STMICROELECTRONICS TS4956

TS4956
Stereo audio amplifier system with I2C bus interface
■
Operating from VCC = 2.7 V to 5.5 V
■
I²C bus control interface
■
38 mW output power @ VCC = 3.3 V,
THD = 1%, F = 1 kHz, with 16Ω Load
■
Ultra low consumption in standby mode: 0.5 µA
■
Digital volume control range from +12 dB to
-34 dB
■
32-step digital volume control
■
Stereo loudspeaker option by I2C
■
8 different output mode selections
■
Pop & click reduction circuitry
■
Flip-chip package, 18 bumps with 300 µm
diameter
■
Lead-free flip chip package
■
Output power limitation on headphone for
eardrum damage consideration
TS4956 - Flip-Chip18
Pin connections (top view)
PGH
LHP-
RHP+
VCC
RIN
SDA
BYPASS
LIN
Description
MLO
GND
I2CVCC
VCC
MIN
The TS4956 is a complete audio system device
with three dedicated outputs, one stereo
headphone, one loudspeaker drive and one mono
line for a hands-free set. The stereo headphone is
capable of delivering more than 25 mW per
channel of continuous average power into 16Ω
single-ended loads with 0.3% THD+N from a 5 V
power supply. The device functions are controlled
via an I²C bus, which minimizes the number of
external components needed.
The overall gain and the different output modes of
the TS4956 are controlled digitally by the control
registers which are programmed via the I²C
interface. It has also an internal thermal shutdown
protection mechanism.
SRP+
MIP
SRN-
GND
SCL
Applications
■
Mobile phones (cellular / cordless)
■
PDAs
■
Laptop / notebook computers
■
Portable audio devices
Device summary table
Part Number
TS4956EIJT
May 2006
Temperature Range
Package
Packing
Marking
-40°C to +85°C
Lead free flip-chip18
Tape & Reel
56
Rev. 3
1/51
www.st.com
51
Absolute maximum ratings & operating conditions
1
TS4956
Absolute maximum ratings & operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
Parameter
(1)
VCC
Supply voltage
Vi
Input voltage (2)
Value
Unit
6
V
G ND to VCC
V
Toper
Operating free air temperature range
-40 to + 85
°C
Tstg
Storage temperature
-65 to +150
°C
Maximum junction temperature
150
°C
Rthja
Thermal resistance junction to ambient (3)
200
°C/W
Pdiss
Power dissipation
Tj
ESD
Latch-up
Internally limited(4)
Susceptibility - human body
model(5)
2
kV
Susceptibility - machine model
150
V
Latch-up immunity
200
mA
Lead temperature (soldering, 10sec)
260
°C
1. All voltage values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V
3. Device is protected in case of over temperature by a thermal shutdown activated at 150°C.
4. Exceeding the power derating curves during a long period may involve abnormal operating conditions.
5. Human body model, 100 pF discharged through a 1.5 kΩ resistor, into pin to VCC device
Table 2.
Operating conditions
Symbol
VCC(1)
RL
CL
Rthja
Parameter
Supply voltage
Load resistor
Speaker/BTL output (modes 1,2,7)
Headphone, MLO output (modes 3,4,5,6,)
Load capacitor
RL = 8Ω to 100Ω (Speaker/BTL output - modes 1,2,7)
RL = 16Ω to 100Ω (Headphone, MLO output - modes
3,4,5,6)
RL > 100Ω
Flip-chip thermal resistance junction to ambient
Value
Unit
2.7 to 5.5V
V
≥8
Ω
≥16
500
400
pF
100
90(2)
°C/W
1. For proper functionality of I2C bus, V CC pins must not be grounded. ESD protection diodes ground data
and clock wires and cause dysfunction of I2C bus in this condition.
2. With heat sink surface 120mm2
Table 3.
I²C electrical characteristics
Symbol
I2CV
Parameter
Unit
2.7V to 5.5V
V
Maximum low level input voltage on pins SDA, SCL
0.3 I2CVCC
V
VIH
Minimum high level input voltage
0.7 I2CVCC
V
IIN
Maximum input current (pins SDA, SCL), 0.4V < V in < 4.5V
10
µA
SCL maximum clock frequency
400
kHz
Max low level output voltage, SDA pin, Isink = 3mA
0.4
V
FSCL
Vol
1. Must be less or equal than power supply voltage VCC of the device
2/51
Value
VILl
CC
I2C supply
voltage(1)
TS4956
2
Typical application schematic
Typical application schematic
Table 4.
External components descriptions
Components
Functional description
Cs1, C s2
Supply bypass capacitors which provide power supply filtering.
Cb
Bypass capacitor which provides half-supply filtering.
Cin1 to Cin4
Input capacitors which form together with input impedance Zin first-order high pass
filter to block DC voltage on inputs
Cout
Output capacitor which forms with output load RL first-order high pass filter to block
half-supply voltage on single-ended output.
R1
Resistor to keep Cout charged for better pop performance on single-ended output.
Figure 1.
Typical application for the TS4956 (mode 1, 2, 3, 4, 5, 6)
Vcc
+
Cs2
1µF
100nF
C3
C5
Vcc
Vcc
TS4956
Diff. input +
Cs1
MODE3: Gx(MIP+MIN)
MODE4: GxLIN
LHP Amplifier
Cin1
A1
MIP
Stereo
Input Left
A2
MIN
Stereo
Input Right
+
330nF
LHP
B6
PHG
A7
16/32 Ohms
PHG Amplifier
Cin2
Diff. input -
+
330nF
MODE3: Gx(MIP+MIN)
MODE4: GxRIN
RHP Amplifier
SE input left
Mode
Select
Cin3
+
330nF
SE input right Cin4
+
330nF
B4
A5
LIN
RIN
RHP
Stereo
Input Left
16/32 Ohms
D6
Speaker Amplifier
B2
MODE1: Gx(MIP+MIN)
MODE2: Gx(LIN+RIN)
SRP+
SRN-
Stereo
Input Right
MLO Amplifier
MLO
8 Ohms
D2
MODE5: Gx(MIP+MIN)
MODE6: Gx(LIN + RIN)
E7 Cout+
220µF
Bias
GND C7
GND C1
E5
E3
D4
Cb
SDA
I2CVCC
16/32 Ohms
Digital volume
control
I2C
SCL E1
BYPASS
R1
1k
I2CVCC
+
SCL
1µF
SDA
I2C BUS
3/51
Typical application schematic
Figure 2.
TS4956
Typical application for the TS4956 (mode 7)
Vcc
+
Cs2
100nF
C3
C5
Vcc
Vcc
TS4956
Cs1
1µF
LHP Amplifier
A1
MIP
Stereo
Input Left
A2
MIN
Stereo
Input Right
LHP
B6
PHG
A7
MODE7: BTL - GxRIN
PHG Amplifier
8 Ohms
RHP Amplifier
SE input left
Mode
Select
Cin3
+
330nF
SE input right Cin4
+
330nF
B4
A5
LIN
RIN
Stereo
Input Left
B2
SRN-
D2
MLO Amplifier
MLO
Digital volume
control
I2C
GND C7
SDA
I2C BUS
GND C1
+
SCL
1µF
SCL E1
E3
I2CVCC
SDA E5
I2CVCC
D4
Cb
MODE7: GxLIN
SRP+
Stereo
Input Right
BYPASS
D6
Speaker Amplifier
Bias
4/51
RHP
E7
8 Ohms
TS4956
2.1
Typical application schematic
I2C interface
The TS4956 uses a serial bus, which conforms to the I²C protocol (the TS4956 must be
powered when it is connected to I²C bus), to control the chip’s functions via two wires: Clock
and Data.
The Clock line and the Data line are bidirectional (open-collector) with an external chip pullup resistor (typically 10 kΩ). The maximum clock frequency in fast-mode specified by the I²C
standard is 400kHz, and this frequency is supported by the TS4956. In this application, the
TS4956 is always the slave device and the controlling MCU is the master device.
The I2CVCC pin determines the power supply of the TS4956’s I2C interface. The voltage
connected to this pin must be equal or less than the TS4956 power supply voltage VCC. The
minimum value of the I2CVCC voltage is 2.7V.
When the I2CVCC pin is connected to an I2C voltage, the TS4956 is ready to communicate
via the I2C bus.
When the I2CVCC pin is connected to the ground, the TS4956 is in total standby mode, with
an ultra low standby current on the order of a few nanoamperes. In this condition the
TS4956 cannot receive I2C command from the I2C bus.
In both cases, pins SDA and SCL must respect logic HI or logic LOW thresholds (not
floating) presented in Table 3 on page 2, in order for the circuit to function properly.
Table on page 5 summarizes the pin descriptions for the I²C bus interface.
Table 5.
I²C bus interface: pin descriptions
Pin
2.1.1
Functional description
SDA
This is the serial data pin
SCL
This is the clock input pin
I2CVCC
I2C interface power supply
I²C operation description
The host MCU can write into the TS4946 control register to control the TS4956 and read
from the control register to get the current configuration of the TS4956. The TS4956 is
addressed by a single byte consisting of a 7-bit slave address and an R/W bit. The TS4956
control register address is $5Dh.
Table 6.
The first byte after the START message for addressing the device
A6
A5
A4
A3
A2
A1
A0
Rw
1
0
1
1
1
0
1
X
In order to write data into the TS4956 control register, after the “start” message the MCU
must send the following data:
●
send byte with the I²C 7-bit slave address and with the R/W bit set low
●
send the data (control register setting)
All bytes are sent with MSB bit first. The transfer of written data ends with a “stop” message.
When transmitting several data, the data can be written with no need to repeat the “start”
message and addressing byte with the slave address.
5/51
Typical application schematic
TS4956
In order to read data from the TS4956, after the “start” message, the MCU must send and
receive the following data:
●
send byte with the I²C 7-bit slave address and with the R/W bit set high
●
receive the data (control register value)
All bytes are read with MSB bit first. The transfer of read data is ended with “stop” message.
When transmitting several data, the data can be read with no need to repeat the “start”
message and the byte with slave address. In this case the value of control register is read
repeatedly.
Figure 3.
I²C read/write operation
SLAVE ADDRESS
S
SDA
1
0
1
1
1
CONTROL REGISTERS
0 1
Start condition
0
R/W
A
D7 D6 D5 D4 D3 D2 D1 D0 A
Volume Control
settings
Acknowledge
from Slave
Table 7.
Stop condition
Acknowledge
from Slave
Output mode selection: G from -34.5dB to + 12dB (by steps of 1.5dB)(1)
Output Mode #
RHP
LHP
Speaker P/N
Mono L/O
0
SD
SD
SD
SD
1
SD
SD
Gx (MIP + MIN)
SD
2
SD
SD
GX (RIN + LIN)
SD
3
GX (MIP + MIN)
GX (MIP + MIN)
SD
SD
4
G x RIN
G x LIN
SD
SD
5
SD
SD
SD
GX (MIP + MIN)
6
SD
SD
SD
GX (RIN + LIN)
7
BTL: G x RIN
BTL: G x RIN
G x LIN
SD
1. SD = Shutdown Mode
G = Audio Gain
MIP = Mono Input Positive
MIN = Mono Input Negative
RIN = Stereo Input Right
LIN = Stereo Input Left
6/51
Output
Mode settings
P
TS4956
2.1.2
Typical application schematic
Gain and mode setting operations
The gain of the TS4956 ranges from -34.5dB to +12 dB. At power-up, output channels are
set to stand-by mode.
Table 8.
Gain settings truth table
G: Gain (dB) #
D7 (MSB)
D6
D5
D4
D3
-34.5
0
0
0
0
0
-33
0
0
0
0
1
-31.5
0
0
0
1
0
-30
0
0
0
1
1
-28.5
0
0
1
0
0
-27
0
0
1
0
1
-25.5
0
0
1
1
0
-24
0
0
1
1
1
-22.5
0
1
0
0
0
-21
0
1
0
0
1
-19.5
0
1
0
1
0
-18
0
1
0
1
1
-16.5
0
1
1
0
0
-15
0
1
1
0
1
-13.5
0
1
1
1
0
-12
0
1
1
1
1
-10.5
1
0
0
0
0
-9
1
0
0
0
1
-7.5
1
0
0
1
0
-6
1
0
0
1
1
-4.5
1
0
1
0
0
-3
1
0
1
0
1
-1.5
1
0
1
1
0
0
1
0
1
1
1
+1.5
1
1
0
0
0
+3
1
1
0
0
1
+4.5
1
1
0
1
0
+6
1
1
0
1
1
+7.5
1
1
1
0
0
+9
1
1
1
0
1
+10.5
1
1
1
1
0
+12
1
1
1
1
1
7/51
Typical application schematic
Table 9.
2.1.3
TS4956
Output mode settings truth table
D2
D1
D0
COMMENTS
0
0
0
OUTPUT MODE 0
0
0
1
OUTPUT MODE 1
0
1
0
OUTPUT MODE 2
0
1
1
OUTPUT MODE3
1
0
0
OUTPUT MODE 4
1
0
1
OUTPUT MODE 5
1
1
0
OUTPUT MODE 6
1
1
1
OUTPUT MODE 7
Acknowledge
The number of data bytes transferred between the start and the stop conditions from the
CPU master to the TS4956 slave is unlimited. Each byte of eight bits is followed by one
acknowledge bit.
The TS4956 which is addressed, generates an acknowledge after the reception of each
byte that has been clocked out.
8/51
TS4956
Electrical characteristics
3
Electrical characteristics
Table 10.
VCC = +2.7 V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
ICC
ISTBY
VOO
Pout
THD+N
PSRR
Parameter
Typ.
Max.
Mode 1, 2, No input signal, no load
3.4
4.4
Mode 3, No input signal, no load
4.6
6
Mode 4, No input signal, no load
4.4
5.7
Mode 5, 6, No input signal, no load
1.75
2.3
Mode 7, No input signal, no load
5.7
7.4
Standby Current
No input signal
0.5
2
5
50
Output Offset Voltage
No input signal
Modes 1, 2
Speaker Output, RL = 8Ω
Mode 3
Headphone Outputs, RL = 16Ω
Mode 4
Headphone Outputs, RL = 16Ω
Mode 7
BTL, Speaker Output, RL = 8Ω
5
50
5
20
5
20
Supply Current
Conditions
Min.
Modes 3, 4
Headphone Output Power
THD+N = 1% max, F = 1kHz, RL = 16Ω
(Phantom Ground mode)
THD+N = 1% max, F = 1kHz, RL = 32Ω
30
20
35
25
BTL, Speaker Output
Power
Modes 1, 2, 7
THD+N = 1% max, F = 1kHz, RL = 8Ω
270
285
MLO Output Power
Modes 5, 6
THD+N = 1% max, F = 1kHz, RL = 16Ω
THD+N = 1% max, F = 1kHz, RL = 32Ω
35
20
42
25
Total Harmonic Distortion
+ Noise
G = +1.5dB, 20Hz < F < 20kHz
Modes 1, 2, 7, RL = 8Ω, Pout = 200mW
Modes 3, 4, RL = 16Ω, Pout = 15mW
Modes 5, 6, RL = 16Ω, Pout = 30mW
0.5
0.5
0.5
Power Supply Rejection
Ratio (1)
F = 217Hz, G = +1.5dB, Vripple = 200mVpp,
Inputs Grounded, Cb = 1µF
Mode 1, Speaker output, RL = 8Ω
Mode 2, Speaker output, RL = 8Ω
Mode 3, Headphone outputs, RL = 16Ω
Mode 4, Headphone outputs, RL = 16Ω
Mode 5, MLO output, RL = 16Ω
Mode 6, MLO output, RL = 16Ω
Mode 7, BTL, Speaker outputs, RL = 8Ω
60
55
61
75
62
57
73
Unit
mA
µA
mV
mW
%
dB
9/51
Electrical characteristics
Table 10.
Symbol
VCC = +2.7 V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter
Crosstalk Channel Separation
SNR
G
TS4956
Signal To Noise Ratio
Conditions
Min.
Mode 4
F = 1kHz, RL = 16Ω, Pout = 15mW
F = 20Hz to 20kHz, RL = 16Ω, Pout = 15mW
Mode 7
F = 1kHz, RL = 8Ω, Pout = 200mW
F = 20Hz to 20kHz, RL = 8Ω, Pout = 200mW
Zin
Differential input
Differential input impedance (MIP to MIN)
MIP input impedance referenced to ground
Input Impedance, all Gain MIN input impedance referenced to ground
setting
Stereo input
RIN input impedance
LIN input impedance
dB
91
90
84
90
85
85
92
-34.5
dB
+12
1.5
0.1
0.6
dB
kΩ
60
30
45
70
34.5
62
25.5
25.5
30
30
34.5
34.5
90
Wake up time
70
tSTBY
Standby time
1
1. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to V CC @ f = 217Hz.
dB
dB
50
25.5
38
tWU
10/51
Unit
80
60
Digital Gain Stepsize
Stepsize Error
Max.
50
50
A-weighted, G = +1.5dB, THD+N < 0.5%,
20Hz < F < 20kHz
Mode 1 - Speaker output, RL = 8Ω
Mode 2 - Speaker output, RL = 8Ω
Mode 3 - Headphone output, RL = 16Ω
Mode 4 - Headphone output, RL = 16Ω
Mode 5 - MLO output, RL = 16Ω
Mode 6 - MLO output, R = 16Ω
Mode 7 - BTL, Speaker output, RL = 8Ω,
G = +10.5dB
Digital Gain Range
Typ.
ms
µs
TS4956
Table 11.
Symbol
ICC
Electrical characteristics
VCC = +3.3 V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter
Supply Current
Conditions
Min.
Typ.
Max.
Mode 1, 2, No input signal, no load
3.6
4.7
Mode 3, No input signal, no load
4.8
6.2
Mode 4, No input signal, no load
4.6
6
Modes 5, 6, No input signal, no load
1.8
2.4
6
7.8
0.5
2
5
50
5
50
5
20
5
20
Mode 7, No input signal, no load
ISTBY
VOO
Pout
THD+N
PSRR
Standby Current
No input signal
Output Offset Voltage
No input signal
Modes 1, 2
Speaker Output, R L = 8Ω
Mode 3
Headphone Outputs, R L = 16Ω
Mode 4
Headphone Outputs, R L = 16Ω
Mode 7
BTL, Speaker Output, RL = 8Ω
Headphone Output Power
(Phantom Ground Mode)
Modes 3, 4
THD+N = 1% max, F = 1kHz, R L = 16Ω
THD+N = 1% max, F = 1kHz, R L = 32Ω
32
30
38(1)
36(1)
BTL, Speaker Output
Power
Modes 1, 2, 7
THD+N = 1% max, F = 1kHz, R L = 8Ω
430
450
MLO Output Power
Modes 5, 6
THD+N = 1% max, F = 1kHz, R L = 16Ω
THD+N = 1% max, F = 1kHz, R L = 32Ω
58
32
65
38
Total Harmonic Distortion
+ Noise
G = +1.5dB, 20Hz < F < 20kHz
Modes 1, 2, 7, RL = 8Ω, Pout = 300mW
Modes 3, 4, RL = 16Ω, Pout = 15mW
Modes 5, 6, RL = 16Ω, Pout = 50mW
0.5
0.5
0.5
Power Supply Rejection
Ratio (2)
F = 217Hz, G = +1.5dB, V ripple = 200mVpp,
Inputs Grounded, Cb = 1µF
Mode 1, Speaker output, RL = 8Ω
Mode 2, Speaker output, RL = 8Ω
Mode 3, Headphone outputs, RL = 16Ω
Mode 4, Headphone outputs, RL = 16Ω
Mode 5, MLO output, R L = 16Ω
Mode 6, MLO output, R L = 16Ω
Mode 7, BTL, Speaker outputs, R L = 8Ω
63
57
63
77
64
58
74
Crosstalk Channel Separation
Mode 4
F = 1kHz, RL = 16Ω, Pout = 15mW
F = 20Hz to 20kHz, RL = 16Ω, Pout = 15mW
Mode 7
F = 1kHz, RL = 8Ω, Pout = 300mW
F = 20Hz to 20kHz, RL = 8Ω, Pout = 300mW
50
50
Unit
mA
µA
mV
mW
%
dB
dB
80
60
11/51
Electrical characteristics
Table 11.
Symbol
SNR
G
TS4956
VCC = +3.3 V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter
Signal To Noise Ratio
Conditions
Min.
A-weighted, G = +1.5dB, THD+N < 0.5%,
20Hz < F < 20kHz
Mode 1 - Speaker output, R L = 8Ω
Mode 2 - Speaker output, RL = 8Ω
Mode 3 - Headphone output, R L = 16Ω
Mode 4 - Headphone output, R L = 16Ω
Mode 5 - MLO output, RL = 16Ω
Mode 6 - MLO output, R = 16Ω
Mode 7 - BTL, Speaker output, RL = 8Ω,
G = +10.5dB
Digital Gain Range
-34.5
+12
0.1
Differential input
Differential input impedance (MIP to MIN)
MIP input impedance referenced to ground
MIN input impedance referenced to ground
Stereo input
RIN input impedance
LIN input impedance
dB
kΩ
70
34.5
62
25.5
25.5
30
30
34.5
34.5
90
70
tSTBY
Standby time
1
1. Internal power limitation on headphone outputs (see application information).
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to V CC @ F = 217Hz.
12/51
0.6
60
30
45
Wake up time
dB
dB
50
25.5
38
tWU
Unit
dB
1.5
Stepsize Error
Input Impedance, all Gain
setting
Max.
93
92
85
91
87
87
95
Digital Gain Stepsize
Zin
Typ.
ms
µs
TS4956
Table 12.
Symbol
Electrical characteristics
VCC = +5 V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter
Conditions
Min.
Typ.
Max.
4
5.2
Mode 3, No input signal, no load
5.3
6.9
Mode 4, No input signal, no load
5.2
6.8
Modes 5, 6, No input signal, no load
1.9
2.5
Mode 7, No input signal, no load
6.7
8.7
Standby Current
No input signal
0.5
2
5
50
Output Offset Voltage
No input signal
Modes 1, 2
Speaker Output, R L = 8Ω
Mode 3
Headphone Outputs, R L = 16Ω
Mode 4
Headphone Outputs, R L = 16Ω
Mode 7
BTL, Speaker Output, RL = 8Ω
5
50
5
20
5
20
Mode 1, 2, No input signal, no load
ICC
ISTBY
VOO
Pout
THD+N
PSRR
Supply Current
Headphone Output Power
(Phantom Ground Mode)
Modes 3, 4
THD+N = 1% max, F = 1kHz, R L = 16Ω
THD+N = 1% max, F = 1kHz, R L = 32Ω
32
35
39(1)
43(1)
BTL, Speaker Output
Power
Modes 1, 2, 7
THD+N = 1% max, F = 1kHz, R L = 8Ω
1000
1055
MLO Output Power
Modes 5, 6
THD+N = 1% max, F = 1kHz, R L = 16Ω
THD+N = 1% max, F = 1kHz, R L = 32Ω
140
80
150
88
Total Harmonic Distortion
+ Noise
G = +1.5dB, 20Hz < F < 20kHz
Modes 1, 2, 7, RL = 8Ω, Pout = 700mW
Modes 3, 4, RL = 16Ω, Pout = 15mW
Modes 5, 6, RL = 16Ω, Pout = 100mW
0.5
0.5
0.5
Power Supply Rejection
Ratio (2)
F = 217Hz, G = +1.5dB, V ripple = 200mVpp,
Inputs Grounded, Cb = 1µF
Mode 1, Speaker output, RL = 8Ω
Mode 2, Speaker output, RL = 8Ω
Mode 3, Headphone outputs, RL = 16Ω
Mode 4, Headphone outputs, RL = 16Ω
Mode 5, MLO output, R L = 16Ω
Mode 6, MLO output, R L = 16Ω
Mode 7, BTL, Speaker outputs, R L = 8Ω
66
60
65
78
66
61
75
Crosstalk Channel Separation
Mode 4
F = 1kHz, RL = 16Ω, Pout = 15mW
F = 20Hz to 20kHz, RL = 16Ω, Pout = 15mW
Mode 7
F = 1kHz, RL = 8Ω, Pout = 700mW
F = 20Hz to 20kHz, RL = 8Ω, Pout = 700mW
50
50
Unit
mA
µA
mV
mW
%
dB
dB
80
60
13/51
Electrical characteristics
Table 12.
VCC = +5 V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
SNR
G
TS4956
Parameter
Conditions
Min.
Typ.
A-weighted, G = +1.5dB, THD+N < 0.5%,
20Hz < F < 20kHz
Mode 1 - Speaker output, R L = 8Ω
Mode 2 - Speaker output, RL = 8Ω
Mode 3 - Headphone output, R L = 16Ω
Mode 4 - Headphone output, R L = 16Ω
Mode 5 - MLO output, RL = 16Ω
Mode 6 - MLO output, R = 16Ω
Mode 7 - BTL, Speaker output, RL = 8Ω,
G = +10.5dB
Signal To Noise Ratio
Digital Gain Range
Unit
96
96
85
91
90
90
98
-34.5
Digital Gain Stepsize
dB
+12
dB
1.5
Stepsize Error
Zin
Max.
0.1
Input Impedance, all Gain
setting
Differential input
Differential input impedance (MIP to MIN)
MIP input impedance referenced to ground
MIN input impedance referenced to ground
Stereo input
RIN input impedance
LIN input impedance
dB
0.6
dB
kΩ
50
25.5
38
60
30
45
70
34.5
62
25.5
25.5
30
30
34.5
34.5
90
tWU
Wake up time
70
tSTBY
Standby time
1
ms
µs
1. Internal power limitation on headphone outputs (see application information).
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to V CC @ F = 217Hz.
Table 13.
Output noise VCC = 2.7V to 5.5V (all inputs grounded)
G = +12dB
G = +10.5dB
G = +1.5dB
A-weighted
filter
Unweighted
filter
(20Hz 20kHz)
A-weighted
filter
Unweighted
filter
(20Hz 20kHz)
A-weighted
filter
Unweighted
filter
(20Hz 20kHz)
Vout (µV)
Vout (µV)
Vout (µV)
Vout (µV)
Vout (µV)
Vout (µV)
Mode1 - SPK out
54
80
67
100
45
66
Mode2 - SPK out
67
99
75
111
45
69
Mode3 - LHP, RHP
55
80
68
100
45
67
Mode4 - LHP, RHP
29
43
35
52
23
34
Mode5 - MLO
53
80
66
97
45
66
Mode6 - MLO
65
96
73
106
45
67
Mode7 - BTL, SPK out
29
42
35
52
23
34
14/51
TS4956
Electrical characteristics
Figure 4.
THD+N vs. output power
Figure 5.
10
10
Mode 1, 2 - SPK out
RL = 8 Ω, G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=5V
F=20kHz
Mode 1, 2 - SPK out
RL = 8 Ω, G = +1.5dB
BW < 125kHz
Tamb = 25°C
Vcc=3.3V
F=20kHz
1
Vcc=5V
F=20kHz
Vcc=3.3V
F=20kHz
1
Vcc=2.7V
F=20kHz
THD + N (%)
THD + N (%)
THD+N vs. output power
0.1
0.1
Vcc=2.7V
F=20kHz
Vcc=3.3V
F=1kHz
Vcc=2.7V
F=1kHz
0.01
0.01
Vcc=2.7V
F=1kHz
Vcc=5V
F=1kHz
0.1
0.01
0.01
1
THD+N vs. output power
Figure 7.
10
0.1
1
THD+N vs. output power
10
Mode 1, 2 - SPK out
RL = 16Ω, G = +1.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=5V
F=20kHz
Vcc=3.3V
F=20kHz
1
Vcc=2.7V
F=20kHz
THD + N (%)
THD + N (%)
1
Vcc=5V
F=1kHz
Output power (W)
Output power (W)
Figure 6.
Vcc=3.3V
F=1kHz
0.1
Mode 1, 2 - SPK out
RL = 16 Ω, G = +10.5dB
BW < 125kHz
Tamb = 25°C
Vcc=5V
F=20kHz
Vcc=3.3V
F=20kHz
0.1
Vcc=2.7V
F=20kHz
Vcc=3.3V
F=1kHz
Vcc=2.7V
F=1kHz
0.01
0.01
Vcc=5V
F=1kHz
0.1
Vcc=2.7V
F=1kHz
0.01
1
0.01
Output power (W)
Figure 8.
Vcc=5V
F=1kHz
0.1
1
Output power (W)
THD+N vs. output power
Figure 9.
THD+N vs. output power
10
10
Mode 3 - LHP, RHP
RL = 16Ω , G = +1.5dB
BW < 125kHz
Tamb = 25°C
Vcc=3.3V
F=20kHz
Mode 3 - LHP, RHP
RL = 16Ω , G = +10.5dB
BW < 125kHz
Tamb = 25°C
Vcc=5V
F=20kHz
1
Vcc=2.7V
F=20kHz
THD + N (%)
1
THD + N (%)
Vcc=3.3V
F=1kHz
0.1
Vcc=5V
F=1kHz
0.01
1E-3
Vcc=3.3V
F=1kHz
0.01
Output power (W)
Vcc=3.3V
F=20kHz
Vcc=2.7V
F=20kHz
0.1
Vcc=5V
F=1kHz
Vcc=2.7V
F=1kHz
0.1
Vcc=5V
F=20kHz
0.01
1E-3
Vcc=3.3V
F=1kHz
Vcc=2.7V
F=1kHz
0.01
0.1
Output power (W)
15/51
Electrical characteristics
TS4956
Figure 10. THD+N vs. output power
Figure 11. THD+N vs. output power
10
10
Mode 3 - LHP, RHP
RL = 32Ω , G = +1.5dB
BW < 125kHz
Tamb = 25°C
1
Vcc=2.7V
F=20kHz
THD + N (%)
THD + N (%)
1
Mode 3 - LHP, RHP
RL = 32Ω , G = +10.5dB
BW < 125kHz
Tamb = 25 °C
0.1
Vcc=5V
F=1kHz
Vcc=3.3V
F=20kHz
Vcc=5V
F=20kHz
0.01
1E-3
Vcc=2.7V
F=1kHz
Vcc=2.7V
F=20kHz
0.1
Vcc=3.3V
F=20kHz
Vcc=3.3V
F=1kHz
0.01
Vcc=5V
F=1kHz
Vcc=5V
F=20kHz
0.01
1E-3
0.1
Vcc=3.3V
F=1kHz
0.01
Output power (W)
0.1
Output power (W)
Figure 12. THD+N vs. output power
Figure 13. THD+N vs. output power
10
10
1
Vcc=2.7V
F=20kHz
Mode 4 - LHP, RHP
RL = 16Ω, G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=5V
F=20kHz
1
THD + N (%)
Mode 4 - LHP, RHP
RL = 16Ω , G = +1.5dB
BW < 125kHz
Tamb = 25°C
THD + N (%)
Vcc=2.7V
F=1kHz
Vcc=3.3V
F=20kHz
0.1
Vcc=2.7V
F=20kHz
Vcc=3.3V
F=20kHz
Vcc=5V
F=20kHz
0.1
Vcc=2.7V
F=1kHz
Vcc=3.3V
F=1kHz
0.01
1E-3
Vcc=3.3V
F=1kHz
Vcc=2.7V
F=1kHz
Vcc=5V
F=1kHz
0.01
Vcc=5V
F=1kHz
0.01
1E-3
0.1
0.01
Figure 14. THD+N vs. output power
Figure 15. THD+N vs. output power
10
10
Mode 4 - LHP, RHP
RL = 32 Ω, G = +1.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=5V
F=20kHz
1
Vcc=2.7V
F=20kHz
Vcc=3.3V
F=20kHz
THD + N (%)
THD + N (%)
1
0.1
0.01
1E-3
Vcc=2.7V
F=1kHz
Vcc=3.3V
F=1kHz
0.01
Output power (W)
16/51
0.1
Output power (W)
Output power (W)
Vcc=5V
F=1kHz
0.1
Mode 4 - LHP, RHP
RL = 32 Ω, G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=5V
F=20kHz
Vcc=2.7V
F=20kHz
Vcc=3.3V
F=20kHz
0.1
0.01
1E-3
Vcc=2.7V
F=1kHz
Vcc=3.3V
F=1kHz
0.01
Output power (W)
Vcc=5V
F=1kHz
0.1
TS4956
Electrical characteristics
Figure 16. THD+N vs. output power
Figure 17. THD+N vs. output power
10
10
Mode 5, 6 - MLO
RL = 16Ω , G = +1.5dB
BW < 125kHz
Tamb = 25°C
1
0.1
Vcc=3.3V
F=20kHz
Vcc=2.7V
F=1kHz
0.1
Vcc=3.3V
F=20kHz
Vcc=2.7V
F=1kHz
0.01
0.1
Vcc=3.3V
F=1kHz
0.01
1E-3
1
0.01
Output power (W)
1
Figure 19. THD+N vs. output power
10
10
Mode 5, 6 - MLO
RL = 32 Ω, G = +1.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=5V
F=1kHz
Vcc=2.7V
F=20kHz
0.1
Vcc=3.3V
F=20kHz
1
THD + N (%)
Vcc=2.7V
F=1kHz
Mode 5, 6 - MLO
RL = 32 Ω, G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=5V
F=20kHz
1
THD + N (%)
0.1
Output power (W)
Figure 18. THD+N vs. output power
0.01
1E-3
0.01
Vcc=2.7V
F=1kHz
Vcc=5V
F=20kHz
Vcc=5V
F=1kHz
Vcc=2.7V
F=20kHz
0.1
Vcc=3.3V
F=20kHz
Vcc=3.3V
F=1kHz
Vcc=3.3V
F=1kHz
0.01
1E-3
0.1
0.01
0.1
Output power (W)
Output power (W)
Figure 20. THD+N vs. output power
Figure 21. THD+N vs. output power
10
10
Vcc=5V
F=20kHz
Mode 7 - BTL, SPK out
RL = 8 Ω, G = +10.5dB
BW < 125kHz
Tamb = 25°C
1
Vcc=3.3V
F=20kHz
1
Vcc=2.7V
F=20kHz
Vcc=2.7V
F=1kHz
0.1
Vcc=3.3V
F=1kHz
0.01
1E-3
Mode 7 - BTL, SPK out
RL = 16 Ω, G = +10.5dB
BW < 125kHz
Tamb = 25 °C
THD + N (%)
THD + N (%)
Vcc=5V
F=1kHz
Vcc=2.7V
F=20kHz
Vcc=3.3V
F=1kHz
0.01
1E-3
Vcc=5V
F=20kHz
1
Vcc=5V
F=1kHz
Vcc=2.7V
F=20kHz
THD + N (%)
THD + N (%)
Mode 5, 6 - MLO
RL = 16Ω , G = +10.5dB
BW < 125kHz
Tamb = 25°C
Vcc=5V
F=20kHz
Vcc=3.3V
F=20kHz
Vcc=2.7V
F=20kHz
0.1
Vcc=5V
F=1kHz
Vcc=2.7V
F=1kHz
Vcc=5V
F=1kHz
0.01
Vcc=5V
F=20kHz
0.1
Output power (W)
1
0.01
1E-3
Vcc=3.3V
F=1kHz
0.01
0.1
1
Output power (W)
17/51
Electrical characteristics
TS4956
Figure 22. THD+N vs. frequency
Figure 23. THD+N vs. frequency
10
1
Vcc=5V
Po=700mW
Vcc=3.3V
Po=300mW
Vcc=2.7V
Po=200mW
0.1
0.01
20
100
1000
THD + N (%)
THD + N (%)
1
10
Mode 1, 2 - SPK out
RL = 8 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25°C
0.1
20
100
Frequency (Hz)
10
1
Vcc=5V
Po=400mW
Vcc=3.3V
Po=200mW
0.1
THD + N (%)
THD + N (%)
Mode 1, 2 - SPK out
RL = 16 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=2.7V
Po=120mW
100
1000
0.1
10000
20
100
10
Mode 3 - LHP, RHP
RL = 16 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 °C
0.1
THD + N (%)
1
Vcc=3.3V
Po=15mW
Vcc=2.7V
Po=15mW
Mode 3 - LHP, RHP
RL = 16Ω
G = +10.5dB
BW < 125kHz
Tamb = 25°C
Vcc=2.7V
Po=15mW
20
100
1000
Frequency (Hz)
10000
Vcc=3.3V
Po=15mW
0.1
Vcc=5V
Po=15mW
18/51
10000
Figure 27. THD+N vs. frequency
10
THD + N (%)
1000
Frequency (Hz)
Figure 26. THD+N vs. frequency
0.01
Vcc=5V
Po=400mW
Vcc=3.3V
Po=200mW
Vcc=2.7V
Po=120mW
0.01
20
Mode 1, 2 - SPK out
RL = 16 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Frequency (Hz)
1
10000
Figure 25. THD+N vs. frequency
10
0.01
1000
Frequency (Hz)
Figure 24. THD+N vs. frequency
1
Vcc=5V
Po=700mW
Vcc=3.3V
Po=300mW
Vcc=2.7V
Po=200mW
0.01
10000
Mode 1, 2 - SPK out
RL = 8Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=5V
Po=15mW
0.01
20
100
1000
Frequency (Hz)
10000
TS4956
Electrical characteristics
Figure 28. THD+N vs. frequency
Figure 29. THD+N vs. frequency
10
1
Vcc=2.7V
Po=10mW
Vcc=3.3V
Po=10mW
0.1
THD + N (%)
THD + N (%)
1
10
Mode 3 - LHP, RHP
RL = 32 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 °C
Mode 3 - LHP, RHP
RL = 32Ω
G = +10.5dB
BW < 125kHz
Tamb = 25°C
Vcc=2.7V
Po=10mW
Vcc=3.3V
Po=10mW
0.1
Vcc=5V
Po=10mW
0.01
20
100
1000
Vcc=5V
Po=10mW
0.01
10000
20
100
Frequency (Hz)
Figure 30. THD+N vs. frequency
10
Vcc=2.7V
Po=15mW
1
Vcc=3.3V
Po=15mW
Vcc=5V
Po=15mW
THD + N (%)
THD + N (%)
Mode 4 - LHP, RHP
RL = 16Ω
G = +1.5dB
BW < 125kHz
Tamb = 25°C
0.1
0.01
Vcc=2.7V
Po=15mW
100
1000
10000
20
100
1000
10000
Figure 33. THD+N vs. frequency
10
10
Mode 4 - LHP, RHP
RL = 32Ω
G = +1.5dB
BW < 125kHz
Tamb = 25°C
Vcc=2.7V
Po=10mW
0.1
20
100
1
Vcc=3.3V
Po=10mW
1000
Frequency (Hz)
Vcc=5V
Po=10mW
10000
THD + N (%)
THD + N (%)
Vcc=5V
Po=15mW
Frequency (Hz)
Figure 32. THD+N vs. frequency
0.01
Vcc=3.3V
Po=15mW
0.1
0.01
20
Mode 4 - LHP, RHP
RL = 16Ω
G = +10.5dB
BW < 125kHz
Tamb = 25°C
Frequency (Hz)
1
10000
Figure 31. THD+N vs. frequency
10
1
1000
Frequency (Hz)
Mode 4 - LHP, RHP
RL = 32Ω
G = +10.5dB
BW < 125kHz
Tamb = 25°C
Vcc=2.7V
Po=10mW
0.1
0.01
20
100
Vcc=3.3V
Po=10mW
1000
Vcc=5V
Po=10mW
10000
Frequency (Hz)
19/51
Electrical characteristics
TS4956
Figure 34. THD+N vs. frequency
Figure 35. THD+N vs. frequency
10
1
THD + N (%)
Vcc=5V
Po=100mW
0.1
0.01
Vcc=3.3V
Po=50mW
Vcc=2.7V
Po=30mW
20
100
1000
THD + N (%)
1
10
Mode 5, 6 - MLO
RL = 16 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=2.7V
Po=30mW
20
10
Vcc=5V
Po=60mW
Vcc=3.3V
Po=30mW
0.1
1
THD + N (%)
THD + N (%)
Mode 5, 6 - MLO
RL = 32 Ω
G = +1.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=2.7V
Po=20mW
Vcc=2.7V
Po=20mW
100
1000
10000
20
100
1000
10000
Figure 39. THD+N vs. frequency
10
10
Mode 7 - BTL, SPK out
RL = 8Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=2.7V
Po=200mW
0.1
20
100
Vcc=3.3V
Po=300mW
1000
Frequency (Hz)
10000
THD + N (%)
1
Vcc=5V
Po=700mW
THD + N (%)
Vcc=3.3V
Po=30mW
Frequency (Hz)
Figure 38. THD+N vs. frequency
20/51
Vcc=5V
Po=60mW
0.1
0.01
20
Mode 5, 6 - MLO
RL = 32 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Frequency (Hz)
0.01
10000
Figure 37. THD+N vs. frequency
10
1
1000
Frequency (Hz)
Figure 36. THD+N vs. frequency
0.01
Vcc=3.3V
Po=50mW
100
Frequency (Hz)
1
Vcc=5V
Po=100mW
0.1
0.01
10000
Mode 5, 6 - MLO
RL = 16 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Mode 7 - BTL, SPK out
RL = 16 Ω
G = +10.5dB
BW < 125kHz
Tamb = 25 °C
Vcc=2.7V
Po=120mW
0.1
0.01
20
100
Vcc=3.3V
Po=200mW
1000
Frequency (Hz)
Vcc=5V
Po=400mW
10000
TS4956
Electrical characteristics
1400
1300 Mode 1, 2, 7
1200 BTL, SPK out
1100 F = 1kHz
RL=8 Ω
1000 BW < 125 kHz
Tamb = 25°C
900
800
RL=16Ω
700
600
500
400
300
200
100
0
2.5
3.0
3.5
4.0
4.5
Figure 41. Output power vs. power supply
voltage
1600
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
Figure 40. Output power vs. power supply
voltage
RL=32Ω
5.0
Mode 1, 2, 7
BTL, SPK out
F = 1kHz
BW < 125 kHz
Tamb = 25°C
1400
1200
1000
RL=8 Ω
RL=16Ω
800
600
400
200
5.5
RL=32 Ω
0
2.5
Vcc (V)
3.0
3.5
4.0
4.5
5.0
5.5
Vcc (V)
Figure 42. Output power vs. power supply
voltage
Figure 43. Output power vs. power supply
voltage
70
RL=32 Ω
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
50
40
RL=16 Ω
30
20
Mode 3, 4
LHP, RHP
F = 1kHz
BW < 125 kHz
Tamb = 25°C
RL=64Ω
10
0
2.5
3.0
3.5
4.0
4.5
5.0
RL=32 Ω
60
50
RL=16 Ω
40
30
RL=64Ω
10
0
2.5
5.5
3.0
3.5
Figure 44. Output power vs. power supply
voltage
5.0
5.5
280
Mode 5, 6
MLO
F = 1kHz
BW < 125 kHz
Tamb = 25 °C
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
140
4.5
Figure 45. Output power vs. power supply
voltage
200
160
4.0
Vcc (V)
Vcc (V)
180
Mode 3, 4
LHP, RHP
F = 1kHz
BW < 125 kHz
Tamb = 25°C
20
RL=16 Ω
120
100
RL=32 Ω
80
60
40
20
0
2.5
RL=64 Ω
3.0
3.5
4.0
Vcc (V)
4.5
5.0
5.5
240
200
Mode 5, 6
MLO
F = 1kHz
BW < 125 kHz
Tamb = 25 °C
160
RL=16 Ω
RL=32 Ω
120
80
40
RL=64 Ω
0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Vcc (V)
21/51
Electrical characteristics
TS4956
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
Figure 47. Output power vs. load resistance
1600
Mode 1, 2, 7
BTL, SPK out
F = 1kHz
BW < 125 kHz
Tamb = 25 °C
Vcc=5.5V
Vcc=5V
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
Figure 46. Output power vs. load resistance
Vcc=3.3V
Vcc=2.7V
8
12
16
20
24
28
Vcc=5.5V
1200
1000
Vcc=5V
800
600
Vcc=3.3V
Vcc=2.7V
400
200
0
32
8
12
16
Load resistance (Ω )
Vcc=5V
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
Vcc=5.5V
50
40
30
20
Vcc=3.3V
10
Vcc=2.7V
20
24
28
32
36
40
44
48
52
56
60
80
Vcc=5V
60
Mode 3, 4
LHP, RHP
F = 1kHz
BW < 125 kHz
Tamb = 25°C
40
30
Vcc=3.3V
20
Vcc=2.7V
10
20
24
28
32
36
40
44
48
52
56
60
64
Load resistance (Ω )
Figure 50. Output power vs. load resistance
Figure 51. Output power vs. load resistance
300
200
Mode 5, 6
MLO
F = 1kHz
BW < 125 kHz
Tamb = 25°C
180
Vcc=5.5V
160
140
Output power at 10% THD + N (mW)
Output power at 1% THD + N (mW)
32
50
0
16
64
Vcc=5.5V
70
Load resistance (Ω )
Vcc=5V
120
100
80
Vcc=3.3V
Vcc=2.7V
40
20
24
32
40
48
Load resistance (Ω )
22/51
28
90
Mode 3, 4
LHP, RHP
F = 1kHz
BW < 125 kHz
Tamb = 25°C
60
0
16
24
Figure 49. Output power vs. load resistance
70
60
20
Load resistance (Ω )
Figure 48. Output power vs. load resistance
0
16
Mode 1, 2, 7
BTL, SPK out
F = 1kHz
BW < 125 kHz
Tamb = 25 °C
1400
56
64
Mode 5, 6
MLO
F = 1kHz
BW < 125 kHz
Tamb = 25°C
250
Vcc=5.5V
200
Vcc=5V
150
Vcc=3.3V
100
Vcc=2.7V
50
0
16
24
32
40
48
Load resistance (Ω )
56
64
TS4956
Electrical characteristics
Figure 56. PSRR vs. frequency
Figure 52. PSRR vs. frequency
0
G=+12dB, +10.5dB
-40
G=+6dB
-20
PSRR (dB)
PSRR (dB)
-20
0
Mode 1 - SPK out
Vcc = 2.7V
RL ≥ 8 Ω , Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
G=+1.5dB
-60
Mode 1 - SPK out
Vcc = 3.3V
RL ≥ 8Ω , Cb = 1µ F
Inp. grounded
Vripple = 200mVpp
G=+12dB
-40
G=+10.5dB
G=+1.5dB
G=+6dB
-60
G=-18dB
-80
-100
20
100
G=-9dB
-80
G=-34.5dB G=-9dB
G=-18dB
1000
-100
20
10000
100
1000
Frequency (Hz)
Figure 57. PSRR vs. frequency
0
0
Mode 1 - SPK out
Vcc = 5V
RL ≥ 8 Ω, Cb = 1µ F
Inp. grounded
Vripple = 200mVpp
-10
-20
-30
G=+10.5dB
-40
G=+12dB
PSRR (dB)
PSRR (dB)
10000
Frequency (Hz)
Figure 53. PSRR vs. frequency
-20
G=-34.5dB
G=+6dB
-60
Mode 2 - SPK out
Vcc = 2.7V
RL ≥ 8Ω , Cb = 1µ F
Inp. grounded
Vripple = 200mVpp
G=+12dB
G=+10.5dB
G=+6dB
G=+1.5dB
-40
-50
-60
-80
-100
20
-70
G=-18dB
G=+1.5dB
G=-9dB
100
1000
-80
G=-34.5dB
G=-18dB
G=-34.5dB
-90
20
10000
100
1000
Frequency (Hz)
Figure 58. PSRR vs. frequency
0
PSRR (dB)
-30
0
Mode 2 - SPK out
Vcc = 3.3V
RL ≥ 8 Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
-10
-20
G=+12dB
G=+10.5dB
-40
G=+6dB
G=+1.5dB
-50
PSRR (dB)
-20
-30
-60
-70
G=-34.5dB
100
G=-18dB
1000
Frequency (Hz)
G=-9dB
10000
G=+12dB, +10.5dB
G=+6dB
G=+1.5dB
-50
-70
-90
20
Mode 2 - SPK out
Vcc = 5V
RL ≥ 8Ω , Cb = 1µ F
Inp. grounded
Vripple = 200mVpp
-40
-60
-80
10000
Frequency (Hz)
Figure 54. PSRR vs. frequency
-10
G=-9dB
-80
-90
20
G=-34.5dB
100
G=-18dB
1000
G=-9dB
10000
Frequency (Hz)
23/51
TS4956
Electrical characteristics
Figure 63. PSRR vs. frequency
Figure 60. PSRR vs. frequency
0
PSRR (dB)
-20
-30
0
Mode 3 - LHP, RHP
Vcc = 2.7V
RL ≥ 16Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
-40
-50
G=+6dB
G=+1.5dB
-10
-20
G=+10.5dB
PSRR (dB)
-10
G=+12dB
-60
-30
Mode 3 - LHP, RHP
Vcc = 3.3V
RL ≥ 16Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
G=+10.5dB
-40
-50
G=+6dB
-70
-80
G=-18dB
-90
20
100
G=-9dB
G=-34.5dB
1000
G=-34.5dB
-90
20
10000
100
-10
-20
-30
G=+10.5dB
G=+12dB
G=+6dB
G=+1.5dB
PSRR (dB)
PSRR (dB)
0
Mode 3 - LHP, RHP
Vcc = 5V
RL ≥ 16 Ω, Cb = 1 µF
Inp. grounded
Vripple = 200mVpp
-40
-60
Mode 4 - LHP, RHP
Vcc = 2.7V
RL ≥ 16 Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
G=+10.5dB
-40
G=+12dB
-50
-80
G=-9dB
-80
-90
G=-34.5dB
G=-18dB
-90
20
100
1000
-100
20
10000
100
1000
Figure 65. PSRR vs. frequency
0
-10
-20
-30
PSRR (dB)
PSRR (dB)
0
Mode 4 - LHP, RHP
Vcc = 3.3V
RL ≥ 16 Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
-40
G=+10.5dB
G=+1.5dB G=+12dB
-50
G=+6dB
-60
-70
-100
20
Mode 4 - LHP, RHP
Vcc = 5V
RL ≥ 16 Ω, Cb = 1µ F
Inp. grounded
Vripple = 200mVpp
-40
G=+1.5dB
-50
G=+6dB
-60
G=+10.5dB
G=+12dB
-70
-80
-90
10000
Frequency (Hz)
Figure 62. PSRR vs. frequency
-30
G=-34.5dB
G=-9dB
G=-18dB
Frequency (Hz)
-20
G=+1.5dB
G=+6dB
-60
-70
-70
-10
10000
Figure 64. PSRR vs. frequency
0
-50
1000
Frequency (Hz)
Figure 61. PSRR vs. frequency
-30
G=-18dB
G=-9dB
-80
Frequency (Hz)
-20
G=+12dB
-60
-70
-10
G=+1.5dB
-80
G=-18dB
G=-34.5dB
G=-9dB
100
G=-34.5dB
-90 G=-18dB
G=-9dB
1000
Frequency (Hz)
10000
-100
20
100
1000
10000
Frequency (Hz)
24/51
TS4956
Electrical characteristics
Figure 69. PSRR vs. frequency
Figure 66. PSRR vs. frequency
0
-20
PSRR (dB)
-30
0
Mode 5 - MLO
Vcc = 2.7V
RL ≥ 16Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
-40
-10
-20
G=+12dB
G=+10.5dB
G=+6dB
G=+1.5dB
-50
-30
PSRR (dB)
-10
-60
-70
G=-9dB
-60
G=-34.5dB
100
1000
10000
G=-18dB
G=+1.5dB
-90
G=-9dB
-100
20
100
Frequency (Hz)
-20
-30
G=+10.5dB
G=+12dB
PSRR (dB)
PSRR (dB)
-10
G=+6dB
-50
G=-9dB
-60
-70
Mode 6 - MLO
Vcc = 2.7V
RL ≥ 16Ω , Cb = 1µ F
Inp. grounded
Vripple = 200mVpp
-40
G=+1.5dB
100
-80
G=-34.5dB
-90
1000
-100
20
10000
G=-34.5dB
100
1000
10000
Figure 71. PSRR vs. frequency
-10
G=+12dB
-20
G=+6dB G=+10.5dB
-30
PSRR (dB)
PSRR (dB)
G=-9dB
0
Mode 6 - MLO
Vcc = 3.3V
RL ≥ 16 Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
-40
G=+1.5dB
-50
-60
-70
Mode 6 - MLO
Vcc = 5V
RL ≥ 16Ω , Cb = 1µ F
Inp. grounded
Vripple = 200mVpp
G=+12dB
G=+10.5dB
G=+6dB
-40
G=+1.5dB
-50
-60
-70
-80
G=-9dB
G=-34.5dB
-90
-100
20
G=-18dB
Frequency (Hz)
0
-30
G=+1.5dB
-60
G=-18dB
Figure 68. PSRR vs. frequency
-20
G=+10.5dB
G=+6dB
-50
Frequency (Hz)
-10
G=+12dB
-70
-90
-100
20
10000
0
Mode 5 - MLO
Vcc = 5V
RL ≥ 16 Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
-40
-80
1000
Figure 70. PSRR vs. frequency
0
-30
G=-34.5dB
Frequency (Hz)
Figure 67. PSRR vs. frequency
-20
G=+6dB
-50
-80
G=-18dB
-90
-10
G=+10.5dB
G=+12dB
-40
-70
-80
-100
20
Mode 5 - MLO
Vcc = 3.3V
RL ≥ 16 Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
G=-18dB
100
1000
Frequency (Hz)
-80
G=-34.5dB
G=-9dB
-90
10000
-100
20
G=-18dB
100
1000
10000
Frequency (Hz)
25/51
TS4956
Electrical characteristics
Figure 75. PSRR vs. frequency
Figure 72. PSRR vs. frequency
0
0
Mode 7 - BTL, SPK out
Vcc = 2.7V
-20 RL ≥ 8 Ω, Cb = 1µ F
Inp. grounded
-30
Vripple = 200mVpp
-40
-10
-20
-30
G=+12dB
G=+6dB G=+10.5dB
-50
G=+1.5dB
-60
PSRR (dB)
PSRR (dB)
-10
-70
-100
20
-40
G=+1.5dB
-60
-80
G=-9dB
G=-18dB
100
-90
G=-34.5dB
1000
-100
20
10000
G=-34.5dB
G=-9dB
100
10000
0
Mode 7 - BTL, SPK out
Vcc = 5V
RL ≥ 8 Ω, Cb = 1 µ F
Inp. grounded
Vripple = 200mVpp
-20
G=+12dB
G=+10.5dB
-40
CMRR (dB)
PSRR (dB)
1000
Figure 76. CMRR vs. frequency
0
-30
G=-18dB
Frequency (Hz)
Figure 73. PSRR vs. frequency
-20
G=+10.5dB
G=+6dB
-50
Frequency (Hz)
-10
G=+12dB
-70
-80
-90
Mode 7 - BTL, SPK out
Vcc = 3.3V
RL ≥ 8Ω , Cb = 1µ F
Inp. grounded
Vripple = 200mVpp
G=+6dB
-50
G=+1.5dB
-60
Mode 1 - SPK out
Vcc = 2.7V, 3.3V, 5V
RL ≥ 8 Ω , Cb = 1 µ F
Cin = 470 µ F
Vic = 200mVpp
G=+12dB
G=+10.5dB
G=+6dB
-40
-60
-70
-80
-90
-100
20
G=+1.5dB
-80
G=-9dB
G=-34.5dB
G=-9dB
G=-18dB
100
1000
-100
10000
G=-34.5dB
100
Frequency (Hz)
10000
Figure 77. CMRR vs. frequency
0
0
Mode 3 - LHP, RHP
Vcc = 2.7V, 3.3V, 5V
RL ≥ 8Ω , Cb = 1 µ F
Cin = 470µ F
Vic = 200mVpp
G=+12dB
-20
G=+6dB G=+10.5dB
-40
CMRR (dB)
CMRR (dB)
1000
Frequency (Hz)
Figure 74. CMRR vs. frequency
-20
G=-18dB
-60
G=+1.5dB
-80
Mode 5 - MLO
Vcc = 2.7V, 3.3V, 5V
RL ≥ 16 Ω , Cb = 1 µ F
Cin = 470 µ F
Vic = 200mVpp
G=+12dB
G=+10.5dB
G=+6dB
-40
-60
-80
G=+1.5dB
G=-9dB
G=-18dB
G=-9dB
-100
G=-34.5dB
100
G=-18dB
1000
Frequency (Hz)
G=-34.5dB
10000
-100
100
1000
10000
Frequency (Hz)
26/51
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20 kHz)
Mode 1, SPK out
G = +1.5dB, RL = 8Ω
THD+N < 0.5%
Tamb = 25°C
2.7
3.3
Figure 81. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 78. SNR vs. power supply voltage
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20 kHz)
Mode 1, SPK out
G = +10.5dB, RL = 8Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
Vcc (V)
Weighted filter type A
Unweighted filter (20Hz to 20 kHz)
Mode 1, SPK out
G = +1.5dB, RL = 16Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20 kHz)
Mode 1, SPK out
G = +10.5dB, RL = 16Ω
THD+N < 0.5%
Tamb = 25°C
2.7
Vcc (V)
3.3
Vcc (V)
5
Figure 83. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 2, SPK out
G = +1.5dB, RL = 8 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
Vcc (V)
Figure 80. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
5
Figure 82. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 79. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
3.3
Vcc (V)
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 2, SPK out
G = +10.5dB, RL = 8Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
5
Vcc (V)
27/51
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 2, SPK out
G = +1.5dB, RL = 16Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
Figure 87. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 84. SNR vs. power supply voltage
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 2, SPK out
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
Vcc (V)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 3 - LHP, RHP
G = +1.5dB, RL = 16Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 3 - LHP, RHP
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
Vcc (V)
3.3
Vcc (V)
5
Figure 89. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 3 - LHP, RHP
G = +1.5dB, RL = 32Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
Vcc (V)
Figure 86. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
5
Figure 88. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 85. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
3.3
Vcc (V)
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 3 - LHP, RHP
G = +10.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
5
Vcc (V)
28/51
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 4 - LHP, RHP
G = +1.5dB, RL = 16Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
Figure 93. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 90. SNR vs. power supply voltage
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 4 - LHP, RHP
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
Vcc (V)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +1.5dB, RL = 32Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 4 - LHP, RHP
G = +10.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
Vcc (V)
3.3
Vcc (V)
5
Figure 95. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +1.5dB, RL = 16Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
Vcc (V)
Figure 92. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
5
Figure 94. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 91. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
3.3
Vcc (V)
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
5
Vcc (V)
29/51
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +1.5dB, RL = 32Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
Figure 99. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 96. SNR vs. power supply voltage
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 5 - MLO
G = +10.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
Vcc (V)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 6 - MLO
G = +1.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25°C
2.7
3.3
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 6 - MLO
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
Vcc (V)
3.3
Vcc (V)
5
Figure 101. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 6 - MLO
G = +1.5dB, RL = 32Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
Vcc (V)
Figure 98. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
5
Figure 100. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 97. SNR vs. power supply voltage
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
3.3
Vcc (V)
5
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
50
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 6 - MLO
G = +10.5dB, RL = 32 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
5
Vcc (V)
30/51
TS4956
Electrical characteristics
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Figure 105. SNR vs. power supply voltage
SNR (dB)
SNR (dB)
Figure 102. SNR vs. power supply voltage
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 7 - BTL, SPKout
G = +10.5dB, RL = 8Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
5
100
98
96
94
92
90
88
86
84
82
80
78
76
74
72
70
68
66
64
62
60
Weighted filter type A
Unweighted filter (20Hz to 20kHz)
Mode 7 - BTL, SPKout
G = +10.5dB, RL = 16 Ω
THD+N < 0.5%
Tamb = 25 °C
2.7
3.3
Vcc (V)
Figure 103. Current consumption vs. power
supply voltage
Figure 106. Standby current consumption vs.
power supply voltage
8
No loads
7 Tamb = 25 °C
6
0.5
Mode7
No loads
Tamb = 25°C
Mode3
0.4
Mode4
Istdby (µA)
5
Icc (mA)
5
Vcc (V)
4
3
0.3
0.2
Mode 1,2
2
0.1
1
0
Mode 5,6
0.0
0
1
2
3
4
5
0
1
2
Figure 104. Frequency response mode 1, 2, 7
G=+12dB, RL=8Ω
G=+6dB, RL=16 Ω
G=+6dB, RL=8Ω
2
0
-2
10
Mode 1, 2, 7
BTL, SPK out
Cin = 330nF
Tamb 25 °C
G=+12dB, RL=16 Ω
6
4
5
6
12
G=+1.5dB, RL=16 Ω
Mode 3, 4
LHP, RHP
Cin = 330nF
Tamb 25 °C
6
4
G=+6dB, RL=16 Ω ,32 Ω
2
0
G=+1.5dB, RL=16 Ω ,32Ω
G=+1.5dB, RL=8 Ω
-2
100
G=+12dB, RL=16 Ω ,32Ω
8
Gain (dB)
Gain (dB)
8
4
Figure 107. Frequency response mode 3, 4
12
10
3
Vcc (V)
Vcc (V)
1000
Frequency (Hz)
10000
100
1000
10000
Frequency (Hz)
31/51
TS4956
Electrical characteristics
Figure 108. Frequency response modes 5, 6
Figure 111. Frequency response modes 5, 6
12
12
10
10
G=+12dB, RL=32 Ω
8
6
G=+12dB, RL=16 Ω
6
4
4
Gain (dB)
Gain (dB)
G=+12dB, RL=32 Ω
8
G=+12dB, RL=16 Ω
2
0
G=+6dB, RL=32 Ω
-2
G=+6dB, RL=16 Ω
-4
G=+1.5dB, RL=16Ω
-8
-10
100
0
1000
G=+6dB, RL=32Ω
-2
G=+6dB, RL=16Ω
-4
Mode 5, 6 - MLO
Cin = 330nF
Cout = 220 µ F
Tamb 25 °C
G=+1.5dB, RL=32Ω
-6
2
G=+1.5dB, RL=16 Ω
-8
-10
10000
Mode 5, 6 - MLO
Cin = 330nF
Cout = 470µ F
Tamb 25 °C
G=+1.5dB, RL=32Ω
-6
100
1000
Frequency (Hz)
10000
Frequency (Hz)
Figure 109. Power dissipation vs. output
power (per channel)
Figure 112. Power dissipation vs. output
power (per channel)
200
300
180
250
140
THD+N=1%
120
RL=8Ω
100
80
Mode 1, 2, 7
BTL, SPK out
Vcc = 2.7V
F = 1kHz
THD+N < 10%
60
40
RL=16 Ω
20
0
0
50
100
150
200
250
300
350
Power Dissipation (mW)
Power Dissipation (mW)
160
200
THD+N=1%
100
0
400
0
100
200
300
400
500
600
Output Power (mW)
Figure 110. Power dissipation vs. output
power (per channel)
Figure 113. Power dissipation vs. output
power (per channel)
900
800
700
THD+N=1%
RL=8 Ω
Mode 1, 2, 7
BTL, SPK out
Vcc = 5V
F = 1kHz
THD+N < 10%
RL=16 Ω
0
200
400
600
800
1000
Output Power (mW)
1200
1400
Power Dissipation (mW)
Power Dissipation (mW)
Mode 1, 2, 7
BTL, SPK out
Vcc = 3.3V
F = 1kHz
THD+N < 10%
RL=16 Ω
50
Output Power (mW)
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0
RL=8Ω
150
600
THD+N=1%
500
RL=8 Ω
400
300
200
Mode 1, 2, 7
BTL, SPK out
Vcc = 5.5V
F = 1kHz
THD+N < 10%
RL=16 Ω
100
0
0
200
400
600
800 1000 1200 1400 1600 1800
O utput Power (mW)
32/51
TS4956
Electrical characteristics
Figure 117. Power dissipation vs. output
power (per channel)
Figure 114. Power dissipation vs. output
power (per channel)
90
130
120
THD+N=1%
80
Power Dissipation (mW)
Power Dissipation (mW)
70
RL=16 Ω
60
50
40
RL=32 Ω
30
Mode 3, 4 - LHP, RHP
Vcc = 2.7V
F = 1kHz
THD+N < 10%
20
10
0
THD+N=1%
110
0
10
20
30
40
100
RL=16Ω
90
80
70
60
50
RL=32 Ω
40
Mode 3, 4 - LHP, RHP
Vcc = 3.3V
F = 1kHz
THD+N < 10%
30
20
10
0
50
0
10
20
Output Power (mW)
Figure 115. Power dissipation vs. output
power (per channel)
RL=16Ω
160
140
120
100
RL=32Ω
80
60
Mode 3, 4 - LHP, RHP
Vcc = 5V
F = 1kHz
THD+N < 10%
40
20
0
10
THD+N=1%
220
Power Dissipation (mW)
Power Dissipation (mW)
60
240
THD+N=1%
180
20
30
40
50
60
200
RL=16 Ω
180
160
140
120
RL=32Ω
100
80
Mode 3, 4 - LHP, RHP
Vcc = 5.5V
F = 1kHz
THD+N < 10%
60
40
20
0
70
0
10
20
Output Power (mW)
30
40
50
60
70
Output Power (mW)
Figure 116. Power dissipation vs. output
power
Figure 119. Power dissipation vs. output
power
24
40
22
35
20
18
16
Power Dissipation (mW)
Power Dissipation (mW)
50
260
200
THD+N=1%
14
RL=16 Ω
12
10
8
Mode 5, 6 - MLO
Vcc = 2.7V
F = 1kHz
THD+N < 10%
6
RL=32Ω
4
2
0
40
Figure 118. Power dissipation vs. output
power (per channel)
220
0
30
Output Power (mW)
0
10
20
30
40
Output Power (mW)
50
60
30
25
THD+N=1%
20
RL=16 Ω
15
10
0
70
Mode 5, 6 - MLO
Vcc = 3.3V
F = 1kHz
THD+N < 10%
RL=32 Ω
5
0
10
20
30
40
50
60
70
80
90
100
Output Power (mW)
33/51
TS4956
Electrical characteristics
Figure 123. Power dissipation vs. output
power
90
100
80
90
70
80
Power Dissipation (mW)
Power Dissipation (mW)
Figure 120. Power dissipation vs. output
power
60
THD+N=1%
50
RL=16 Ω
40
30
Mode 5, 6 - MLO
Vcc = 5V
F = 1kHz
THD+N < 10%
20
RL=32 Ω
10
0
0
70
THD+N=1%
60
RL=16Ω
50
40
30
20
10
0
20 40 60 80 100 120 140 160 180 200 220 240
0
50
100
Output Power (mW)
1.4
-10
Heat sink surface = 125mm
2
-20
Crosstalk Level (dB)
Flip-Chip Package Power Dissipation (W)
0
1.0
0.8
0.6
0.4
0.0
No Heat sink
0
25
200
250
300
Figure 124. Crosstalk vs. frequency
1.6
0.2
150
Output Power (mW)
Figure 121. Power derating curves
1.2
Mode 5, 6 - MLO
Vcc = 5.5V
F = 1kHz
THD+N < 10%
RL=32Ω
-30
Vcc = 5V, 3.3V, 2.7V
Mode 4
LHP -> RHP
RHP -> LHP
Tamb = 25 °C
RL=32 Ω
Po=10mW
RL=16 Ω
Po=15mW
-40
-50
-60
-70
50
75
100
Ambiant Temperature (° C)
125
150
-80
100
1000
10000
Frequency (Hz)
Figure 122. Crosstalk vs. frequency
0
-10
Crosstalk Level (dB)
-20
-30
Mode 4
RL = 8 Ω
BTL out -> SPK out
SPK out -> BTL out
Tamb = 25°C
-40
-50
-60
-70
Vcc=2.7V
Po=200mW
Vcc=3.3V
Po=300mW
Vcc=5V
Po=700mW
-80
-90
-100
100
1000
10000
Frequency (Hz)
34/51
TS4956
4
Application information
Application information
The TS4956 integrates 4 monolithic power amplifiers and has one differential input and two
single-ended inputs. The output amplifiers can be configured in 7 different modes as one SE
(single-ended) capacitively-coupled output, two phantom ground headphone outputs and
two BTL outputs. Figure 1 on page 3 and Figure 2 on page 4 shows schemes of these
configurations and Table 7 on page 6 describes these configurations in different modes.
This chapter gives information on how to configure the TS4956 in application.
4.1
Output configurations
4.1.1
Shutdown
When the device is in shutdown mode, all of the device’s outputs are in a high impedance
state.
4.1.2
Single-ended output configuration (modes 5 and 6)
When the device is woken-up via the I²C interface, output amplifier on output MLO is biased
to the V CC/2 voltage. In this configuration an output capacitor, Cout, on the single-ended
output is needed to block the VCC/2 voltage and couples the audio signal to the load.
VCC/2 voltage is present on this output in all modes (modes 1 to 7) to keep the output
capacitor C out charged and to improve pop performance on this output during the switching
between any given mode to Mode 5 or 6.
When the device is in Mode 5 or 6 where the single-ended output MLO is active, all other
outputs are in a high impedance state.
4.1.3
Phantom ground output configuration (modes 3 and 4)
In a phantom ground output configuration (modes 3 and 4) the internal buffer is connected
to PHG pin and biased to the V CC/2 voltage. Output amplifiers (pins LHP and RHP) are also
biased to the V CC/2 voltage. One end of the load is connected to output amplifier and one to
the PHG buffer. Therefore, no output capacitors are needed. The advantage of the PHG
output configuration is fewer external components compared with a SE configuration.
However, note that in this configuration, the device has higher power dissipation (see
Section 4.3: Power dissipation and efficiency on page 37).
All other inactive outputs are in the high impedance state except for the MLO output, which
is biased to VCC/2 voltage.
To achieve better crosstalk results in this case, each speaker should be connected with
separate PHG wire (2 speakers connected with 4 wires) as shown in Figure 1 on page 3
(instead of using only one common PHG wire for both speakers, i.e. 2 speakers connected
with 3 wires).
35/51
TS4956
4.1.4
Application information
BTL output configuration (modes 1, 2, 7)
In a BTL (Bridge Tied Load) output configuration (modes 1, 2 and 4), active outputs are
biased to the VCC/2 voltage. All other inactive outputs are in the high impedance state
except for the MLO output, which is biased to VCC/2 voltage.
BTL means that each end of the load is connected to two single-ended output amplifiers.
Therefore we have:
single-ended output 1 = Vout1 = Vout (V)
single-ended output 2 = Vout2 = -Vout (V)
and
Vout1 - Vout2 = 2Vout (V)
For the same power supply voltage, the output voltage amplitude is 2 times higher than the
output voltage in the single-ended or phantom ground configurations and the output power
is 4 times higher than the output power in the single-ended or phantom ground
configurations.
4.2
Power limitation in the phantom ground configuration
A power limitation is imposed on the headphones in mode 3 and 4. Limitation of output
power is achieved by limiting the output voltage and output current on each amplifier.
The maximum value of the output voltage, Vout max , is set to a value of 1.65V in order to
reach a maximum output power of the sinusoidal signal of around 40mW per channel with a
32Ω load resistance and THD+N<1%.
The maximum value of output current Iout max is set to value 70mA in order to reach a
maximum output power of the sinusoidal signal of around 40mW per channel with a 16Ω
load resistance and THD+N<1%.
The maximum output power with these voltage and current limitations is reached with load
values more than 16Ω and less than 32Ω as explained by Figure 125.
Figure 48 shows the functionality of the power limitation with different load resistances.
Figure 125. Voltage and current limitation on headphones
RL=32 Ohms
Vout
RL=24 Ohms
VpeakMAX=1.65V
RL=16 Ohms
Ipeak MAX=70mA
Iout
36/51
TS4956
4.3
Application information
Power dissipation and efficiency
Hypotheses:
●
Voltage and current in the load are sinusoidal (Vout and Iout).
●
Supply voltage is a pure DC source (VCC).
Regarding the load we have:
V out = V PEAK sin ωt ( V )
and
V out
- (A)
I out = ---------RL
and
2
V PEAK
P out = ---------------- (A)
2R L
4.3.1
Single-ended output configuration (modes 5 and 6)
The average current delivered by the supply voltage is:
π
V PEAK
1 V PEAK
Icc AVG = ------ ∫ ----------------sin ( t ) dt = ---------------- (A)
2π
RL
πR L
0
Figure 126. Current delivered by supply voltage in the single-ended output configuration
The power delivered by supply voltage is:
P supply = V C CI CC
AV G
(W)
So, the power dissipation by single-ended amplifier is
P diss = P supply – P out ( W )
2V C C
- P out – P out ( W )
P diss = -----------------π RL
and the maximum value is obtained when:
∂P diss
∂ P out
= 0
37/51
TS4956
Application information
and its value is:
2
P diss
Note:
M AX
V CC
= ------------(W)
2
π RL
This maximum value depends only on power supply voltage and load values.
The efficiency is the ratio between the output power and the power supply:
πV PEAK
P out
- = -------------------η = -----------------P supply
2V CC
The maximum theoretical value is reached when VPEAK = VCC/2, so
π
η = --- = 78.5%
4
4.3.2
Phantom ground output configuration (modes 3, 4):
The average current delivered by the supply voltage is:
π
Icc AVG
2V PEAK
1 V PEAK
= --- ∫ ----------------sin ( t ) dt = --------------------(A)
π
RL
πR L
0
Figure 127. Current delivered by supply voltage in the phantom ground output
configuration
The power delivered by supply voltage is:
P supply = V C CI CC
AV G
(W)
Then, the power dissipation by each amplifier is
⎛ 2 2V CC
⎞
P out⎟ – P out ( W )
P diss = ⎜ ---------------------⎝ π RL
⎠
and the maximum value is obtained when:
∂P diss
∂ P out
= 0
and its value is:
2
P diss
Note:
MA X
2V C C
= --------------(W)
2
π RL
This maximum value depends only on the power supply voltage and load values.
38/51
TS4956
Application information
The efficiency is the ratio between the output power and the power supply:
P out
πV PEAK
η = ------------------ = -------------------P supply
4V CC
The maximum theoretical value is reached when VPEAK = VCC/2, so
π
η = --- = 39.25%
8
The TS4956 has in modes 3 and 4 two active output power amplifiers. Each amplifier
produces heat due to its power dissipation. Therefore the maximum die temperature is the
sum of each amplifier’s maximum power dissipation. It is calculated as follows:
Pdiss 1 = power dissipation due to the first power amplifier.
Pdiss 2 = power dissipation due to the second power amplifier.
Total Pdiss = Pdiss 1 + Pdiss 2 (W)
In most cases, Pdiss 1 = Pdiss 2, giving:
TotalP diss = 2P diss1
4 2V C C
TotalPdiss = ---------------------P out – 2P out ( W )
π RL
4.3.3
BTL output configuration (modes 1, 2, 7):
The average current delivered by the supply voltage is:
π
Icc AVG
2V PEAK
1 V PEAK
= --- ∫ ----------------sin ( t ) dt = --------------------(A)
π
RL
πR L
0
Figure 128. Current delivered by supply voltage in the BTL output configuration
The power delivered by supply voltage is:
P supply = V C CI CC
AV G
(W)
Then, the power dissipation by each amplifier is
2 2V CC
P out – P out ( W )
P diss = ---------------------π RL
39/51
TS4956
Application information
and the maximum value is obtained when:
∂P diss
∂ P out
= 0
and its value is:
2
P diss
Note:
MA X
2V C C
= --------------(W)
2
π RL
This maximum value depends only on power supply voltage and load values.
The efficiency is the ratio between the output power and the power supply:
P out
πV PEAK
η = ------------------ = -------------------P supply
4V CC
The maximum theoretical value is reached when VPEAK = VCC, so
π
η = --- = 78.5%
4
The TS4956 has one active output BTL power amplifier when in modes 1 and 2. In mode 7,
the TS49656 has two active output BTL power amplifiers.
Each amplifier produces heat due to its power dissipation. Therefore the maximum die
temperature is the sum of each amplifier’s maximum power dissipation. It is calculated as
follows:
●
Pdiss 1 = power dissipation due to the first BTL power amplifier.
●
Pdiss 2 = power dissipation due to the second BTL power amplifier.
●
Total Pdiss = Pdiss 1 + Pdiss 2 (W)
In most cases, Pdiss 1 = P diss 2, giving:
TotalP diss = 2P diss1
4 2V C C
TotalPdiss = ---------------------P out – 2P out (W)
π RL
40/51
TS4956
Application information
4.4
Low frequency response
4.4.1
Input capacitor Cin
The input coupling capacitor blocks the DC part of the input signal at the amplifier input. In
the low-frequency region, C in starts to have an effect. Cin with Zin forms a first-order, highpass filter with -3 dB cut-off frequency.
1
F C L = ------------------------ (Hz)
2πZ in C in
Zin is the input impedance of the corresponding input.
Note:
For all inputs, the impedance value remains constant for all gain settings. This means that
the lower cut-off frequency doesn’t change with the gain setting. Note also that 30 k Ω is a
typical value and there is tolerance around this value. Using Figure 129 you can easily
establish the Cin value required for a -3dB cut-off frequency.
Figure 129. 3dB lower cut off frequency vs. input capacitance
100
Low -3dB Cut Off Frequency (Hz)
All gain setting
Tamb=25 °C
Minimum Input
Impedance
10
Typical Input
Impedance
Maximum Input
Impedance
0.1
1
Input Capacitor Cin ( µF)
4.4.2
Output capacitor Cout
In the single-ended configuration an external output coupling capacitor, C out, is needed.
This coupling capacitor C out, together with the output load RL, forms a first-order high-pass
filter with -3 dB cut off frequency.
1
F CL = -------------------------- ( Hz )
2πR L C out
See Figure 130 to establish the Cout value for a -3dB cut-off frequency required.
These two first-order filters form a second-order high-pass filter. The -3 dB cut-off frequency
of these two filters should be the same, so the following formula should be respected:
1
1
------------------------ ≅ -------------------------2πZ in C in 2πR L C out
41/51
TS4956
Application information
Figure 130. 3dB lower cut off frequency vs. output capacitance
Low -3 dB Cut Off frequency (Hz)
100
All gain setting
Tamb = 25 °C
10
RL=16 Ω
RL=32Ω
1
100
1000
Output capacitor Cout ( µ F)
4.5
Single-ended input configuration in modes 1, 3 and 5
It is possible to use the differential inputs MIP and MIN of the TS4956 as one single-ended
input in modes where the differential inputs are active (modes 1, 3 and 5).
The schematic in Figure 131 shows this configuration.
Figure 131. Single-ended input in modes 1, 3 and 5 for a typical application
Vcc
A
A
+
TS4956
Cs2
1µF
100nF
C3 Vcc
C5 Vcc
B
Cs1
B
MODE3: GxMIP
LHP Amplifier
Cin1
A1
MIP
+
330nF
Stereo
Input Left
LHP
B6
PHG
A7
16/32 Ohms
PHG Amplifier
Cin2
C
A2
MIN
+
330nF
Stereo
Input Right
RHP Amplifier
Mode
Select
B4
LIN
Stereo
Input Left
RHP
RIN
16/32 Ohms
D6
Speaker Amplifier
B2
MODE1: GxMIP
SRP+
D
A5
C
MODE3: GxMIP
SRN-
Stereo
Input Right
8 Ohms
D
D2
MODE5: GxMIP
MLO Amplifier
MLO
E7
Cout+
220µF
Bias
E
16/32 Ohms
E
GND C7
GND C1
E3
SDA E5
I2CVCC
SCL E1
BYPASS
Digital volume
control
I2C
R1
1k
D4
Cb
I2CVCC
+
SCL
1µF
F
SDA
I2C BUS
F
42/51
TS4956
4.6
Application information
Decoupling of the circuit
Two capacitors are needed to properly bypass the TS4956 — a power supply capacitor Cs
and a bias voltage bypass capacitor C b.
Cs has a strong influence on the THD+N at high frequencies (above 7 kHz) and indirectly on
the power supply disturbances.
With a C s value of about 1 µF, you can expect to obtain THD+N performances similar to
those shown in the datasheet.
If C s is lower than 1 µF, THD+N increases in high frequency and disturbances on power
supply rail are less filtered.
On the contrary, if Cs is higher than 1 µF, disturbances on the power supply rail are more
filtered.
Cb has an influence on THD+N at lower frequencies, but its value has critical impact on the
final result of PSRR with inputs grounded at lower frequencies:
●
If Cb is lower than 1 µF, THD+N increases at lower frequencies and the PSRR
worsens upwards.
●
If Cb is higher than 1 µF, the benefit on THD+N and PSRR in the lower
frequency range is small.
The value of C b also has an influence on startup time.
4.7
Power On Reset
When power is applied to VCC, an internal Power On Reset holds the TS4956 in a reset
state (shutdown) until the supply voltage reaches its nominal value. The Power On Reset
has a typical threshold of 1.75 V.
During this reset state the output configuration is the same as in the shutdown mode.
43/51
TS4956
Application information
4.8
Notes on PSRR measurements
4.8.1
What is PSRR?
The PSRR is the Power Supply Rejection Ratio. The PSRR of a device is the ratio between
a power supply disturbance and the result on the output. In other words, the PSRR is the
ability of a device to minimize the impact of power supply disturbance to the output.
4.8.2
How we measure the PSRR?
The PSRR was measured with the TS4956 in the configuration shown in the schematic in
Figure 132
Figure 132. Configuration schematic of TS4956 for PSRR measurement
A
A
Vripple
Vcc
C3
C5
TS4956
Diff. input +
10 Ohms
B
Vcc
Vcc
B
LHP Amplifier
Cin1
A1
MIP
Stereo
Input Left
A2
MIN
Stereo
Input Right
+
330nF
LHP
B6
PHG
A7
MODE7
RL
16 Ohms
PHG Amplifier
Cin2
C
10 Ohms
+
330nF
Diff. input -
RHP Amplifier
Mode
Select
SE input left
Cin3
10 Ohms
+
330nF
B4
LIN
Stereo
Input Left
10 Ohms
+
330nF
A5
RIN
RHP
D6
B2
SRP+
SRN-
Stereo
Input Right
RL
8 Ohms
D2
MLO
E7
Cout+
220µF
Bias
Digital volume
control
I2C
RL
16 Ohms
E
GND C7
GND C1
E3
D4
Cb
SDA E5
I2CVCC
SCL E1
BYPASS
D
MLO Amplifier
SE input right
E
C
Speaker Amplifier
D
Cin4
RL
8 Ohms
RL
16 Ohms
I2CVCC
+
SCL
1µF
SDA
F
I2C BUS
F
Main operating principles of TS4956 for purposes of PSRR measurement:
●
The DC voltage supply (VCC) is fixed
●
The AC sinusoidal ripple voltage (Vripple) is fixed
●
No bypass capacitor Cs is used
The PSRR value for each frequency is calculated as:
RMS ( Out put )
( dB )
PSRR = 20Log ---------------------------------RMS ( Vripple )
RMS is a rms selective measurement.
44/51
TS4956
4.9
Application information
Pop and click performance
The TS4956 has internal pop and click reduction circuitry which eliminates the output
transients, such as for example during switch-on or switch-off phases, or during a switch
from one output mode to another, or when changing the volume. The performance of this
circuitry is closely linked to the values of the input capacitor Cin, the output capacitor C out
(for single-ended configuration) and the bias voltage bypass capacitor C b.
The values of C in and Cout are determined by the lower cut-off frequency value requested.
The value of C b will affect the THD+N and PSRR values in lower frequencies.
The TS4956 is optimized to have low pop and click in the typical schematic configurations
(see Figure 1 on page 3 and Figure 2 on page 4).
4.10
Thermal shutdown
The TS4956 device has internal thermal shutdown protection in the event of extreme
temperatures. Thermal shutdown is active when the device reaches temperature 150°C.
45/51
TS4956
4.11
Application information
Evaluation board
An evaluation board for the TS4956 is available.
For more information about this evaluation board, please refer to the Application Note,
which can be found on www.st.com.
Figure 133. Schematic of the evaluation board available for the TS4956Figure 133.
I2CVCC
Vcc
Vcc
Cn5
Cn2
Cn1
3
2
1
I2C SUPPLY
TS4956 POWER SUPPLY
+
7
LHP Amplifier
Stereo
Input Left
MIP
+
330nF
4
3
2
1
Vcc
Vcc
Cin1
JP1
Cs2
100nF
8
17
TS4956
Diff. input +
Cs1
1µF
LHP
1
PHONEJACK STEREO
1
JP6
PHG Amplifier
Cin2
5
Diff. input -
Stereo
Input Right
MIN
+
330nF
PHG
2
3
1
2
3
2
J2
RHP Amplifier
Mode
Select
SE input left
Cin3
4
1
2
LIN
RHP
Stereo
Input Left
+
330nF
6
Cin4
3
SRN-
Stereo
Input Right
RIN
+
330nF
JP4
1
2
SRP+
JP2
1
2
15
Speaker Amplifier
10
MLO Amplifier
MLO
JP3
C2
+
16
SE input right
220µF
JP5
1
2
R7
1K
Bias
Digital volume
control
I2C
GND 18
12
13
+
C1
1µF
GND 9
I2CVCC
SDA 14
SCL 11
BYPASS
I2CVCC
Cn3
Cn4
I2CVCC I2CVCC
R5
10K
R6
10K
I2CVCC
SCL
SDA
R4
180R
SDA
16
1A
1
15
SDA
I2C BUS
SDA
T1
BS170
2
KP1040
J1
5
9
4
8
3
7
2
6
1
DB9
SCL
SCL
GND
DTR
GND2
TXD
RTS
R2
1K
DSR
D1
3
1N4148
1B
4
14
13
KP1040
R1
2k2
GND2
R3
1K
D2
5
1N4148
1C
6
12
11
KP1040
GND2
46/51
TS4956
5
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
5.1
18-bump flip-chip package
2500 µm
2400 µm
750µm
Die size: 2.5x2.4 mm ± 30µm
Die height (including bumps): 600µm
Bumps diameter: 315µm ±50µm
Bump diameter before reflow: 300µm ±10µm
Bumps height: 250µm ±40µm
Die height: 350µm ±20µm
Pitch: 500µm ±50µm
Coplanarity: 50µm max
500µm
866µm
866µm
600 µm
Figure 134. Footprint recommendations
47/51
TS4956
Package mechanical data
Figure 135. Pin out (top view)
PGH
6
5
RHP
LHP-
4
3
SDA
BYPASS
LIN
I2CVCC
VCC
MIN
SRP
SRP+
2
1
56 X
YWW
LHP
RHP+
VCC
RIN
E
MLO
GND
MIP
A
GND
B
Markings are:
– ST logo
– First two letters give part number code:56
– Third letter gives assembly plant code: X
– Three digit date code: YWW
– Lead-free EcoPack symbol: E
– The dot marks pin A1
SRN
SRN-
SCL
C
D
E
Figure 137. Tape & reel schematic (top view)
1.5
4
1
1
A
Die size Y + 70µm
7
Figure 136. Marking (top view)
8
A
Die size X + 70µm
4
All dimensions are in mm
User direction of feed
Device orientation
The devices are oriented in the carrier pocket with pin number 1A adjacent to the sprocket
holes.
48/51
TS4956
5.2
Package mechanical data
Daisy chain sample
The daisy chain sample features pins connected two by two. The schematic in Figure 138
illustrates the way that the pins are connected to each other. This sample is used for testing
continuity on board. Your PCB needs to be designed the opposite way, so that pins that are
unconnected in the daisy chain sample, are connected on your PCB. If you do this, by
simply connecting a Ohmmeter between pin A1 and pin A3, the soldering process continuity
can be tested.
Figure 138. Top view of daisy chain sample
2.5 mm
7
6
5
2.2 mm
4
3
2
1
A
Table 14.
C
D
E
Order code for daisy chain sample
Part Number
TSDC02JT
B
Temperature Range
Package
Marking
-40, +85°C
Flip-Chip18
DC2
49/51
TS4956
6
Revision history
Revision history
Table 15.
Document revision history
Date
Revision
Changes
Nov. 2005
1
First release corresponding to the preliminary data version.
Dec. 2005
2
cancellation the back coating sale type.
May 2006
3
Final datasheet.
50/51
TS4956
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
51/51