSTAT Fault status 0x01E1 4308 FLTCLR Fault clear - Reserved 0x01E1 430C - 0x01E1 4FFF Table 5-27. MPU2 Registers BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E1 5000 REVID Revision ID 0x01E1 5004 CONFIG Configuration 0x01E1 5010 IRAWSTAT Interrupt raw status/set 0x01E1 5014 IENSTAT Interrupt enable status/clear 0x01E1 5018 IENSET Interrupt enable 0x01E1 501C IENCLR Interrupt enable clear - Reserved 0x01E1 5200 PROG1_MPSAR Programmable range 1, start address 0x01E1 5204 PROG1_MPEAR Programmable range 1, end address 0x01E1 5208 PROG1_MPPA Programmable range 1, memory page protection attributes - Reserved 0x01E1 5210 PROG2_MPSAR Programmable range 2, start address 0x01E1 5214 PROG2_MPEAR Programmable range 2, end address 0x01E1 5218 PROG2_MPPA Programmable range 2, memory page protection attributes - Reserved 0x01E1 5220 PROG3_MPSAR Programmable range 3, start address 0x01E1 5224 PROG3_MPEAR Programmable range 3, end address 0x01E1 5228 PROG3_MPPA Programmable range 3, memory page protection attributes 0x01E1 5020 - 0x01E1 51FF 0x01E1 520C - 0x01E1 520F 0x01E1 521C - 0x01E1 521F 0x01E1 522C - 0x01E1 522F - Reserved 0x01E1 5230 PROG4_MPSAR Programmable range 4, start address 0x01E1 5234 PROG4_MPEA Programmable range 4, end address 0x01E1 5238 PROG4_MPPA Programmable range 4, memory page protection attributes - Reserved 0x01E1 5240 PROG5_MPSAR Programmable range 5, start address 0x01E1 5244 PROG5_MPEAR Programmable range 5, end address 0x01E1 5248 PROG5_MPPA Programmable range 5, memory page protection attributes - Reserved 0x01E1 5250 PROG6_MPSAR Programmable range 6, start address 0x01E1 5254 PROG6_MPEAR Programmable range 6, end address 0x01E1 5258 PROG6_MPPA Programmable range 6, memory page protection attributes - Reserved 0x01E1 5260 PROG7_MPSAR Programmable range 7, start address 0x01E1 5264 PROG7_MPEAR Programmable range 7, end address 0x01E1 5268 PROG7_MPPA Programmable range 7, memory page protection attributes - Reserved 0x01E1 5270 PROG8_MPSAR Programmable range 8, start address 0x01E1 5274 PROG8_MPEAR Programmable range 8, end address 0x01E1 5278 PROG8_MPPA Programmable range 8, memory page protection attributes 0x01E1 523C - 0x01E1 523F 0x01E1 524C - 0x01E1 524F 0x01E1 525C - 0x01E1 525F 0x01E1 526C - 0x01E1 526F 0x01E1 527C - 0x01E1 527F - Reserved 0x01E1 5280 PROG9_MPSAR Programmable range 9, start address 0x01E1 5284 PROG9_MPEAR Programmable range 9, end address Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 79 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-27. MPU2 Registers (continued) BYTE ADDRESS 0x01E1 5288 0x01E1 528C - 0x01E1 528F REGISTER DESCRIPTION PROG9_MPPA Programmable range 9, memory page protection attributes - Reserved 0x01E1 5290 PROG10_MPSAR Programmable range 10, start address 0x01E1 5294 PROG10_MPEAR Programmable range 10,end address 0x01E1 5298 PROG10_MPPA Programmable range 10, memory page protection attributes - Reserved 0x01E1 52A0 PROG11_MPSAR Programmable range 11, start address 0x01E1 52A4 PROG11_MPEAR Programmable range 11, end address 0x01E1 52A8 PROG11_MPPA Programmable range 11, memory page protection attributes - Reserved 0x01E1 52B0 PROG12_MPSAR Programmable range 12, start address 0x01E1 52B4 PROG12_MPEAR Programmable range 12, end address 0x01E1 52B8 PROG12_MPPA Programmable range 12, memory page protection attributes - Reserved 0x01E1 5300 FLTADDRR Fault address 0x01E1 5304 FLTSTAT Fault status 0x01E1 5308 FLTCLR Fault clear - Reserved 0x01E1 529C - 0x01E1 529F 0x01E1 52AC - 0x01E1 52AF 0x01E1 52BC - 0x01E1 52FF 0x01E1 530C - 0x01E1 5FFF 80 REGISTER NAME Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.13 MMC / SD / SDIO (MMCSD) The C6743 includes an MMCSD controller which is compliant with MMC V3.31, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. The MMC/SD Controller has following features: • MultiMediaCard (MMC). • Secure Digital (SD) Memory Card. • MMC/SD protocol support. • SDIO protocol support. • Programmable clock frequency. • 512 bit Read/Write FIFO to lower system overhead. • Slave EDMA transfer capability. The C6743 MMC/SD Controller does not support SPI mode. 5.13.1 MMCSD Peripheral Register Description(s) Table 5-28. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01C4 0000 MMCCTL MMC Control Register 0x01C4 0004 MMCCLK MMC Memory Clock Control Register 0x01C4 0008 MMCST0 MMC Status Register 0 0x01C4 000C MMCST1 MMC Status Register 1 0x01C4 0010 MMCIM MMC Interrupt Mask Register 0x01C4 0014 MMCTOR MMC Response Time-Out Register 0x01C4 0018 MMCTOD MMC Data Read Time-Out Register 0x01C4 001C MMCBLEN MMC Block Length Register 0x01C4 0020 MMCNBLK MMC Number of Blocks Register 0x01C4 0024 MMCNBLC MMC Number of Blocks Counter Register 0x01C4 0028 MMCDRR MMC Data Receive Register 0x01C4 002C MMCDXR MMC Data Transmit Register 0x01C4 0030 MMCCMD MMC Command Register 0x01C4 0034 MMCARGHL MMC Argument Register 0x01C4 0038 MMCRSP01 MMC Response Register 0 and 1 0x01C4 003C MMCRSP23 MMC Response Register 2 and 3 0x01C4 0040 MMCRSP45 MMC Response Register 4 and 5 0x01C4 0044 MMCRSP67 MMC Response Register 6 and 7 0x01C4 0048 MMCDRSP MMC Data Response Register 0x01C4 0050 MMCCIDX MMC Command Index Register 0x01C4 0064 SDIOCTL SDIO Control Register 0x01C4 0068 SDIOST0 SDIO Status Register 0 0x01C4 006C SDIOIEN SDIO Interrupt Enable Register 0x01C4 0070 SDIOIST SDIO Interrupt Status Register 0x01C4 0074 MMCFIFOCTL MMC FIFO Control Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 81 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.13.2 MMC/SD Electrical Data/Timing Table 5-29. Timing Requirements for MMC/SD Module (see Figure 5-23 and Figure 5-25) NO. MIN MAX UNIT 1 tsu(CMDV-CLKH) Setup time, MMCSD_CMD valid before MMCSD_CLK high 3.2 ns 2 th(CLKH-CMDV) Hold time, MMCSD_CMD valid after MMCSD_CLK high 1.5 ns 3 tsu(DATV-CLKH) Setup time, MMCSD_DATx valid before MMCSD_CLK high 3.2 ns 4 th(CLKH-DATV) Hold time, MMCSD_DATx valid after MMCSD_CLK high 1.5 ns Table 5-30. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module (see Figure 5-22 through Figure 5-25) NO. PARAMETER MIN MAX 0 52 UNIT ns 0 400 ns 7 f(CLK) Operating frequency, MMCSD_CLK 8 f(CLK_ID) Identification mode frequency, MMCSD_CLK 9 tW(CLKL) Pulse width, MMCSD_CLK low 6.5 ns 10 tW(CLKH) Pulse width, MMCSD_CLK high 6.5 ns 11 tr(CLK) Rise time, MMCSD_CLK 3 ns 12 tf(CLK) Fall time, MMCSD_CLK 3 ns 13 td(CLKL-CMD) Delay time, MMCSD_CLK low to MMCSD_CMD transition -4.5 2.5 ns 14 td(CLKL-DAT) Delay time, MMCSD_CLK low to MMCSD_DATx transition -4.5 2.5 ns 10 9 7 MMCSD_CLK 13 13 START MMCSD_CMD 13 XMIT Valid Valid 13 Valid END Figure 5-22. MMC/SD Host Command Timing 9 7 10 MMCSD_CLK 1 2 START MMCSD_CMD XMIT Valid Valid Valid END Figure 5-23. MMC/SD Card Response Timing 10 9 7 MMCSD_CLK 14 MMCSD_DATx 14 START 14 D0 D1 Dx 14 END Figure 5-24. MMC/SD Host Write Timing 82 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 9 10 7 MMCSD_CLK 4 4 3 MMCSD_DATx Start 3 D0 D1 Dx End Figure 5-25. MMC/SD Host Read and Card CRC Status Timing Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 83 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.14 Ethernet Media Access Controller (EMAC) The Ethernet Media Access Controller (EMAC) provides an efficient interface between C6743 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The EMAC controls the flow of packet data from the C6743 device to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the C6743 device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide(SPRUFK9) for more details. 5.14.1 EMAC Peripheral Register Description(s) Table 5-31. Ethernet Media Access Controller (EMAC) Registers BYTE ADDRESS 84 REGISTER NAME REGISTER DESCRIPTION 0x01E2 3000 TXREV Transmit Revision Register 0x01E2 3004 TXCONTROL Transmit Control Register 0x01E2 3008 TXTEARDOWN Transmit Teardown Register 0x01E2 3010 RXREV Receive Revision Register 0x01E2 3014 RXCONTROL Receive Control Register 0x01E2 3018 RXTEARDOWN Receive Teardown Register 0x01E2 3080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register 0x01E2 3084 TXINTSTATMASKED Transmit Interrupt Status (Masked) Register 0x01E2 3088 TXINTMASKSET Transmit Interrupt Mask Set Register 0x01E2 308C TXINTMASKCLEAR Transmit Interrupt Clear Register 0x01E2 3090 MACINVECTOR MAC Input Vector Register 0x01E2 3094 MACEOIVECTOR MAC End Of Interrupt Vector Register 0x01E2 30A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) Register 0x01E2 30A4 RXINTSTATMASKED Receive Interrupt Status (Masked) Register 0x01E2 30A8 RXINTMASKSET Receive Interrupt Mask Set Register 0x01E2 30AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register 0x01E2 30B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register 0x01E2 30B4 MACINTSTATMASKED MAC Interrupt Status (Masked) Register 0x01E2 30B8 MACINTMASKSET MAC Interrupt Mask Set Register 0x01E2 30BC MACINTMASKCLEAR MAC Interrupt Mask Clear Register 0x01E2 3100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register 0x01E2 3104 RXUNICASTSET Receive Unicast Enable Set Register 0x01E2 3108 RXUNICASTCLEAR Receive Unicast Clear Register 0x01E2 310C RXMAXLEN Receive Maximum Length Register 0x01E2 3110 RXBUFFEROFFSET Receive Buffer Offset Register 0x01E2 3114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register 0x01E2 3120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register 0x01E2 3124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register 0x01E2 3128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register 0x01E2 312C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register 0x01E2 3130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register 0x01E2 3134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register 0x01E2 3138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-31. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E2 313C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register 0x01E2 3140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register 0x01E2 3144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register 0x01E2 3148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register 0x01E2 314C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register 0x01E2 3150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register 0x01E2 3154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register 0x01E2 3158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register 0x01E2 315C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register 0x01E2 3160 MACCONTROL MAC Control Register 0x01E2 3164 MACSTATUS MAC Status Register 0x01E2 3168 EMCONTROL Emulation Control Register 0x01E2 316C FIFOCONTROL FIFO Control Register 0x01E2 3170 MACCONFIG MAC Configuration Register 0x01E2 3174 SOFTRESET Soft Reset Register 0x01E2 31D0 MACSRCADDRLO MAC Source Address Low Bytes Register 0x01E2 31D4 MACSRCADDRHI MAC Source Address High Bytes Register 0x01E2 31D8 MACHASH1 MAC Hash Address Register 1 0x01E2 31DC MACHASH2 MAC Hash Address Register 2 0x01E2 31E0 BOFFTEST Back Off Test Register 0x01E2 31E4 TPACETEST Transmit Pacing Algorithm Test Register 0x01E2 31E8 RXPAUSE Receive Pause Timer Register 0x01E2 31EC TXPAUSE Transmit Pause Timer Register (see Table 5-32) EMAC Statistics Registers 0x01E2 3500 MACADDRLO MAC Address Low Bytes Register, Used in Receive Address Matching 0x01E2 3504 MACADDRHI MAC Address High Bytes Register, Used in Receive Address Matching 0x01E2 3508 MACINDEX MAC Index Register 0x01E2 3600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 0x01E2 360C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 0x01E2 361C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3200 - 0x01E2 32FC 0x01E2 3628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register 0x01E2 362C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register 0x01E2 363C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3640 TX0CP Transmit Channel 0 Completion Pointer Register 0x01E2 3644 TX1CP Transmit Channel 1 Completion Pointer Register 0x01E2 3648 TX2CP Transmit Channel 2 Completion Pointer Register 0x01E2 364C TX3CP Transmit Channel 3 Completion Pointer Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 85 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-31. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E2 3650 TX4CP Transmit Channel 4 Completion Pointer Register 0x01E2 3654 TX5CP Transmit Channel 5 Completion Pointer Register 0x01E2 3658 TX6CP Transmit Channel 6 Completion Pointer Register 0x01E2 365C TX7CP Transmit Channel 7 Completion Pointer Register 0x01E2 3660 RX0CP Receive Channel 0 Completion Pointer Register 0x01E2 3664 RX1CP Receive Channel 1 Completion Pointer Register 0x01E2 3668 RX2CP Receive Channel 2 Completion Pointer Register 0x01E2 366C RX3CP Receive Channel 3 Completion Pointer Register 0x01E2 3670 RX4CP Receive Channel 4 Completion Pointer Register 0x01E2 3674 RX5CP Receive Channel 5 Completion Pointer Register 0x01E2 3678 RX6CP Receive Channel 6 Completion Pointer Register 0x01E2 367C RX7CP Receive Channel 7 Completion Pointer Register Table 5-32. EMAC Statistics Registers 86 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E2 3200 RXGOODFRAMES Good Receive Frames Register 0x01E2 3204 RXBCASTFRAMES Broadcast Receive Frames Register (Total number of good broadcast frames received) 0x01E2 3208 RXMCASTFRAMES Multicast Receive Frames Register (Total number of good multicast frames received) 0x01E2 320C RXPAUSEFRAMES Pause Receive Frames Register 0x01E2 3210 RXCRCERRORS Receive CRC Errors Register (Total number of frames received with CRC errors) 0x01E2 3214 RXALIGNCODEERRORS Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors) 0x01E2 3218 RXOVERSIZED Receive Oversized Frames Register (Total number of oversized frames received) 0x01E2 321C RXJABBER Receive Jabber Frames Register (Total number of jabber frames received) 0x01E2 3220 RXUNDERSIZED Receive Undersized Frames Register (Total number of undersized frames received) 0x01E2 3224 RXFRAGMENTS Receive Frame Fragments Register 0x01E2 3228 RXFILTERED Filtered Receive Frames Register 0x01E2 322C RXQOSFILTERED Received QOS Filtered Frames Register 0x01E2 3230 RXOCTETS Receive Octet Frames Register (Total number of received bytes in good frames) 0x01E2 3234 TXGOODFRAMES Good Transmit Frames Register (Total number of good frames transmitted) 0x01E2 3238 TXBCASTFRAMES Broadcast Transmit Frames Register 0x01E2 323C TXMCASTFRAMES Multicast Transmit Frames Register 0x01E2 3240 TXPAUSEFRAMES Pause Transmit Frames Register 0x01E2 3244 TXDEFERRED Deferred Transmit Frames Register 0x01E2 3248 TXCOLLISION Transmit Collision Frames Register 0x01E2 324C TXSINGLECOLL Transmit Single Collision Frames Register 0x01E2 3250 TXMULTICOLL Transmit Multiple Collision Frames Register 0x01E2 3254 TXEXCESSIVECOLL Transmit Excessive Collision Frames Register 0x01E2 3258 TXLATECOLL Transmit Late Collision Frames Register 0x01E2 325C TXUNDERRUN Transmit Underrun Error Register 0x01E2 3260 TXCARRIERSENSE Transmit Carrier Sense Errors Register 0x01E2 3264 TXOCTETS Transmit Octet Frames Register Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-32. EMAC Statistics Registers (continued) BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E2 3268 FRAME64 Transmit and Receive 64 Octet Frames Register 0x01E2 326C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register 0x01E2 3270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 0x01E2 3274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 0x01E2 3278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 0x01E2 327C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register 0x01E2 3280 NETOCTETS Network Octet Frames Register 0x01E2 3284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register 0x01E2 3288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register 0x01E2 328C RXDMAOVERRUNS Receive DMA Start of Frame and Middle of Frame Overruns Register Table 5-33. EMAC Control Module Registers BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E2 2000 REV EMAC Control Module Revision Register 0x01E2 2004 SOFTRESET EMAC Control Module Software Reset Register 0x01E2 200C INTCONTROL EMAC Control Module Interrupt Control Register 0x01E2 2010 C0RXTHRESHEN EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register 0x01E2 2014 C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register 0x01E2 2018 C0TXEN EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register 0x01E2 201C C0MISCEN EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register 0x01E2 2020 C1RXTHRESHEN EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register 0x01E2 2024 C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register 0x01E2 2028 C1TXEN EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register 0x01E2 202C C1MISCEN EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register 0x01E2 2030 C2RXTHRESHEN EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register 0x01E2 2034 C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register 0x01E2 2038 C2TXEN EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register 0x01E2 203C C2MISCEN EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register 0x01E2 2040 C0RXTHRESHSTAT EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register 0x01E2 2044 C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register 0x01E2 2048 C0TXSTAT EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register 0x01E2 204C C0MISCSTAT EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register 0x01E2 2050 C1RXTHRESHSTAT EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register 0x01E2 2054 C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register 0x01E2 2058 C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register 0x01E2 205C C1MISCSTAT EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register 0x01E2 2060 C2RXTHRESHSTAT EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register 0x01E2 2064 C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register 0x01E2 2068 C2TXSTAT EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register 0x01E2 206C C2MISCSTAT EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register 0x01E2 2070 C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register 0x01E2 2074 C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register 0x01E2 2078 C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register 0x01E2 207C C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register 0x01E2 2080 C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register 0x01E2 2084 C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 87 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-34. EMAC Control Module RAM BYTE ADDRESS DESCRIPTION 0x01E2 0000 - 0x01E2 1FFF EMAC Local Buffer Descriptor Memory 5.14.2 EMAC Electrical Data/Timing Table 5-35. RMII Timing Requirements (1) NO. MIN TYP MAX 20 UNIT 1 tc(REFCLK) Cycle Time, RMII_MHZ_50_CLK 2 tw(REFCLKH) Pulse Width, RMII_MHZ_50_CLK High 7 13 ns ns 3 tw(REFCLKL) Pulse Width, RMII_MHZ_50_CLK Low 7 13 ns 6 tsu(RXD-REFCLK) Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High 4 ns 7 th(REFCLK-RXD) Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High 2 ns 8 tsu(CRSDVREFCLK) Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High 4 ns 9 th(REFCLK-CRSDV) Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High 2 ns 10 tsu(RXER-REFCLK) Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High 4 ns 11 th(REFCLKR-RXER) Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High 2 ns (1) Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter tolerance of 50 ppm or less. Table 5-36. RMII Switching Characteristics NO. MIN TYP MAX UNIT 4 td(REFCLK-TXD) Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid 2.5 13 ns 5 td(REFCLK-TXEN) Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid 2.5 13 ns 1 2 3 RMII_MHz_50_CLK 5 5 RMII_TXEN 4 RMII_TXD[1:0] 6 7 RMII_RXD[1:0] 8 9 RMII_CRS_DV 10 11 RMII_RXER Figure 5-26. RMII Timing Diagram 88 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.15 Management Data Input/Output (MDIO) The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. 5.15.1 MDIO Peripheral Register Description(s) For a list of supported MDIO registers see Table 5-37 [MDIO Registers]. Table 5-37. MDIO Register Memory Map BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01E2 4000 REV Revision Identification Register 0x01E2 4004 CONTROL MDIO Control Register 0x01E2 4008 ALIVE MDIO PHY Alive Status Register 0x01E2 400C LINK MDIO PHY Link Status Register 0x01E2 4010 LINKINTRAW MDIO Link Status Change Interrupt (Unmasked) Register 0x01E2 4014 LINKINTMASKED MDIO Link Status Change Interrupt (Masked) Register 0x01E2 4018 – Reserved 0x01E2 4020 USERINTRAW MDIO User Command Complete Interrupt (Unmasked) Register 0x01E2 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register 0x01E2 4028 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register 0x01E2 402C USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register – Reserved 0x01E2 4080 USERACCESS0 MDIO User Access Register 0 0x01E2 4084 USERPHYSEL0 MDIO User PHY Select Register 0 0x01E2 4088 USERACCESS1 MDIO User Access Register 1 0x01E2 408C USERPHYSEL1 MDIO User PHY Select Register 1 – Reserved 0x01E2 4030 - 0x01E2 407C 0x01E2 4090 - 0x01E2 47FF 5.15.2 Management Data Input/Output (MDIO) Electrical Data/Timing Table 5-38. Timing Requirements for MDIO Input (see Figure 5-27 and Figure 5-28) NO. MIN 1 tc(MDIO_CLK) Cycle time, MDIO_CLK 400 2 tw(MDIO_CLK) Pulse duration, MDIO_CLK high/low 180 3 tt(MDIO_CLK) Transition time, MDIO_CLK 4 tsu(MDIO-MDIO_CLKH) Setup time, MDIO_D data input valid before MDIO_CLK high 5 th(MDIO_CLKH-MDIO) Hold time, MDIO_D data input valid after MDIO_CLK high Copyright © 2009–2011, Texas Instruments Incorporated MAX UNIT ns ns 5 ns 10 ns 0 ns Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 89 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 1 3 3 MDIO_CLK 4 5 MDIO_D (input) Figure 5-27. MDIO Input Timing Table 5-39. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see Figure 5-28) NO. 7 PARAMETER td(MDIO_CLKL-MDIO) Delay time, MDIO_CLK low to MDIO_D data output valid MIN MAX UNIT 0 100 ns 1 MDIO_CLK 7 MDIO_D (output) Figure 5-28. MDIO Output Timing 90 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.16 Multichannel Audio Serial Ports (McASP0, McASP1) The McASP serial port is specifically designed for multichannel audio applications. Its key features are: • Flexible clock and frame sync generation logic and on-chip dividers • Up to fourteen transmit or receive data pins and serializers • Large number of serial data format options, including: – TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst) – Time slots of 8,12,16, 20, 24, 28, and 32 bits – First bit delay 0, 1, or 2 clocks – MSB or LSB first bit order – Left- or right-aligned data words within time slots • Extensive error checking and mute generation logic • All unused pins GPIO-capable Additionally, while the McASP modules are backward compatible with the McASP on previous devices; the McASP also includes the following new features: • Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample rate by making it more tolerant to DMA latency. • Dynamic Adjustment of Clock Dividers – Clock Divider Value may be changed without resetting the McASP See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. The three McASPs on the C6743 are configured with the following options: Table 5-40. C6743 McASP Configurations (1) MODULE (1) SERIALIZERS AFIFO DIT C6743 PINS McASP0 16 64 Word RX 64 Word TX N AXR0[15:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0 McASP1 12 64 Word RX 64 Word TX N AXR1[11:10], AXR1[8:0], AHCLKR1, ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1 Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing. Pins Peripheral Configuration Bus McASP DMA Bus (Dedicated) GIO Control Function Receive Logic Clock/Frame Generator State Machine AHCLKRx ACLKRx AFSRx Clock Check and Error Detection AMUTEINx AMUTEx The McASPs DO NOT have dedicated AMUTEINx pins. Transmit Logic Clock/Frame Generator State Machine AFSXx ACLKXx AHCLKXx Transmit Left/Right Clock or Frame Sync Transmit Bit Clock Transmit Master Clock Serializer 0 AXRx[0] Transmit/Receive Serial Data Pin Serializer 1 AXRx[1] Transmit/Receive Serial Data Pin Serializer y AXRx[y] Transmit/Receive Serial Data Pin Transmit Formatter Receive Formatter Receive Master Clock Receive Bit Clock Receive Left/Right Clock or Frame Sync McASPx (x = 0, 1) Figure 5-29. McASP Block Diagram Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 91 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.16.1 McASP Peripheral Registers Description(s) Registers for the McASP are summarized in Table 5-41. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 5-42 Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 5-43. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port. Table 5-41. McASP Registers Accessed Through Peripheral Configuration Port 92 McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01D0 0000 0x01D0 0010 0x01D0 4000 REV Revision identification register 0x01D0 4010 PFUNC Pin function register 0x01D0 0014 0x01D0 4014 PDIR Pin direction register 0x01D0 0018 0x01D0 4018 PDOUT Pin data output register 0x01D0 001C 0x01D0 401C PDIN Read returns: Pin data input register 0x01D0 001C 0x01D0 401C PDSET Writes affect: Pin data set register (alternate write address: PDOUT) 0x01D0 0020 0x01D0 4020 PDCLR Pin data clear register (alternate write address: PDOUT) 0x01D0 0044 0x01D0 4044 GBLCTL Global control register 0x01D0 0048 0x01D0 4048 AMUTE Audio mute control register 0x01D0 004C 0x01D0 404C DLBCTL Digital loopback control register 0x01D0 0050 0x01D0 4050 DITCTL DIT mode control register 0x01D0 0060 0x01D0 4060 RGBLCTL Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows receiver to be reset independently from transmitter 0x01D0 0064 0x01D0 4064 RMASK Receive format unit bit mask register 0x01D0 0068 0x01D0 4068 RFMT Receive bit stream format register 0x01D0 006C 0x01D0 406C AFSRCTL Receive frame sync control register 0x01D0 0070 0x01D0 4070 ACLKRCTL Receive clock control register 0x01D0 0074 0x01D0 4074 AHCLKRCTL Receive high-frequency clock control register 0x01D0 0078 0x01D0 4078 RTDM Receive TDM time slot 0-31 register 0x01D0 007C 0x01D0 407C RINTCTL Receiver interrupt control register 0x01D0 0080 0x01D0 4080 RSTAT Receiver status register 0x01D0 0084 0x01D0 4084 RSLOT Current receive TDM time slot register 0x01D0 0088 0x01D0 4088 RCLKCHK Receive clock check control register 0x01D0 008C 0x01D0 408C REVTCTL Receiver DMA event control register 0x01D0 00A0 0x01D0 40A0 XGBLCTL Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows transmitter to be reset independently from receiver 0x01D0 00A4 0x01D0 40A4 XMASK Transmit format unit bit mask register 0x01D0 00A8 0x01D0 40A8 XFMT Transmit bit stream format register 0x01D0 00AC 0x01D0 40AC AFSXCTL Transmit frame sync control register 0x01D0 00B0 0x01D0 40B0 ACLKXCTL Transmit clock control register 0x01D0 00B4 0x01D0 40B4 AHCLKXCTL Transmit high-frequency clock control register 0x01D0 00B8 0x01D0 40B8 XTDM Transmit TDM time slot 0-31 register 0x01D0 00BC 0x01D0 40BC XINTCTL Transmitter interrupt control register 0x01D0 00C0 0x01D0 40C0 XSTAT Transmitter status register 0x01D0 00C4 0x01D0 40C4 XSLOT Current transmit TDM time slot register 0x01D0 00C8 0x01D0 40C8 XCLKCHK Transmit clock check control register 0x01D0 00CC 0x01D0 40CC XEVTCTL Transmitter DMA event control register Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-41. McASP Registers Accessed Through Peripheral Configuration Port (continued) McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01D0 0100 0x01D0 0104 0x01D0 4100 DITCSRA0 Left (even TDM time slot) channel status register (DIT mode) 0 0x01D0 4104 DITCSRA1 Left (even TDM time slot) channel status register (DIT mode) 1 0x01D0 0108 0x01D0 4108 DITCSRA2 Left (even TDM time slot) channel status register (DIT mode) 2 0x01D0 010C 0x01D0 410C DITCSRA3 Left (even TDM time slot) channel status register (DIT mode) 3 0x01D0 0110 0x01D0 4110 DITCSRA4 Left (even TDM time slot) channel status register (DIT mode) 4 0x01D0 0114 0x01D0 4114 DITCSRA5 Left (even TDM time slot) channel status register (DIT mode) 5 0x01D0 0118 0x01D0 4118 DITCSRB0 Right (odd TDM time slot) channel status register (DIT mode) 0 0x01D0 011C 0x01D0 411C DITCSRB1 Right (odd TDM time slot) channel status register (DIT mode) 1 0x01D0 0120 0x01D0 4120 DITCSRB2 Right (odd TDM time slot) channel status register (DIT mode) 2 0x01D0 0124 0x01D0 4124 DITCSRB3 Right (odd TDM time slot) channel status register (DIT mode) 3 0x01D0 0128 0x01D0 4128 DITCSRB4 Right (odd TDM time slot) channel status register (DIT mode) 4 0x01D0 012C 0x01D0 412C DITCSRB5 Right (odd TDM time slot) channel status register (DIT mode) 5 0x01D0 0130 0x01D0 4130 DITUDRA0 Left (even TDM time slot) channel user data register (DIT mode) 0 0x01D0 0134 0x01D0 4134 DITUDRA1 Left (even TDM time slot) channel user data register (DIT mode) 1 0x01D0 0138 0x01D0 4138 DITUDRA2 Left (even TDM time slot) channel user data register (DIT mode) 2 0x01D0 013C 0x01D0 413C DITUDRA3 Left (even TDM time slot) channel user data register (DIT mode) 3 0x01D0 0140 0x01D0 4140 DITUDRA4 Left (even TDM time slot) channel user data register (DIT mode) 4 0x01D0 0144 0x01D0 4144 DITUDRA5 Left (even TDM time slot) channel user data register (DIT mode) 5 0x01D0 0148 0x01D0 4148 DITUDRB0 Right (odd TDM time slot) channel user data register (DIT mode) 0 0x01D0 014C 0x01D0 414C DITUDRB1 Right (odd TDM time slot) channel user data register (DIT mode) 1 0x01D0 0150 0x01D0 4150 DITUDRB2 Right (odd TDM time slot) channel user data register (DIT mode) 2 0x01D0 0154 0x01D0 4154 DITUDRB3 Right (odd TDM time slot) channel user data register (DIT mode) 3 0x01D0 0158 0x01D0 4158 DITUDRB4 Right (odd TDM time slot) channel user data register (DIT mode) 4 0x01D0 015C 0x01D0 415C DITUDRB5 Right (odd TDM time slot) channel user data register (DIT mode) 5 0x01D0 0180 0x01D0 4180 SRCTL0 Serializer control register 0 0x01D0 0184 0x01D0 4184 SRCTL1 Serializer control register 1 0x01D0 0188 0x01D0 4188 SRCTL2 Serializer control register 2 0x01D0 018C 0x01D0 418C SRCTL3 Serializer control register 3 0x01D0 0190 0x01D0 4190 SRCTL4 Serializer control register 4 0x01D0 0194 0x01D0 4194 SRCTL5 Serializer control register 5 0x01D0 0198 0x01D0 4198 SRCTL6 Serializer control register 6 0x01D0 019C 0x01D0 419C SRCTL7 Serializer control register 7 0x01D0 01A0 0x01D0 41A0 SRCTL8 Serializer control register 8 0x01D0 01A4 0x01D0 41A4 SRCTL9 Serializer control register 9 0x01D0 01A8 0x01D0 41A8 SRCTL10 Serializer control register 10 0x01D0 01AC 0x01D0 41AC SRCTL11 Serializer control register 11 0x01D0 01B0 0x01D0 41B0 SRCTL12 Serializer control register 12 0x01D0 01B4 0x01D0 41B4 SRCTL13 Serializer control register 13 0x01D0 01B8 0x01D0 41B8 SRCTL14 Serializer control register 14 0x01D0 01BC 0x01D0 41BC SRCTL15 Serializer control register 15 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 93 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-41. McASP Registers Accessed Through Peripheral Configuration Port (continued) (1) (2) McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01D0 0200 0x01D0 4200 XBUF0 (1) 0x01D0 0204 Transmit buffer register for serializer 0 0x01D0 4204 XBUF1 (1) Transmit buffer register for serializer 1 (1) Transmit buffer register for serializer 2 0x01D0 0208 0x01D0 4208 XBUF2 0x01D0 020C 0x01D0 420C XBUF3 (1) Transmit buffer register for serializer 3 0x01D0 0210 0x01D0 4210 XBUF4 (1) Transmit buffer register for serializer 4 0x01D0 0214 0x01D0 4214 XBUF5 (1) Transmit buffer register for serializer 5 (1) Transmit buffer register for serializer 6 0x01D0 0218 0x01D0 4218 XBUF6 0x01D0 021C 0x01D0 421C XBUF7 (1) Transmit buffer register for serializer 7 0x01D0 0220 0x01D0 4220 XBUF8 (1) Transmit buffer register for serializer 8 0x01D0 0224 0x01D0 4224 XBUF9 (1) Transmit buffer register for serializer 9 0x01D0 0228 0x01D0 4228 XBUF10 (1) Transmit buffer register for serializer 10 0x01D0 022C 0x01D0 422C XBUF11 (1) Transmit buffer register for serializer 11 0x01D0 0230 0x01D0 4230 XBUF12 (1) Transmit buffer register for serializer 12 0x01D0 0234 0x01D0 4234 XBUF13 (1) Transmit buffer register for serializer 13 0x01D0 0238 0x01D0 4238 XBUF14 (1) Transmit buffer register for serializer 14 0x01D0 023C 0x01D0 423C XBUF15 (1) Transmit buffer register for serializer 15 (2) Receive buffer register for serializer 0 0x01D0 0280 0x01D0 4280 RBUF0 0x01D0 0284 0x01D0 4284 RBUF1 (2) Receive buffer register for serializer 1 0x01D0 0288 0x01D0 4288 RBUF2 (2) Receive buffer register for serializer 2 0x01D0 028C 0x01D0 428C RBUF3 (2) Receive buffer register for serializer 3 0x01D0 0290 0x01D0 4290 RBUF4 (2) Receive buffer register for serializer 4 0x01D0 0294 0x01D0 4294 RBUF5 (2) Receive buffer register for serializer 5 (2) Receive buffer register for serializer 6 0x01D0 0298 0x01D0 4298 RBUF6 0x01D0 029C 0x01D0 429C RBUF7 (2) Receive buffer register for serializer 7 0x01D0 02A0 0x01D0 42A0 RBUF8 (2) Receive buffer register for serializer 8 0x01D0 02A4 0x01D0 42A4 RBUF9 (2) Receive buffer register for serializer 9 (2) Receive buffer register for serializer 10 0x01D0 02A8 0x01D0 42A8 RBUF10 0x01D0 02AC 0x01D0 42AC RBUF11 (2) Receive buffer register for serializer 11 0x01D0 02B0 0x01D0 42B0 RBUF12 (2) Receive buffer register for serializer 12 0x01D0 02B4 0x01D0 42B4 RBUF13 (2) Receive buffer register for serializer 13 0x01D0 02B8 0x01D0 42B8 RBUF14 (2) Receive buffer register for serializer 14 0x01D0 02BC 0x01D0 42BC RBUF15 (2) Receive buffer register for serializer 15 Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT. Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. Table 5-42. McASP Registers Accessed Through DMA Port HEX ADDRESS McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS Read Accesses 01D0 2000 Write Accesses 01D0 2000 94 REGISTER NAME REGISTER DESCRIPTION 01D0 6000 RBUF Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if XBUSEL = 0 in XFMT. 01D0 6000 XBUF Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0 in RFMT. Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-43. McASP AFIFO Registers Accessed Through Peripheral Configuration Port McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01D0 1000 0x01D0 1010 0x01D0 5000 AFIFOREV AFIFO revision identification register 0x01D0 5010 WFIFOCTL Write FIFO control register 0x01D0 1014 0x01D0 5014 WFIFOSTS Write FIFO status register 0x01D0 1018 0x01D0 5018 RFIFOCTL Read FIFO control register 0x01D0 101C 0x01D0 501C RFIFOSTS Read FIFO status register 5.16.2 McASP Electrical Data/Timing 5.16.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing Table 5-44 and Table 5-45 assume testing over recommended operating conditions (see Figure 5-30 and Figure 5-31). Table 5-44. McASP0 Timing Requirements (1) (2) NO. MIN 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) Cycle time, AHCLKR0 external, AHCLKR0 input 25 Cycle time, AHCLKX0 external, AHCLKX0 input 25 Pulse duration, AHCLKR0 external, AHCLKR0 input 12.5 Pulse duration, AHCLKX0 external, AHCLKX0 input 12.5 Cycle time, ACLKR0 external, ACLKR0 input greater of 2P or 25 Cycle time, ACLKX0 external, ACLKX0 input greater of 2P or 25 Pulse duration, ACLKR0 external, ACLKR0 input 12.5 Pulse duration, ACLKX0 external, ACLKX0 input 12.5 Setup time, AFSR0 input to ACLKR0 internal (3) 9.4 Setup time, AFSX0 input to ACLKX0 internal 5 tsu(AFSRX-ACLKRX) th(ACLKRX-AFSRX) Setup time, AFSR0 input to ACLKR0 external input 7 (1) (2) (3) (4) tsu(AXR-ACLKRX) 2.9 Setup time, AFSX0 input to ACLKX0 external input 2.9 Setup time, AFSR0 input to ACLKR0 external output (3) 2.9 ns ns ns ns -1.2 Hold time, AFSX0 input after ACLKX0 internal -1.2 Hold time, AFSR0 input after ACLKR0 external input (3) 0.9 Hold time, AFSX0 input after ACLKX0 external input 0.9 Hold time, AFSR0 input after ACLKR0 external output (3) 0.9 Hold time, AFSX0 input after ACLKX0 external output 0.9 (3) 9.4 Setup time, AXR0[n] input to ACLKX0 internal (4) 9.4 Setup time, AXR0[n] input to ACLKR0 external input (3) 2.9 (4) 2.9 Setup time, AXR0[n] input to ACLKX0 external input ns 2.9 Hold time, AFSR0 input after ACLKR0 internal (3) Setup time, AXR0[n] input to ACLKR0 internal UNIT 9.4 (3) Setup time, AFSX0 input to ACLKX0 external output 6 MAX Setup time, AXR0[n] input to ACLKR0 external output (3) 2.9 Setup time, AXR0[n] input to ACLKX0 external output (4) 2.9 ns ns ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 95 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-44. McASP0 Timing Requirements(1)(2) (continued) NO. 8 MIN th(ACLKRX-AXR) Hold time, AXR0[n] input after ACLKR0 internal (3) -1.3 Hold time, AXR0[n] input after ACLKX0 internal (4) -1.3 Hold time, AXR0[n] input after ACLKR0 external input (3) 0.5 Hold time, AXR0[n] input after ACLKX0 external input (4) 0.5 Hold time, AXR0[n] input after ACLKR0 external output (3) 0.5 Hold time, AXR0[n] input after ACLKX0 external output (4) 0.5 MAX UNIT ns Table 5-45. McASP0 Switching Characteristics (1) NO. 9 PARAMETER tc(AHCLKRX) 10 11 12 tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) Cycle time, AHCLKR0 internal, AHCLKR0 output 25 Cycle time, AHCLKR0 external, AHCLKR0 output 25 Cycle time, AHCLKX0 internal, AHCLKX0 output 25 Cycle time, AHCLKX0 external, AHCLKX0 output 25 Pulse duration, AHCLKR0 internal, AHCLKR0 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKR0 external, AHCLKR0 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX0 internal, AHCLKX0 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX0 external, AHCLKX0 output (AHX/2) – 2.5 (3) Cycle time, ACLKR0 internal, ACLKR0 output greater of 2P or 25 (4) Cycle time, ACLKR0 external, ACLKR0 output greater of 2P or 25 (4) Cycle time, ACLKX0 internal, ACLKX0 output greater of 2P or 25 (4) Cycle time, ACLKX0 external, ACLKX0 output greater of 2P or 25 (4) Pulse duration, ACLKR0 internal, ACLKR0 output (AR/2) – 2.5 (5) Pulse duration, ACLKR0 external, ACLKR0 output (AR/2) – 2.5 (5) Pulse duration, ACLKX0 internal, ACLKX0 output (AX/2) – 2.5 (6) Pulse duration, ACLKX0 external, ACLKX0 output (AX/2) – 2.5 (6) Delay time, ACLKR0 internal, AFSR output (7) Delay time, ACLKX0 internal, AFSX output 13 td(ACLKRX-AFSRX) 15 (1) (2) (3) (4) (5) (6) (7) 96 td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) 0 MAX UNIT ns ns ns ns 5.8 0 5.8 Delay time, ACLKR0 external input, AFSR output (7) 2.5 11.6 Delay time, ACLKX0 external input, AFSX output 2.5 11.6 Delay time, ACLKR0 external output, AFSR output (7) 2.5 11.6 Delay time, ACLKX0 external output, AFSX output 2.5 11.6 Delay time, ACLKX0 internal, AXR0[n] output 14 MIN 0 5.8 Delay time, ACLKX0 external input, AXR0[n] output 2.5 11.6 Delay time, ACLKX0 external output, AXR0[n] output 2.5 11.6 Disable time, ACLKX0 internal, AXR0[n] output 0 5.8 Disable time, ACLKX0 external input, AXR0[n] output 3 11.6 Disable time, ACLKX0 external output, AXR0[n] output 3 11.6 ns ns ns McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR0. AHX - Cycle time, AHCLKX0. P = SYSCLK2 period AR - ACLKR0 period. AX - ACLKX0 period. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.16.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing Table 5-46 and Table 5-47 assume testing over recommended operating conditions (see Figure 5-30 and Figure 5-31). Table 5-46. McASP1 Timing Requirements (1) (2) NO. MIN 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) 5 tsu(AFSRX-ACLKRX) Cycle time, AHCLKR1 external, AHCLKR1 input 25 Cycle time, AHCLKX1 external, AHCLKX1 input 25 Pulse duration, AHCLKR1 external, AHCLKR1 input 12.5 Pulse duration, AHCLKX1 external, AHCLKX1 input 12.5 Cycle time, ACLKR1 external, ACLKR1 input greater of 2P or 25 Cycle time, ACLKX1 external, ACLKX1 input greater of 2P or 25 Pulse duration, ACLKR1 external, ACLKR1 input 12.5 Pulse duration, ACLKX1 external, ACLKX1 input 12.5 Setup time, AFSR1 input to ACLKR1 internal (3) 10.4 Setup time, AFSX1 input to ACLKX1 internal 10.4 Setup time, AFSR1 input to ACLKR1 external input (3) 2.6 Setup time, AFSX1 input to ACLKX1 external input 2.6 Setup time, AFSR1 input to ACLKR1 external output (3) 2.6 Setup time, AFSX1 input to ACLKX1 external output 6 th(ACLKRX-AFSRX) tsu(AXR-ACLKRX) -1.9 Hold time, AFSX1 input after ACLKX1 internal -1.9 Hold time, AFSR1 input after ACLKR1 external input (3) 0.7 Hold time, AFSX1 input after ACLKX1 external input 0.7 Hold time, AFSR1 input after ACLKR1 external output (3) 0.7 10.4 Setup time, AXR1[n] input to ACLKX1 internal (4) 10.4 Setup time, AXR1[n] input to ACLKR1 external input (3) 2.6 Setup time, AXR1[n] input to ACLKX1 external input (4) 2.6 Setup time, AXR1[n] input to ACLKR1 external output (3) 2.6 (4) Hold time, AXR1[n] input after ACLKR1 internal (3) th(ACLKRX-AXR) (2) (3) (4) ns ns ns ns -1.8 0.5 Hold time, AXR1[n] input after ACLKX1 external input (4) 0.5 Hold time, AXR1[n] input after ACLKR1 external output (3) 0.5 (4) 0.5 Hold time, AXR1[n] input after ACLKX1 external output (1) ns 2.6 (3) Hold time, AXR1[n] input after ACLKR1 external input ns -1.8 Hold time, AXR1[n] input after ACLKX1 internal (4) 8 ns 0.7 Setup time, AXR1[n] input to ACLKR1 internal (3) Setup time, AXR1[n] input to ACLKX1 external output UNIT 2.6 Hold time, AFSR1 input after ACLKR1 internal (3) Hold time, AFSX1 input after ACLKX1 external output 7 MAX ns ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 97 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-47. McASP1 Switching Characteristics (1) NO. 9 PARAMETER tc(AHCLKRX) MIN Cycle time, AHCLKR1 internal, AHCLKR1 output 25 Cycle time, AHCLKR1 external, AHCLKR1 output 25 Cycle time, AHCLKX1 internal, AHCLKX1 output 25 Cycle time, AHCLKX1 external, AHCLKX1 output 10 11 12 tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) (AHR/2) – 2.5 (2) Pulse duration, AHCLKR1 external, AHCLKR1 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX1 internal, AHCLKX1 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX1 external, AHCLKX1 output (AHX/2) – 2.5 (3) Cycle time, ACLKR1 internal, ACLKR1 output greater of 2P or 25 (4) Cycle time, ACLKR1 external, ACLKR1 output greater of 2P or 25 (4) Cycle time, ACLKX1 internal, ACLKX1 output greater of 2P or 25 (4) Cycle time, ACLKX1 external, ACLKX1 output greater of 2P or 25 (4) Pulse duration, ACLKR1 internal, ACLKR1 output (AR/2) – 2.5 (5) Pulse duration, ACLKR1 external, ACLKR1 output (AR/2) – 2.5 (5) Pulse duration, ACLKX1 internal, ACLKX1 output (AX/2) – 2.5 (6) Pulse duration, ACLKX1 external, ACLKX1 output (AX/2) – 2.5 (6) (7) Delay time, ACLKX1 internal, AFSX output 13 14 15 (1) (2) (3) (4) (5) (6) (7) 98 td(ACLKRX-AFSRX) td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) Delay time, ACLKR1 external input, AFSR output UNIT ns 25 Pulse duration, AHCLKR1 internal, AHCLKR1 output Delay time, ACLKR1 internal, AFSR output MAX (7) ns ns ns 0.5 6.7 0.5 6.7 3.4 13.8 Delay time, ACLKX1 external input, AFSX output 3.4 13.8 Delay time, ACLKR1 external output, AFSR output (7) 3.4 13.8 Delay time, ACLKX1 external output, AFSX output 3.4 13.8 Delay time, ACLKX1 internal, AXR1[n] output 0.5 6.7 Delay time, ACLKX1 external input, AXR1[n] output 3.4 13.8 Delay time, ACLKX1 external output, AXR1[n] output 3.4 13.8 Disable time, ACLKX1 internal, AXR1[n] output 0.5 6.7 Disable time, ACLKX1 external input, AXR1[n] output 3.9 13.8 Disable time, ACLKX1 external output, AXR1[n] output 3.9 13.8 ns ns ns McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1 McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR1. AHX - Cycle time, AHCLKX1. P = SYSCLK2 period AR - ACLKR1 period. AX - ACLKX1 period. McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 2 1 2 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 4 3 4 ACLKR/X (CLKRP = CLKXP = 0)(A) ACLKR/X (CLKRP = CLKXP = 1)(B) 6 5 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 8 7 AXR[n] (Data In/Receive) A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). Figure 5-30. McASP Input Timings Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 99 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 10 10 9 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 12 11 12 ACLKR/X (CLKRP = CLKXP = 1)(A) ACLKR/X (CLKRP = CLKXP = 0)(B) 13 13 13 13 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) 13 13 13 AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 14 15 AXR[n] (Data Out/Transmit) A0 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). Figure 5-31. McASP Output Timings 100 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.17 Serial Peripheral Interface Ports (SPI0) Figure 5-32 is a block diagram of the SPI module, which is a simple shift register and buffer plus control logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options. SPIx_SIMO SPIx_SOMI Peripheral Configuration Bus Interrupt and DMA Requests 16-Bit Shift Register 16-Bit Buffer SPIx_ENA GPIO Control (all pins) State Machine SPIx_SCS Clock Control SPIx_CLK Figure 5-32. Block Diagram of SPI Module The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA). The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The C6743 will only shift data and drive the SPIx_SOMI pin when SPIx_SCS is held low. In slave mode, SPIx_ENA is an optional output and can be driven in either a push-pull or open-drain manner. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus. In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer. Although the SPI module supports two interrupt outputs, SPIx_INT1 is the only interrupt connected on this device. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 101 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Optional − Slave Chip Select SPIx_SCS SPIx_SCS Optional Enable (Ready) SPIx_ENA SPIx_ENA SPIx_CLK SPIx_CLK SPIx_SOMI SPIx_SOMI SPIx_SIMO SPIx_SIMO MASTER SPI SLAVE SPI Figure 5-33. Illustration of SPI Master-to-SPI Slave Connection 5.17.1 SPI Peripheral Registers Description(s) Table 5-48 is a list of the SPI registers. Table 5-48. SPIx Configuration Registers SPI0 BYTE ADDRESS 102 REGISTER NAME REGISTER DESCRIPTION 0x01C4 1000 SPIGCR0 Global Control Register 0 0x01C4 1004 SPIGCR1 Global Control Register 1 0x01C4 1008 SPIINT0 Interrupt Register 0x01C4 100C SPILVL Interrupt Level Register 0x01C4 1010 SPIFLG Flag Register 0x01C4 1014 SPIPC0 Pin Control Register 0 (Pin Function) 0x01C4 1018 SPIPC1 Pin Control Register 1 (Pin Direction) 0x01C4 101C SPIPC2 Pin Control Register 2 (Pin Data In) 0x01C4 1020 SPIPC3 Pin Control Register 3 (Pin Data Out) 0x01C4 1024 SPIPC4 Pin Control Register 4 (Pin Data Set) 0x01C4 1028 SPIPC5 Pin Control Register 5 (Pin Data Clear) 0x01C4 102C Reserved Reserved - Do not write to this register 0x01C4 1030 Reserved Reserved - Do not write to this register 0x01C4 1034 Reserved Reserved - Do not write to this register 0x01C4 1038 SPIDAT0 Shift Register 0 (without format select) 0x01C4 103C SPIDAT1 Shift Register 1 (with format select) 0x01C4 1040 SPIBUF Buffer Register 0x01C4 1044 SPIEMU Emulation Register Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-48. SPIx Configuration Registers (continued) SPI0 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01C4 1048 SPIDELAY Delay Register 0x01C4 104C SPIDEF Default Chip Select Register 0x01C4 1050 SPIFMT0 Format Register 0 0x01C4 1054 SPIFMT1 Format Register 1 0x01C4 1058 SPIFMT2 Format Register 2 0x01C4 105C SPIFMT3 Format Register 3 0x01C4 1060 Reserved Reserved - Do not write to this register 0x01C4 1064 INTVEC1 Interrupt Vector for SPI INT1 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 103 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.17.2 SPI Electrical Data/Timing 5.17.2.1 Serial Peripheral Interface (SPI) Timing Table 5-49 assumes testing over recommended operating conditions (see Figure 5-34 through Figure 5-37). Table 5-49. General Timing Requirements for SPI0 Master Modes (1) NO. MIN MAX UNIT greater of 3P or 20 256P ns 1 tc(SPC)M Cycle Time, SPI0_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 3 tw(SPCL)M Pulse Width Low, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 4 5 6 7 8 (1) (2) 104 td(SIMO_SPC)M td(SPC_SIMO)M toh(SPC_SIMO)M tsu(SOMI_SPC)M tih(SPC_SOMI)M Delay, initial data bit valid on SPI0_SIMO after initial edge on SPI0_CLK (2) Delay, subsequent bits valid on SPI0_SIMO after transmit edge of SPI0_CLK Output hold time, SPI0_SIMO valid after receive edge of SPI0_CLK Polarity = 0, Phase = 0, to SPI0_CLK rising 5 Polarity = 0, Phase = 1, to SPI0_CLK rising -0.5tc(SPC)M + 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 5 Polarity = 1, Phase = 1, to SPI0_CLK falling -0.5tc(SPC)M + 5 Polarity = 0, Phase = 0, from SPI0_CLK rising 5 Polarity = 0, Phase = 1, from SPI0_CLK falling 5 Polarity = 1, Phase = 0, from SPI0_CLK falling 5 Polarity = 1, Phase = 1, from SPI0_CLK rising 5 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 0, to SPI0_CLK falling 0 Polarity = 0, Phase = 1, Input Setup Time, SPI0_SOMI to SPI0_CLK rising valid before Polarity = 1, Phase = 0, receive edge of SPI0_CLK to SPI0_CLK rising Input Hold Time, SPI0_SOMI valid after receive edge of SPI0_CLK ns ns 0 ns 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI. Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-50. General Timing Requirements for SPI0 Slave Modes (1) NO. tc(SPC)S Cycle Time, SPI0_CLK, All Slave Modes 10 tw(SPCH)S 11 tw(SPCL)S 12 13 14 15 16 (1) (2) (3) MIN 9 tsu(SOMI_SPC)S td(SPC_SOMI)S toh(SPC_SOMI)S tsu(SIMO_SPC)S tih(SPC_SIMO)S MAX UNIT greater of 3P or 40 ns Pulse Width High, SPI0_CLK, All Slave Modes 18 ns Pulse Width Low, SPI0_CLK, All Slave Modes 18 ns Setup time, transmit data written to SPI before initial clock edge from master. (2) (3) Delay, subsequent bits valid on SPI0_SOMI after transmit edge of SPI0_CLK Output hold time, SPI0_SOMI valid after receive edge of SPI0_CLK Input Setup Time, SPI0_SIMO valid before receive edge of SPI0_CLK Input Hold Time, SPI0_SIMO valid after receive edge of SPI0_CLK Polarity = 0, Phase = 0, to SPI0_CLK rising 2P Polarity = 0, Phase = 1, to SPI0_CLK rising 2P Polarity = 1, Phase = 0, to SPI0_CLK falling 2P Polarity = 1, Phase = 1, to SPI0_CLK falling 2P ns Polarity = 0, Phase = 0, from SPI0_CLK rising 18.5 Polarity = 0, Phase = 1, from SPI0_CLK falling 18.5 Polarity = 1, Phase = 0, from SPI0_CLK falling 18.5 Polarity = 1, Phase = 1, from SPI0_CLK rising 18.5 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 0, to SPI0_CLK falling 0 Polarity = 0, Phase = 1, to SPI0_CLK rising 0 Polarity = 1, Phase = 0, to SPI0_CLK rising 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns ns ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the DSP CPU. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 105 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-51. Additional (1) SPI0 Master Timings, 4-Pin Enable Option (2) NO. 17 18 (1) (2) (3) (4) (5) (3) MIN td(ENA_SPC)M td(SPC_ENA)M Delay from slave assertion of SPI0_ENA active to first SPI0_CLK from master. (4) Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (5) MAX Polarity = 0, Phase = 0, to SPI0_CLK rising 3P + 3.6 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 3.6 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 3.6 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 3.6 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 5-49). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA assertion. In the case where the master SPI is ready with new data before SPI0_EN A deassertion. Table 5-52. Additional (1) SPI0 Master Timings, 4-Pin Chip Select Option (2) NO. 19 20 (1) (2) (3) (4) (5) (6) (7) 106 PARAMETER td(SCS_SPC)M td(SPC_SCS)M Delay from SPI0_SCS active to first SPI0_CLK (4) (5) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (6) (7) (3) MIN Polarity = 0, Phase = 0, to SPI0_CLK rising 2P - 5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 2P - 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P - 5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 2P - 5 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M +P - 3 Polarity = 0, Phase = 1, from SPI0_CLK falling P-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P -3 Polarity = 1, Phase = 1, from SPI0_CLK rising P-3 MAX UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 5-49). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-53. Additional (1) SPI0 Master Timings, 5-Pin Option (2) NO. 18 20 21 22 23 MIN td(SPC_ENA)M td(SPC_SCS)M td(SCSL_ENAL)M td(SCS_SPC)M td(ENA_SPC)M Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (4) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (5) (6) Delay from assertion of SPI0_ENA low to first SPI0_CLK edge. (10) MAX Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M+ P + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M+ P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 UNIT ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M+ P - 3 Polarity = 0, Phase = 1, from SPI0_CLK falling P-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M+ P - 3 Polarity = 1, Phase = 1, from SPI0_CLK rising P-3 ns Max delay for slave SPI to drive SPI0_ENA valid after master asserts SPI0_SCS to delay the master from beginning the next transfer, Delay from SPI0_SCS active to first SPI0_CLK (7) (8) (9) (3) C2TDELAY + P Polarity = 0, Phase = 0, to SPI0_CLK rising 2P - 5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 2P - 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P - 5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 2P - 5 ns ns Polarity = 0, Phase = 0, to SPI0_CLK rising 3P + 3.6 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 3.6 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 3.6 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 3.6 ns (1) (2) (3) (4) (5) These parameters are in addition to the general timings for SPI master modes (Table 5-50). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. (6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. (7) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA. (8) In the case where the master SPI is ready with new data before SPI0_SCS assertion. (9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. (10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 107 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-54. Additional (1) SPI0 Slave Timings, 4-Pin Enable Option (2) NO. 24 (1) (2) (3) td(SPC_ENAH)S Delay from final SPI0_CLK edge to slave deasserting SPI0_ENA. (3) MIN MAX Polarity = 0, Phase = 0, from SPI0_CLK falling 1.5 P - 3 2.5 P + 18.5 Polarity = 0, Phase = 1, from SPI0_CLK falling – 0.5tc(SPC)M + 1.5 P - 3 – 0.5tc(SPC)M + 2.5 P + 18.5 Polarity = 1, Phase = 0, from SPI0_CLK rising 1.5 P - 3 2.5 P + 18.5 Polarity = 1, Phase = 1, from SPI0_CLK rising – 0.5tc(SPC)M + 1.5 P - 3 – 0.5tc(SPC)M + 2.5 P + 18.5 UNIT ns These parameters are in addition to the general timings for SPI slave modes (Table 5-50). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 5-55. Additional (1) SPI0 Slave Timings, 4-Pin Chip Select Option (2) NO. 25 26 (3) MIN td(SCSL_SPC)S td(SPC_SCSH)S Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. MAX 2P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P + 18.5 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P + 18.5 (1) (2) (3) 108 UNIT These parameters are in addition to the general timings for SPI slave modes (Table 5-50). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-56. Additional (1) SPI0 Slave Timings, 5-Pin Option (2) NO. 25 26 td(SCSL_SPC)S td(SPC_SCSH)S MIN Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. MAX 2P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising 5 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P + 18.5 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P + 18.5 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI0_SCS to slave driving SPI0_ENA valid 18.5 ns 30 (1) (2) (3) (4) PARAMETER (3) tdis(SPC_ENA)S Delay from final clock receive edge on SPI0_CLK to slave 3-stating or driving high SPI0_ENA. (4) Polarity = 0, Phase = 0, from SPI0_CLK falling 2.5 P + 18.5 Polarity = 0, Phase = 1, from SPI0_CLK rising 2.5 P + 18.5 Polarity = 1, Phase = 0, from SPI0_CLK rising 2.5 P + 18.5 Polarity = 1, Phase = 1, from SPI0_CLK falling 2.5 P + 18.5 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-50). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 109 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI 6 MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 0 PHASE = 1 4 SPIx_CLK 6 5 SPIx_SIMO MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(0) MI(n) 4 MASTER MODE POLARITY = 1 PHASE = 0 SPIx_CLK 5 SPIx_SIMO 6 MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI MI(0) 6 MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(n) Figure 5-34. SPI Timings—Master Mode 110 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 9 12 10 11 15 16 SLAVE MODE POLARITY = 0 PHASE = 0 SPIx_CLK SPIx_SIMO SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SI(n) 14 SO(1) SO(n−1) 12 SO(n) SLAVE MODE POLARITY = 0 PHASE = 1 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SI(n−1) SI(n) SO(n−1) SO(n) 14 SO(1) SLAVE MODE POLARITY = 1 PHASE = 0 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SO(1) SI(n) 14 SO(n−1) SO(n) SLAVE MODE POLARITY = 1 PHASE = 1 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SO(1) SI(n−1) SI(n) 14 SO(n−1) SO(n) Figure 5-35. SPI Timings—Slave Mode Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 111 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com MASTER MODE 4 PIN WITH ENABLE 17 18 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MI(1) MI(n−1) MO(n) MI(n) SPIx_ENA MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MO(n) MI(1) MI(n−1) MI(n) SPIx_SCS MASTER MODE 5 PIN 22 20 MO(1) 23 18 SPIx_CLK SPIx_SIMO MO(0) MO(n−1) MO(n) SPIx_SOMI 21 SPIx_ENA MI(0) MI(1) MI(n−1) MI(n) DESEL(A) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 5-36. SPI Timings—Master Mode (4-Pin and 5-Pin) 112 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com SLAVE MODE 4 PIN WITH ENABLE 24 SPIx_CLK SPIx_SOMI SO(0) SO(1) SO(n−1) SO(n) SPIx_SIMO SI(0) SPIx_ENA SI(1) SI(n−1) SI(n) SLAVE MODE 4 PIN WITH CHIP SELECT 26 25 SPIx_CLK 27 SPIx_SOMI 28 SO(n−1) SO(0) SO(1) SO(n) SPIx_SIMO SI(0) SPIx_SCS SI(1) SI(n−1) SI(n) SLAVE MODE 5 PIN 26 30 25 SPIx_CLK 27 SPIx_SOMI 28 SO(1) SO(0) SO(n−1) SO(n) SPIx_SIMO 29 SPIx_ENA DESEL(A) SI(0) SI(1) SI(n−1) SI(n) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 5-37. SPI Timings—Slave Mode (4-Pin and 5-Pin) Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 113 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.18 Enhanced Capture (eCAP) Peripheral The device contains up to three enhanced capture (eCAP) modules. Figure 5-38 shows a functional block diagram of a module. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. Uses for ECAP include: • Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors) • Elapsed time measurements between position sensor triggers • Period and duty cycle measurements of Pulse train signals • Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors The ECAP module described in this specification includes the following features: • 32 bit time base • 4 event time-stamp registers (each 32 bits) • Edge polarity selection for up to 4 sequenced time-stamp capture events • Interrupt on either of the 4 events • Single shot capture of up to 4 event time-stamps • Continuous mode capture of time-stamps in a 4 deep circular buffer • Absolute time-stamp capture • Difference mode time-stamp capture • All the above resources are dedicated to a single input pin The eCAP modules are clocked at the SYSCLK2 rate. 114 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 SYNC www.ti.com SYNCIn CTRPHS (phase register−32 bit) SYNCOut TSCTR (counter−32 bit) APWM mode CTR_OVF OVF Delta−mode RST CTR [0−31] PRD [0−31] CMP [0−31] PWM compare logic 32 CTR=PRD CTR [0−31] CTR=CMP 32 32 CAP1 (APRD active) APRD shadow 32 LD1 LD MODE SELECT PRD [0−31] Polarity select 32 CMP [0−31] 32 CAP2 (ACMP active) 32 LD2 LD Polarity select Event qualifier ACMP shadow 32 CAP3 (APRD shadow) LD 32 CAP4 (ACMP shadow) LD eCAPx Event Pre-scale Polarity select LD3 LD4 Polarity select 4 Capture events 4 CEVT[1:4] to Interrupt Controller Interrupt Trigger and Flag control CTR_OVF Continuous / Oneshot Capture Control CTR=PRD CTR=CMP Figure 5-38. eCAP Functional Block Diagram Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 115 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-57 is the list of the ECAP registers. Table 5-57. ECAPx Configuration Registers ECAP0 BYTE ADDRESS ECAP1 BYTE ADDRESS ECAP2 BYTE ADDRESS 0x01F0 6000 0x01F0 7000 0x01F0 6004 0x01F0 7004 REGISTER NAME REGISTER DESCRIPTION 0x01F0 8000 TSCTR Time-Stamp Counter 0x01F0 8004 CTRPHS Counter Phase Offset Value Register 0x01F0 6008 0x01F0 7008 0x01F0 8008 CAP1 Capture 1 Register 0x01F0 600C 0x01F0 700C 0x01F0 800C CAP2 Capture 2 Register 0x01F0 6010 0x01F0 7010 0x01F0 8010 CAP3 Capture 3 Register 0x01F0 6014 0x01F0 7014 0x01F0 8014 CAP4 Capture 4 Register 0x01F0 6028 0x01F0 7028 0x01F0 8028 ECCTL1 Capture Control Register 1 0x01F0 602A 0x01F0 702A 0x01F0 802A ECCTL2 Capture Control Register 2 0x01F0 602C 0x01F0 702C 0x01F0 802C ECEINT Capture Interrupt Enable Register 0x01F0 602E 0x01F0 702E 0x01F0 802E ECFLG Capture Interrupt Flag Register 0x01F0 6030 0x01F0 7030 0x01F0 8030 ECCLR Capture Interrupt Clear Register 0x01F0 6032 0x01F0 7032 0x01F0 8032 ECFRC Capture Interrupt Force Register 0x01F0 605C 0x01F0 705C 0x01F0 805C REVID Revision ID Table 5-58 shows the eCAP timing requirement and Table 5-59 shows the eCAP switching characteristics. Table 5-58. Enhanced Capture (eCAP) Timing Requirement TEST CONDITIONS tw(CAP) Capture input pulse width MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 5-59. eCAP Switching Characteristics PARAMETER tw(APWM) 116 Pulse duration, APWMx output high/low TEST CONDITIONS MIN 20 MAX UNIT ns Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.19 Enhanced Quadrature Encoder (eQEP) Peripheral The device contains up to two enhanced quadrature encoder (eQEP) modules. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. System control registers To CPU EQEPxENCLK Data bus SYSCLK2 QCPRD QCTMR QCAPCTL 16 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT Registers used by multiple units QUTMR QWDTMR QUPRD QWDPRD 32 16 QEPCTL QEPSTS UTIME Interrupt Controller QFLG UTOUT QWDOG QDECCTL 16 WDTOUT EQEPxINT EQEPxAIN QCLK 16 QI Position counter/ control unit (PCCU) QPOSLAT QS PHE QPOSSLAT PCSOUT QPOSILAT EQEPxIIN Quadrature decoder (QDU) EQEPxIOUT EQEPxIOE EQEPxSIN EQEPxSOUT EQEPxSOE 32 32 QPOSCNT EQEPxB/XDIR GPIO MUX EQEPxI EQEPxS 16 QPOSCMP QPOSINIT EQEPxA/XCLK EQEPxBIN QDIR QEINT QFRC QPOSMAX QCLR QPOSCTL Enhanced QEP (eQEP) peripheral Figure 5-39. eQEP Functional Block Diagram Table 5-60 is the list of the EQEP registers. Table 5-61 shows the eQEP timing requirement and Table 5-62 shows the eQEP switching characteristics. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 117 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-60. EQEP Registers EQEP0 BYTE ADDRESS EQEP1 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01F0 9000 0x01F0 A000 QPOSCNT eQEP Position Counter 0x01F0 9004 0x01F0 A004 QPOSINIT eQEP Initialization Position Count 0x01F0 9008 0x01F0 A008 QPOSMAX eQEP Maximum Position Count 0x01F0 900C 0x01F0 A00C QPOSCMP eQEP Position-compare 0x01F0 9010 0x01F0 A010 QPOSILAT eQEP Index Position Latch 0x01F0 9014 0x01F0 A014 QPOSSLAT eQEP Strobe Position Latch 0x01F0 9018 0x01F0 A018 QPOSLAT eQEP Position Latch 0x01F0 901C 0x01F0 A01C QUTMR eQEP Unit Timer 0x01F0 9020 0x01F0 A020 QUPRD eQEP Unit Period Register 0x01F0 9024 0x01F0 A024 QWDTMR eQEP Watchdog Timer 0x01F0 9026 0x01F0 A026 QWDPRD eQEP Watchdog Period Register 0x01F0 9028 0x01F0 A028 QDECCTL eQEP Decoder Control Register 0x01F0 902A 0x01F0 A02A QEPCTL eQEP Control Register 0x01F0 902C 0x01F0 A02C QCAPCTL eQEP Capture Control Register 0x01F0 902E 0x01F0 A02E QPOSCTL eQEP Position-compare Control Register 0x01F0 9030 0x01F0 A030 QEINT eQEP Interrupt Enable Register 0x01F0 9032 0x01F0 A032 QFLG eQEP Interrupt Flag Register 0x01F0 9034 0x01F0 A034 QCLR eQEP Interrupt Clear Register 0x01F0 9036 0x01F0 A036 QFRC eQEP Interrupt Force Register 0x01F0 9038 0x01F0 A038 QEPSTS eQEP Status Register 0x01F0 903A 0x01F0 A03A QCTMR eQEP Capture Timer 0x01F0 903C 0x01F0 A03C QCPRD eQEP Capture Period Register 0x01F0 903E 0x01F0 A03E QCTMRLAT eQEP Capture Timer Latch 0x01F0 9040 0x01F0 A040 QCPRDLAT eQEP Capture Period Latch 0x01F0 905C 0x01F0 A05C REVID eQEP Revision ID Table 5-61. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements TEST CONDITIONS MIN MAX UNIT tw(QEPP) QEP input period Asynchronous/synchronous 2tc(SCO) cycles tw(INDEXH) QEP Index Input High time Asynchronous/synchronous 2tc(SCO) cycles tw(INDEXL) QEP Index Input Low time Asynchronous/synchronous 2tc(SCO) cycles tw(STROBH) QEP Strobe High time Asynchronous/synchronous 2tc(SCO) cycles tw(STROBL) QEP Strobe Input Low time Asynchronous/synchronous 2tc(SCO) cycles Table 5-62. eQEP Switching Characteristics PARAMETER MIN MAX UNIT td(CNTR)xin Delay time, external clock to counter increment 4tc(SCO) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 6tc(SCO) cycles 118 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.20 Enhanced Pulse Width Modulator (eHRPWM) Modules The device contains up to three enhanced PWM Modules (eHRPWM). Figure 5-40 shows a block diagram of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. EPWMSYNCI EPWM0INT EPWM0SYNCI EPWM0A ePWM0 module EPWM0B TZ EPWM0SYNCO EPWM1SYNCI EPWM1INT EPWM1A ePWM1 module EPWM1B GPIO MUX EPWM1SYNCO TZ EPWM2SYNCI EPWM2INT EPWM2A ePWM2 module Interrupt Controllers EPWM2SYNCO To eCAP0 module (sync in) EPWM2B TZ EPWMSYNCO Peripheral Bus Figure 5-40. Multiple PWM Modules in a C6743 System Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 119 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Time−base (TB) Sync in/out select Mux CTR=ZERO CTR=CMPB Disabled TBPRD shadow (16) TBPRD active (16) CTR=PRD EPWMSYNCO TBCTL[SYNCOSEL] TBCTL[CNTLDE] EPWMSYNCI Counter up/down (16 bit) CTR=ZERO CTR_Dir TBCNT active (16) TBPHSHR (8) 16 8 TBPHS active (24) CTR = PRD CTR = ZERO CTR = CMPA CTR = CMPB CTR_Dir Phase control Counter compare (CC) CTR=CMPA CMPAHR (8) 16 TBCTL[SWFSYNC] (software forced sync) Action qualifier (AQ) 8 Event trigger and interrupt (ET) EPWMxINT HiRes PWM (HRPWM) CMPA active (24) EPWMA EPWMxA CMPA shadow (24) CTR=CMPB Dead band (DB) 16 PWM chopper (PC) Trip zone (TZ) EPWMB EPWMxB CMPB active (16) EPWMxTZINT CMPB shadow (16) CTR = ZERO TZ Figure 5-41. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections Table 5-63. eHRPWM Module Control and Status Registers Grouped by Submodule eHRPWM1 BYTE ADDRESS eHRPWM2 BYTE ADDRESS eHRPWM3 BYTE ADDRESS REGISTER NAME SIZE (×16) SHADOW REGISTER DESCRIPTION 0x01F0 0000 0x01F0 2000 0x01F0 4000 TBCTL 1 No Time-Base Control Register 0x01F0 0002 0x01F0 2002 0x01F0 4002 TBSTS 1 No Time-Base Status Register 0x01F0 0004 0x01F0 2004 0x01F0 4004 TBPHSHR 1 No Extension for HRPWM Phase Register 0x01F0 0006 0x01F0 2006 0x01F0 4006 TBPHS 1 No Time-Base Phase Register Time-Base Submodule Registers (1) 0x01F0 0008 0x01F0 2008 0x01F0 4008 TBCNT 1 No Time-Base Counter Register 0x01F0 000A 0x01F0 200A 0x01F0 400A TBPRD 1 Yes Time-Base Period Register Counter-Compare Submodule Registers (1) 120 0x01F0 000E 0x01F0 200E 0x01F0 400E CMPCTL 1 No Counter-Compare Control Register 0x01F0 0010 0x01F0 2010 0x01F0 4010 CMPAHR 1 No Extension for HRPWM Counter-Compare A Register 0x01F0 0012 0x01F0 2012 0x01F0 4012 CMPA 1 Yes Counter-Compare A Register 0x01F0 0014 0x01F0 2014 0x01F0 4014 CMPB 1 Yes Counter-Compare B Register (1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved. Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-63. eHRPWM Module Control and Status Registers Grouped by Submodule (continued) eHRPWM1 BYTE ADDRESS eHRPWM2 BYTE ADDRESS eHRPWM3 BYTE ADDRESS REGISTER NAME SIZE (×16) SHADOW REGISTER DESCRIPTION 0x01F0 0016 0x01F0 2016 0x01F0 4016 AQCTLA 1 No Action-Qualifier Control Register for Output A (eHRPWMxA) 0x01F0 0018 0x01F0 2018 0x01F0 4018 AQCTLB 1 No Action-Qualifier Control Register for Output B (eHRPWMxB) Action-Qualifier Submodule Registers 0x01F0 001A 0x01F0 201A 0x01F0 401A AQSFRC 1 No Action-Qualifier Software Force Register 0x01F0 001C 0x01F0 201C 0x01F0 401C AQCSFRC 1 Yes Action-Qualifier Continuous S/W Force Register Set 0x01F0 001E 0x01F0 201E 0x01F0 401E DBCTL 1 No Dead-Band Generator Control Register 0x01F0 0020 0x01F0 2020 0x01F0 4020 DBRED 1 No Dead-Band Generator Rising Edge Delay Count Register 0x01F0 0022 0x01F0 2022 0x01F0 4022 DBFED 1 No Dead-Band Generator Falling Edge Delay Count Register 0x01F0 003C 0x01F0 203C 0x01F0 403C No PWM-Chopper Control Register Dead-Band Generator Submodule Registers PWM-Chopper Submodule Registers PCCTL 1 Trip-Zone Submodule Registers 0x01F0 0024 0x01F0 2024 0x01F0 4024 TZSEL 1 No Trip-Zone Select Register 0x01F0 0028 0x01F0 2028 0x01F0 4028 TZCTL 1 No Trip-Zone Control Register 0x01F0 002A 0x01F0 202A 0x01F0 402A TZEINT 1 No Trip-Zone Enable Interrupt Register 0x01F0 002C 0x01F0 202C 0x01F0 402C TZFLG 1 No Trip-Zone Flag Register 0x01F0 002E 0x01F0 202E 0x01F0 402E TZCLR 1 No Trip-Zone Clear Register 0x01F0 0030 0x01F0 2030 0x01F0 4030 TZFRC 1 No Trip-Zone Force Register Event-Trigger Submodule Registers 0x01F0 0032 0x01F0 2032 0x01F0 4032 ETSEL 1 No Event-Trigger Selection Register 0x01F0 0034 0x01F0 2034 0x01F0 4034 ETPS 1 No Event-Trigger Pre-Scale Register 0x01F0 0036 0x01F0 2036 0x01F0 4036 ETFLG 1 No Event-Trigger Flag Register 0x01F0 0038 0x01F0 2038 0x01F0 4038 ETCLR 1 No Event-Trigger Clear Register 0x01F0 003A 0x01F0 203A 0x01F0 403A ETFRC 1 No Event-Trigger Force Register High-Resolution PWM (HRPWM) Submodule Registers 0x01F0 1040 (2) 0x01F0 3040 0x01F0 5040 HRCNFG 1 No HRPWM Configuration Register (2) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 121 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.20.1 Enhanced Pulse Width Modulator (eHRPWM) Timing PWM refers to PWM outputs on eHRPWM1-6. Table 5-64 shows the PWM timing requirements and Table 5-65, switching characteristics. Table 5-64. eHRPWM Timing Requirements TEST CONDITIONS tw(SYCIN) Sync input pulse width MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 5-65. eHRPWM Switching Characteristics PARAMETER TEST CONDITIONS MIN MAX 20 UNIT tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width ns td(PWM)tza Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low no pin load; no additional programmable delay 25 ns td(TZ-PWM)HZ Delay time, trip input active to PWM Hi-Z no additional programmable delay 20 ns 8tc(SCO) cycles 5.20.2 Trip-Zone Input Timing t w(TZ) TZ t d(TZ-PWM)HZ PWM(A) A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 5-42. PWM Hi-Z Characteristics Table 5-66. Trip-Zone input Timing Requirements TEST CONDITIONS tw(TZ) Pulse duration, TZx input low MIN MAX UNIT Asynchronous 1tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 5-67 shows the high-resolution PWM switching characteristics. Table 5-67. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz) PARAMETER Micro Edge Positioning (MEP) step size (1) 122 MIN (1) TYP MAX 200 UNIT ps MEP step size will increase with low voltage and high temperature, and decrease with high voltage and cold temperature. Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.21 Timers The timers support the following features: • Configurable as single 64-bit timer or two 32-bit timers • Period timeouts generate interrupts, DMA events or external pin events • 8 32-bit compare registers • Compare matches generate interrupt events • Capture capability • 64-bit Watchdog capability (Timer64P1 only) Table 5-68 lists the timer registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. Table 5-68. Timer Registers TIMER64P 0 TIMER64P 1 REGISTER NAME REGISTER DESCRIPTION 0x01C2 0000 0x01C2 1000 REV Revision Register 0x01C2 0004 0x01C2 1004 EMUMGT Emulation Management Register 0x01C2 0008 0x01C2 1008 GPINTGPEN GPIO Interrupt and GPIO Enable Register 0x01C2 000C 0x01C2 100C GPDATGPDIR GPIO Data and GPIO Direction Register 0x01C2 0010 0x01C2 1010 TIM12 Timer Counter Register 12 0x01C2 0014 0x01C2 1014 TIM34 Timer Counter Register 34 0x01C2 0018 0x01C2 1018 PRD12 Timer Period Register 12 0x01C2 001C 0x01C2 101C PRD34 Timer Period Register 34 0x01C2 0020 0x01C2 1020 TCR Timer Control Register 0x01C2 0024 0x01C2 1024 TGCR Timer Global Control Register 0x01C2 0028 0x01C2 1028 WDTCR Watchdog Timer Control Register 0x01C2 0034 0x01C2 1034 REL12 Timer Reload Register 12 0x01C2 0038 0x01C2 1038 REL34 Timer Reload Register 34 0x01C2 003C 0x01C2 103C CAP12 Timer Capture Register 12 0x01C2 0040 0x01C2 1040 CAP34 Timer Capture Register 34 0x01C2 0044 0x01C2 1044 INTCTLSTAT Timer Interrupt Control and Status Register 0x01C2 0060 0x01C2 1060 CMP0 Compare Register 0 0x01C2 0064 0x01C2 1064 CMP1 Compare Register 1 0x01C2 0068 0x01C2 1068 CMP2 Compare Register 2 0x01C2 006C 0x01C2 106C CMP3 Compare Register 3 0x01C2 0070 0x01C2 1070 CMP4 Compare Register 4 0x01C2 0074 0x01C2 1074 CMP5 Compare Register 5 0x01C2 0078 0x01C2 1078 CMP6 Compare Register 6 0x01C2 007C 0x01C2 107C CMP7 Compare Register 7 Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 123 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 5.21.1 www.ti.com Timer Electrical Data/Timing Table 5-69. Timing Requirements for Timer Input (1) (2) (see Figure 5-43) NO. MIN MAX tc(TM64Px_IN12) Cycle time, TM64Px_IN12 2 tw(TINPH) Pulse duration, TM64Px_IN12 high 0.45C 0.55C ns 3 tw(TINPL) Pulse duration, TM64Px_IN12 low 0.45C 0.55C ns 4 tt(TM64Px_IN12) Transition time, TM64Px_IN12 0.25P or 10 (3) ns (1) (2) (3) 4P UNIT 1 ns P = OSCIN cycle time in ns. C = TM64P0_IN12 cycle time in ns. Whichever is smaller. P = The period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. 1 2 3 4 4 TM64P0_IN12 Figure 5-43. Timer Timing Table 5-70. Switching Characteristics Over Recommended Operating Conditions for Timer Output (1) NO. PARAMETER MIN MAX UNIT 5 tw(TOUTH) Pulse duration, TM64P0_OUT12 high 4P ns 6 tw(TOUTL) Pulse duration, TM64P0_OUT12 low 4P ns (1) P = OSCIN cycle time in ns. 5 6 TM64P0_OUT12 Figure 5-44. Timer Timing 124 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.22 Inter-Integrated Circuit Serial Ports (I2C0, I2C1) 5.22.1 I2C Device-Specific Information Having two I2C modules on the device simplifies system architecture, since one module may be used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate with other controllers in a system or to implement a user interface. Figure 5-45 is the block diagram of the I2C Module. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. Each I2C port supports: • Compatible with Philips® I2C Specification Revision 2.1 (January 2000) • Fast Mode up to 400 Kbps (no fail-safe I/O buffers) • Noise Filter to Remove Noise 50 ns or less • Seven- and Ten-Bit Device Addressing Modes • Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality • Events: DMA, Interrupt, or Polling • General-Purpose I/O Capability if not used as I2C Clock Prescaler Control I2CPSCx Prescaler Register Bit Clock Generator I2Cx_SCL Noise Filter I2CCOARx Own Address Register I2CSARx Slave Address Register I2CCLKHx Clock Divide High Register I2CCMDRx Mode Register I2CCLKLx Clock Divide Low Register I2CEMDRx Extended Mode Register I2CCNTx Data Count Register I2CPID1 Peripheral ID Register 1 I2CPID2 Peripheral ID Register 2 Transmit I2Cx_SDA Noise Filter I2CXSRx Transmit Shift Register I2CDXRx Transmit Buffer Interrupt/DMA Receive I2CIERx I2CDRRx Receive Buffer I2CSTRx I2CRSRx Receive Shift Register I2CSRCx I2CPFUNC Pin Function Register I2CPDOUT Interrupt Enable Register Interrupt Status Register Interrupt Source Register Peripheral Configuration Bus Interrupt DMA Requests Control I2CPDIR I2CPDIN Pin Direction Register Pin Data In Register I2CPDSET I2CPDCLR Pin Data Out Register Pin Data Set Register Pin Data Clear Register Figure 5-45. I2C Module Block Diagram Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 125 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.22.2 I2C Peripheral Registers Description(s) Table 5-71 is the list of the I2C registers. Table 5-71. Inter-Integrated Circuit (I2C) Registers I2C0 BYTE ADDRESS I2C1 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01C2 2000 0x01E2 8000 ICOAR I2C Own Address Register 0x01C2 2004 0x01E2 8004 ICIMR I2C Interrupt Mask Register 0x01C2 2008 0x01E2 8008 ICSTR I2C Interrupt Status Register 0x01C2 200C 0x01E2 800C ICCLKL I2C Clock Low-Time Divider Register 0x01C2 2010 0x01E2 8010 ICCLKH I2C Clock High-Time Divider Register 0x01C2 2014 0x01E2 8014 ICCNT I2C Data Count Register 0x01C2 2018 0x01E2 8018 ICDRR I2C Data Receive Register 0x01C2 201C 0x01E2 801C ICSAR I2C Slave Address Register 0x01C2 2020 0x01E2 8020 ICDXR I2C Data Transmit Register 0x01C2 2024 0x01E2 8024 ICMDR I2C Mode Register 0x01C2 2028 0x01E2 8028 ICIVR I2C Interrupt Vector Register 0x01C2 202C 0x01E2 802C ICEMDR I2C Extended Mode Register 0x01C2 2030 0x01E2 8030 ICPSC I2C Prescaler Register 0x01C2 2034 0x01E2 8034 REVID1 I2C Revision Identification Register 1 0x01C2 2038 0x01E2 8038 REVID2 I2C Revision Identification Register 2 0x01C2 2048 0x01E2 8048 ICPFUNC I2C Pin Function Register 0x01C2 204C 0x01E2 804C ICPDIR I2C Pin Direction Register 0x01C2 2050 0x01E2 8050 ICPDIN I2C Pin Data In Register 0x01C2 2054 0x01E2 8054 ICPDOUT I2C Pin Data Out Register 0x01C2 2058 0x01E2 8058 ICPDSET I2C Pin Data Set Register 0x01C2 205C 0x01E2 805C ICPDCLR I2C Pin Data Clear Register 5.22.3 I2C Electrical Data/Timing 5.22.3.1 Inter-Integrated Circuit (I2C) Timing Table 5-72 and Table 5-73 assume testing over recommended operating conditions (see Figure 5-46 and Figure 5-47). Table 5-72. I2C Input Timing Requirements NO. MIN 1 tc(SCL) Cycle time, I2Cx_SCL 2 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 3 th(SCLL-SDAL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 tw(SCLL) Pulse duration, I2Cx_SCL low 5 tw(SCLH) Pulse duration, I2Cx_SCL high 6 tsu(SDA-SCLH) Setup time, I2Cx_SDA before I2Cx_SCL high 7 th(SDA-SCLL) Hold time, I2Cx_SDA after I2Cx_SCL low 126 Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 μs μs μs 4 Fast Mode 0.6 Standard Mode 250 Fast Mode 100 Standard Mode 0 Fast Mode 0 UNIT μs 4 Fast Mode Standard Mode MAX μs ns 0.9 μs Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-72. I2C Input Timing Requirements (continued) NO. MIN 8 tw(SDAH) Pulse duration, I2Cx_SDA high 9 tr(SDA) Rise time, I2Cx_SDA 10 tr(SCL) Rise time, I2Cx_SCL 11 tf(SDA) Fall time, I2Cx_SDA 12 tf(SCL) Fall time, I2Cx_SCL 13 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high 14 tw(SP) Pulse duration, spike (must be suppressed) 15 Cb Capacitive load for each bus line Standard Mode 4.7 Fast Mode 1.3 Standard Mode Fast Mode Standard Mode Fast Mode Standard Mode 20 + 0.1Cb 300 300 20 + 0.1Cb 300 4 Fast Mode 0.6 Standard Mode N/A Fast Mode 300 300 Standard Mode Fast Mode 300 1000 20 + 0.1Cb 0 UNIT μs 1000 20 + 0.1Cb Standard Mode Fast Mode MAX ns ns ns ns μs 50 Standard Mode 400 Fast Mode 400 ns pF Table 5-73. I2C Switching Characteristics (1) NO. PARAMETER 16 tc(SCL) Cycle time, I2Cx_SCL 17 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 18 th(SDAL-SCLL) Hold time, I2Cx_SCL low after I2Cx_SDA low 19 tw(SCLL) Pulse duration, I2Cx_SCL low 20 tw(SCLH) Pulse duration, I2Cx_SCL high 21 tsu(SDAV-SCLH) Setup time, I2Cx_SDA valid before I2Cx_SCL high 22 th(SCLL-SDAV) Hold time, I2Cx_SDA valid after I2Cx_SCL low 23 tw(SDAH) Pulse duration, I2Cx_SDA high 28 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high (1) MIN Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 0.6 Standard Mode 250 Fast Mode 100 Standard Mode 0 Fast Mode 0 Standard Mode 4.7 Fast Mode 1.3 Standard Mode Fast Mode μs μs μs 4 Fast Mode UNIT μs 4 Fast Mode Standard Mode MAX μs ns 0.9 4 0.6 μs μs μs I2C must be configured correctly to meet the timings in Table 5-73. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 127 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 11 9 I2Cx_SDA 6 8 14 4 13 5 10 I2Cx_SCL 1 12 3 2 7 3 Stop Start Repeated Start Stop Figure 5-46. I2C Receive Timings 26 24 I2Cx_SDA 21 23 19 28 20 25 I2Cx_SCL 16 27 18 17 22 18 Stop Start Repeated Start Stop Figure 5-47. I2C Transmit Timings 128 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.23 Universal Asynchronous Receiver/Transmitter (UART) The device has 2 UART peripherals. Each UART has the following features: • 16-byte storage space for both the transmitter and receiver FIFOs • Autoflow control signals (CTS, RTS) on UART0 only. • 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA • DMA signaling capability for both received and transmitted data • Programmable auto-rts and auto-cts for autoflow control • Programmable Baud Rate up to 3MBaud • Programmable Oversampling Options of x13 and x16 • Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates • Prioritized interrupts • Programmable serial data formats – 5, 6, 7, or 8-bit characters – Even, odd, or no parity bit generation and detection – 1, 1.5, or 2 stop bit generation • False start bit detection • Line break generation and detection • Internal diagnostic capabilities – Loopback controls for communications link fault isolation – Break, parity, overrun, and framing error simulation The UART registers are listed in Section 5.23.1. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. 5.23.1 UART Peripheral Registers Description(s) Table 5-74 is the list of UART registers. Table 5-74. UART Registers UART0 BYTE ADDRESS UART2 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01C4 2000 0x01C4 2000 0x01D0 D000 RBR Receiver Buffer Register (read only) 0x01D0 D000 THR Transmitter Holding Register (write only) 0x01C4 2004 0x01D0 D004 IER Interrupt Enable Register 0x01C4 2008 0x01D0 D008 IIR Interrupt Identification Register (read only) 0x01C4 2008 0x01D0 D008 FCR FIFO Control Register (write only) 0x01C4 200C 0x01D0 D00C LCR Line Control Register 0x01C4 2010 0x01D0 D010 MCR Modem Control Register 0x01C4 2014 0x01D0 D014 LSR Line Status Register 0x01C4 2020 0x01D0 D020 DLL Divisor LSB Latch 0x01C4 2024 0x01D0 D024 DLH Divisor MSB Latch 0x01C4 2028 0x01D0 D028 REVID1 Revision Identification Register 1 0x01C4 2030 0x01D0 D030 PWREMU_MGMT Power and Emulation Management Register 0x01C4 2034 0x01D0 D034 MDR Mode Definition Register Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 129 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.23.2 UART Electrical Data/Timing Table 5-75. Timing Requirements for UARTx Receive (1) (see Figure 5-48) NO. MIN MAX UNIT 4 tw(URXDB) Pulse duration, receive data bit (RXDn) 0.96U 1.05U MBaud 5 tw(URXSB) Pulse duration, receive start bit 0.96U 1.05U ns (1) U = UART baud time = 1/programmed baud rate. Table 5-76. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1) (see Figure 5-48) NO. PARAMETER MIN MAX f(baud) Maximum programmable baud rate (2) 2 tw(UTXDB) Pulse duration, transmit data bit (TXDn) U-2 U+2 ns tw(UTXSB) Pulse duration, transmit start bit U-2 U+2 ns 3 (1) (2) (3) (4) D/E (3) (4) UNIT 1 MBaud U = UART baud time = 1/programmed baud rate. Baud rate is not indicative of data rate. Actual data rate will be limited by system factors such as EDMA loading, EMIF loading, system frequency, etc. D = UART input clock in MHz. The UART(s) input clock source is PLL0_SYSCLK2. E = UART divisor x UART sampling rate. The UART divisor is set through the UART divisor latch registers (DLL and DLH). The UART sampling rate is set through the over-sampling mode select bit (OSM_SEL) of the UART mode definition register (MDR). 3 2 UART_TXDn Start Bit Data Bits 5 4 UART_RXDn Start Bit Data Bits Figure 5-48. UART Transmit/Receive Timing 130 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.24 Power and Sleep Controller (PSC) The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) for more details. The PSC includes the following features: • Provides a software interface to: – Control module clock enable/disable – Control module reset – Control CPU local reset • Supports IcePick emulation features: power, clock and reset 5.24.1 PSC Peripheral Registers Description(s) Table 5-77. Power and Sleep Controller (PSC) Registers PSC0 BYTE ADDRESS PSC1 BYTE ADDRESS REGISTER NAME REGISTER DESCRIPTION 0x01C1 0000 0x01E2 7000 REVID Peripheral Revision and Class Information Register 0x01C1 0018 0x01E2 7018 INTEVAL Interrupt Evaluation Register 0x01C1 0040 0x01E2 7040 MERRPR0 Module Error Pending Register 0 (module 0-15) (PSC0) Module Error Pending Register 0 (module 0-31) (PSC1) 0x01C1 0050 0x01E2 7050 MERRCR0 Module Error Clear Register 0 (module 0-15) (PSC0) Module Error Clear Register 0 (module 0-31) (PSC1) 0x01C1 0060 0x01E2 7060 PERRPR Power Error Pending Register 0x01C1 0068 0x01E2 7068 PERRCR Power Error Clear Register 0x01C1 0120 0x01E2 7120 PTCMD Power Domain Transition Command Register 0x01C1 0128 0x01E2 7128 PTSTAT Power Domain Transition Status Register 0x01C1 0200 0x01E2 7200 PDSTAT0 Power Domain 0 Status Register 0x01C1 0204 0x01E2 7204 PDSTAT1 Power Domain 1 Status Register 0x01C1 0300 0x01E2 7300 PDCTL0 Power Domain 0 Control Register 0x01C1 0304 0x01E2 7304 PDCTL1 Power Domain 1 Control Register 0x01C1 0400 0x01E2 7400 PDCFG0 Power Domain 0 Configuration Register 0x01C1 0404 0x01E2 7404 PDCFG1 Power Domain 1 Configuration Register 0x01C1 0800 - 0x01C1 083C 0x01C1 0A00 - 0x01C1 0A3C 0x01E2 7800 - 0x01E2 787C MDSTAT0-MDSTAT15 Module Status n Register (modules 0-15) (PSC0) MDSTAT0-MDSTAT31 Module Status n Register (modules 0-31) (PSC1) 0x01E2 7A00 - 0x01E2 7A7C MDCTL0-MDCTL15 Module Control n Register (modules 0-15) (PSC0) MDCTL0-MDCTL31 Module Control n Register (modules 0-31) (PSC1) Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 131 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.24.2 Power Domain and Module Topology The device includes two PSC modules. Each PSC module controls clock states for several on the on chip modules, controllers and interconnect components. Table 5-78 and Table 5-79 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. The module states and terminology are defined in Section 5.24.2.2. Table 5-78. PSC0 Default Module Configuration LPSC NUMBER MODULE NAME POWER DOMAIN DEFAULT MODULE STATE AUTO SLEEP/WAKE ONLY 0 EDMA3 Channel Controller AlwaysON (PD0) SwRstDisable — 1 EDMA3 Transfer Controller 0 AlwaysON (PD0) SwRstDisable — 2 EDMA3 Transfer Controller 1 AlwaysON (PD0) SwRstDisable — 3 EMIFA (BR7) AlwaysON (PD0) SwRstDisable — 4 SPI 0 AlwaysON (PD0) SwRstDisable — 5 MMC/SD 0 AlwaysON (PD0) SwRstDisable — — 8 — — — 9 UART 0 AlwaysON (PD0) SwRstDisable — 10 SCR0 (Br 0, Br 1, Br 2, Br 8) AlwaysON (PD0) Enable Yes 11 SCR1 (Br 4) AlwaysON (PD0) Enable Yes 12 SCR2 (Br 3, Br 5, Br 6) AlwaysON (PD0) Enable Yes 13 PRUSS AlwaysON (PD0) SwRstDisable- — 15 DSP PD_DSP (PD1) Enable — Table 5-79. PSC1 Default Module Configuration LPSC NUMBER 132 MODULE NAME POWER DOMAIN DEFAULT MODULE STATE AUTO SLEEP/WAKE ONLY 0-2 — — — — 3 GPIO AlwaysON (PD0) SwRstDisable — 4 — — — — 5 EMAC AlwaysON (PD0) SwRstDisable — 6 EMIFB (Br 20) AlwaysON (PD0) SwRstDisable — 7 McASP0 ( + McASP0 FIFO) AlwaysON (PD0) SwRstDisable — 8 McASP1 ( + McASP1 FIFO) AlwaysON (PD0) SwRstDisable — 9-10 — — — — 11 I2C 1 AlwaysON (PD0) SwRstDisable — 12 — — — — 13 UART 2 AlwaysON (PD0) SwRstDisable — 14-16 — — — — 17 eHRPWM0/1/2 AlwaysON (PD0) SwRstDisable — 18-19 — — — — 20 ECAP0/1/2 AlwaysON (PD0) SwRstDisable — — 21 EQEP0/1 AlwaysON (PD0) SwRstDisable 22-23 — — — — 24 SCR8 (Br 15) AlwaysON (PD0) Enable Yes Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-79. PSC1 Default Module Configuration (continued) LPSC NUMBER MODULE NAME POWER DOMAIN DEFAULT MODULE STATE AUTO SLEEP/WAKE ONLY 25 SCR7 (Br 12) AlwaysON (PD0) Enable Yes 26 SCR12 (Br 18) AlwaysON (PD0) Enable Yes 27-31 — — — — 5.24.2.1 Power Domain States A power domain can only be in one of the two states: ON or OFF, defined as follows: • ON: power to the domain is on • OFF: power to the domain is off In the device, for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when the chip is powered-on. This domain is not programmable to OFF state. • On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories 5.24.2.2 Module States The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 5-80. Table 5-80. Module States MODULE STATE MODULE RESET MODULE CLOCK MODULE STATE DEFINITION Enable De-asserted On A module in the enable state has its module reset de-asserted and it has its clock on. This is the normal operational state for a given module Disable De-asserted Off A module in the disabled state has its module reset de-asserted and it has its module clock off. This state is typically used for disabling a module clock to save power. The device is designed in full static CMOS, so when you stop a module clock, it retains the module’s state. When the clock is restarted, the module resumes operating from the stopping point. SyncReset Asserted On A module state in the SyncReset state has its module reset asserted and it has its clock on. Generally, software is not expected to initiate this state SwRstDisable Asserted Off A module in the SwResetDisable state has its module reset asserted and it has its clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state Auto Sleep De-asserted Off A module in the Auto Sleep state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it can “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and after servicing the request it will “automatically” transition into the sleep state (with module reset re de-asserted and module clock disabled), without any software intervention. The transition from sleep to enabled and back to sleep state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. Auto Wake De-asserted Off A module in the Auto Wake state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it will “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and will remain in the “Enabled” state from then on (with module reset re de-asserted and module clock on), without any software intervention. The transition from sleep to enabled state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 133 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.25 Programmable Real-Time Unit Subsystem (PRUSS) The Programmable Real-Time Unit Subsystem (PRUSS) consists of • Two Programmable Real-Time Units (PRU0 and PRU1) and their associated memories • An Interrupt Controller (INTC) for handling system interrupt events. The INTC also supports posting events back to the device level host CPU. • A Switched Central Resource (SCR) for connecting the various internal and external masters to the resources inside the PRUSS. The two PRUs can operate completely independently or in coordination with each other. The PRUs can also work in coordination with the device level host CPU. This is determined by the nature of the program which is loaded into the PRUs instruction memory. Several different signaling mechanisms are available between the two PRUs and the device level host CPU. The PRUs are optimized for performing embedded tasks that require manipulation of packed memory mapped data structures, handling of system events that have tight realtime constraints and interfacing with systems external to the device. The PRUSS comprises various distinct addressable regions. Externally the subsystem presents a single 64Kbyte range of addresses. The internal interconnect bus (also called switched central resource, or SCR) of the PRUSS decodes accesses for each of the individual regions. The PRUSS memory map is documented in Table 5-81 and in Table 5-82. Note that these two memory maps are implemented inside the PRUSS and are local to the components of the PRUSS. Table 5-81. Programmable Real-Time Unit Subsystem (PRUSS) Local Instruction Space Memory Map BYTE ADDRESS PRU0 PRU1 0x0000 0000 - 0x0000 0FFF PRU0 Instruction RAM PRU1 Instruction RAM Table 5-82. Programmable Real-Time Unit Subsystem (PRUSS) Local Data Space Memory Map BYTE ADDRESS 0x0000 0000 - 0x0000 01FF (1) PRU0 Data RAM 0 0x0000 0200 - 0x0000 1FFF Reserved 0x0000 2000 - 0x0000 21FF Data RAM 1 0x0000 2200 - 0x0000 3FFF Reserved PRU1 (1) Data RAM 1 (1) Data RAM 0 (1) Reserved (1) Reserved 0x0000 4000 - 0x0000 6FFF INTC Registers INTC Registers 0x0000 7000 - 0x0000 73FF PRU0 Control Registers PRU0 Control Registers 0x0000 7400 - 0x0000 77FF Reserved Reserved 0x0000 7800 - 0x0000 7BFF PRU1 Control Registers PRU1 Control Registers 0x0000 7C00 - 0xFFFF FFFF Reserved Reserved Note that PRU0 accesses Data RAM0 at address 0x0000 0000, also PRU1 accesses Data RAM1 at address 0x0000 0000. Data RAM0 is intended to be the primary data memory for PRU0 and Data RAM1 is intended to be the primary data memory for PRU1. However for passing information between PRUs, each PRU can access the data ram of the ‘other’ PRU through address 0x0000 2000. The global view of the PRUSS internal memories and control ports is documented in Table 5-83. The offset addresses of each region are implemented inside the PRUSS but the global device memory mapping places the PRUSS slave port in the address range 0x01C3 0000-0x01C3 FFFF. The PRU0 and PRU1 can use either the local or global addresses to access their internal memories, but using the local addresses will provide access time several cycles faster than using the global addresses. This is because when accessing via the global address the access needs to be routed through the switch fabric outside PRUSS and back in through the PRUSS slave port. 134 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-83. Programmable Real-Time Unit Subsystem (PRUSS) Global Memory Map BYTE ADDRESS REGION 0x01C3 0000 - 0x01C3 01FF Data RAM 0 0x01C3 0200 - 0x01C3 1FFF Reserved 0x01C3 2000 - 0x01C3 21FF Data RAM 1 0x01C3 2200 - 0x01C3 3FFF Reserved 0x01C3 4000 - 0x01C3 6FFF INTC Registers 0x01C3 7000 - 0x01C3 73FF PRU0 Control Registers 0x01C3 7400 - 0x01C3 77FF PRU0 Debug Registers 0x01C3 7800 - 0x01C3 7BFF PRU1 Control Registers 0x01C3 7C00 - 0x01C3 7FFF PRU1 Debug Registers 0x01C3 8000 - 0x01C3 8FFF PRU0 Instruction RAM 0x01C3 9000 - 0x01C3 BFFF Reserved 0x01C3 C000 - 0x01C3 CFFF PRU1 Instruction RAM 0x01C3 D000 - 0x01C3 FFFF Reserved Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and configuration registers) using the global memory space addresses 5.25.1 PRUSS Register Descriptions Table 5-84. Programmable Real-Time Unit Subsystem (PRUSS) Control / Status Registers PRU0 BYTE ADDRESS PRU1 BYTE ADDRESS ACRONYM 0x01C3 7000 0x01C3 7800 CONTROL PRU Control Register REGISTER DESCRIPTION 0x01C3 7004 0x01C3 7804 STATUS PRU Status Register 0x01C3 7008 0x01C3 7808 WAKEUP PRU Wakeup Enable Register 0x01C3 700C 0x01C3 780C CYCLCNT PRU Cycle Count 0x01C3 7010 0x01C3 7810 STALLCNT PRU Stall Count 0x01C3 7020 0x01C3 7820 CONTABBLKIDX0 0x01C3 7028 0x01C3 7828 CONTABPROPTR0 PRU Constant Table Programmable Pointer Register 0 0x01C3 702C 0x01C3 782C CONTABPROPTR1 PRU Constant Table Programmable Pointer Register 1 0x01C37400 - 0x01C3747C 0x01C3 7C00 - 0x01C3 7C7C INTGPR0 – INTGPR31 PRU Internal General Purpose Register 0 (for Debug) 0x01C37480 - 0x01C374FC 0x01C3 7C80 - 0x01C3 7CFC INTCTER0 – INTCTER31 PRU Internal General Purpose Register 0 (for Debug) PRU Constant Table Block Index Register 0 Table 5-85. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers BYTE ADDRESS ACRONYM 0x01C3 4000 REVID 0x01C3 4004 CONTROL REGISTER DESCRIPTION Revision ID Register Control Register 0x01C3 4010 GLBLEN 0x01C3 401C GLBLNSTLVL Global Nesting Level Register 0x01C3 4020 STATIDXSET System Interrupt Status Indexed Set Register 0x01C3 4024 STATIDXCLR System Interrupt Status Indexed Clear Register 0x01C3 4028 ENIDXSET System Interrupt Enable Indexed Set Register 0x01C3 402C ENIDXCLR System Interrupt Enable Indexed Clear Register 0x01C3 4034 HSTINTENIDXSET Host Interrupt Enable Indexed Set Register 0x01C3 4038 HSTINTENIDXCLR Host Interrupt Enable Indexed Clear Register Copyright © 2009–2011, Texas Instruments Incorporated Global Enable Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 135 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-85. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers (continued) 136 BYTE ADDRESS ACRONYM 0x01C3 4080 GLBLPRIIDX REGISTER DESCRIPTION 0x01C3 4200 STATSETINT0 System Interrupt Status Raw/Set Register 0 0x01C3 4204 STATSETINT1 System Interrupt Status Raw/Set Register 1 0x01C3 4280 STATCLRINT0 System Interrupt Status Enabled/Clear Register 0 0x01C3 4284 STATCLRINT1 System Interrupt Status Enabled/Clear Register 1 0x01C3 4300 ENABLESET0 System Interrupt Enable Set Register 0 0x01C3 4304 ENABLESET1 System Interrupt Enable Set Register 1 0x01C3 4380 ENABLECLR0 System Interrupt Enable Clear Register 0 System Interrupt Enable Clear Register 1 Global Prioritized Index Register 0x01C3 4384 ENABLECLR1 0x01C3 4400 - 0x01C3 4440 CHANMAP0 - CHANMAP15 0x01C3 4800 - 0x01C3 4808 HOSTMAP0 - HOSTMAP2 0x01C3 4900 - 0x01C3 4928 HOSTINTPRIIDX0 HOSTINTPRIIDX9 0x01C3 4D00 POLARITY0 System Interrupt Polarity Register 0 0x01C3 4D04 POLARITY1 System Interrupt Polarity Register 1 0x01C3 4D80 TYPE0 System Interrupt Type Register 0 0x01C3 4D84 TYPE1 System Interrupt Type Register 1 0x01C3 5100 - 0x01C3 5128 HOSTINTNSTLVL0HOSTINTNSTLVL9 0x01C3 5500 HOSTINTEN Channel Map Registers 0-15 Host Map Register 0-2 Host Interrupt Prioritized Index Registers 0-9 Host Interrupt Nesting Level Registers 0-9 Host Interrupt Enable Register Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.26 Emulation Logic The debug capabilities and features for DSP are as shown below. DSP: • Basic Debug – Execution Control – System Visibility • Real-Time Debug – Interrupts serviced while halted – Low/non-intrusive system visibility while running • Advanced Debug – Global Start – Global Stop – Specify targeted memory level(s) during memory accesses – HSRTDX (High Speed Real Time Data eXchange) • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses • Analysis Actions – Stop program execution – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation • Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection • Analysis Configuration – Application access – Debugger access Table 5-86. DSP Debug Features CATEGORY HARDWARE FEATURE Software breakpoint AVAILABILITY Unlimited Up to 10 HWBPs, including: Basic Debug Hardware breakpoint 4 precise (1) HWBPs inside DSP core and one of them is associated with a counter. 2 imprecise (1) HWBPs from AET. 4 imprecise (1) HWBPs from AET which are shared for watch point. (1) Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 137 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-86. DSP Debug Features (continued) CATEGORY Analysis HARDWARE FEATURE AVAILABILITY Watch point Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch points with data (32 bits) Watch point with Data Up to 2, Which can also be used as 4 watch points. Counters/timers 1x64-bits (cycle only) + 2x32-bits (water marke counters) External Event Trigger In 1 External Event Trigger Out 1 5.26.1 JTAG Port Description The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI, and TDO). TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed while the TRST pin is pulled low. Table 5-87. JTAG Port Description PIN TYPE NAME DESCRIPTION TRST I Test Logic Reset When asserted (active low) causes all test and debug logic in the device to be reset along with the IEEE 1149.1 interface TCK I Test Clock This is the test clock used to drive an IEEE 1149.1 TAP state machine and logic. TMS I Test Mode Select TDI I Test Data Input TDO O Test Data Output EMU0 I/O Emulation 0 Directs the next state of the IEEE 1149.1 test access port state machine Scan data input to the device Scan data output of the device Channel 0 trigger + HSRTDX 5.26.2 Scan Chain Configuration Parameters Table 5-88 shows the TAP configuration details required to configure the router/emulator for this device. Table 5-88. Router TAP Configuration ROUTER PORT ID DEFAULT TAP TAP NAME TAP IR LENGTH 17 No C674x 38 The router is revision C and has a 6-bit IR length. 5.26.3 JTAG 1149.1 Boundary Scan Considerations To • • • use boundary scan, the following sequence should be followed: Execute a valid reset sequence and exit reset Wait at least 6000 OSCIN clock cycles Enter boundary scan mode using the JTAG pins No specific value is required on the EMU0 pin for boundary scan testing. If TRST is not driven by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing. 138 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 5.27 IEEE 1149.1 JTAG The JTAG (1) interface is used for BSDL testing and emulation of the device. The device requires that both TRST and RESET be asserted upon power up to be properly initialized. While RESET initializes the device, TRST initializes the device's emulation logic. Both resets are required for proper operation. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state. TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. Note: The sequencing of all the JTAG signals must follow the IEEE.1149.1 JTAG standard. 5.27.1 JTAG Peripheral Register Description(s) – JTAG ID Register Table 5-89. JTAG ID Register (1) HEX ADDRESS RANGE ACRONYM 0x01C4 0028 JTAGID REGISTER NAME COMMENTS JTAG Identification Register Read-only. Provides 32-bit JTAG ID of the device. IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture. The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. The register hex value each silicon revision is: 0x0B79 F02F for silicon revision 1.0. 0x8B79 F02F for silicon revision 1.1. 0x9B79 F02F for silicon revision 2.0. For the actual register bit names and their associated bit field descriptions, see Figure 5-49 and Table 5-90. 31 28 27 12 11 1 0 VARIANT (4-Bit) PART NUMBER (16-Bit) MANUFACTURER (11-Bit) LSB R-xxxx R-1011 0111 1101 1111 R-0000 0010 111 R-1 LEGEND: R = Read, W = Write, n = value after reset Figure 5-49. JTAG ID (DEVIDR0) Register Description - Register Value Copyright © 2009–2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Link(s): TMS320C6743 139 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Table 5-90. JTAG ID Register Selection Bit Descriptions NAME DESCRIPTION 31:28 BIT VARIANT Variant (4-bit) value 27:12 PART NUMBER Part Number (16-Bit) value 11-1 MANUFACTURER Manufacturer (11-Bit) value LSB LSB. This bit is read as a "1". 0 5.27.2 JTAG Test-Port Electrical Data/Timing Table 5-91. Timing Requirements for JTAG Test Port (see Figure 5-50) No. PARAMETER MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 40 ns 2 tw(TCKH) Pulse duration, TCK high 16 ns 3 tw(TCKL) Pulse duration, TCK low 16 ns 4 tsu(TDIV-TCKH) Setup time, TDI/TMS/TRST valid before TCK high 4 ns 5 th(TCLKH-TDIV) Hold time, TDI/TMS/TRST valid after TCK high 4 ns Table 5-92. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port (see Figure 5-50) No. 6 PARAMETER td(TCKL-TDOV) MIN Delay time, TCK low to TDO valid MAX UNIT 15 ns 1 TCK 3 2 6 6 TDO 4 5 TDI/TMS/TRST Figure 5-50. JTAG Test-Port Timing 140 Peripheral Information and Electrical Specifications Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 6 Device and Documentation Support 6.1 6.1.1 Device Support Development Support TI offers an extensive line of development tools for the TMS320C6743 platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). The following products support development of TMS320C6743 applications: Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any application. Hardware Development Tools: Extended Development System (XDS™) Emulator For a complete listing of development-support tools for the device , visit the Texas Instruments web site on the Worldwide Web at www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 6.1.2 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320C6743). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications. TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification. TMS Fully-qualified production device. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product. TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Device and Documentation Support Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 141 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZWT), the temperature range (for example, "Blank" is the commercial temperature range), and the device speed range in megahertz (for example, "Blank" is the default). Figure 6-1 provides a legend for reading the complete device name for any TMS320C674x member. TMS 320 PREFIX TMX = Experimental Device TMS = Qualified Device DEVICE FAMILY 320 = TMS320™ DSP Family DEVICE C6743 C6743 ( ) ZKB ( ) ( ) DEVICE SPEED RANGE 2 = 200 MHz 3 = 300 Mhz for revision 1.x 3 = 375 Mhz for revision 2.x TEMPERATURE RANGE (JUNCTION) Blank = 0°C to 90°C, Commercial Grade T = –40°C to 125°C, Automotive Grade (A) SILICON REVISION Blank = Revision 1.0 A = Revision 1.1 B = Revision 2.0 A. PACKAGE TYPE ZKB = 256-Pin Plastic BGA, with Pb-free Soldered Balls [Green] PTP = 176-Pin Thin Quad Flat Pack (TQFP) [PTP Suffix], 0.5 mm Pin Pitch BGA = Ball Grid Array. Figure 6-1. Device Nomenclature 6.2 Documentation Support The following documents describe the TMS320C6743 Low-power digital signal processor. Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com. DSP Reference Guides SPRUG82 TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches and describes how the two-level cache-based internal memory architecture in the TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications. Shows how to maintain coherence with external memory, how to use DMA to reduce memory latencies, and how to optimize your code to improve cache efficiency. The internal memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external memory. SPRUFE8 142 TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with added functionality and an expanded instruction set. Device and Documentation Support Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com SPRU186 TMS320C6000 Assembly Language Tools User's Guide. Describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations). SPRU187 TMS320C6000 Optimizing Compiler User's Guide. Describes the TMS320C6000 C compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code and produces assembly language source code for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations). The assembly optimizer helps you optimize your assembly code. SPRUGJ0 TMS320C6743 DSP System Reference Guide. Describes the System-on-Chip (SoC) system. The SoC system includes TI’s standard TMS320C674x Megamodule and several blocks of internal memory (L1P, L1D, and L2). SPRUFK5 TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache. SPRUFK9 TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides an overview and briefly describes the peripherals available on TMS320C6743. Device and Documentation Support Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 143 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 7 Mechanical Packaging and Orderable Information This section describes the orderable part numbers, packaging options, materials, thermal and mechanical parameters. 7.1 Thermal Data for ZKB The following table(s) show the thermal resistance characteristics for the PBGA–ZKB mechanical package. Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZKB] NO. CHARACTERISTIC °C/W (1) °C/W (2) AIR FLOW (m/s) (3) N/A 1 RΘJC Junction-to-case 12.8 13.5 2 RΘJB Junction-to-board 15.1 19.7 N/A 3 RΘJA Junction-to-free air 24.5 33.8 0.00 21.9 30 0.50 21.1 28.7 1.00 20.4 27.4 2.00 7 19.6 26 4.00 8 0.6 0.8 0.00 9 0.8 1 0.50 0.9 1.2 1.00 11 1.1 1.4 2.00 12 1.3 1.8 4.00 13 14.9 19.1 0.00 14 14.4 18.2 0.50 4 5 RΘJMA 6 10 15 PsiJT Junction-to-package top 14.4 18 1.00 16 14.3 17.7 2.00 17 14.1 17.4 4.00 (1) (2) (3) 144 PsiJB Junction-to-moving air Junction-to-board These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and 1.5oz (50um) inner copper thickness Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness. Power dissipation of 1W and ambient temp of 70C assumed. m/s = meters per second Mechanical Packaging and Orderable Information Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com 7.2 Thermal Data for PTP The following table(s) show the thermal resistance characteristics for the HTQFP–PTP mechanical package. Table 7-2. Thermal Resistance Characteristics (HTQFP Package) [PTP] NO. CHARACTERISTIC °C/W (1) °C/W (2) °C/W (3) °C/W (4) AIR FLOW (m/s) (5) 7.8 9.4 8.6 10.1 N/A 1 RΘJC Junction-to-case 2 RΘJB Junction-to-board 6.2 9.9 7.1 10.6 N/A 3 RΘJA Junction-to-free air 21.3 27.9 23.2 30.6 0.00 14.3 20.2 22.6 0.50 13.1 18.6 21.0 1.00 12.1 17.4 19.6 2.00 7 11.2 16.2 18.2 4.00 8 0.5 0.7 0.8 0.00 0.6 0.9 1.0 0.50 0.7 1.0 1.1 1.00 11 0.8 1.1 1.3 2.00 12 1.0 1.3 1.5 4.00 13 6.3 9.5 10.8 0.00 14 5.9 8.8 9.9 0.50 4 5 RΘJMA 6 Junction-to-moving air 9 10 PsiJT 15 5.9 8.7 9.8 1.00 16 5.8 8.6 9.7 2.00 17 5.8 8.5 9.6 4.00 (1) (2) (3) (4) (5) PsiJB Junction-to-package top Junction-to-board Simulation data, using a model of a JEDEC defined 2S2P system with a 12mmx12mm copper pad on the top and bottom copper layers connected with an 8x8 thermal via array and soldered to the package thermal pad. Power dissipation of 1W assumed, 70C Ambient temp assumed. Signal layer copper coverage 20%, inner layer copper coverage 90%. Actual performance will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness. Power dissipation of 1W and ambient temp of 70C assumed. Simulation data, 1S1P PCB model with 12x12mm copper pad on the top layer soldered to device thermal pad and connected to the bottom copper layer (90% copper) with an 8x8 thermal via array. Power dissipation of 1W and ambient temp of 70C assumed. Copper thickness 2oz (70um) top and bottom. Simulation data, 1S1P PCB model with 12x12mm copper pad on the top layer soldered to device thermal pad and connected to the bottom copper layer (90% copper) with an 8x8 thermal via array. Power dissipation of 1W and ambient temp of 70C assumed. Copper thickness 1oz (35um) top and bottom. m/s = meters per second 7.3 Supplementary Information About the 176-pin PTP PowerPAD™ Package This section highlights a few important details about the 176-pin PTP PowerPAD™ package. Texas Instruments' PowerPAD Thermally Enhanced Package Technical Brief (SLMA002) should be consulted when creating a PCB footprint for this device. 7.3.1 Standoff Height As illustrated in Figure 7-1, the standoff height specification for this device (between 0.050 mm and 0.150 mm) is measured from the seating plane established by the three lowest package pins to the lowest point on the package body. Due to warpage, the lowest point on the package body is located in the center of the package at the exposed thermal pad. Using this definition of standoff height provides the correct result for determining the correct solder paste thickness. According to TI's PowerPAD Thermally Enhanced Package Technical Brief (SLMA002), the recommended range of solder paste thickness for this package is between 0.152 mm and 0.178 mm. Copyright © 2009–2011, Texas Instruments Incorporated Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Link(s): TMS320C6743 145 TMS320C6743 SPRS565B – APRIL 2009 – REVISED JUNE 2011 www.ti.com Standoff Height Figure 7-1. Standoff Height Measurement on 176-pin PTP Package 7.3.2 PowerPAD™ PCB Footprint In general, for proper thermal performance, the thermal pad under the package body should be as large as possible. However, the soldermask opening for the PowerPAD™ should be sized to match the pad size on the 176-pin PTP package; as illustrated in Figure 7-2. Thermal Pad on T op Copper should be as large as Possible. Soldermask opening should be smaller and match the size of the thermal pad on the DSP . Figure 7-2. Soldermask Opening Should Match Size of DSP Thermal Pad 7.4 Mechanical Drawings This section contains mechanical drawings for the ZKB Plastic Ball Grid Array package and the PTP Thin Quad Flat Pack package. Additionally, for the PTP package a detailed drawing of the actual thermal pad dimensions as well as a recommended PCB footprint are provided. 146 Mechanical Packaging and Orderable Information Copyright © 2009–2011, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Link(s): TMS320C6743 PACKAGE OPTION ADDENDUM www.ti.com 19-Apr-2012 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) TMS320C6743BPTP2 NRND HLQFP PTP 176 1 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR TMS320C6743BPTP3 NRND HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR TMS320C6743BPTPT2 NRND HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR TMS320C6743BPTPT3 NRND HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR TMS320C6743BZKB3 NRND BGA ZKB 256 10 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TMS320C6743BZKBT3 NRND BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TMS320C6743CPTP2 ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR TMS320C6743CPTP3 ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR TMS320C6743CPTPT2 ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR TMS320C6743CPTPT3 ACTIVE HLQFP PTP 176 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-4-260C-72 HR TMS320C6743CZKB3 ACTIVE BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR TMS320C6743CZKBT3 ACTIVE BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 19-Apr-2012 Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated