TS27M4C,I,M PRECISION LOW POWER CMOS QUAD OPERATIONAL AMPLIFIERS ■ LOW POWER CONSUMPTION : 150µA/op ■ OUTPUT VOLTAGE CAN SWING TO GROUND ■ EXCELLENT PHASE MARGIN ON CAPACITIVE LOADS N DIP14 (Plastic Package) ■ STABLE AND LOW OFFSET VOLTAGE ■ THREE INPUT OFFSET VOLTAGE SELECTIONS DESCRIPTION These devices are low cost, low power quad operational amplifiers designed to operate with single or dual supplies. These operational amplifiers use the ST silicon gate CMOS process allowing an excellent consumption-speed ratio. These series are ideally suited for low consumption applications. Three power consumptions are available allowing to have always the best consumption-speed ratio: D SO14 (Plastic Micropackage) P TSSOP14 (Thin Shrink Small Outline Package) ❑ ICC = 10µA/amp.: TS27L4 (very low power) ❑ ICC = 150µA/amp.: TS27M4 (low power) PIN CONNECTIONS (top view) ❑ ICC = 1mA/amp.: TS274 (standard) These CMOS amplifiers offer very high input impedance and extremely low input currents. The major advantage versus JFET devices is the very low input currents drift with temperature (see figure 2). ORDER CODE Package Part Number Temperature Range N TS27M4C/AC/BC 0°C, +70°C TS27M4I/AI/BI -40°C, +125°C TS27M4M/AM/BM -55°C, +125°C Example : TS27M4ACN • • • D • • • P • • • Output 1 1 14 Output 4 Inverting Input 1 2 - - 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 11 VCC - VCC + 4 Non-inverting Input 2 5 + + 10 Non-inverting Input 3 Inverting Input 2 6 - - 9 Inverting Input 3 8 Output 3 Output 2 7 N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT) November 2001 1/9 TS27M4C,I,M BLOCK DIAGRAM VCC Current source xI Input differential Output stage Second stage Output VCC E E ABSOLUTE MAXIMUM RATINGS Symbol VCC + Vid Parameter Supply Voltage TS27M4C/AC/BC 1) 2) TS27M4I/AI/BI TS27M4M/AM/BM Unit 18 V ±18 V -0.3 to 18 V Output Current for VCC+ ≥ 15V ±30 mA Input Current ±5 mA Differential Input Voltage Vi Input Voltage Io Iin 3) Toper Operating Free-Air Temperature Range Tstg Storage Temperature Range 0 to +70 -40 to +125 -55 to +125 -65 to +150 °C °C 1. All values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of the input and the output voltages must never exceed the magnitude of the positive supply voltage. OPERATING CONDITIONS Symbol Parameter VCC+ Supply Voltage Vicm Common Mode Input Voltage Range 2/9 Value Unit 3 to 16 V 0 to VCC+ - 1.5 V T20 T19 T17 T24 T21 T 18 R2 T 25 VCC T 22 T 23 T 26 T29 T 28 T27 Input T3 T1 T5 VCC T4 T2 C1 Input R1 T7 T6 T9 T8 T 13 T11 T 10 T 14 T 12 T16 Output T 15 TS27M4C,I,M SCHEMATIC DIAGRAM (for 1/4 TS27M4) 3/9 TS27M4C,I,M ELECTRICAL CHARACTERISTICS VCC+ = +10V, VCC-= 0V, Tamb = +25°C (unless otherwise specified) TS27M4C/AC/BC Symbol Parameter Min. Input Offset Voltage VO = 1.4V, Vic = 0V Vio DVio Iio Iib Tmin ≤ Tamb ≤ Tmax TS27M4C/I/M TS27M4AC/AI/AM TS27M4B/C/I/M TS27M4C/I/M TS27M4AC/AI/AM TS27M4B/C/I/M Typ. Max. 1.1 0.9 0.25 10 5 2 12 6.5 3 Input Offset Voltage Drift 2 Input Offset Current note 1) Vic = 5V, VO = 5V Tmin ≤ Tamb ≤ Tmax 1 Input Bias Current - see note 1 Vic = 5V, VO = 5V Tmin ≤ Tamb ≤ Tmax 1 VOH High Level Output Voltage Vid = 100mV, RL = 100lΩ Tmin ≤ Tamb ≤ Tmax VOL Low Level Output Voltage Vid = -100mV Avd Large Signal Voltage Gain ViC = 5V, RL = 100kΩ, Vo = 1V to 6V Tmin ≤ Tamb ≤ Tmax TS27M4I/AI/BI TS27M4M/AM/BM Min. Typ. 1.1 0.9 0.25 8.7 8.5 50 30 10 50 CMR Common Mode Rejection Ratio ViC = 1V to 7.4V, Vo = 1.4V 65 80 65 80 SVR Supply Voltage Rejection Ratio VCC+ = 5V to 10V, Vo = 1.4V 60 80 60 80 MHz 150 dB dB 200 300 µA Output Short Circuit Current Vo = 0V, Vid = 100mV 60 60 Isink Output Sink Current Vo = VCC, Vid = -100mV 45 45 SR Slew Rate at Unity Gain RL = 100kΩ, CL = 100pF, Vi = 3 to 7V 0.6 0.6 φm Phase Margin at Unity Gain Av = 40dB, RL = 100kΩ, CL = 100pF 45 45 KOV Overshoot Factor 30 30 % Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω 38 38 nV -----------Hz Channel Separation 120 120 dB Vo1/Vo2 4/9 V/mV 1 200 250 mV Io en 1. V 50 1 150 pA 8.9 Gain Bandwidth Product Av = 40dB, RL = 100kΩ, CL = 100pF, fin = 100kHz Supply Current (per amplifier) Av = 1, no load, Vo = 5V Tmin ≤ Tamb ≤ Tmax pA 300 GBP ICC µV/°C 1 8.9 mV 200 50 30 20 10 5 2 12 6.5 3.5 1 150 8.7 8.6 Max. 2 100 Unit Maximum values including unavoidable inaccuracies of the industrial test. mA mA V/µs Degrees TS27M4C,I,M TYPICAL CHARACTERISTICS Figure 1 : Supply Current (each amplifier) versus Supply Voltage Figure 3b : High Level Output Voltage versus High Level Output Current 20 TAMB = 25 ˚C AV= 1 VO = VCC / 2 150 OUTPUT VOLTAGE, VOH (V) SUPPLY CURRENT, I CC (µA) 200 100 50 0 4 8 12 16 VCC = 16V 12 8 0 -50 16 -30 -20 -10 0 Figure 4a : Low Level Output Voltage versus Low Level Output Current 100 1.0 VCC = 10V V i = 5V OUTPUT VOLTAGE, VOL (V) INPUT BIAS CURRENT, IIB (pA) -40 OUTPUT CURRENT, I OH (mA) Figure 2 : Input Bias Current versus Free Air Temperature 10 1 25 50 75 100 VCC = 3V 0.8 VCC = 5V 0.6 0.4 TAMB = 25 ˚C V i = 0.5V VID = -1V 0.2 0 125 TEMPERATURE, TAMB (˚C) 1 2 3 OUTPUT CURRENT, I OL (mA) Figure 3a : High Level Output Voltage versus High Level Output Current Figure 4b : Low Level Output Voltage versus Low Level Output Current 5 3 TAMB = 25˚ C V ID = 100mV 4 3 OUTPUT VOLTAGE, VOL (V) OUTPUT VOLTAGE, VOH (V) VCC = 10V 4 SUPPLY VOLTAGE, V CC (V) VCC = 5V 2 VCC = 3V 1 0 TAMB = 25˚ C V ID = 100mV -10 -8 -6 -4 -2 OUTPUT CURRENT, I OH (mA) 0 VCC = 10V VCC = 16V 2 1 0 TAMB = 25 ˚C V i = 0.5V VID = -1V 4 8 12 16 20 OUTPUT CURRENT, I OL (mA) 5/9 TS27M4C,I,M 30 PHASE 20 Tamb = 25˚C VCC+ = 10V R L = 100k Ω C L = 100pF A VCL = 100 10 0 -10 2 10 10 3 45 Phase Margin 90 135 Gain Bandwidth Product 4 10 10 5 10 FREQUENCY, f (Hz) 180 6 10 7 70 60 50 40 100 0.9 SLEW RATES, SR (V/ µs) 1800 Tamb = 25˚C R L = 100kΩ C L = 100pF AV = 1 1400 1000 600 T amb = 25˚C R L = 100kΩ C L = 100pF 0.8 SR 0.7 0.6 SR 0.5 200 0 4 8 12 16 Figure 7 : Phase Margin versus Supply Voltage 0.4 50 40 Tamb = 25˚C R L = 100kΩ C L = 100pF AV = 1 30 4 6 8 10 12 14 SUPPLY VOLTAGE, V CC (V) 16 Figure 10 : Input Voltage Noise versus Frequency EQUIVALENT INPUT NOISE VOLTAGE (nV/VHz) PHASE MARGIN, φm (Degrees) 20 40 60 80 CAPACITANCE, C L (pF) Figure 9 : Slew Rate versus Supply Voltage SUPPLY VOLTAGE, V CC (V) 300 VCC = 10V Tamb = 25˚C R S = 100 Ω 200 100 0 20 0 6/9 T amb = 25˚C R L = 100kΩ AV=1 VCC = 10V 0 Figure 6 : Gain Bandwidth Product versus Supply Voltage GAIN BANDW. PROD., GBP (kHz) (Degrees) 0 GAIN PHASE (Degrees) GAIN (dB) 40 80 φm 50 Figure 8 : Phase Margin versus Capacitive Load PHASE MARGIN, Figure 5 : Open Loop Frequency Response and Phase Shift 4 8 12 SUPPLY VOLTAGE, V CC (V) 16 1 100 10 FREQUENCY (Hz) 1000 TS27M4C,I,M PACKAGE MECHANICAL DATA 14 PINS - PLASTIC DIP Millimeters Inches Dim. Min. a1 B b b1 D E e e3 F i L Z Typ. 0.51 1.39 Max. Min. 1.65 0.020 0.055 0.5 0.25 Typ. 0.065 0.020 0.010 20 0.787 8.5 2.54 15.24 0.335 0.100 0.600 7.1 5.1 0.280 0.201 3.3 1.27 Max. 0.130 2.54 0.050 0.100 7/9 TS27M4C,I,M PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO) G c1 s e3 b1 e a1 b A a2 C L E D M 8 1 7 F 14 Millimeters Inches Dim. Min. A a1 a2 b b1 C c1 D (1) E e e3 F (1) G L M S Typ. Max. Min. 1.75 0.2 1.6 0.46 0.25 0.1 0.35 0.19 Typ. 0.004 0.014 0.007 0.5 Max. 0.069 0.008 0.063 0.018 0.010 0.020 45° (typ.) 8.55 5.8 8.75 6.2 0.336 0.228 1.27 7.62 3.8 4.6 0.5 0.344 0.244 0.050 0.300 4.0 5.3 1.27 0.68 0.150 0.181 0.020 0.157 0.208 0.050 0.027 8° (max.) Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK. 8/9 TS27M4C,I,M PACKAGE MECHANICAL DATA 14 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) k c C SEATING PLANE E1 L1 L 0,25 mm .010 inch GAGE PLANE E A A2 7 aaa C D 8 e b A1 14 1 PIN 1 IDENTIFICATION Millimeters Inches Dim. Min. A A1 A2 b c D E E1 e k l 0.05 0.80 0.19 0.09 4.90 4.30 0° 0.50 Typ. 1.00 5.00 6.40 4.40 0.65 0.60 Max. Min. 1.20 0.15 1.05 0.30 0.20 5.10 0.01 0.031 0.007 0.003 0.192 4.50 0.169 8° 0.75 0° 0.09 Typ. 0.039 0.196 0.252 0.173 0.025 0.0236 Max. 0.05 0.006 0.041 0.15 0.012 0.20 0.177 8° 0.030 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com 9/9