WINBOND W6811IE

W6811
SINGLE-CHANNEL VOICEBAND CODEC
(5V Analog, 3V Digital)
Preliminary Data Sheet
-1-
Publication Release Date: October 23, 2003
Revision A10
W6811
1. GENERAL DESCRIPTION
The W6811 is a general-purpose single channel PCM CODEC with pin-selectable µ-Law or A-Law
companding. The device is compliant with the ITU G.712 specification. It operates off of a separated
analog (5V) and digital (3V) power supplies and is available in 24-pin PDIP, SOG, SSOP, and TSSOP
package options. Functions performed include digitization and reconstruction of voice signals, and
band limiting and smoothing filters required for PCM systems. The filters are compliant with ITU G.712
specification. W6811 performance is specified over the industrial temperature range of –40°C to
+85°C.
The W6811 includes an on-chip precision voltage reference and an additional power amplifier,
capable of driving 300Ω loads differentially up to a level of 6.3V peak-to-peak. The analog section is
fully differential, reducing noise and improving the power supply rejection ratio. The data transfer
protocol supports both long-frame and short-frame synchronous communications for PCM
applications, and IDL and GCI communications for ISDN applications. W6811 accepts seven master
clock rates between 256 kHz and 4.096 MHz, and an on-chip pre-scaler automatically determines the
division ratio for the required internal clock.
2. FEATURES
APPLICATIONS
•
•
Digital Telephone Systems
•
Central Office Equipment
Switches, Routers)
•
PBX Systems (Gateways, Switches)
•
PABX/SOHO Systems
Power supply:
Analog 4.5 – 5.5V
Digital 2.7 – 3.3V
•
Typical power dissipation of 25 mW,
power-down mode of 0.5 µW
•
Fully-differential analog circuit design
•
Local Loop card
•
On-chip precision reference of 1.575 V for
a 0 dBm TLP at 600 Ω
•
SOHO Routers
•
•
VoIP Terminals
Push-pull power amplifiers with external
gain adjustment with 300 Ω load capability
•
Enterprise Phones
•
Seven master clock rates of 256 kHz to
4.096 MHz
•
ISDN Terminals
•
Analog line cards
•
Pin-selectable
µ-Law
and
A-Law
companding (compliant with ITU G.711)
•
Digital Voice Recorders
•
CODEC A/D and D/A filtering compliant
with ITU G.712
•
Industrial temperature range (–40°C to
+85°C)
•
Four packages: 24-pin PDIP, SOG, SSOP,
and TSSOP
-2-
(Gateways,
W6811
3. BLOCK DIAGRAM
Re
Int
PC
cei
erf
M
ve
ace
Receive
PCM
Interface
BCLKR
FSR
PCMR
G.712 CODEC
G.711 µ/A -Law
Tra Int
ns PC erf
mitM ace
Transmit
PCM
Interface
BCLKT
FST
PCMT
PAO+
PAOPAI
RO AO
AI+
AI-
µ/A-Law
V REF
512 kHz
256 kHz
Voltage reference
V AG
8 kHz
PUI
VDDD
-3-
VSSD
Power Conditioning
VDDA
256 kHz,
512 kHz,
1536 kHz,
1544 kHz,
2048 kHz,
2560 kHz
& 4096 kHz
Pre -scaler
Saler
VSSA
MCLK
Publication Release Date: October 23, 2003
Revision A10
W6811
4. TABLE OF CONTENTS
1. GENERAL DESCRIPTION ................................................................................................................. 2
2. FEATURES ......................................................................................................................................... 2
3. BLOCK DIAGRAM .............................................................................................................................. 3
4. TABLE OF CONTENTS ...................................................................................................................... 4
5. PIN CONFIGURATION ....................................................................................................................... 6
6. PIN DESCRIPTION ............................................................................................................................. 7
7. FUNCTIONAL DESCRIPTION............................................................................................................ 9
7.1. Transmit Path............................................................................................................................. 9
7.2. Receive Path............................................................................................................................ 10
7.3. Power Management................................................................................................................. 11
7.3.1. Analog Supply ................................................................................................................ 11
7.3.2. Digital Supply ................................................................................................................. 11
7.3.3. Analog Ground Reference Bypass................................................................................. 11
7.3.4. Analog Ground Reference Voltage Output .................................................................... 11
7.4. PCM Interface .......................................................................................................................... 11
7.4.1. Long Frame Sync ........................................................................................................... 12
7.4.2. Short Frame Sync .......................................................................................................... 12
7.4.3. GCI Interface .................................................................................................................. 12
7.4.4. IDL Interface................................................................................................................... 13
7.4.5. System Timing................................................................................................................ 13
8. TIMING DIAGRAMS.......................................................................................................................... 14
9. ABSOLUTE MAXIMUM RATINGS.................................................................................................... 21
9.1. Absolute Maximum Ratings ................................................................................................... 21
9.2. Operating Conditions ............................................................................................................. 21
10. ELECTRICAL CHARACTERISTICS ............................................................................................... 22
10.1. General Parameters .............................................................................................................. 22
10.2. Analog Signal Level and Gain Parameters............................................................................ 23
10.3. Analog Distortion and Noise Parameters .............................................................................. 24
10.4. Analog Input and Output Amplifier Parameters ..................................................................... 25
10.5. Digital I/O ............................................................................................................................... 27
10.5.1. µ-Law Encode Decode Characteristics........................................................................ 27
10.5.2. A-Law Encode Decode Characteristics ....................................................................... 28
10.5.3. PCM Codes for Zero and Full Scale ............................................................................ 29
10.5.4. PCM Codes for 0dBm0 Output .................................................................................... 29
11. TYPICAL APPLICATION CIRCUIT ................................................................................................. 30
-4-
W6811
12. PACKAGE SPECIFICATION .......................................................................................................... 32
12.1. 24L TSSOP – 4.4X7.8mm ..................................................................................................... 32
12.2. 24L SOP – 300mil.................................................................................................................. 33
12.3. 24L SSOP – 209mil ............................................................................................................... 34
12.4. 24L PDIP – 300 mil ................................................................................................................ 35
13. ORDERING INFORMATION........................................................................................................... 36
14. VERSION HISTORY ....................................................................................................................... 37
-5-
Publication Release Date: October 23, 2003
Revision A10
W6811
5. PIN CONFIGURATION
VREF
1 VREF
24
V
AG
VAG
RO -
2 RO-
AI+ 23
23
AI+
PAI
3 PAI
AI
22-
AI-
PAO -
4 PAO -
AO
PAO+
VDDA
5 PAO+
AO 21
/A 20
µ
6 VDDA
V
19
SSA
VSSA
NC
VDDD
7 NC
8 VDDD
NC 18
V
17
SSD
NC
VSSD
FSR
9 FSR
PCMI
PCMR
10 PCMI
BCLKR
11 BCLKR
PUI
12 PUI
µ/A-Law
FSX 16
16
PCMO 15
FST
PCMT
BCLKT 14
BCLKT
MCLK 13
MCLK
PDIP/SOP/SSOP/TSSOP
-6-
W6811
6. PIN DESCRIPTION
Pin
Name
Pin
No.
VDD*
Functionality
VREF
1
A
This pin is used to bypass the on-chip 2.5V voltage reference. It needs to be
decoupled to VSSA through a 0.1 µF ceramic decoupling capacitor. No
external loads should be tied to this pin.
RO-
2
A
Inverting output of the receive smoothing filter. This pin can typically drive a 2
kΩ load to 1.575 volt peak referenced to the analog ground level.
PAI
3
A
This pin is the inverting input to the power amplifier. Its DC level is at the VAG
voltage.
PAO-
4
A
Inverting power amplifier output. This pin can drive a 300 Ω load to 1.575 volt
peak referenced to the VAG voltage level.
PAO+
5
A
Non-inverting power amplifier output. This pin can drive a 300 Ω load to 1.575
Volt peak referenced to the VAG voltage level.
VDDA
6
A
Analog power supply. This pin should be decoupled to VSSA with a 0.1µF
ceramic capacitor.
NC
7
VDDD
8
D
Digital power supply. This pin should be decoupled to VSSD with a 0.1µF
ceramic capacitor. For correct operation, VDDD value should always be lower
then VDDA.
FSR
9
D
8 kHz Frame Sync input for the PCM receive section. This pin also selects
channel 0 or channel 1 in the GCI and IDL modes. It can also be connected
to the FST pin when transmit and receive are synchronous operations.
PCMR
10
D
PCM input data receive pin. The data needs to be synchronous with the FSR
and BCLKR pins.
BCLKR
11
D
PCM receive bit clock input pin. This pin also selects the interface mode. The
GCI mode is selected when this pin is tied to VSSD. The IDL mode is selected
when this pin is tied to VDDD. This pin can also be tied to the BCLKT when
transmit and receive are synchronous operations.
PUI
12
D
Power up input signal. When this pin is tied to VDDD, the part is powered up.
When tied to VSSD, the part is powered down.
MCLK
13
D
System master clock input. Possible input frequencies are 256 kHz, 512 kHz,
1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz & 4096 kHz. For a better
performance, it is recommended to have the MCLK signal synchronous and
aligned to the FST signal. This is a requirement in the case of 256 and 512
kHz frequency.
BCLKT
14
D
PCM transmit bit clock input pin.
PCMT
15
D
PCM output data transmit pin. The output data is synchronous with the FST
and BCLKT pins.
FST
16
D
8 kHz transmit frame sync input. This pin synchronizes the transmit data
bytes.
Not Connected
-7-
Publication Release Date: October 23, 2003
Revision A10
W6811
Pin
Name
Pin
No.
VDD*
Functionality
VSSD
17
D
This is the digital supply ground. This pin should be connected to 0V.
NC
18
VSSA
19
A
This is the analog supply ground. This pin should be connected to 0V.
µ/A-Law
20
D
Compander mode select pin. µ-Law companding is selected when this pin is
tied to VDDD. A-Law companding is selected when this pin is tied to VSSD.
AO
21
A
Analog output of the first gain stage in the transmit path.
AI-
22
A
Inverting input of the first gain stage in the transmit path.
AI+
23
A
Non-inverting input of the first gain stage in the transmit path.
VAG
24
A
Mid-Supply analog ground pin, which supplies a 2.5 Volt reference voltage for
all-analog signal processing. This pin should be decoupled to VSSA with a
0.01µF capacitor. This pin becomes high impedance when the chip is
powered down.
Not Connected
* These columns represent whether the pin Is driven by Analog (‘A’) or Digital (‘D’) power supply.
-8-
W6811
7. FUNCTIONAL DESCRIPTION
W6811 is a single-rail, single channel PCM CODEC for voiceband applications. The CODEC complies
with the specifications of the ITU-T G.712 recommendation. The CODEC also includes a complete µLaw and A-Law compander. The µ-Law and A-Law companders are designed to comply with the
specifications of the ITU-T G.711 recommendation.
The block diagram in section 3 shows the main components of the W6811. The chip consists of a
PCM interface, which can process long and short frame sync formats, as well as GCI and IDL formats.
The pre-scaler of the chip provides the internal clock signals and synchronizes the CODEC sample
rate with the external frame sync frequency. The power conditioning block provides the internal power
supply for the digital and the analog section, while the voltage reference block provides a precision
analog ground voltage for the analog signal processing. The main CODEC block diagram is shown in
section 3.
VA
VAG
G
+
Receive Path
-
PAO+
+
PAO PAI
8
µ/Aµ/ACont
Control
ol
+
D/A
Converter
w
fC= 3400Hz
H
Smoot
Smoothing
n Filter
1
RO -
Smoothing
Smoot
nFilter
2
Transmit Path
AO
8
A/D
Converter
µ/A µ/A- Control
Cont
++
ffCC =
= 200Hz
200
High
H Pass
High
Filt
Filter
Pas
fC== 3400Hz
AntH-Aliasi
Aliasing
Ant
i Filter
n
AI+
AI -
Ant-Aliasi
Ant-Aliasing
Filter
Figure 7.1 The W6811 Signal Path
7.1. TRANSMIT PATH
The A-to-D path of the CODEC contains an analog input amplifier with externally configurable gain
setting (see application examples in section 11). The device has an input operational amplifier whose
output is the input to the encoder section. If the input amplifier is not required for operation it can be
powered down and bypassed. In that case a single ended input signal can be applied to the AO pin or
the AI- pin. The AO pin becomes high input impedance when the input amplifier is powered down. The
input amplifier can be powered down by connecting the AI+ pin to VDDA or VSSA. The AO pin is
selected as an input when AI+ is tied to VDDA and the AI- pin is selected as an input when AI+ is tied to
VSSA (see Table 7.1).
-9-
Publication Release Date: October 23, 2003
Revision A10
W6811
AI+
Input Amplifier
Input
VDDA
Powered Down
AO
1.2 to VDDA-1.2
Powered Up
AI+, AI-
VSSA
Powered Down
AI-
Table 7.1 Input Amplifier Modes of operation
When the input amplifier is powered down, the input signal at AO or AI- needs to be referenced to the
analog ground voltage VAG.
The output of the input amplifier is fed through a low-pass filter to prevent aliasing at the switched
capacitor 3.4 kHz low pass filter. The 3.4 kHz switched capacitor low pass filter prevents aliasing of
input signals above 4 kHz, due to the sampling at 8 kHz. The output of the 3.4 kHz low pass filter is
filtered by a high pass filter with a 200 Hz cut-off frequency. The filters are designed according to the
recommendations in the G.712 ITU-T specification. From the output of the high pass filter the signal is
digitized. The signal is converted into a compressed 8-bit digital representation with either µ-Law or ALaw format. The µ-Law or A-Law format is pin-selectable through the µ/A-Law pin. The compression
format can be selected according to Table 7.2.
µ/A-Law Pin
Format
VSSA
A-Law
VDDA
µ-Law
Table 7.2. Pin-selectable Compression Format
The digital 8-bit µ-Law or A-Law samples are fed to the PCM interface for serial transmission at the
sample rate supplied by the external frame sync FST.
7.2. RECEIVE PATH
The 8-bit digital input samples for the D-to-A path are serially shifted in by the PCM interface and
converted to parallel data bits. During every cycle of the frame sync FSR, the parallel data bits are fed
through the pin-selectable µ-Law or A-Law expander and converted to analog samples. The mode of
expansion is selected by the µ/A-Law pin as shown in Table 7.2. The analog samples are filtered by a
low-pass smoothing filter with a 3.4 kHz cut-off frequency, according to the ITU-T G.712 specification.
A sin(x)/x compensation is integrated with the low pass smoothing filter. The output of this filter is
buffered to provide the receive output signal RO-. The RO- output can be externally connected to the
PAI pin to provide a differential output with high driving capability at the PAO+ and PAO- pins. By
using external resistors (see section 11 for examples), various gain settings of this output amplifier
can be achieved. If the transmit power amplifier is not in use, it can be powered down by connecting
PAI to VDDA.
- 10 -
W6811
7.3. POWER MANAGEMENT
7.3.1. Analog Supply
The power supply for the analog part of the W6811 needs to be 5V +/- 10%. This supply voltage is
connected to the VDDA pin. The VDDA pin needs to be decoupled to ground through a 0.1 µF ceramic
capacitor.
7.3.2. Digital Supply
The power supply for the digital part of the W6811 needs to be 3V +/- 10%. This supply voltage is
connected to the VDDD pin. The VDDD pin needs to be decoupled to ground through a 0.1 µF ceramic
capacitor.
7.3.3. Analog Ground Reference Bypass
The system has an internal precision voltage reference which generates the 2.5V mid-supply analog
ground voltage. This voltage needs to be decoupled to VSSA at the VREF pin through a 0.1 µF ceramic
capacitor.
7.3.4. Analog Ground Reference Voltage Output
The analog ground reference voltage is available for external reference at the VAG pin. This voltage
needs to be decoupled to VSSA through a 0.01 µF ceramic capacitor. The analog ground reference
voltage is generated from the voltage on the VREF pin and is also used for the internal signal
processing.
7.4. PCM INTERFACE
The PCM interface is controlled by pins BCLKR, FSR, BCLKT & FST. The input data is received
through the PCMR pin and the output data is transmitted through the PCMT pin. The modes of
operation of the interface are shown in Table 7.3.
BCLKR
FSR
Interface Mode
8 kHz
Long or Short Frame Sync
VSSD
VSSD
ISDN GCI with active channel B1
VSSD
VDDD
ISDN GCI with active channel B2
VDDD
VSSD
ISDN IDL with active channel B1
VDDD
VDDD
ISDN IDL with active channel B2
64 kHz
MHz
to
4.096
Table 7.3 PCM Interface mode selections
- 11 -
Publication Release Date: October 23, 2003
Revision A10
W6811
7.4.1. Long Frame Sync
The Long Frame Sync or Short Frame Sync interface mode can be selected by connecting the
BCLKR or BCLKT pin to a 64 kHz to 4.096 MHz clock and connecting the FSR or FST pin to the 8
kHz frame sync. The device synchronizes the data word for the PCM interface and the CODEC
sample rate on the positive edge of the Frame Sync signal. It recognizes a Long Frame Sync when
the FST pin is held high for two consecutive falling edges of the bit-clock at the BCLKT pin. The length
of the Frame Sync pulse can vary from frame to frame, as long as the positive frame sync edge
occurs every 125 µsec. During data transmission in the Long Frame Sync mode, the transmit data pin
PCMT will become low impedance when the Frame Sync signal FST is high or when the 8 bit data
word is being transmitted. The transmit data pin PCMT will become high impedance when the Frame
Sync signal FST becomes low while the data is transmitted or when half of the LSB is transmitted. The
internal decision logic will determine whether the next frame sync is a long or a short frame sync,
based on the previous frame sync pulse. To avoid bus collisions, the PCMT pin will be high
impedance for two frame sync cycles after every power down state. More detailed timing information
can be found in the interface timing section.
7.4.2. Short Frame Sync
The W6811 operates in the Short Frame Sync Mode when the Frame Sync signal at pin FST is high
for one and only one falling edge of the bit-clock at the BCLKT pin. On the following rising edge of the
bit-clock, the W6811 starts clocking out the data on the PCMT pin, which will also change from high to
low impedance state. The data transmit pin PCMT will go back to the high impedance state halfway
the LSB. The Short Frame Sync operation of the W6811 is based on an 8-bit data word. When
receiving data on the PCMR pin, the data is clocked in on the first falling edge after the falling edge
that coincides with the Frame Sync signal. The internal decision logic will determine whether the next
frame sync is a long or a short frame sync, based on the previous frame sync pulse. To avoid bus
collisions, the PCMT pin will be high impedance for two frame sync cycles after every power down
state. More detailed timing information can be found in the interface timing section.
7.4.3. General Circuit Interface (GCI)
The GCI interface mode is selected when the BCLKR pin is connected to VSSD for two or more frame
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The GCI interface
consists of 4 pins : FSC (FST), DCL (BCLKT), Dout (PCMT) & Din (PCMR). The FSR pin selects
channel B1 or B2 for transmit and receive. Data transitions occur on the positive edges of the data
clock DCL. The Frame Sync positive edge is aligned with the positive edge of the data clock DCLK.
The data rate is running half the speed of the bit-clock. The channels B1 and B2 are transmitted
consecutively. Therefore, channel B1 is transmitted on the first 16 clock cycles of DCL and B2 is
transmitted on the second 16 clock cycles of DCL. For more timing information, see the timing section.
- 12 -
W6811
7.4.4. Interchip Digital Link (IDL)
The IDL interface mode is selected when the BCLKR pin is connected to VDDD for two or more frame
sync cycles. It can be used as a 2B+D timing interface in an ISDN application. The IDL interface
consists of 4 pins : IDL SYNC (FST), IDL CLK (BCLKT), IDL TX (PCMT) & IDL RX (PCMR). The FSR
pin selects channel B1 or B2 for transmit and receive. The data for channel B1 is transmitted on the
first positive edge of the IDL CLK after the IDL SYNC pulse. The IDL SYNC pulse is one IDL CLK
cycle long. The data for channel B2 is transmitted on the eleventh positive edge of the IDL CLK after
the IDL SYNC pulse. The data for channel B1 is received on the first negative edge of the IDL CLK
after the IDL SYNC pulse. The data for channel B2 is received on the eleventh negative edge of the
IDL CLK after the IDL SYNC pulse. The transmit signal pin IDL TX becomes high impedance when
not used for data transmission and also in the time slot of the unused channel. For more timing
information, see the timing section.
7.4.5. System Timing
The system can work at 256 kHz, 512 kHz, 1536 kHz, 1544 kHz, 2048 kHz, 2560 kHz & 4096 kHz
master clock rates. The system clock is supplied through the master clock input MCLK and can be
derived from the bit-clock if desired. An internal pre-scaler is used to generate a fixed 256 kHz and 8
kHz sample clock for the internal CODEC. The pre-scaler measures the master clock frequency
versus the Frame Sync frequency and sets the division ratio accordingly. If the Frame Sync is low for
the entire frame sync period while the MCLK and BCLK pin clock signals are still present, the W6811
will enter the low power standby mode. Another way to power down is to set the PUI pin to low. When
the system needs to be powered up again, the PUI pin needs to be set to high and the Frame Sync
pulse needs to be present. It will take two Frame Sync cycles before the pin PCMT will become low
impedance.
- 13 -
Publication Release Date: October 23, 2003
Revision A10
W6811
8. TIMING DIAGRAMS
T FTR H M
T FTR SM
TM CK L
TM CK H
T R ISE
T FA LL
M C LK
TM CK
T FS
T FSL
FST
T FTR H
B C LK T
0
T FTR S
1
T FTFH
2
3
T FD TD
TBCK H
4
5
6
7
T B D TD
PC M T
D7
D6
8
T H ID
D5
D4
D3
D2
TBCK L
0
1
TBCK
T H ID
D1 D0
M SB
LSB
T FS
T FSL
FSR
T FR R H
B C LK R
0
T FR R S
1
T FR FH
2
3
TBCK H
4
5
6
7
8
TBCK L
0
TBCK
PC M R
D7
M SB
TD RS
D6
D5
D4
D3
D2
D1 D0
LSB
TD RH
Figure 8.1 Long Frame Sync PCM Timing
- 14 -
1
W6811
SYMBOL
DESCRIPTION
1/TFS
FST, FSR Frequency
1
MIN
TYP
MAX
UNIT
---
8
---
kHz
TFSL
FST / FSR Minimum Low Width
TBCK
sec
1/TBCK
BCLKT, BCLKR Frequency
64
---
4096
kHz
TBCKH
BCLKT, BCLKR High Pulse Width
50
---
---
ns
TBCKL
BCLKT, BCLKR Low Pulse Width
50
---
---
ns
TFTRH
BCLKT 0 Falling Edge to FST Rising
Edge Hold Time
20
---
---
ns
TFTRS
FST Rising Edge to BCLKT 1 Falling
edge Setup Time
80
---
---
ns
TFTFH
BCLKT 2 Falling Edge to FST Falling
Edge Hold Time
50
---
---
ns
TFDTD
FST Rising Edge to Valid PCMT Delay
Time
---
---
60
ns
TBDTD
BCLKT Rising Edge to Valid PCMT
Delay Time
---
---
60
ns
THID
Delay Time from the Later of FST
Falling Edge, or
10
---
60
ns
BCLKT 8 Falling Edge to PCMT Output
High Impedance
TFRRH
BCLKR 0 Falling Edge to FSR Rising
Edge Hold Time
20
---
---
ns
TFRRS
FSR Rising Edge to BCLKR 1 Falling
edge Setup Time
80
---
---
ns
TFRFH
BCLKR 2 Falling Edge to FSR Falling
Edge Hold Time
50
---
---
ns
TDRS
Valid PCMR to BCLKR Falling Edge
Setup Time
0
---
---
ns
TDRH
PCMR Hold Time from BCLKR Falling
Edge
50
---
---
ns
Table 8.1 Long Frame Sync PCM Timing Parameters
1
TFSL must be at least ≥ TBCK
- 15 -
Publication Release Date: October 23, 2003
Revision A10
W6811
T FTR H M
T FTR SM
TM CK L
TM CK H
T R ISE
T FA LL
M C LK
TM CK
T FS
T FTFH
T FTFS
FST
T FTR S
T FTR H
B C LK T
-1
0
TBCK H
1
2
3
T B D TD
PC M T
D7
4
5
6
7
0
8
T B D TD
D6
D5
D3
D2
1
TBCK
T H ID
D4
TBCK L
D1 D0
M SB
LSB
T FS
T FR FH
T FR FS
FSR
T FR R S
T FR R H
B C LK R
-1
0
TBCK H
1
2
3
4
5
6
7
8
TBCK L
0
TBCK
PC M R
D7
M SB
TD RS
D6
D5
D4
D3
D2
D1 D0
LSB
TD RH
Figure 8.2 Short Frame Sync PCM Timing
- 16 -
1
W6811
SYMBOL
DESCRIPTION
MIN
TYP
MAX
UNIT
1/TFS
FST, FSR Frequency
---
8
---
kHz
1/TBCK
BCLKT, BCLKR Frequency
64
---
4096
kHz
TBCKH
BCLKT, BCLKR High Pulse Width
50
---
---
ns
TBCKL
BCLKT, BCLKR Low Pulse Width
50
---
---
ns
TFTRH
BCLKT –1 Falling Edge to FST Rising Edge Hold
Time
20
---
---
ns
TFTRS
FST Rising Edge to BCLKT 0 Falling edge Setup
Time
80
---
---
ns
TFTFH
BCLKT 0 Falling Edge to FST Falling Edge Hold Time
50
---
---
ns
TFTFS
FST Falling Edge to BCLKT 1 Falling Edge Setup
Time
50
---
---
ns
TBDTD
BCLKT Rising Edge to Valid PCMT Delay Time
10
---
60
ns
THID
Delay Time from BCLKT 8 Falling Edge to PCMT
Output High Impedance
10
---
60
ns
TFRRH
BCLKR –1 Falling Edge to FSR Rising Edge Hold
Time
20
---
---
ns
TFRRS
FSR Rising Edge to BCLKR 0 Falling edge Setup
Time
80
---
---
ns
TFRFH
BCLKR 0 Falling Edge to FSR Falling Edge Hold Time
50
---
---
ns
TFRFS
FSR Falling Edge to BCLKR 1 Falling Edge Setup
Time
50
---
---
ns
TDRS
Valid PCMR to BCLKR Falling Edge Setup Time
0
---
---
ns
TDRH
PCMR Hold Time from BCLKR Falling Edge
50
---
---
ns
Table 8.2 Short Frame Sync PCM Timing Parameters
- 17 -
Publication Release Date: October 23, 2003
Revision A10
W6811
T FS
FST
T FSFH
T FSR S
T FSR H
B C LK T
-1
0
1
TBCK H
2
3
4
5
T B D TD
PC M T
6
8
9
10
T H ID
TBD TD
D7 D6 D5 D4 D3 D2 D1 D0
M SB
LSB
TD RS
PC M R
7
11
12
13
14
LSB
17
18
T H ID
TBD TD
D7 D6 D5 D4 D3 D2
D1 D0
LSB
M SB
TD RS
D7 D6 D5 D4 D3 D2 D1 D0
16
TBCK
T B D TD
TD RH
M SB
15
TBCK L
TD RH
D7 D6 D5 D4 D3 D2
D1 D0
M SB
LSB
BCH = 0
B 1 C hannel
BCH = 1
B 2 C hannel
Figure 8.3 IDL PCM Timing
SYMBOL
DESCRIPTION
MIN
TYP
MAX
UNIT
1/TFS
FST Frequency
---
8
---
kHz
1/TBCK
BCLKT Frequency
256
---
4096
kHz
TBCKH
BCLKT High Pulse Width
50
---
---
ns
TBCKL
BCLKT Low Pulse Width
50
---
---
ns
TFSRH
BCLKT –1 Falling Edge to FST Rising
Edge Hold Time
20
---
---
ns
TFSRS
FST Rising Edge to BCLKT 0 Falling edge
Setup Time
60
---
---
ns
TFSFH
BCLKT 0 Falling Edge to FST Falling Edge
Hold Time
20
---
---
ns
TBDTD
BCLKT Rising Edge to Valid PCMT Delay
Time
10
---
60
ns
THID
Delay Time from the BCLKT 8 Falling
Edge (B1 channel) or BCLKT 18 Falling
Edge (B2 Channel) to PCMT Output High
Impedance
10
---
50
ns
TDRS
Valid PCMR to BCLKT Falling Edge Setup
Time
20
---
---
ns
TDRH
PCMR Hold Time from BCLKT Falling
Edge
75
---
---
ns
Table 8.3 IDL PCM Timing Parameters
- 18 -
W6811
T FS
FST
T FSR H
T FSFH
T FSR S
TBCK H
TBCK L
B C LK T
0 1 2
3 4 5
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
T FD TD
PC M T
T B D TD
D7 D6 D5 D4 D3 D2 D1 D0
T B D TD
TD RS
D7 D6 D5 D4 D3 D2
D1 D0
LSB
TD RS
TD RH
TD RH
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2
M SB
T H ID
T B D TD T B C K
LSB M SB
M SB
PC M R
T H ID
D1 D0
LSB M SB
BCH = 0
B 1 C hannel
LSB
BCH = 1
B 2 C hannel
Figure 8.4 GCI PCM Timing
SYMBOL
DESCRIPTION
MIN
TYP
MAX
UNIT
1/TFST
FST Frequency
---
8
---
kHz
1/TBCK
BCLKT Frequency
512
---
6176
kHz
TBCKH
BCLKT High Pulse Width
50
---
---
ns
TBCKL
BCLKT Low Pulse Width
50
---
---
ns
TFSRH
BCLKT 0 Falling Edge to FST Rising Edge Hold
Time
20
---
---
ns
TFSRS
FST Rising Edge to BCLKT 1 Falling edge Setup
Time
60
---
---
ns
TFSFH
BCLKT 1 Falling Edge to FST Falling Edge Hold
Time
20
---
---
ns
TFDTD
FST Rising Edge to Valid PCMT Delay Time
---
---
60
ns
TBDTD
BCLKT Rising Edge to Valid PCMT Delay Time
---
---
60
ns
THID
Delay Time from the BCLKT 16 Falling Edge (B1
channel) or BCLKT 32 Falling Edge (B2 Channel) to
PCMT Output High Impedance
10
---
50
ns
TDRS
Valid PCMR to BCLKT Rising Edge Setup Time
20
---
---
ns
TDRH
PCMR Hold Time from BCLKT Rising Edge
---
---
60
ns
Table 8.4 GCI PCM Timing Parameters
- 19 -
Publication Release Date: October 23, 2003
Revision A10
W6811
SYMBOL
DESCRIPTION
MIN
1/TMCK
Master Clock Frequency
---
TYP
256
MAX
UNIT
---
kHz
512
1536
1544
2048
2560
4096
TMCKH / TMCK
MCLK Duty Cycle for 256 kHz Operation
45%
TMCKH
Minimum Pulse Width High for MCLK(512 kHz or
Higher)
50
---
---
ns
TMCKL
Minimum Pulse Width Low for MCLK (512 kHz or
Higher)
50
---
---
ns
TFTRHM
MCLK falling Edge to FST Rising Edge Hold
Time
50
---
---
ns
TFTRSM
FST Rising Edge to MCLK Falling edge Setup
Time
50
---
---
ns
TRISE
Rise Time for All Digital Signals
---
---
50
ns
TFALL
Fall Time for All Digital Signals
---
---
50
ns
Table 8.5 General PCM Timing Parameters
- 20 -
55%
W6811
9. ABSOLUTE MAXIMUM RATINGS
9.1. ABSOLUTE MAXIMUM RATINGS
Condition
Value
Junction temperature
1500C
Storage temperature range
-650C to +1500C
Voltage Applied to any pin
Voltage applied to any pin
(Input current limited to +/-20 mA)
Lead temperature (soldering
(VSSA - 0.3V) to (VDDA + 0.3V)
Digital
(VSSD - 0.3V) to (VDDD + 0.3V)
Analog
(VSSA – 1.0V) to (VDDA + 1.0V)
Digital
(VSSD – 1.0V) to (VDDD + 1.0V)
3000C
– 10 seconds)
VDDA - VSSA ; VDDD - VSSD
VDDD –
Analog
-0.5V to +6V
VDDA2
< 0.3V
1. Stresses above those listed may cause permanent damage to the device. Exposure to the absolute
maximum ratings may affect device reliability. Functional operation is not implied at these conditions.
2. At any time, the digital power supply should not be higher the 0.3V from the analog power supply.
9.2. OPERATING CONDITIONS
Condition
Value
0
0
Industrial operating temperature
-40 C to +85 C
Analog supply voltage (VDDA)
+4.5V to +5.5V
Digital supply voltage (VDDD)
+2.7V to +3.3V
Ground voltage (VSSA, VSSD)
0V
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely
affect the life and reliability of the device.
- 21 -
Publication Release Date: October 23, 2003
Revision A10
W6811
10. ELECTRICAL CHARACTERISTICS
10.1. GENERAL PARAMETERS
Typ (1)
Max (2)
Units
0.5
V
Parameters
VIL
Input Low Voltage
VIH
Input High Voltage
VOL
PCMT Output Low Voltage
IOL = 1.6 mA
VOH
PCMT Output High Voltage
IOL = -1.6 mA
IDDA
VDDA Current (Operating) -ADC+DAC
PUI = 1
5.5
8
mA
FSX running MCLK
running
25
1000
µA
PUI = 1
200
500
nA
FSX = 0 MCLK running
0.2
100
µA
IDDD
ISBA
VCCA Current (Standby)
ISBD
Conditions
Min (2)
Symbol
2.2
V
0.4
VDDD – 0.5
V
V
IPDA
VCCA Current (Power Down)
PUI = 0
200
500
nA
IPDD
VCCD Current (Power Down)
PUI = 0
200
500
nA
IIL
Input Leakage Current
VSSD<VIN<VDDD
+/-10
µA
IOL
PCMT Output Leakage Current
VSSA<PCMT<VDDA
+/-10
µA
10
pF
15
pF
High Z State
CIN
Digital Input Capacitance
COUT
PCMT Output Capacitance
PCMT High Z
1. Typical values: TA = 25°C , VDDA = 5.0 V, VDDD = 3.0 V
2. All min/max limits are guaranteed by Winbond via electrical testing or characterization. Not all
specifications are 100 percent tested.
- 22 -
W6811
10.2. ANALOG SIGNAL LEVEL AND GAIN PARAMETERS
VDDA=5V ±10%; VSSA=0V; TA=-40°C to +85°C; all analog signals referred to VAG;
PARAMETER
SYM.
CONDITION
TYP.
TRANSMIT
(A/D)
MIN.
RECEIVE
(D/A)
MAX.
MIN.
MAX.
UNIT
Absolute
Level
LABS
0 dBm0 = 0dBm @ 600Ω
1.096
---
---
---
---
VPK
Max. Transmit
Level
TXMAX
3.17 dBm0 for µ-Law
1.579
---
---
---
---
VPK
3.14 dBm0 for A-Law
1.573
---
---
---
---
VPK
Absolute Gain
(0 dBm0 @
1020 Hz;
TA=+25°C)
GABS
0 dBm0 @ 1020 Hz;
TA=+25°C
0
-0.25
+0.25
-0.25
+0.2
5
dB
Absolute Gain
variation with
Temperature
GABS
TA=0°C to TA=+70°C
0
-0.03
+0.03
-0.03
dB
T
TA=-40°C to TA=+85°C
-0.05
+0.05
-0.05
+0.0
3
Frequency
Response,
GRTV
Relative to
0dBm0 @
1020 Hz
+0.0
5
15 Hz
---
---
-40
-0.5
0
50 Hz
---
---
-30
-0.5
0
60 Hz
---
---
-26
-0.5
0
200 Hz
---
-1.0
-0.4
-0.5
0
300 to 3000 Hz
---
-0.20
+0.15
-0.20
3300 Hz
---
-0.35
+0.15
-0.35
+0.1
5
3400 Hz
---
-0.8
0
-0.8
3600 Hz
---
---
0
---
4000 Hz
---
---
-14
---
4600 Hz to 100 kHz
---
---
-32
---
dB
+0.1
5
0
0
-14
-30
Gain Variation
vs. Level Tone
(1020 Hz
relative to –10
dBm0)
GLT
+3 to –40 dBm0
---
-0.3
+0.3
-0.2
+0.2
-40 to –50 dBm0
---
-0.6
+0.6
-0.4
+0.4
-50 to –55 dBm0
---
-1.6
+1.6
-1.6
+1.6
- 23 -
dB
Publication Release Date: October 23, 2003
Revision A10
W6811
10.3. ANALOG DISTORTION AND NOISE PARAMETERS
VDDA=5V ±10%; VSSA=0V; TA=-40°C to +85°C; all analog signals referred to VAG;
PARAMETER
SYM.
CONDITION
TRANSMIT (A/D)
MIN.
Total Distortion vs. Level
Tone (1020 Hz, µ-Law,
C-Message Weighted)
Total Distortion vs. Level
Tone (1020 Hz, A-Law,
Psophometric Weighted)
DLTµ
TYP.
MAX
.
36
---
---
36
---
-40 dBm0
29
-45 dBm0
25
TYP.
MAX.
34
---
---
---
36
---
---
---
---
30
---
---
---
---
25
---
---
+3 dBm0
36
---
---
34
---
---
36
---
---
36
---
---
-40 dBm0
29
---
---
30
---
---
-45 dBm0
25
---
---
25
---
---
+3 dBm0
0 dBm0 to -30 dBm0
DLTA
0 dBm0 to -30 dBm0
Spurious Out-Of-Band at
RO- (300 Hz to 3400 Hz
@ 0dBm0)
DSPO
Spurious In-Band (700
Hz to 1100 Hz @
0dBm0)
RECEIVE (D/A)
MIN.
UNIT
dBC
dBp
4600 Hz to 7600 Hz
---
---
---
---
---
-30
7600 Hz to 8400 Hz
---
---
---
---
---
-40
8400 Hz to 100000 Hz
---
---
---
---
---
-30
DSPI
300 to 3000 Hz
---
---
-47
---
---
-47
dB
Intermodulation
Distortion (300 Hz to
3400 Hz –4 to –21 dBm0
DIM
Two tones
---
---
-41
---
---
-41
dB
Crosstalk (1020 Hz @
0dBm0)
DXT
---
---
-75
---
---
-75
dBm0
Absolute Group Delay
τABS
1200 Hz
---
---
360
---
---
240
µsec
Group Delay Distortion
(relative to group delay
@ 1200 Hz)
τD
500 Hz
---
---
750
---
---
750
µsec
600 Hz
---
---
380
---
---
370
1000 Hz
---
---
130
---
---
120
2600 Hz
---
---
130
---
---
120
2800 Hz
---
---
750
---
---
750
µ-Law; C-message
---
---
5
---
---
13
dBrnc
A-Law; Psophometric
---
---
-69
---
---
-79
dBm0p
Idle Channel Noise
NIDL
- 24 -
dB
W6811
10.4. ANALOG INPUT AND OUTPUT AMPLIFIER PARAMETERS
VDDA=5V ±10%; VSSA=0V; TA=-40°C to +85°C; all analog signals referred to VAG;
PARAMETER
SYM.
CONDITION
MIN.
TYP.
MAX.
UNIT.
AI Input Offset Voltage
VOFF,AI
AI+, AI-
---
---
±25
mV
AI Input Current
IIN,AI
AI+, AI-
---
±0.1
±1.0
µA
AI Input Resistance
RIN,AI
AI+, AI- to VAG
10
---
---
MΩ
AI Input Capacitance
CIN,AI
AI+, AI-
---
---
10
pF
AI Common Mode Input
Voltage Range
VCM,AI
AI+, AI-
1.2
---
VDDA-1.2
V
AI Common Mode Rejection
Ratio
CMRRTI
AI+, AI-
---
60
---
dB
AI Amp Gain Bandwidth
Product
GBWTI
AO, RLD≥10kΩ
---
2150
---
kHz
AI Amp DC Open Loop Gain
GTI
AO, RLD≥10kΩ
---
95
---
dB
AI Amp Equivalent Input
Noise
NTI
C-Message
Weighted
---
-24
---
dBrnC
AO Output Voltage Range
VTG
RLD=10kΩ to VAG
0.5
1.0
---
VDDA-0.5
V
---
VDDA-1.0
RLD=2kΩ to VAG
Load Resistance
RLDTGRO
AO, RO to VAG
2
---
---
kΩ
Load Capacitance
CLDTGRO
AO, RO
---
---
100
pF
AO & RO Output Current
IOUT1
0.5 ≤AO,RO-≤
VDDA-0.5
±1.0
---
---
mA
RO- Output Resistance
RRO-
RO-, 0 to 3400
Hz
---
1
---
Ω
RO- Output Offset Voltage
VOFF,RO-
RO- to VAG
---
---
±25
mV
Analog Ground Voltage
VAG
Relative to VSSA
2.429
2.5
2.573
V
VAG Output Resistance
RVAG
Within ±25mV
change
---
2.5
12.5
Ω
Power Supply Rejection Ratio
(0 to 100 kHz to VDDA, Cmessage)
PSRR
Transmit
30
80
---
dBC
Receive
30
75
---
PAI Input Offset Voltage
VOFF,PAI
PAI
---
---
±20
mV
PAI Input Current
IIN,PAI
PAI
---
±0.05
±1.0
µA
PAI Input Resistance
RIN,PAI
PAI to VAG
10
---
---
MΩ
PAI Amp Gain Bandwidth
Product
GBWPI
PAO- no load
---
1000
---
kHz
- 25 -
Publication Release Date: October 23, 2003
Revision A10
W6811
PARAMETER
SYM.
CONDITION
MIN.
TYP.
MAX.
UNIT.
Output Offset Voltage
VOFF,PO
PAO+ to PAO-
---
---
±50
mV
Load Resistance
RLDPO
PAO+, PAOdifferentially
300
---
---
Ω
Load Capacitance
CLDPO
PAO+, PAOdifferentially
---
---
1000
pF
PO Output Current
IOUTPO
0.5 ≤AO,RO-≤
VDDA-0.5
±10.0
---
---
mA
PO Output Resistance
RPO
PAO+ to PAO-
---
1
---
Ω
PO Differential Gain
GPO
RLD=300Ω,
+3dBm0, 1 kHz,
PAO+ to PAO-
-0.2
0
+0.2
dB
PO Differential Signal to
Distortion C-Message
weighted
DPO
ZLD=300Ω
45
60
---
dBC
ZLD=100nF +
100Ω
---
40
---
ZLD=100nF + 20Ω
---
40
---
0 to 4 kHz
40
55
---
4 to 25 kHz
---
40
---
PO Power Supply Rejection
Ratio (0 to 25 kHz to VDDA,
Differential out)
PSRRPO
- 26 -
dB
W6811
10.5. DIGITAL I/O
10.5.1. µ-Law Encode Decode Chatacteristics
Normalized
Encode
Decision
Levels
8159
7903
Normalized
Digital Code
D7
D6
D5
D4
D3
D2
D1
D0
Sign
Chord
Chord
Chord
Step
Step
Step
Step
1
0
0
0
0
0
0
0
4063
1
0
0
0
1
1
1
1
2015
1
0
0
1
1
1
1
1
991
1
0
1
0
1
1
1
1
479
1
0
1
1
1
1
1
1
223
1
1
0
0
1
1
1
1
95
1
1
0
1
1
1
1
1
31
1
1
1
0
1
1
1
1
1
0
33
:
:
3
99
:
:
35
231
:
:
103
495
:
:
239
1023
:
:
511
2079
:
:
1055
4191
:
:
2143
8031
:
:
4319
Decode
Levels
1
1
1
1
1
1
1
0
2
1
1
1
1
1
1
1
1
0
Notes:
Sign bit = 0 for negative values, sign bit = 1 for positive values
- 27 -
Publication Release Date: October 23, 2003
Revision A10
W6811
10.5.2. A-Law Encode Decode Characteristics
Normalized
Encode
Decision
Levels
4096
3968
Digital Code
Normalized
D7
D6
D5
D4
D3
D2
D1
D0
Sign
Chord
Chord
Chord
Step
Step
Step
Step
1
0
1
0
1
0
1
0
2048
1
0
1
0
0
1
0
1
1024
1
0
1
1
0
1
0
1
512
1
0
0
0
0
1
0
1
256
1
0
0
1
0
1
0
1
128
1
1
1
0
0
1
0
1
64
1
1
1
0
0
1
0
1
0
66
:
:
2
132
:
:
68
264
:
:
136
528
:
:
272
1056
:
:
544
2112
:
:
1088
4032
:
:
2048
Decode
Levels
1
1
0
1
0
1
Notes:
1. Sign bit = 0 for negative values, sign bit = 1 for positive values
2. Digital code includes inversion of all even number bits
- 28 -
0
1
1
W6811
10.5.3. PCM Codes for Zero and Full Scale
µ-Law
Level
A-Law
Sign bit
Chord bits
Step bits
Sign bit
Chord bits
Step bits
(D7)
(D6,D5,D4)
(D3,D2,D1,D0)
(D7)
(D6,D5,D4)
(D3,D2,D1,D0)
+ Full Scale
1
000
0000
1
010
1010
+ Zero
1
111
1111
1
101
0101
- Zero
0
111
1111
0
101
0101
- Full Scale
0
000
0000
0
010
1010
10.5.4. PCM Codes for 0dBm0 Output
µ-Law
Sample
A-Law
Sign bit
Chord bits
Step bits
Sign bit
Chord bits
Step bits
(D7)
(D6,D5,D4)
(D3,D2,D1,D0)
(D7)
(D6,D5,D4)
(D3,D2,D1,D0)
1
0
001
1110
0
011
0100
2
0
000
1011
0
010
0001
3
0
000
1011
0
010
0001
4
0
001
1110
0
011
0100
5
1
001
1110
1
011
0100
6
1
000
1011
1
010
0001
7
1
000
1011
1
010
0001
8
1
001
1110
1
011
0100
- 29 -
Publication Release Date: October 23, 2003
Revision A10
W6811
11. TYPICAL APPLICATION CIRCUIT
0.01 µF
0.1 µF
27k Ω
27k Ω
V AUDIOOUT
+
V DDA
V DDD
0.1 µF
0.1 µF
1 V REF
V AG 24
2 RO -
AI+ 23
3 PAI
AI- 22
4 PAO -
AO 21
5 PAO+
µ/A 20
6 V DDA
V SSA 19
7 NC
8 V DDD
NC 18
V SSD 17
9 FSR
Power
Control
10 PCMR
PCMI
FSX 16
FST
16
PCMT 15
PCMO
15
11 BCLKR
BCLKT 14
12 PUI
MCLK 13
V AUDIOIN+
27k Ω
27k Ω
27k Ω
27k Ω
1.0 µF
1.0 µF
V AUDIOIN V DDD
8 kHz
PCM OUT
2.048 MHz
PDIP/SOG/SSOP/TSSOP
PCM IN
Figure 11.1 Typical circuit for Differential Analog I/O’s
AUDIO OUT
RL ≥ 2kΩ
0.01µF
0.1µF
AUDIO OUT
RL ≥ 150Ω
27kΩ
27kΩ
VAG 24
2 RO-
AI+ 23
3 PAI
AI- 22
5 PAO+
0.1µF
0.1µF
27kΩ
27kΩ
27kΩ
27kΩ
AO 21
µ/A 20
4 PAO-
100µF
VDDA
VDDD
1 VREF
6 VDDA
VSSA 19
7 NC
8 VDDD
NC 18
VSSD 17
9 FSR
FST 16
FSX
16
PCMO 15
PCMT
15
10 PCMR
PCMI
11 BCLKR BCLKT 14
Power
Control
12 PUI
1.0 µF
1.0 µF
VAUDIOIN
VDD
8 kHz
PCM OUT
2.048 MHz
MCLK 13
PDIP/SOG/SSOP/TSSOP
PCM IN
Figure 11.2 Typical circuit for Single Ended Analog I/O’s
- 30 -
W6811
1k Ω
200 p F
Electret Microphone
WM-54B Panasonic
0.01 µF
0.1 µF
Speake
27k Ω
27k Ω
1 V REF
VAG 24
2 RO -
AI+ 23
3 PAI
AI- 22
4 PAO VDDA
0.1 µF
VDDD
0.1 µF
5 PAO+
AO 21
µ/A 20
6 V DDA
VSSA 19
7 NC
8 V DDD
NC 18
VSSD 17
9 FSR
Power
Control
10 PCMR
PCMI
FSX 16
FST
16
PCMT 15
PCMO
15
11 BCLKR
BCLKT 14
12 PUI
MCLK 13
100k Ω
100k Ω
1k Ω
1k Ω
1.5kΩ
1.0 µF
1.0 µF
VDD
1.5kΩ
8 kHz
PCM OUT
2.048 MHz
27k Ω
PDIP/SOG/SSOP/TSSOP
PCM IN
Figure 11.3 Handset Interface
0.01µF
0.1µF
TIP
600
Ω
600Ω
N=
1
27kΩ
27kΩ
N=
1
1 VREF
VAG 24
2 RO-
AI+ 23
3 PAI
AI- 22
6 VDDA
AO 21
µ/A 20
VSSA 19
7 NC
8 VDDD
NC 18
VSSD 17
9 FSR
FSX 16
FST
16
PCMT 15
PCMO
15
4 PAO5 PAO+
RI
NG
0.1µF
VDDD
0.1µF
10 PCMR
PCMI
27kΩ
11 BCLKR BCLKT 14
Power
Control
12 PUI
27kΩ
1.0 µF
VDD
8 kHz
PCM OUT
4.096 MHz
MCLK 13
PDIP/SOG/SSOP/TSSOP
PCM IN
B1 – 0V
B2 - +5V
Figure 11.4 Transformer Interface Circuit in GCI mode
- 31 -
Publication Release Date: October 23, 2003
Revision A10
W6811
12. PACKAGE SPECIFICATION
12.1. 24L TSSOP - 4.4X7.8MM
PLASTIC THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) DIMENSIONS
DIMENSION IN MM
SYMBOL
MIN
NOM
A
DIMENSION IN INCH
MAX
MIN
NOM
1.20
A1
0.05
A2
0.80
L
0.50
E
MAX
0.043
0.15
0.002
0.90
1.05
0.031
0.035
0.041
0.60
0.75
0.020
0.024
0.030
6.40 BSC.
0.006
0.252 BSC.
HE
4.30
4.40
4.50
0.169
0.173
0.177
D
7.70
7.80
7.90
0.303
0.307
0.311
b
0.19
0.30
0.007
c
0.09
0.20
0.004
0.012
0.008
L1
1.0 REF.
0.039 REF
e
0.65 BSC.
0.026 BSC
01
0
8
- 32 -
0
8
W6811
12.2. 24L SOP-300MIL
SMALL OUTLINE
PACKAGE
(SAME AS SOG & SOIC) DIMENSIONS
11
20
E
10
1
GAUGE PLANE
SEATING PLANE
DIMENSIONS IN MM
SYMBOL
DIMENSIONS IN INCH
MIN
MAX
MIN
MAX
A
2.35
2.65
0.093
0.104
A1
0.10
0.30
0.004
0.012
b
0.33
0.51
0.013
0.020
c
0.23
0.32
0.009
0.013
E
7.40
7.60
0.291
0.299
D
12.60
13.00
0.946
0.512
e
HE
1.27 BSC.
10.00
Y
0.050 BSC.
1065
0.394
0.10
0.419
0.004
L
0.40
1.27
0.016
0.050
0
0
8
0
8
- 33 -
Publication Release Date: October 23, 2003
Revision A10
W6811
12.3. 24L SSOP-209 MIL
SHRINK SMALL OUTLINE PACKAGE
DIMENSIONS
- 34 -
W6811
12.4. 24L PDIP – 300 MIL
PLASTIC DUAL INLINE
PACKAGE
DIMENSIONS
D
24
13
1
12
1
E
E
S
c
1
2
AA
A
L
Base Plane
Mounting Plane
B
e1
DIMENSION IN MM
SYMBOL
MIN
NOM
A
A1
eA
á
B1
DIMENSION IN INCH
MAX
MIN
NOM
4.45
0.25
MAX
0.175
0.010
A2
3.18
3.30
3.43
0.125
0.130
0.135
B
0.41
0.46
0.56
0.016
0.018
0.022
B1
1.47
1.52
1.63
0.058
0.060
0.064
c
0.20
0.25
0.36
0.008
0.010
0.014
31.95
32.26
1.258
1.270
D
E
7.37
7.62
7.87
0.290
0.300
0.310
E1
6.43
6.55
6.68
0.253
0.258
0.263
e1
2.29
2.54
2.79
0.090
0.100
0.110
L
3.05
3.30
3.56
0.120
0.130
0.140
á
0°
15°
0°
eA
8.38
9.40
0.330
S
8.89
2.29
- 35 -
15°
0.350
0.370
0.090
Publication Release Date: October 23, 2003
Revision A10
W6811
13. ORDERING INFORMATION
Part Number Description
W6811I _
Package Type:
Product Family
W6811 Product
W
=
24-Lead Plastic Thin Small Outline Package (TSSOP) Type 1
S
=
24-Lead Plastic Small Outline Package (SOG/SOP)
R
=
24-Lead Plastic Small Outline Package (SSOP)
E
=
24-Lead Plastic Dual Inline Package (PDIP)
When ordering W6811 series devices, please refer to the following part numbers.
Part Number
W6811IW
W6811IS
W6811IR
W6811IE
- 36 -
W6811
14. VERSION HISTORY
VERSION
DATE
A7
August 9,
2002
A8
Septembe
r 26, 2002
A9
October
10, 2002
A10
October
23, 2003
PAGE
DESCRIPTION
Preliminary
34
Changed the package dimention of the SSOP24 package
The information contained in this datasheet may be subject to change without
notice. It is the responsibility of the customer to check the Winbond USA website
(www.winbond-usa.com) periodically for the latest version of this document, and
any Errata Sheets that may be generated between datasheet revisions.
Headquarters
Winbond Electronics Corporation America
Winbond Electronics (Shanghai) Ltd.
No. 4, Creation Rd. III
Science-Based Industrial Park,
Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5665577
http://www.winbond.com.tw/
2727 North First Street, San Jose,
CA 95134, U.S.A.
TEL: 1-408-9436666
FAX: 1-408-5441798
http://www.winbond-usa.com/
27F, 299 Yan An W. Rd. Shanghai,
200336 China
TEL: 86-21-62365999
FAX: 86-21-62356998
Taipei Office
Winbond Electronics Corporation Japan Winbond Electronics (H.K.) Ltd.
9F, No. 480, Pueiguang Rd.
Neihu District,
Taipei, 114, Taiwan
TEL: 886-2-81777168
FAX: 886-2-87153579
7F Daini-ueno BLDG, 3-7-18
Shinyokohama Kohoku-ku,
Yokohama, 222-0033
TEL: 81-45-4781881
FAX: 81-45-4781800
Unit 9-15, 22F, Millennium City,
No. 378 Kwun Tong Rd.,
Kowloon, Hong Kong
TEL: 852-27513100
FAX: 852-27552064
Please note that all data and specifications are subject to change without notice.
All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.
- 37 -
Publication Release Date: October 23, 2003
Revision A10