0 Spartan-3A FPGA Family: Data Sheet DS529 August 19, 2010 0 0 Product Specification Module 1: Introduction and Ordering Information Module 3: DC and Switching Characteristics DS529-1 (v2.0) August 19, 2010 DS529-3 (v2.0) August 19, 2010 • • • • • • • • Introduction Features Architectural and Configuration Overview General I/O Capabilities Production Status Supported Packages and Package Marking Ordering Information • Module 2: Spartan-3A FPGA Family: Functional Description DS529-2 (v2.0) August 19, 2010 DC Electrical Characteristics • Absolute Maximum Ratings • Supply Voltage Specifications • Recommended Operating Conditions Switching Characteristics • I/O Timing • Configurable Logic Block (CLB) Timing • Multiplier Timing • Block RAM Timing • Digital Clock Manager (DCM) Timing • Suspend Mode Timing • Device DNA Timing • Configuration and JTAG Timing The functionality of the Spartan®-3A FPGA family is described in the following documents. Module 4: Pinout Descriptions • DS529-4 (v2.0) August 19, 2010 • • UG331: Spartan-3 Generation FPGA User Guide • Clocking Resources • Digital Clock Managers (DCMs) • Block RAM • Configurable Logic Blocks (CLBs) Distributed RAM SRL16 Shift Registers Carry and Arithmetic Logic • I/O Resources • Embedded Multiplier Blocks • Programmable Interconnect • ISE® Design Tools and IP Cores • Embedded Processing and Control Solutions • Pin Types and Package Overview • Package Drawings • Powering FPGAs • Power Management UG332: Spartan-3 Generation Configuration User Guide • Configuration Overview • Configuration Pins and Behavior • Bitstream Sizes • Detailed Descriptions by Mode Master Serial Mode using Platform Flash PROM Master SPI Mode using Commodity Serial Flash Master BPI Mode using Commodity Parallel Flash Slave Parallel (SelectMAP) using a Processor Slave Serial using a Processor JTAG Mode • ISE iMPACT Programming Examples • MultiBoot Reconfiguration • Design Authentication using Device DNA UG334: Spartan-3A/3AN FPGA Starter Kit User Guide • • • • Pin Descriptions Package Overview Pinout Tables Footprint Diagrams For more information on the Spartan-3A FPGA family, go to www.xilinx.com/spartan3a Spartan-3A FPGA Status XC3S50A Production XC3S200A Production XC3S400A Production XC3S700A Production XC3S1400A Production © Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529 August 19, 2010 Product Specification www.xilinx.com 1 Spartan-3A FPGA Family: Data Sheet 2 www.xilinx.com DS529 August 19, 2010 Product Specification 8 Spartan-3A FPGA Family: Introduction and Ordering Information DS529-1 (v2.0) August 19, 2010 Product Specification Introduction The Spartan®-3A family of Field-Programmable Gate Arrays (FPGAs) solves the design challenges in most high-volume, cost-sensitive, I/O-intensive electronic applications. The five-member family offers densities ranging from 50,000 to 1.4 million system gates, as shown in Table 1. The Spartan-3A FPGAs are part of the Extended Spartan-3A family, which also include the non-volatile Spartan-3AN and the higher density Spartan-3A DSP FPGAs. The Spartan-3A family builds on the success of the earlier Spartan-3E and Spartan-3 FPGA families. New features improve system performance and reduce the cost of configuration. These Spartan-3A family enhancements, combined with proven 90 nm process technology, deliver more functionality and bandwidth per dollar than ever before, setting the new standard in the programmable logic industry. Because of their exceptionally low cost, Spartan-3A FPGAs are ideally suited to a wide range of consumer electronics applications, including broadband access, home networking, display/projection, and digital television equipment. The Spartan-3A family is a superior alternative to mask programmed ASICs. FPGAs avoid the high initial cost, lengthy development cycles, and the inherent inflexibility of conventional ASICs, and permit field design upgrades. • • • • • • • • • • • • • • • • Very low cost, high-performance logic solution for high-volume, cost-conscious applications Dual-range VCCAUX supply simplifies 3.3V-only design Suspend, Hibernate modes reduce system power Multi-voltage, multi-standard SelectIO™ interface pins • • • • • • Up to 502 I/O pins or 227 differential signal pairs LVCMOS, LVTTL, HSTL, and SSTL single-ended I/O 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling Selectable output drive, up to 24 mA per pin QUIETIO standard reduces I/O switching noise Full 3.3V ± 10% compatibility and hot swap compliance • • Low-cost, space-saving SPI serial Flash PROM x8 or x8/x16 BPI parallel NOR Flash PROM Low-cost Xilinx® Platform Flash with JTAG Unique Device DNA identifier for design authentication Load multiple bitstreams under FPGA control Post-configuration CRC checking Complete Xilinx ISE® and WebPACK™ development system software support plus Spartan-3A Starter Kit MicroBlaze™ and PicoBlaze™ embedded processors Low-cost QFP and BGA packaging, Pb-free options • • • • Clock skew elimination (delay locked loop) Frequency synthesis, multiplication, division High-resolution phase shifting Wide frequency range (5 MHz to over 320 MHz) Eight low-skew global clock networks, eight additional clocks per half device, plus abundant low-skew routing Configuration interface to industry-standard PROMs • • • • • • • Up to 576 Kbits of fast block RAM with byte write enables for processor applications Up to 176 Kbits of efficient distributed RAM Up to eight Digital Clock Managers (DCMs) • • • • • Densities up to 25,344 logic cells, including optional shift register or distributed RAM support Efficient wide multiplexers, wide logic Fast look-ahead carry logic Enhanced 18 x 18 multipliers with optional pipeline IEEE 1149.1/1532 JTAG programming/debug port Hierarchical SelectRAM™ memory architecture • Features • Abundant, flexible logic resources • • 640+ Mb/s data transfer rate per differential I/O LVDS, RSDS, mini-LVDS, HSTL/SSTL differential I/O with integrated differential termination resistors Enhanced Double Data Rate (DDR) support DDR/DDR2 SDRAM support up to 400 Mb/s Fully compliant 32-/64-bit, 33/66 MHz PCI® technology support Common footprints support easy density migration Compatible with select Spartan-3AN nonvolatile FPGAs Compatible with higher density Spartan-3A DSP FPGAs XA Automotive version available Table 1: Summary of Spartan-3A FPGA Attributes CLB Array (One CLB = Four Slices) Device XC3S50A XC3S200A XC3S400A XC3S700A XC3S1400A System Equivalent Gates Logic Cells Rows Columns CLBs Slices 50K 200K 400K 700K 1400K 176 448 896 1,472 2,816 704 1,792 3,584 5,888 11,264 1,584 4,032 8,064 13,248 25,344 16 32 40 48 72 12 16 24 32 40 Distributed RAM bits(1) Block RAM bits(1) 11K 28K 56K 92K 176K 54K 288K 360K 360K 576K Maximum Dedicated Maximum Differential Multipliers DCMs User I/O I/O Pairs 3 16 20 20 32 2 4 4 8 8 144 248 311 372 502 64 112 142 165 227 Notes: 1. By convention, one Kb is equivalent to 1,024 bits. © Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529-1 (v2.0) August 19, 2010 www.xilinx.com 3 Introduction and Ordering Information Architectural Overview • The Spartan-3A family architecture consists of five fundamental programmable functional elements: • • • • Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical functions as well as store data. Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. IOBs support bidirectional data flow plus 3-state operation. Supports a variety of signal standards, including several high-performance differential standards. Double Data-Rate (DDR) registers are included. Block RAM provides data storage in the form of 18-Kbit dual-port blocks. Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate the product. Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock signals. These elements are organized as shown in Figure 1. A dual ring of staggered IOBs surrounds a regular array of CLBs. Each device has two columns of block RAM except for the XC3S50A, which has one column. Each RAM column consists of several 18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs are positioned in the center with two at the top and two at the bottom of the device. The XC3S50A has DCMs only at the top, while the XC3S700A and XC3S1400A add two DCMs in the middle of the two columns of block RAM and multipliers. The Spartan-3A family features a rich network of routing that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing. IOBs Multiplier DCM Block RAM CLB IOBs OBs IOBs IOBs CLBs DCM Block RAM / Multiplier DCM IOBs DS312-1_01_032606 Notes: 1. The XC3S700A and XC3S1400A have two additional DCMs on both the left and right sides as indicated by the dashed lines. The XC3S50A has only two DCMs at the top and only one Block RAM/Multiplier column. Figure 1: Spartan-3A FPGA Architecture 4 www.xilinx.com DS529-1 (v2.0) August 19, 2010 Introduction and Ordering Information Configuration I/O Capabilities Spartan-3A FPGAs are programmed by loading configuration data into robust, reprogrammable, static CMOS configuration latches (CCLs) that collectively control all functional elements and routing resources. The FPGA’s configuration data is stored externally in a PROM or some other non-volatile medium, either on or off the board. After applying power, the configuration data is written to the FPGA using any of seven different modes: The Spartan-3A FPGA SelectIO interface supports many popular single-ended and differential standards. Table 2 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination. Some of the user I/Os are unidirectional input-only pins as indicated in Table 2. • • Spartan-3A FPGAs support the following single-ended standards: Master Serial from a Xilinx Platform Flash PROM Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash Byte Peripheral Interface (BPI) Up from an industry-standard x8 or x8/x16 parallel NOR Flash Slave Serial, typically downloaded from a processor Slave Parallel, typically downloaded from a processor Boundary Scan (JTAG), typically downloaded from a processor or system tester • • • • • • • • • Spartan-3A FPGAs support the following differential standards: Furthermore, Spartan-3A FPGAs support MultiBoot configuration, allowing two or more FPGA configuration bitstreams to be stored in a single SPI serial Flash or a BPI parallel NOR Flash. The FPGA application controls which configuration to load next and when to load it. • Additionally, each Spartan-3A FPGA contains a unique, factory-programmed Device DNA identifier useful for tracking purposes, anti-cloning designs, or IP protection. Table 2: Available User I/Os and Differential (Diff) I/O Pairs Package VQ100 VQG100 Body Size (mm) TQ144 TQG144 14 x 14(2) 20 x 20(2) 3.3V low-voltage TTL (LVTTL) Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V 3.3V PCI at 33 MHz or 66 MHz HSTL I, II, and III at 1.5V and 1.8V, commonly used in memory applications SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used for memory applications LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or 3.3V Bus LVDS I/O at 2.5V TMDS I/O at 3.3V Differential HSTL and SSTL I/O LVPECL inputs at 2.5V or 3.3V • • • • FT256 FTG256 FG320 FGG320 FG400 FGG400 FG484 FGG484 FG676 FGG676 17 x 17 19 x 19 21 x 21 23 x 23 27 x 27 Device User Diff User Diff User Diff User Diff User Diff User Diff User Diff XC3S50A 68 (13) 60 (24) 108 (7) 50 (24) 144 (32) 64 (32) - - - - - - - - XC3S200A 68 (13) 60 (24) - - 195 (35) 90 (50) 248 (56) 112 (64) - - - - - - XC3S400A - - - - 195 (35) 90 (50) 251 (59) 112 (64) 311 (63) 142 (78) - - - - XC3S700A - - - - 161 (13) 74 (36) - - 311 (63) 142 (78) 372 (84) 165 (93) - - XC3S1400A - - - - 161 (13) 74 (36) - - - - 375 (87) 165 (93) 502 (94) 227 (131) Notes: 1. 2. The number shown in bold indicates the maximum number of I/O and input-only pins. The number shown in (italics) indicates the number of input-only pins. The differential (Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins within I/O banks that are restricted to differential inputs. The footprints for the VQ/TQ packages are larger than the package body. See the Package Drawings for details. DS529-1 (v2.0) August 19, 2010 www.xilinx.com 5 Introduction and Ordering Information Production Status Table 3 indicates the production status of each Spartan-3A FPGA by temperature range and speed grade. The table also lists the earliest speed file version required for creating a production configuration bitstream. Later versions are also supported. Table 3: Spartan-3A FPGA Production Status (Production Speed File) Temperature Range Commercial (C) Part Number Speed Grade Industrial Standard (–4) High-Performance (–5) Standard (–4) XC3S50A Production (v1.35) Production (v1.35) Production (v1.35) XC3S200A Production (v1.35) Production (v1.35) Production (v1.35) XC3S400A Production (v1.36) Production (v1.36) Production (v1.36) XC3S700A Production (v1.34) Production (v1.35) Production (v1.34) XC3S1400A Production (v1.34) Production (v1.35) Production (v1.34) Package Marking The “5C” and “4I” Speed Grade/Temperature Range part combinations may be dual marked as “5C/4I”. Devices with a single mark are only guaranteed for the marked speed grade and temperature range. Figure 2 provides a top marking example for Spartan-3A FPGAs in the quad-flat packages. Figure 3 shows the top marking for Spartan-3A FPGAs in BGA packages. The markings for the BGA packages are nearly identical to those for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Mask Revision Code Fabrication Code R SPARTAN R Process Technology TM Device Type Package XC3S50A TQ144AGQ0625 D1234567A Date Code Speed Grade 4C Lot Code Temperature Range Pin P1 DS529-1_03_080406 Figure 2: Spartan-3A QFP Package Marking Example Mask Revision Code BGA Ball A1 R SPARTAN Device Type Package R XC3S50ATM FT256 AGQ0625 D1234567A 4C Fabrication Code Process Code Date Code Lot Code Speed Grade Temperature Range DS529-1_02_021206 Figure 3: Spartan-3A BGA Package Marking Example 6 www.xilinx.com DS529-1 (v2.0) August 19, 2010 Introduction and Ordering Information Ordering Information Spartan-3A FPGAs are available in both standard and Pb-free packaging options for all device/package combinations. The Pb-free packages include a ‘G’ character in the ordering code. Example: XC3S50A -4 FT 256 C Device Type Temperature Range Speed Grade Package Type/Number of Pins DS529-1_05_011309 Device Package Type / Number of Pins(1) Speed Grade Temperature Range ( TJ ) XC3S50A –4 Standard Performance VQ100/ VQG100 100-pin Very Thin Quad Flat Pack (VQFP) C Commercial (0°C to 85°C) XC3S200A –5 High Performance (Commercial only) TQ144/ TQG144 144-pin Thin Quad Flat Pack (TQFP) I Industrial (–40°C to 100°C) XC3S400A FT256/ FTG256 256-ball Fine-Pitch Thin Ball Grid Array (FTBGA) XC3S700A FG320/ FGG320 320-ball Fine-Pitch Ball Grid Array (FBGA) XC3S1400A FG400/ FGG400 400-ball Fine-Pitch Ball Grid Array (FBGA) FG484/ FGG484 484-ball Fine-Pitch Ball Grid Array (FBGA) FG676 FGG676 676-ball Fine-Pitch Ball Grid Array (FBGA) Notes: 1. 2. See Table 2 for specific device/package combinations. See DS681 for the XA Automotive Spartan-3A FPGAs. Revision History The following table shows the revision history for this document. Date Version 12/05/06 1.0 Initial release. 02/02/07 1.1 Promoted to Preliminary status. Updated maximum differential I/O count for XC3S50A in Table 1. Updated differential input-only pin counts in Table 2. 03/16/07 1.2 Minor formatting updates. 04/23/07 1.3 Added "Production Status" section. 05/08/07 1.4 Updated XC3S400A to Production. 07/10/07 1.4.1 04/15/08 1.6 Added VQ100 for XC3S50A and XC3S200A and extended FT256 to XC3S700A and XC3S1400A Added reference to SCD 4103 for 750 Mbps performance. 05/28/08 1.7 Added reference to XA Automotive version. 03/06/09 1.8 Simplified Ordering Information. Added references to Extended Spartan-3A Family. Removed reference to SCD 4103. 08/19/10 2.0 Updated Table 2 to clarify TQ/VQ size. DS529-1 (v2.0) August 19, 2010 Revision Minor updates. www.xilinx.com 7 Introduction and Ordering Information 8 www.xilinx.com DS529-1 (v2.0) August 19, 2010 10 Spartan-3A FPGA Family: Functional Description DS529-2 (v2.0) August 19, 2010 Product Specification 0 Spartan-3A FPGA Design Documentation The functionality of the Spartan®-3A FPGA Family is described in the following documents. The topics covered in each guide is listed below. • DS706: Extended Spartan-3A Family Overview www.xilinx.com/support/documentation/ data_sheets/ds706.pdf • UG331: Spartan-3 Generation FPGA User Guide www.xilinx.com/support/documentation/ user_guides/ug331.pdf • • Clocking Resources • Digital Clock Managers (DCMs) • Block RAM • Configurable Logic Blocks (CLBs) - Distributed RAM - SRL16 Shift Registers - Carry and Arithmetic Logic • Detailed Descriptions by Mode - Master Serial Mode using Xilinx® Platform Flash PROM - Master SPI Mode using Commodity SPI Serial Flash PROM - Master BPI Mode using Commodity Parallel NOR Flash PROM - Slave Parallel (SelectMAP) using a Processor - Slave Serial using a Processor - JTAG Mode • ISE iMPACT Programming Examples • MultiBoot Reconfiguration • Design Authentication using Device DNA For application examples, see the Spartan-3A FPGA application notes. • Spartan-3A FPGA Application Notes www.xilinx.com/support/documentation/ spartan-3a_application_notes.htm • I/O Resources • Embedded Multiplier Blocks • Programmable Interconnect • ISE® Software Design Tools • IP Cores For specific hardware examples, please see the Spartan-3A FPGA Starter Kit board web page, which has links to various design examples and the user guide. • Embedded Processing and Control Solutions • • Pin Types and Package Overview Spartan-3A/3AN FPGA Starter Kit Board Page www.xilinx.com/s3astarter • Package Drawings • • Powering FPGAs • Power Management UG334: Spartan-3A/3AN FPGA Starter Kit User Guide www.xilinx.com/support/documentation/ boards_and_kits/ug334.pdf UG332: Spartan-3 Generation Configuration User Guide www.xilinx.com/support/documentation/ user_guides/ug332.pdf • For information on the XA Automotive version of the Spartan-3A family, see the following data sheet. • Configuration Overview - Configuration Pins and Behavior - Bitstream Sizes XA Spartan-3A Automotive FPGA Family Data Sheet www.xilinx.com/support/documentation/data_sheets/ ds681.pdf Create a Xilinx user account and sign up to receive automatic e-mail notification whenever this data sheet or the associated user guides are updated. • Sign Up for Alerts www.xilinx.com/support/answers/18683.htm © Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529-2 (v2.0) August 19, 2010 www.xilinx.com 9 Spartan-3A FPGA Family: Functional Description Related Product Families The Spartan-3AN nonvolatile FPGA family is architecturally identical to the Spartan-3A FPGA family, except that it has in-system flash memory and is offered in select pin-compatible package options. • DS557: Spartan-3AN Family Data Sheet www.xilinx.com/support/documentation/ data_sheets/ds557.pdf The compatible Spartan-3A DSP FPGA family replaces the 18-bit multiplier with the DSP48A block, while also increasing the block RAM capability and quantity. The two members of the Spartan-3A DSP FPGA family extend the Spartan-3A density range up to 37,440 and 53,712 logic cells. • DS610: Spartan-3A DSP FPGA Family Data Sheet www.xilinx.com/support/documentation/ data_sheets/ds610.pdf • UG431: XtremeDSP DSP48A for Spartan-3A DSP FPGAs www.xilinx.com/support/documentation/ user_guides/ug431.pdf Revision History The following table shows the revision history for this document. 10 Date Version Revision 12/05/06 1.0 Initial release. 02/02/07 1.1 Promoted to Preliminary status. 03/16/07 1.2 Added cross-reference to nonvolatile Spartan-3AN FPGA family. 04/23/07 1.3 Added cross-reference to compatible Spartan-3A DSP family. 07/10/07 1.4 Updated Starter Kit reference to new UG334. 04/15/08 1.6 Updated trademarks. 05/28/08 1.7 Added reference to XA Automotive version. 03/06/09 1.8 Added link to DS706 on Extended Spartan-3A family. 08/19/10 2.0 Updated link to sign up for Alerts. www.xilinx.com DS529-2 (v2.0) August 19, 2010 64 Spartan-3A FPGA Family: DC and Switching Characteristics DS529-3 (v2.0) August 19, 2010 Product Specification 0 DC Electrical Characteristics In this section, specifications may be designated as Advance, Preliminary, or Production. These terms are defined as follows: Advance: Initial estimates are based on simulation, early characterization, and/or extrapolation from the characteristics of other families. Values are subject to change. Use as estimates, not for production. Preliminary: Based on characterization. Further changes are not expected. Production: These specifications are approved once the silicon has been characterized over numerous production lots. Parameter values are considered stable with no future changes expected. All parameter limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the published parameter values apply to all Spartan®-3A devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. Absolute Maximum Ratings Stresses beyond those listed under Table 4: Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to absolute maximum conditions for extended periods of time adversely affects device reliability. Table 4: Absolute Maximum Ratings Symbol Description Conditions Min Max Units VCCINT Internal supply voltage –0.5 1.32 V VCCAUX Auxiliary supply voltage –0.5 3.75 V VCCO Output driver supply voltage –0.5 3.75 V VREF Input reference voltage –0.5 VCCO + 0.5 V –0.95 4.6 V –0.5 4.6 V – ±100 mA Human body model – ±2000 V Charged device model – ±500 V Machine model – ±200 V VIN Voltage applied to all User I/O pins and dual-purpose pins Driver in a high-impedance state Voltage applied to all Dedicated pins IIK VESD Input clamp current per I/O pin Electrostatic Discharge Voltage –0.5V < VIN < (VCCO + 0.5V) (1) TJ Junction temperature – 125 °C TSTG Storage temperature –65 150 °C Notes: 1. 2. Upper clamp applies only when using PCI IOSTANDARDs. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow Guidelines for Pb-Free Packages. © Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 11 DC and Switching Characteristics Power Supply Specifications Table 5: Supply Voltage Thresholds for Power-On Reset Symbol Description Min Max Units VCCINTT Threshold for the VCCINT supply 0.4 1.0 V VCCAUXT Threshold for the VCCAUX supply 1.0 2.0 V VCCO2T Threshold for the VCCO Bank 2 supply 1.0 2.0 V Notes: 1. 2. VCCINT, VCCAUX, and VCCO supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash, SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply VCCINT last for lowest overall power consumption (see UG331 chapter “Powering Spartan-3 Generation FPGAs” for more information). To ensure successful power-on, VCCINT, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with no dips at any point. Table 6: Supply Voltage Ramp Rate Symbol Description Min Max Units VCCINTR Ramp rate from GND to valid VCCINT supply level 0.2 100 ms VCCAUXR Ramp rate from GND to valid VCCAUX supply level 0.2 100 ms VCCO2R Ramp rate from GND to valid VCCO Bank 2 supply level 0.2 100 ms Notes: 1. 2. VCCINT, VCCAUX, and VCCO supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash, SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source. Apply VCCINT last for lowest overall power consumption (see UG331 chapter "Powering Spartan-3 Generation FPGAs" for more information). To ensure successful power-on, VCCINT, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with no dips at any point. Table 7: Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM Data Symbol 12 VDRINT VDRAUX Description Min Units VCCINT level required to retain CMOS Configuration Latch (CCL) and RAM data 1.0 V VCCAUX level required to retain CMOS Configuration Latch (CCL) and RAM data 2.0 V www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics General Recommended Operating Conditions Table 8: General Recommended Operating Conditions Symbol TJ Description Commercial Junction temperature Industrial VCCINT Internal supply voltage VCCO (1) Output driver supply voltage VCCAUX Auxiliary supply voltage(2) TIN Input voltage(3) Input signal transition Nominal Max Units 0 – 85 °C –40 – 100 °C 1.14 1.20 1.26 V 1.10 – 3.60 V VCCAUX = 2.5 2.25 2.50 2.75 V VCCAUX = 3.3 3.00 3.30 3.60 V PCI IOSTANDARD VIN Min All other IOSTANDARDs –0.5 – VCCO+0.5 V IP or IO_# –0.5 – 4.10 V IO_Lxxy_# (4) –0.5 – 4.10 V – – 500 ns time(5) Notes: 1. 2. 3. 4. 5. This VCCO range spans the lowest and highest operating voltages for all supported I/O standards. Table 11 lists the recommended VCCO range specific to each of the single-ended I/O standards, and Table 13 lists that specific to the differential standards. Define VCCAUX selection using CONFIG VCCAUX constraint. See XAPP459, “Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.” For single-ended signals that are placed on a differential-capable I/O, VIN of –0.2V to –0.5V is supported but can cause increased leakage between the two pins. See Parasitic Leakage in UG331, Spartan-3 Generation FPGA User Guide . Measured between 10% and 90% VCCO. Follow Signal Integrity recommendations. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 13 DC and Switching Characteristics General DC Characteristics for I/O Pins Table 9: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (1) Symbol Description IL(2) Leakage current at User I/O, input-only, dual-purpose, and dedicated pins, FPGA powered IHS Leakage current on pins during hot socketing, FPGA unpowered Test Conditions Min Typ Max Units Driver is in a high-impedance state, VIN = 0V or VCCO max, sample-tested –10 – +10 µA All pins except INIT_B, PROG_B, DONE, and JTAG pins when PUDC_B = 1. –10 – +10 µA INIT_B, PROG_B, DONE, and JTAG pins or other pins when PUDC_B = 0. IRPU(3) RPU(3) IRPD (3) RPD(3) Current through pull-up resistor at User I/O, dual-purpose, input-only, and dedicated pins. Dedicated pins are powered by VCCAUX. Equivalent pull-up resistor value at User I/O, dual-purpose, input-only, and dedicated pins (based on IRPU per Note 3) VIN = GND VCCO or VCCAUX = 3.0V to 3.6V –151 –315 –710 µA VCCO or VCCAUX = 2.3V to 2.7V –82 –182 –437 µA VCCO = 1.7V to 1.9V –36 –88 –226 µA VCCO = 1.4V to 1.6V –22 –56 –148 µA VCCO = 1.14V to 1.26V –11 –31 –83 µA VCCO = 3.0V to 3.6V 5.1 11.4 23.9 kΩ VCCO = 2.3V to 2.7V 6.2 14.8 33.1 kΩ VCCO = 1.7V to 1.9V 8.4 21.6 52.6 kΩ VCCO = 1.4V to 1.6V 10.8 28.4 74.0 kΩ VCCO = 1.14V to 1.26V 15.3 41.1 119.4 kΩ VCCAUX = 3.0V to 3.6V 167 346 659 µA 100 225 457 µA VIN = 3.0V to 3.6V 5.5 10.4 20.8 kΩ VIN = 2.3V to 2.7V 4.1 7.8 15.7 kΩ VIN = 1.7V to 1.9V 3.0 5.7 11.1 kΩ VIN = 1.4V to 1.6V 2.7 5.1 9.6 kΩ VIN = 1.14V to 1.26V 2.4 4.5 8.1 kΩ VIN = 3.0V to 3.6V 7.9 16.0 35.0 kΩ VIN = 2.3V to 2.7V 5.9 12.0 26.3 kΩ VIN = 1.7V to 1.9V 4.2 8.5 18.6 kΩ VIN = 1.4V to 1.6V 3.6 7.2 15.7 kΩ VIN = GND Current through pull-down resistor at User I/O, dual-purpose, input-only, and dedicated pins. Dedicated pins are powered by VCCAUX. VIN = VCCO Equivalent pull-down resistor value at User I/O, dual-purpose, input-only, and dedicated pins (based on IRPD per Note 3) VCCAUX = 3.0V to 3.6V VCCAUX = 2.25V to 2.75V VCCAUX = 2.25V to 2.75V VIN = 1.14V to 1.26V IREF VREF current per pin CIN Input capacitance RDT Resistance of optional differential termination circuit within a differential I/O pair. Not available on Input-only pairs. µA Add IHS + IRPU 3.0 6.0 12.5 kΩ All VCCO levels –10 – +10 µA – – – 10 pF VCCO = 3.3V ± 10% LVDS_33, MINI_LVDS_33, RSDS_33 90 100 115 Ω VCCO = 2.5V ± 10% LVDS_25, MINI_LVDS_25, RSDS_25 90 110 – Ω Notes: 1. 2. 3. 14 The numbers in this table are based on the conditions set forth in Table 8. For single-ended signals that are placed on a differential-capable I/O, VIN of –0.2V to –0.5V is supported but can cause increased leakage between the two pins. See "Parasitic Leakage" in UG331, Spartan-3 Generation FPGA User Guide . This parameter is based on characterization. The pull-up resistance RPU = VCCO / IRPU. The pull-down resistance RPD = VIN / IRPD. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Quiescent Current Requirements Table 10: Quiescent Supply Current Characteristics Symbol ICCINTQ ICCOQ ICCAUXQ Description Quiescent VCCINT supply current Quiescent VCCO supply current Quiescent VCCAUX supply current Typical(2) Commercial Maximum(2) Industrial Maximum(2) Units XC3S50A 2 20 30 mA XC3S200A 7 50 70 mA XC3S400A 10 85 125 mA XC3S700A 13 120 185 mA XC3S1400A 24 220 310 mA XC3S50A 0.2 2 3 mA XC3S200A 0.2 2 3 mA XC3S400A 0.3 3 4 mA XC3S700A 0.3 3 4 mA XC3S1400A 0.3 3 4 mA XC3S50A 3 8 10 mA XC3S200A 5 12 15 mA XC3S400A 5 18 24 mA XC3S700A 6 28 34 mA XC3S1400A 10 50 58 mA Device Notes: 1. 2. 3. 4. 5. The numbers in this table are based on the conditions set forth in Table 8. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using typical devices at room temperature (TJ of 25°C at VCCINT = 1.2V, VCCO = 3.3V, and VCCAUX = 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage limits with VCCINT = 1.26V, VCCO = 3.6V, and VCCAUX = 3.6V. The FPGA is programmed with a “blank” configuration data file (that is, a design with no functional elements instantiated). For conditions other than those described above (for example, a design including functional elements), measured quiescent current levels will be different than the values in the table. For more accurate estimates for a specific design, use the Xilinx XPower tools. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3A FPGA XPower Estimator provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully. For information on the power-saving Suspend mode, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode typically saves 40% total power consumption compared to quiescent current. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 15 DC and Switching Characteristics Single-Ended I/O Standards Table 11: Recommended Operating Conditions for User I/Os Using Single-Ended Standards IOSTANDARD Attribute VCCO for Drivers(2) VREF Min (V) Nom (V) Max (V) VIL VIH Max (V) Min (V) Min (V) Nom (V) Max (V) LVTTL 3.0 3.3 3.6 0.8 2.0 LVCMOS33(4) 3.0 3.3 3.6 0.8 2.0 LVCMOS25(4,5) 2.3 2.5 2.7 0.7 1.7 LVCMOS18 1.65 1.8 1.95 0.4 0.8 LVCMOS15 1.4 1.5 1.6 0.4 0.8 LVCMOS12 1.1 1.2 1.3 0.4 0.7 PCI33_3(6) 3.0 3.3 3.6 0.3 • VCCO 0.5 • VCCO PCI66_3(6) 3.0 3.3 3.6 0.3 • VCCO 0.5 • VCCO HSTL_I 1.4 1.5 1.6 0.68 0.75 0.9 VREF – 0.1 VREF + 0.1 HSTL_III 1.4 1.5 1.6 – 0.9 - VREF – 0.1 VREF + 0.1 HSTL_I_18 1.7 1.8 1.9 0.8 0.9 1.1 VREF – 0.1 VREF + 0.1 HSTL_II_18 1.7 1.8 1.9 – 0.9 – VREF – 0.1 VREF + 0.1 HSTL_III_18 1.7 1.8 1.9 – 1.1 – VREF – 0.1 VREF + 0.1 SSTL18_I 1.7 1.8 1.9 0.833 0.900 0.969 VREF – 0.125 VREF + 0.125 SSTL18_II 1.7 1.8 1.9 0.833 0.900 0.969 VREF – 0.125 VREF + 0.125 SSTL2_I 2.3 2.5 2.7 1.13 1.25 1.38 VREF – 0.150 VREF + 0.150 SSTL2_II 2.3 2.5 2.7 1.13 1.25 1.38 VREF – 0.150 VREF + 0.150 SSTL3_I 3.0 3.3 3.6 1.3 1.5 1.7 VREF – 0.2 VREF + 0.2 SSTL3_II 3.0 3.3 3.6 1.3 1.5 1.7 VREF – 0.2 VREF + 0.2 VREF is not used for these I/O standards Notes: 1. 2. 3. 4. 5. 6. 16 Descriptions of the symbols used in this table are as follows: VCCO – the supply voltage for output drivers VREF – the reference voltage for setting the input switching threshold VIL – the input voltage that indicates a Low logic level VIH – the input voltage that indicates a High logic level In general, the VCCO rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when VCCAUX = 3.3V range and for PCI I/O standards. For device operation, the maximum signal voltage (VIH max) can be as high as VIN max. See Table 8. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the VCCAUX rail and use the LVCMOS25 or LVCMOS33 standard depending on VCCAUX. The dual-purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V CCO lines of Banks 0, 1, and 2 at power-on as well as throughout configuration. For information on PCI IP solutions, see www.xilinx.com/pci. The PCI IOSTANDARD is not supported on input-only pins. The PCIX IOSTANDARD is available and has equivalent characteristics but no PCI-X IP is supported. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Table 12: DC Characteristics of User I/Os Using Single-Ended Standards(Continued) Table 12: DC Characteristics of User I/Os Using Single-Ended Standards Test Conditions IOH IOL (mA) (mA) IOSTANDARD Attribute LVTTL(3) 2 4 LVCMOS33(3) LVCMOS25(3) LVCMOS18(3) LVCMOS15(3) LVCMOS12(3) 2 4 Test Conditions Logic Level Characteristics VOL Max (V) VOH Min (V) 0.4 2.4 IOSTANDARD Attribute IOL IOH (mA) (mA) Logic Level Characteristics VOL Max (V) VOH Min (V) PCI33_3(5) 1.5 –0.5 10% VCCO 90% VCCO –4 PCI66_3(5) 1.5 –0.5 10% VCCO 90% VCCO 8 –8 0.4 VCCO - 0.4 –2 6 6 –6 HSTL_I(4) 8 8 –8 HSTL_III(4) 24 –8 0.4 VCCO - 0.4 12 12 –12 HSTL_I_18 8 –8 0.4 VCCO - 0.4 16 16 –16 HSTL_II_18(4) 16 –16 0.4 VCCO - 0.4 24 24 –24 HSTL_III_18 24 –8 0.4 VCCO - 0.4 2 2 –2 SSTL18_I 6.7 –6.7 13.4 –13.4 VTT – 0.603 VTT + 0.603 0.4 VCCO – 0.4 VTT – 0.475 VTT + 0.475 4 4 –4 SSTL18_II(4) 6 6 –6 SSTL2_I 8.1 –8.1 VTT – 0.61 VTT + 0.61 16.2 –16.2 VTT – 0.81 VTT + 0.81 8 8 –8 SSTL2_II(4) 12 12 –12 SSTL3_I 8 –8 VTT – 0.6 VTT + 0.6 16 16 –16 SSTL3_II 16 –16 VTT – 0.8 VTT + 0.8 24(4) 24 –24 2 2 –2 4 4 –4 6 6 –6 8 8 –8 12 12 –12 16(4) 16 –16 24(4) 24 –24 2 2 –2 4 4 –4 6 6 –6 8 8 –8 12(4) 12 –12 16(4) 16 –16 2 2 –2 4 4 –4 6 6 –6 8(4) 8 –8 12(4) 12 –12 2 2 –2 4(4) 4 –4 6(4) 6 –6 Notes: 0.4 VCCO – 0.4 1. 2. IOL – the output current condition under which VOL is tested IOH – the output current condition under which VOH is tested VOL – the output voltage that indicates a Low logic level VOH – the output voltage that indicates a High logic level VCCO – the supply voltage for output drivers VTT – the voltage applied to a resistor termination 3. 4. DS529-3 (v2.0) August 19, 2010 The numbers in this table are based on the conditions set forth in Table 8 and Table 11. Descriptions of the symbols used in this table are as follows: 0.4 VCCO – 0.4 5. 0.4 VCCO – 0.4 0.4 VCCO – 0.4 For the LVCMOS and LVTTL standards: the same VOL and VOH limits apply for the Fast, Slow, and QUIETIO slew attributes. These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. Tested according to the relevant PCI specifications. For information on PCI IP solutions, see www.xilinx.com/pci. The PCIX IOSTANDARD is available and has equivalent characteristics but no PCI-X IP is supported. www.xilinx.com 17 DC and Switching Characteristics Differential I/O Standards Differential Input Pairs VINP Internal Logic VINN VINN VID 50% VINP Differential I/O Pair Pins P N VICM GND level VICM = Input common mode voltage = VINP + VINN 2 VID = Differential input voltage = VINP - VINN DS529-3_10_012907 Figure 4: Differential Input Voltages Table 13: Recommended Operating Conditions for User I/Os Using Differential Signal Standards VCCO for Drivers(1) Min (V) Nom (V) Max (V) Min (V) VICM(2) Nom (V) LVDS_25(3) 2.25 2.5 2.75 100 350 600 0.3 1.25 2.35 LVDS_33(3) 3.0 3.3 3.6 100 350 600 0.3 1.25 2.35 BLVDS_25(4) 2.25 2.5 2.75 100 300 – 0.3 1.3 2.35 MINI_LVDS_25(3) 2.25 2.5 2.75 200 – 600 0.3 1.2 1.95 MINI_LVDS_33(3) 3.0 3.3 3.6 200 – 600 0.3 1.2 1.95 IOSTANDARD Attribute VID Min (mV) Nom (mV) Max (mV) Max (V) LVPECL_25(5) Inputs Only 100 800 1000 0.3 1.2 1.95 LVPECL_33(5) Inputs Only 100 800 1000 0.3 1.2 2.8(6) 1.5 RSDS_25(3) 2.25 2.5 2.75 100 200 – 0.3 1.2 RSDS_33(3) 3.0 3.3 3.6 100 200 – 0.3 1.2 1.5 TMDS_33(3, 4, 7) 3.14 3.3 3.47 150 – 1200 2.7 – 3.23 PPDS_25(3) 2.25 2.5 2.75 100 – 400 0.2 – 2.3 PPDS_33(3) 3.0 3.3 3.6 100 – 400 0.2 – 2.3 DIFF_HSTL_I_18 1.7 1.8 1.9 100 – – 0.8 – 1.1 DIFF_HSTL_II_18(8) 1.7 1.8 1.9 100 – – 0.8 – 1.1 – 1.1 DIFF_HSTL_III_18 1.7 1.8 1.9 100 – – 0.8 DIFF_HSTL_I 1.4 1.5 1.6 100 – – 0.68 DIFF_HSTL_III 1.4 1.5 1.6 100 – – – 0.9 – DIFF_SSTL18_I 1.7 1.8 1.9 100 – – 0.7 – 1.1 DIFF_SSTL18_II(8) 1.7 1.8 1.9 100 – – 0.7 – 1.1 DIFF_SSTL2_I 2.3 2.5 2.7 100 – – 1.0 – 1.5 DIFF_SSTL2_II(8) 2.3 2.5 2.7 100 – – 1.0 – 1.5 DIFF_SSTL3_I 3.0 3.3 3.6 100 – – 1.1 – 1.9 DIFF_SSTL3_II 3.0 3.3 3.6 100 – – 1.1 – 1.9 0.9 Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9. 18 The VCCO rails supply only differential output drivers, not input circuits. VICM must be less than VCCAUX. These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. See "External Termination Requirements for Differential I/O," page 20. LVPECL is supported on inputs only, not outputs. LVPECL_33 requires VCCAUX=3.3V ± 10%. LVPECL_33 maximum VICM = the lower of 2.8V or VCCAUX – (VID / 2) Requires VCCAUX = 3.3V ± 10% for inputs. (VCCAUX – 300 mV) ≤ VICM ≤ (VCCAUX – 37 mV) These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331. All standards except for LVPECL and TMDS can have VCCAUX at either 2.5V or 3.3V. Define your VCCAUX level using the CONFIG VCCAUX constraint. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Differential Output Pairs VOUTP Internal Logic P N VOUTN Differential I/O Pair Pins VOH VOUTN VOD 50% VOUTP VOL VOCM GND level VOCM = Output common mode voltage = VOUTP + VOUTN 2 VOD = Output differential voltage = VOUTP - VOUTN VOH = Output voltage indicating a High logic level VOL = Output voltage indicating a Low logic levelDS529-3_11_012907 Figure 5: Differential Output Voltages Table 14: DC Characteristics of User I/Os Using Differential Signal Standards VOD VOCM VOH VOL Max (V) 1.375 Min (V) – Max (V) – – 1.30 1.375 – – – – – 1.0 1.0 – – 1.4 1.4 – – – – 400 1.0 – 1.4 – – 400 800 1.0 VCCO – 0.405 – – 1.4 VCCO – 0.190 – – – – – – 400 400 0.5 0.5 0.8 0.8 1.4 1.4 – – – – – – – – – – – – – – – – VCCO – 0.4 VCCO – 0.4 0.4 0.4 DIFF_HSTL_III_18 DIFF_HSTL_I – – – – – – – – – – – – VCCO – 0.4 VCCO – 0.4 0.4 0.4 DIFF_HSTL_III DIFF_SSTL18_I – – – – – – – – – – – – VCCO – 0.4 VTT + 0.475 0.4 VTT – 0.475 DIFF_SSTL18_II DIFF_SSTL2_I – – – – – – – – – – – – VTT + 0.603 VTT + 0.61 VTT – 0.603 VTT – 0.61 DIFF_SSTL2_II DIFF_SSTL3_I – – – – – – – – – – – – VTT + 0.81 VTT + 0.6 VTT – 0.81 VTT – 0.6 DIFF_SSTL3_II – – – – – – VTT + 0.8 VTT – 0.8 Min (mV) 247 Typ (mV) 350 Max (mV) 454 Min (V) 1.125 Typ (V) – LVDS_33 BLVDS_25 247 240 350 350 454 460 1.125 – MINI_LVDS_25 MINI_LVDS_33 300 300 – – 600 600 RSDS_25 100 – RSDS_33 TMDS_33 100 400 – – PPDS_25 PPDS_33 100 100 DIFF_HSTL_I_18 DIFF_HSTL_II_18 IOSTANDARD Attribute LVDS_25 Notes: 1. 2. 3. 4. The numbers in this table are based on the conditions set forth in Table 8 and Table 13. See "External Termination Requirements for Differential I/O," page 20. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins of the differential signal pair. At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25, RSDS_25, MINI_LVDS_25, PPDS_25 when VCCO=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when VCCO = 3.3V DS529-3 (v2.0) August 19, 2010 www.xilinx.com 19 DC and Switching Characteristics External Termination Requirements for Differential I/O LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards Bank 0 and 2 Any Bank Bank 0 Bank 2 VCCO = 3.3V VCCO = 2.5V LVDS_33, MINI_LVDS_33, RSDS_33, PPDS_33 LVDS_25, MINI_LVDS_25, RSDS_25, PPDS_25 Bank 1 1/4 th of Bourns Part Number Z0 = 50Ω CAT16-PT4F4 Bank 3 Bank 0 No VCCO Restrictions LVDS_33, LVDS_25, MINI_LVDS_33, MINI_LVDS_25, RSDS_33, RSDS_25, PPDS_33, PPDS_25 Bank 2 100Ω Z0 = 50Ω DIFF_TERM=No a) Input-only differential pairs or pairs not using DIFF_TERM=Yes constraint Z0 = 50Ω VCCO = 3.3V VCCO = 2.5V LVDS_33, MINI_LVDS_33, RSDS_33, PPDS_33 LVDS_25, MINI_LVDS_25, RSDS_25, PPDS_25 VCCO = 3.3V VCCO = 2.5V LVDS_33, MINI_LVDS_33, RSDS_33, PPDS_33 LVDS_25, MINI_LVDS_25, RSDS_25, PPDS_25 RDT Z0 = 50Ω DIFF_TERM=Yes b) Differential pairs using DIFF_TERM=Yes constraint DS529-3_09_020107 Figure 6: External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards BLVDS_25 I/O Standard Any Bank Any Bank Bank 0 Bank 3 1/4 th of Bourns Part Number CAT16-PT4F4 Z0 = 50Ω 165Ω 140Ω BLVDS_25 Bank 1 Bank 1 Bank 2 VCCO = 2.5V 1/4 th of Bourns Part Number CAT16-LV4F12 Bank 3 Bank 0 Bank 2 No VCCO Requirement 100Ω Z0 = 50Ω BLVDS_25 165Ω DS529-3_07_020107 Figure 7: External Output and Input Termination Resistors for BLVDS_25 I/O Standard TMDS_33 I/O Standard Any Bank Bank 0 and 2 Bank 0 3.3V Bank 2 50Ω Bank 1 Bank 3 Bank 0 50Ω Bank 2 VCCAUX = 3.3V VCCO = 3.3V TMDS_33 TMDS_33 DVI/HDMI cable DS529-3_08_020107 Figure 8: External Input Resistors Required for TMDS_33 I/O Standard Device DNA Read Endurance Table 15: Device DNA Identifier Memory Characteristics 20 Symbol Description Minimum Units DNA_CYCLES Number of READ operations or JTAG ISC_DNA read operations. Unaffected by HOLD or SHIFT operations. 30,000,000 Read cycles www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Switching Characteristics All Spartan-3A FPGAs ship in two speed grades: –4 and the higher performance –5. Switching characteristics in this document are designated as Advance, Preliminary, or Production, as shown in Table 16. Each category is defined as follows: Advance: These specifications are based on simulations only and are typically available soon after establishing FPGA specifications. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. Preliminary: These specifications are based on complete early silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting preliminary delays is greatly reduced compared to Advance data. Production: These specifications are approved once enough production silicon of a particular device has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. Software Version Requirements Production-quality systems must use FPGA designs compiled using a speed file designated as PRODUCTION status. FPGA designs using a less mature speed file designation should only be used during system prototyping or pre-production qualification. FPGA designs with speed files designated as Advance or Preliminary should not be used in a production-quality system. Whenever a speed file designation changes, as a device matures toward Production status, rerun the latest Xilinx® ISE® software on the FPGA design to ensure that the FPGA design incorporates the latest timing information and software updates. All parameter limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the published parameter values apply to all Spartan-3A devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. DS529-3 (v2.0) August 19, 2010 To create a Xilinx user account and sign up for automatic E-mail notification whenever this data sheet is updated: • Sign Up for Alerts www.xilinx.com/support/answers/18683.htm Timing parameters and their representative values are selected for inclusion below either because they are important as general design requirements or they indicate fundamental device performance characteristics. The Spartan-3A FPGA speed files (v1.41), part of the Xilinx Development Software, are the original source for many but not all of the values. The speed grade designations for these files are shown in Table 16. For more complete, more precise, and worst-case data, use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and back-annotated to the simulation netlist. Table 16: Spartan-3A v1.41 Speed Grade Designation Device Advance Preliminary Production XC3S50A -4, -5 XC3S200A -4, -5 XC3S400A -4, -5 XC3S700A -4, -5 XC3S1400A -4, -5 Table 17 provides the recent history of the Spartan-3A FPGA speed files. Table 17: Spartan-3A Speed File Version History Version ISE Release Description 1.41 ISE 10.1.03 Updated Automotive output delays 1.40 ISE 10.1.02 Updated Automotive input delays. 1.39 ISE 10.1.01 Added Automotive parts. 1.38 ISE 9.2.03i Added Absolute Minimum values. 1.37 ISE 9.2.01i Updated pin-to-pin setup and hold times (Table 19), TMDS output adjustment (Table 26) multiplier setup/hold times (Table 34), and block RAM clock width (Table 35). 1.36 XC3S400A, all speed grades and all ISE 9.2i; previously temperature grades, upgraded to available via Production Answer Record AR24992 1.35 Answer Record AR24992 XC3S50A, XC3S200A, XC3S700A, XC3S1400A, all speed grades and all temperature grades, upgraded to Production. 1.34 ISE 9.1.03i XC3S700A and XC3S1400A -4 speed grade upgraded to Production. Updated pin-to-pin timing numbers. www.xilinx.com 21 DC and Switching Characteristics I/O Timing Pin-to-Pin Clock-to-Output Times Table 18: Pin-to-Pin Clock-to-Output Times for the IOB Output Path Speed Grade Symbol Description Conditions -5 -4 Max Max Units XC3S50A 3.18 3.42 ns XC3S200A 3.21 3.27 ns XC3S400A 2.97 3.33 ns XC3S700A 3.39 3.50 ns XC3S1400A 3.51 3.99 ns XC3S50A 4.59 5.02 ns XC3S200A 4.88 5.24 ns XC3S400A 4.68 5.12 ns XC3S700A 4.97 5.34 ns XC3S1400A 5.06 5.69 ns Device Clock-to-Output Times TICKOFDCM TICKOF When reading from the Output Flip-Flop (OFF), the time from the active transition on the Global Clock pin to data appearing at the Output pin. The DCM is in use. LVCMOS25(2), 12mA output drive, Fast slew rate, with DCM(3) When reading from OFF, the time LVCMOS25(2), 12mA from the active transition on the output drive, Fast slew Global Clock pin to data appearing rate, without DCM at the Output pin. The DCM is not in use. Notes: 1. 2. 3. 22 The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate Input adjustment from Table 23. If the latter is true, add the appropriate Output adjustment from Table 26. DCM output jitter is included in all measurements. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Pin-to-Pin Setup and Hold Times Table 19: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous) Speed Grade Symbol Description Conditions -5 -4 Device Min Min Units XC3S50A 2.45 2.68 ns XC3S200A 2.59 2.84 ns XC3S400A 2.38 2.68 ns XC3S700A 2.38 2.57 ns XC3S1400A 1.91 2.17 ns XC3S50A 2.55 2.76 ns XC3S200A 2.32 2.76 ns XC3S400A 2.21 2.60 ns XC3S700A 2.28 2.63 ns XC3S1400A 2.33 2.41 ns XC3S50A -0.36 -0.36 ns XC3S200A -0.52 -0.52 ns XC3S400A -0.33 -0.29 ns XC3S700A -0.17 -0.12 ns XC3S1400A -0.07 0.00 ns XC3S50A -0.63 -0.58 ns XC3S200A -0.56 -0.56 ns XC3S400A -0.42 -0.42 ns XC3S700A -0.80 -0.75 ns XC3S1400A -0.69 -0.69 ns Setup Times TPSDCM TPSFD When writing to the Input Flip-Flop (IFF), the time from the setup of data at the Input pin to the active transition at a Global Clock pin. The DCM is in use. No Input Delay is programmed. LVCMOS25(2), IFD_DELAY_VALUE = 0, with DCM(4) LVCMOS25(2), When writing to IFF, the time from the setup of data at the Input pin IFD_DELAY_VALUE = 5, to an active transition at the without DCM Global Clock pin. The DCM is not in use. The Input Delay is programmed. Hold Times TPHDCM TPHFD When writing to IFF, the time from LVCMOS25(3), the active transition at the Global IFD_DELAY_VALUE = 0, Clock pin to the point when data with DCM(4) must be held at the Input pin. The DCM is in use. No Input Delay is programmed. LVCMOS25(3), When writing to IFF, the time from the active transition at the Global IFD_DELAY_VALUE = 5, Clock pin to the point when data without DCM must be held at the Input pin. The DCM is not in use. The Input Delay is programmed. Notes: 1. 2. 3. 4. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 23. If this is true of the data Input, add the appropriate Input adjustment from the same table. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 23. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s active edge. DCM output jitter is included in all measurements. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 23 DC and Switching Characteristics Input Setup and Hold Times Table 20: Setup and Hold Times for the IOB Input Path Speed Grade Symbol Description Conditions IFD_ DELAY_ VALUE -5 -4 Min Min Units XC3S50A 1.56 1.58 ns XC3S200A 1.71 1.81 ns XC3S400A 1.30 1.51 ns XC3S700A 1.34 1.51 ns XC3S1400A 1.36 1.74 ns XC3S50A 2.16 2.18 ns 2 3.10 3.12 ns 3 3.51 3.76 ns 4 4.04 4.32 ns 5 3.88 4.24 ns 6 4.72 5.09 ns 7 5.47 5.94 ns 8 5.97 6.52 ns 2.05 2.20 ns 2 2.72 2.93 ns 3 3.38 3.78 ns 4 3.88 4.37 ns 5 3.69 4.20 ns 6 4.56 5.23 ns 7 5.34 6.11 ns 8 5.85 6.71 ns 1.79 2.02 ns 2 2.43 2.67 ns 3 3.02 3.43 ns 4 3.49 3.96 ns 5 3.41 3.95 ns 6 4.20 4.81 ns 7 4.96 5.66 ns 8 5.44 6.19 ns Device Setup Times TIOPICK TIOPICKD Time from the setup of data at the LVCMOS25(2) Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). No Input Delay is programmed. Time from the setup of data at the Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). The Input Delay is programmed. LVCMOS25(2) 0 1 1 1 24 www.xilinx.com XC3S200A XC3S400A DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Table 20: Setup and Hold Times for the IOB Input Path(Continued) Speed Grade Symbol TIOPICKD Description Conditions Time from the setup of data at the LVCMOS25(2) Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). The Input Delay is programmed. IFD_ DELAY_ VALUE -5 -4 Device Min Min Units XC3S700A 1.82 1.95 ns 2 2.62 2.83 ns 3 3.32 3.72 ns 4 3.83 4.31 ns 5 3.69 4.14 ns 6 4.60 5.19 ns 7 5.39 6.10 ns 8 5.92 6.73 ns 1.79 2.17 ns 2 2.55 2.92 ns 3 3.38 3.76 ns 4 3.75 4.32 ns 5 3.81 4.19 ns 6 4.39 5.09 ns 7 5.16 5.98 ns 8 5.69 6.57 ns XC3S50A –0.66 –0.64 ns XC3S200A –0.85 –0.65 ns XC3S400A –0.42 –0.42 ns XC3S700A –0.81 –0.67 ns XC3S1400A –0.71 –0.71 ns XC3S50A –0.88 –0.88 ns 2 –1.33 –1.33 ns 3 –2.05 –2.05 ns 4 –2.43 –2.43 ns 5 –2.34 –2.34 ns 6 –2.81 –2.81 ns 7 –3.03 –3.03 ns 8 –3.83 –3.57 ns –1.51 –1.51 ns 2 –2.09 –2.09 ns 3 –2.40 –2.40 ns 4 –2.68 –2.68 ns 5 –2.56 –2.56 ns 6 –2.99 –2.99 ns 7 –3.29 –3.29 ns 8 –3.61 –3.61 ns 1 1 XC3S1400A Hold Times TIOICKP TIOICKPD Time from the active transition at the LVCMOS25(3) ICLK input of the Input Flip-Flop (IFF) to the point where data must be held at the Input pin. No Input Delay is programmed. Time from the active transition at the LVCMOS25(3) ICLK input of the Input Flip-Flop (IFF) to the point where data must be held at the Input pin. The Input Delay is programmed. 0 1 1 DS529-3 (v2.0) August 19, 2010 www.xilinx.com XC3S200A 25 DC and Switching Characteristics Table 20: Setup and Hold Times for the IOB Input Path(Continued) Speed Grade Symbol TIOICKPD Description Conditions Time from the active transition at the LVCMOS25(3) ICLK input of the Input Flip-Flop (IFF) to the point where data must be held at the Input pin. The Input Delay is programmed. IFD_ DELAY_ VALUE -5 -4 Min Min Units –1.12 –1.12 ns 2 –1.70 –1.70 ns 3 –2.08 –2.08 ns 4 –2.38 –2.38 ns 5 –2.23 –2.23 ns 6 –2.69 –2.69 ns 7 –3.08 –3.08 ns 8 –3.35 –3.35 ns –1.67 –1.67 ns 2 –2.27 –2.27 ns 3 –2.59 –2.59 ns 4 –2.92 –2.92 ns 5 –2.89 –2.89 ns 6 –3.22 –3.22 ns 7 –3.52 –3.52 ns 8 –3.81 –3.81 ns –1.60 –1.60 ns 2 –2.06 –2.06 ns 3 –2.46 –2.46 ns 4 –2.86 –2.86 ns 5 –2.88 –2.88 ns 6 –3.24 –3.24 ns 7 –3.55 –3.55 ns 8 –3.89 –3.89 ns 1.33 1.61 ns 1 1 1 Device XC3S400A XC3S700A XC3S1400A Set/Reset Pulse Width TRPW_IOB Minimum pulse width to SR control input on IOB - - All Notes: 1. 2. 3. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 23. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 23. When the hold time is negative, it is possible to change the data before the clock’s active edge. Table 21: Sample Window (Source Synchronous) Symbol TSAMP 26 Max Description Setup and hold capture window of an IOB flip-flop. Units The input capture sample window value is highly specific to a particular application, device, package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the appropriate Xilinx Answer Record for application-specific values. • Answer Record 30879 www.xilinx.com ps DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Input Propagation Times Table 22: Propagation Times for the IOB Input Path Speed Grade Symbol -5 -4 Device Max Max Units XC3S50A 1.04 1.12 ns XC3S200A 0.87 0.87 ns XC3S400A 0.65 0.72 ns XC3S700A 0.92 0.92 ns XC3S1400A 0.96 1.21 ns XC3S50A 1.79 2.07 ns 2 2.13 2.46 ns 3 2.36 2.71 ns 4 2.88 3.21 ns 5 3.11 3.46 ns 6 3.45 3.84 ns 7 3.75 4.19 ns 8 4.00 4.47 ns 9 3.61 4.11 ns 10 3.95 4.50 ns 11 4.18 4.67 ns 12 4.75 5.20 ns 13 4.98 5.44 ns 14 5.31 5.95 ns 15 5.62 6.28 ns 16 5.86 6.57 ns 1.57 1.65 ns 2 1.87 1.97 ns 3 2.16 2.33 ns 4 2.68 2.96 ns 5 2.87 3.19 ns 6 3.20 3.60 ns 7 3.57 4.02 ns 8 3.79 4.26 ns 9 3.42 3.86 ns 10 3.79 4.25 ns 11 4.02 4.55 ns 12 4.62 5.24 ns 13 4.86 5.53 ns 14 5.18 5.94 ns Description Conditions DELAY_VALUE The time it takes for data to travel from the Input pin to the I output with no input delay programmed LVCMOS25(2) IBUF_DELAY_VALUE=0 Propagation Times TIOPI TIOPID The time it takes for data to travel from the Input pin to the I output with the input delay programmed LVCMOS25(2) 1 1 DS529-3 (v2.0) August 19, 2010 www.xilinx.com XC3S200A 27 DC and Switching Characteristics Table 22: Propagation Times for the IOB Input Path(Continued) Speed Grade Symbol TIOPID -5 -4 Max Max Units 5.43 6.24 ns 5.75 6.59 ns 1.32 1.43 ns 2 1.67 1.83 ns 3 1.90 2.07 ns 4 2.33 2.52 ns 5 2.60 2.91 ns 6 2.94 3.20 ns 7 3.23 3.51 ns 8 3.50 3.85 ns 9 3.18 3.55 ns 10 3.53 3.95 ns 11 3.76 4.20 ns 12 4.26 4.67 ns 13 4.51 4.97 ns 14 4.85 5.32 ns 15 5.14 5.64 ns 16 5.40 5.95 ns 1.84 1.87 ns 2 2.20 2.27 ns 3 2.46 2.60 ns 4 2.93 3.15 ns 5 3.21 3.45 ns 6 3.54 3.80 ns 7 3.86 4.16 ns 8 4.13 4.48 ns 9 3.82 4.19 ns 10 4.17 4.58 ns 11 4.43 4.89 ns 12 4.95 5.49 ns 13 5.22 5.83 ns 14 5.57 6.21 ns 15 5.89 6.55 ns 16 6.16 6.89 ns 1.95 2.18 ns 2 2.29 2.59 ns 3 2.54 2.84 ns 4 2.96 3.30 ns Description Conditions DELAY_VALUE The time it takes for data to travel from the Input pin to the I output with the input delay programmed LVCMOS25(2) 15 XC3S200A 16 1 1 1 28 Device www.xilinx.com XC3S400A XC3S700A XC3S1400A DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Table 22: Propagation Times for the IOB Input Path(Continued) Speed Grade Symbol TIOPID TIOPLI TIOPLID -5 -4 Description Conditions DELAY_VALUE Device Max Max Units The time it takes for data to travel from the Input pin to the I output with the input delay programmed LVCMOS25(2) 5 XC3S1400A 3.17 3.52 ns 6 3.52 3.92 ns 7 3.82 4.18 ns 8 4.10 4.57 ns 9 3.84 4.31 ns 10 4.20 4.79 ns 11 4.46 5.06 ns 12 4.87 5.51 ns 13 5.07 5.73 ns 14 5.43 6.08 ns 15 5.73 6.33 ns 16 6.01 6.77 ns XC3S50A 1.70 1.81 ns XC3S200A 1.85 2.04 ns XC3S400A 1.44 1.74 ns XC3S700A 1.48 1.74 ns XC3S1400A 1.50 1.97 ns XC3S50A 2.30 2.41 ns 2 3.24 3.35 ns 3 3.65 3.98 ns 4 4.18 4.55 ns 5 4.02 4.47 ns 6 4.86 5.32 ns 7 5.61 6.17 ns 8 6.11 6.75 ns 2.19 2.43 ns 2 2.86 3.16 ns 3 3.52 4.01 ns 4 4.02 4.60 ns 5 3.83 4.43 ns 6 4.70 5.46 ns 7 5.48 6.33 ns 8 5.99 6.94 ns 1.93 2.25 ns 2 2.57 2.90 ns 3 3.16 3.66 ns 4 3.63 4.19 ns The time it takes for data to travel from the Input pin through the IFF latch to the I output with no input delay programmed The time it takes for data to travel from the Input pin through the IFF latch to the I output with the input delay programmed LVCMOS25(2) IFD_DELAY_VALUE=0 LVCMOS25(2) 1 1 1 DS529-3 (v2.0) August 19, 2010 www.xilinx.com XC3S200A XC3S400A 29 DC and Switching Characteristics Table 22: Propagation Times for the IOB Input Path(Continued) Speed Grade Symbol TIOPLID Description The time it takes for data to travel from the Input pin through the IFF latch to the I output with the input delay programmed -5 -4 Max Max Units 3.55 4.18 ns 6 4.34 5.03 ns 7 5.09 5.88 ns 8 5.58 6.42 ns 1.96 2.18 ns 2 2.76 3.06 ns 3 3.45 3.95 ns 4 3.97 4.54 ns 5 3.83 4.37 ns 6 4.74 5.42 ns 7 5.53 6.33 ns 8 6.06 6.96 ns 1.93 2.40 ns 2 2.69 3.15 ns 3 3.52 3.99 ns 4 3.89 4.55 ns 5 3.95 4.42 ns 6 4.53 5.32 ns 7 5.30 6.21 ns 8 5.83 6.80 ns Conditions DELAY_VALUE LVCMOS25(2) 5 1 1 Device XC3S400A XC3S700A XC3S1400A Notes: 1. 2. 30 The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, add the appropriate Input adjustment from Table 23. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Input Timing Adjustments Table 23: Input Timing Adjustments by IOSTANDARD(Continued) Table 23: Input Timing Adjustments by IOSTANDARD Convert Input Time from LVCMOS25 to the Following Signal Standard (IOSTANDARD) Add the Adjustment Below Speed Grade -5 -4 Units Convert Input Time from LVCMOS25 to the Following Signal Standard (IOSTANDARD) Add the Adjustment Below Speed Grade -5 -4 Units Differential Standards Single-Ended Standards LVTTL 0.62 0.62 ns LVDS_25 0.76 0.76 ns LVCMOS33 0.54 0.54 ns LVDS_33 0.79 0.79 ns LVCMOS25 0 0 ns BLVDS_25 0.79 0.79 ns 0.78 0.78 ns LVCMOS18 0.83 0.83 ns MINI_LVDS_25 LVCMOS15 0.60 0.60 ns MINI_LVDS_33 0.79 0.79 ns LVCMOS12 0.31 0.31 ns LVPECL_25 0.78 0.78 ns 0.79 0.79 ns PCI33_3 0.41 0.41 ns LVPECL_33 PCI66_3 0.41 0.41 ns RSDS_25 0.79 0.79 ns 0.77 0.77 ns HSTL_I 0.72 0.72 ns RSDS_33 HSTL_III 0.77 0.77 ns TMDS_33 0.79 0.79 ns HSTL_I_18 0.69 0.69 ns PPDS_25 0.79 0.79 ns 0.79 0.79 ns HSTL_II_18 0.69 0.69 ns PPDS_33 HSTL_III_18 0.79 0.79 ns DIFF_HSTL_I_18 0.74 0.74 ns SSTL18_I 0.71 0.71 ns DIFF_HSTL_II_18 0.72 0.72 ns 1.05 1.05 ns 0.72 ns SSTL18_II 0.71 0.71 ns DIFF_HSTL_III_18 SSTL2_I 0.68 0.68 ns DIFF_HSTL_I 0.72 SSTL2_II 0.68 0.68 ns DIFF_HSTL_III 1.05 1.05 ns 0.71 0.71 ns SSTL3_I 0.78 0.78 ns DIFF_SSTL18_I SSTL3_II 0.78 0.78 ns DIFF_SSTL18_II 0.71 0.71 ns DIFF_SSTL2_I 0.74 0.74 ns DIFF_SSTL2_II 0.75 0.75 ns DIFF_SSTL3_I 1.06 1.06 ns DIFF_SSTL3_II 1.06 1.06 ns Notes: 1. 2. DS529-3 (v2.0) August 19, 2010 The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards. www.xilinx.com 31 DC and Switching Characteristics Output Propagation Times Table 24: Timing for the IOB Output Path Speed Grade Symbol -5 -4 Description Conditions Device Max Max Units When reading from the Output Flip-Flop (OFF), the time from the active transition at the OCLK input to data appearing at the Output pin LVCMOS25(2), 12 mA output drive, Fast slew rate All 2.87 3.13 ns LVCMOS25(2), 12 mA output drive, Fast slew rate All 2.78 2.91 ns LVCMOS25(2), 12 mA output drive, Fast slew rate All 3.63 3.89 ns 8.62 9.65 ns Clock-to-Output Times TIOCKP Propagation Times TIOOP The time it takes for data to travel from the IOB’s O input to the Output pin Set/Reset Times TIOSRP TIOGSRQ Time from asserting the OFF’s SR input to setting/resetting data at the Output pin Time from asserting the Global Set Reset (GSR) input on the STARTUP_SPARTAN3A primitive to setting/resetting data at the Output pin Notes: 1. 2. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, add the appropriate Output adjustment from Table 26. Three-State Output Propagation Times Table 25: Timing for the IOB Three-State Path Speed Grade Symbol Description Conditions -5 -4 Device Max Max Units Synchronous Output Enable/Disable Times TIOCKHZ Time from the active transition at the OTCLK input of LVCMOS25, 12 mA the Three-state Flip-Flop (TFF) to when the Output output drive, Fast slew pin enters the high-impedance state rate All 0.63 0.76 ns TIOCKON(2) Time from the active transition at TFF’s OTCLK input to when the Output pin drives valid data All 2.80 3.06 ns LVCMOS25, 12 mA output drive, Fast slew rate All 9.47 10.36 ns LVCMOS25, 12 mA output drive, Fast slew rate All 1.61 1.86 ns All 3.57 3.82 ns Asynchronous Output Enable/Disable Times TGTS Time from asserting the Global Three State (GTS) input on the STARTUP_SPARTAN3A primitive to when the Output pin enters the high-impedance state Set/Reset Times TIOSRHZ Time from asserting TFF’s SR input to when the Output pin enters a high-impedance state TIOSRON(2) Time from asserting TFF’s SR input at TFF to when the Output pin drives valid data Notes: 1. 2. 32 The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8 and Table 11. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, add the appropriate Output adjustment from Table 26. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Output Timing Adjustments Table 26: Output Timing Adjustments for IOB(Continued) Table 26: Output Timing Adjustments for IOB Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard (IOSTANDARD) Add the Adjustment Below Speed Grade -5 -4 Units LVCMOS33 Single-Ended Standards LVTTL Slow Fast QuietIO Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard (IOSTANDARD) Slow Add the Adjustment Below Speed Grade -5 -4 Units 2 mA 5.58 5.58 ns 3.17 3.17 ns 3.17 3.17 ns 2 mA 5.58 5.58 ns 4 mA 4 mA 3.16 3.16 ns 6 mA 6 mA 3.17 3.17 ns 8 mA 2.09 2.09 ns 1.24 1.24 ns 8 mA 2.09 2.09 ns 12 mA 12 mA 1.62 1.62 ns 16 mA 1.15 1.15 ns 24 mA 2.55(3) 2.55(3) ns 2 mA 3.02 3.02 ns 16 mA 1.24 1.24 ns 24 mA 2.74(3) 2.74(3) ns 2 mA 3.03 3.03 ns 4 mA 1.71 1.71 ns 6 mA 1.72 1.72 ns Fast 4 mA 1.71 1.71 ns 6 mA 1.71 1.71 ns 8 mA 0.53 0.53 ns 0.59 0.59 ns 0.59 0.59 ns 8 mA 0.53 0.53 ns 12 mA 12 mA 0.53 0.53 ns 16 mA 16 mA 0.59 0.59 ns QuietIO 24 mA 0.51 0.51 ns 2 mA 27.67 27.67 ns 24 mA 0.60 0.60 ns 2 mA 27.67 27.67 ns 4 mA 27.67 27.67 ns 4 mA 27.67 27.67 ns 6 mA 27.67 27.67 ns 16.71 16.71 ns 6 mA 27.67 27.67 ns 8 mA 8 mA 16.71 16.71 ns 12 mA 16.29 16.29 ns 16.18 16.18 ns 12.11 12.11 ns 12 mA 16.67 16.67 ns 16 mA 16 mA 16.22 16.22 ns 24 mA 24 mA 12.11 12.11 ns DS529-3 (v2.0) August 19, 2010 www.xilinx.com 33 DC and Switching Characteristics Table 26: Output Timing Adjustments for IOB(Continued) Add the Adjustment Below Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard (IOSTANDARD) Speed Grade -5 -4 Units LVCMOS25 2 mA 5.33 5.33 ns 4 mA 2.81 2.81 6 mA 2.82 8 mA 1.14 12 mA 1.10 Slow Fast QuietIO LVCMOS18 Slow Fast QuietIO 34 Table 26: Output Timing Adjustments for IOB(Continued) Add the Adjustment Below Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard (IOSTANDARD) Speed Grade -5 -4 Units LVCMOS15 2 mA 5.82 5.82 ns ns 4 mA 3.97 3.97 ns 2.82 ns 6 mA 3.21 3.21 ns 1.14 ns 8 mA 2.53 2.53 ns 1.10 ns 12 mA 2.06 2.06 ns Slow 16 mA 0.83 0.83 ns 2 mA 5.23 5.23 ns 24 mA 2.26(3) 2.26(3) ns Fast 4 mA 3.05 3.05 ns 2 mA 4.36 4.36 ns 6 mA 1.95 1.95 ns 4 mA 1.76 1.76 ns 8 mA 1.60 1.60 ns 6 mA 1.25 1.25 ns 12 mA 1.30 1.30 ns 8 mA 0.38 0.38 ns 2 mA 34.11 34.11 ns 12 mA 0 0 ns QuietIO 4 mA 25.66 25.66 ns 16 mA 0.01 0.01 ns 6 mA 24.64 24.64 ns 24 mA 0.01 0.01 ns 8 mA 22.06 22.06 ns 2 mA 25.92 25.92 ns 12 mA 20.64 20.64 ns 4 mA 25.92 25.92 ns 2 mA 7.14 7.14 ns 6 mA 25.92 25.92 ns 4 mA 4.87 4.87 ns 8 mA 15.57 15.57 ns 6 mA 5.67 5.67 ns 12 mA 15.59 15.59 ns 2 mA 6.77 6.77 ns 16 mA 14.27 14.27 ns 4 mA 5.02 5.02 ns 24 mA 11.37 11.37 ns 2 mA 4.48 4.48 ns 4 mA 3.69 3.69 ns 6 mA 2.91 2.91 ns 8 mA 1.99 1.99 ns PCI33_3 12 mA 1.57 1.57 ns LVCMOS12 Slow Fast 6 mA 4.09 4.09 ns 2 mA 50.76 50.76 ns 4 mA 43.17 43.17 ns 6 mA 37.31 37.31 ns 0.34 0.34 ns PCI66_3 0.34 0.34 ns QuietIO 16 mA 1.19 1.19 ns HSTL_I 0.78 0.78 ns 2 mA 3.96 3.96 ns HSTL_III 1.16 1.16 ns 4 mA 2.57 2.57 ns HSTL_I_18 0.35 0.35 ns 6 mA 1.90 1.90 ns HSTL_II_18 0.30 0.30 ns 8 mA 1.06 1.06 ns HSTL_III_18 0.47 0.47 ns 12 mA 0.83 0.83 ns SSTL18_I 0.40 0.40 ns 16 mA 0.63 0.63 ns SSTL18_II 0.30 0.30 ns 2 mA 24.97 24.97 ns SSTL2_I 0 0 ns 4 mA 24.97 24.97 ns SSTL2_II –0.05 –0.05 ns 6 mA 24.08 24.08 ns SSTL3_I 0 0 ns SSTL3_II 0.17 0.17 ns 8 mA 16.43 16.43 ns 12 mA 14.52 14.52 ns 16 mA 13.41 13.41 ns www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Table 26: Output Timing Adjustments for IOB(Continued) Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard (IOSTANDARD) Add the Adjustment Below Speed Grade -5 -4 Units LVDS_25 1.16 1.16 ns LVDS_33 0.46 0.46 ns BLVDS_25 0.11 0.11 ns MINI_LVDS_25 0.75 0.75 ns MINI_LVDS_33 0.40 0.40 ns Differential Standards LVPECL_25 Input Only LVPECL_33 RSDS_25 1.42 1.42 ns RSDS_33 0.58 0.58 ns TMDS_33 0.46 0.46 ns PPDS_25 1.07 1.07 ns PPDS_33 0.63 0.63 ns DIFF_HSTL_I_18 0.43 0.43 ns DIFF_HSTL_II_18 0.41 0.41 ns DIFF_HSTL_III_18 0.36 0.36 ns DIFF_HSTL_I 1.01 1.01 ns DIFF_HSTL_III 0.54 0.54 ns DIFF_SSTL18_I 0.49 0.49 ns DIFF_SSTL18_II 0.41 0.41 ns DIFF_SSTL2_I 0.82 0.82 ns DIFF_SSTL2_II 0.09 0.09 ns DIFF_SSTL3_I 1.16 1.16 ns DIFF_SSTL3_II 0.28 0.28 ns Notes: 1. 2. 3. The numbers in this table are tested using the methodology presented in Table 27 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state. Note that 16 mA drive is faster than 24 mA drive for the Slow slew rate. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 35 DC and Switching Characteristics Timing Measurement Methodology When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions. Table 27 lists the conditions to use for each standard. LVCMOS, LVTTL), then RT is set to 1MΩ to indicate an open connection, and VT is set to zero. The same measurement point (VM) that was used at the Input is also used at the Output. The method for measuring Input timing is as follows: A signal that swings between a Low logic level of VL and a High logic level of VH is applied to the Input under test. Some standards also require the application of a bias voltage to the VREF pins of a given bank to properly set the input-switching threshold. The measurement point of the Input signal (VM) is commonly located halfway between VL and VH. VT (VREF) FPGA Output RT (RREF) VM (VMEAS) CL (CREF) The Output test setup is shown in Figure 9. A termination voltage VT is applied to the termination resistor RT, the other end of which is connected to the Output. For each standard, RT and VT generally take on the standard values recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (for example, DS312-3_04_102406 Notes: 1. The names shown in parentheses are used in the IBIS file. Figure 9: Output Test Setup Table 27: Test Methods for Timing Measurement at I/Os Signal Standard (IOSTANDARD) Inputs Inputs and Outputs Outputs VREF (V) VL (V) VH (V) RT (Ω) VT (V) VM (V) LVTTL - 0 3.3 1M 0 1.4 LVCMOS33 - 0 3.3 1M 0 1.65 LVCMOS25 - 0 2.5 1M 0 1.25 LVCMOS18 - 0 1.8 1M 0 0.9 LVCMOS15 - 0 1.5 1M 0 0.75 LVCMOS12 - 0 1.2 1M 0 0.6 - Note 3 Note 3 25 0 0.94 25 3.3 2.03 25 0 0.94 25 3.3 2.03 Single-Ended PCI33_3 Rising Falling PCI66_3 Rising - Note 3 Note 3 Falling HSTL_I 0.75 VREF – 0.5 VREF + 0.5 50 0.75 VREF HSTL_III 0.9 VREF – 0.5 VREF + 0.5 50 1.5 VREF HSTL_I_18 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF HSTL_II_18 0.9 VREF – 0.5 VREF + 0.5 25 0.9 VREF HSTL_III_18 1.1 VREF – 0.5 VREF + 0.5 50 1.8 VREF SSTL18_I 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF SSTL18_II 0.9 VREF – 0.5 VREF + 0.5 25 0.9 VREF SSTL2_I 1.25 VREF – 0.75 VREF + 0.75 50 1.25 VREF SSTL2_II 1.25 VREF – 0.75 VREF + 0.75 25 1.25 VREF SSTL3_I 1.5 VREF – 0.75 VREF + 0.75 50 1.5 VREF SSTL3_II 1.5 VREF – 0.75 VREF + 0.75 25 1.5 VREF 36 www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Table 27: Test Methods for Timing Measurement at I/Os(Continued) Signal Standard (IOSTANDARD) Inputs Inputs and Outputs Outputs VREF (V) VL (V) VH (V) RT (Ω) VT (V) VM (V) LVDS_25 - VICM – 0.125 VICM + 0.125 50 1.2 VICM LVDS_33 - VICM – 0.125 VICM + 0.125 50 1.2 VICM BLVDS_25 - VICM – 0.125 VICM + 0.125 1M 0 VICM MINI_LVDS_25 - VICM – 0.125 VICM + 0.125 50 1.2 VICM MINI_LVDS_33 - VICM – 0.125 VICM + 0.125 50 1.2 VICM LVPECL_25 - VICM – 0.3 VICM + 0.3 N/A N/A VICM LVPECL_33 - VICM – 0.3 VICM + 0.3 N/A N/A VICM RSDS_25 - VICM – 0.1 VICM + 0.1 50 1.2 VICM RSDS_33 - VICM – 0.1 VICM + 0.1 50 1.2 VICM TMDS_33 - VICM – 0.1 VICM + 0.1 50 3.3 VICM PPDS_25 - VICM – 0.1 VICM + 0.1 50 0.8 VICM PPDS_33 - VICM – 0.1 VICM + 0.1 50 0.8 VICM DIFF_HSTL_I - VICM – 0.5 VICM + 0.5 50 0.75 VICM DIFF_HSTL_III - VICM – 0.5 VICM + 0.5 50 1.5 VICM DIFF_HSTL_I_18 - VICM – 0.5 VICM + 0.5 50 0.9 VICM DIFF_HSTL_II_18 - VICM – 0.5 VICM + 0.5 50 0.9 VICM DIFF_HSTL_III_18 - VICM – 0.5 VICM + 0.5 50 1.8 VICM DIFF_SSTL18_I - VICM – 0.5 VICM + 0.5 50 0.9 VICM DIFF_SSTL18_II - VICM – 0.5 VICM + 0.5 50 0.9 VICM DIFF_SSTL2_I - VICM – 0.5 VICM + 0.5 50 1.25 VICM DIFF_SSTL2_II - VICM – 0.5 VICM + 0.5 50 1.25 VICM DIFF_SSTL3_I - VICM – 0.5 VICM + 0.5 50 1.5 VICM DIFF_SSTL3_II - VICM – 0.5 VICM + 0.5 50 1.5 VICM Differential Notes: 1. 2. 3. Descriptions of the relevant symbols are as follows: VREF – The reference voltage for setting the input switching threshold VICM – The common mode input voltage VM – Voltage of measurement point on signal transition VL – Low-level test voltage at Input pin VH – High-level test voltage at Input pin RT – Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required VT – Termination voltage The load capacitance (CL) at the Output pin is 0 pF for all signal standards. According to the PCI specification. The capacitive load (CL) is connected between the output and GND. The Output timing for all standards, as published in the speed files and the data sheet, is always based on a CL value of zero. High-impedance probes (less than 1 pF) are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 37 DC and Switching Characteristics Using IBIS Models to Simulate Load Conditions in Application IBIS models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model (VREF, RREF, and VMEAS) correspond directly with the parameters used in Table 27 (VT, RT, and VM). Do not confuse VREF (the termination voltage) from the IBIS model with VREF (the input-switching threshold) from the table. A fourth parameter, CREF, is always zero. The four parameters describe all relevant output test conditions. IBIS models are found in the Xilinx development software as well as at the following link: www.xilinx.com/support/download/index.htm 1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 9. Use parameter values VT, RT, and VM from Table 27. CREF is zero. 2. Record the time to VM. 3. Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including VREF, RREF, CREF, and VMEAS values) or capacitive value to represent the load. 4. Record the time to VMEAS. Delays for a given application are simulated according to its specific load conditions as follows: 5. Compare the results of steps 2 and 4. Add (or subtract) the increase (or decrease) in delay to (or from) the appropriate Output standard adjustment (Table 26) to yield the worst-case delay of the PCB trace. Simultaneously Switching Output Guidelines This section provides guidelines for the recommended maximum allowable number of Simultaneous Switching Outputs (SSOs). These guidelines describe the maximum number of user I/O pins of a given output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce. Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the VCCO rail; High-to-Low transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the inductance that exists between the die pad and the power supply or ground return. The inductance is associated with bonding wires, the package lead frame, and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage consequently affects internal switching noise margins and ultimately signal quality. Table 28 and Table 29 provide the essential SSO guidelines. For each device/package combination, Table 28 provides the number of equivalent VCCO/GND pairs. The equivalent number of pairs is based on characterization and may not match the physical number of pairs. For each output signal standard and drive strength, Table 29 recommends the maximum number of SSOs, switching in the same direction, allowed per VCCO/GND pair within an I/O bank. The guidelines in Table 29 are categorized by package style, slew rate, and output drive current. Furthermore, the number of SSOs is specified by I/O bank. Generally, the left and right I/O banks (Banks 1 and 3) support higher output drive current. Multiply the appropriate numbers from Table 28 and Table 29 to calculate the maximum number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines might result in increased power or ground bounce, degraded signal integrity, or increased system jitter. SSOMAX/IO Bank = Table 28 x Table 29 The recommended maximum SSO values assume that the FPGA is soldered on the printed circuit board and that the board uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket. The SSO values assume that the VCCAUX is powered at 3.3V. Setting VCCAUX to 2.5V provides better SSO characteristics. The number of SSOs allowed for quad-flat packages (VQ/TQ) is lower than for ball grid array packages (FG) due to the larger lead inductance of the quad-flat packages. Ball grid array packages are recommended for applications with a large number of simultaneously switching outputs. 38 www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Table 28: Equivalent VCCO/GND Pairs per Bank Package Style (including Pb-free) Device VQ100 TQ144 FT256 FG320 FG400 FG484 FG676 XC3S50A 1 2 3 – – – – XC3S200A 1 – 4 4 – – – XC3S400A – – 4 4 5 – – XC3S700A – – 4 – 5 5 – XC3S1400A – – 4 – – 6 9 Table 29: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (VCCAUX=3.3V)(Continued) Table 29: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (VCCAUX=3.3V) Package Type Package Type VQ100, TQ144 Signal Standard (IOSTANDARD) FT256, FG320, FG400, FG484, FG676 VQ100, TQ144 FT256, FG320, FG400, FG484, FG676 Top, Bottom Left, Right Top, Bottom Left, Right (Banks 0,2) (Banks 1,3) (Banks 0,2) (Banks 1,3) 2 24 24 76 76 Top, Bottom Left, Right Top, Bottom Left, Right (Banks 0,2) (Banks 1,3) (Banks 0,2) (Banks 1,3) LVCMOS33 Single-Ended Standards LVTTL Slow Fast QuietIO Signal Standard (IOSTANDARD) Slow 2 20 20 60 60 4 14 14 46 46 4 10 10 41 41 6 11 11 27 27 10 10 20 20 6 10 10 29 29 8 8 6 6 22 22 12 9 9 13 13 16 8 8 10 10 12 6 6 13 13 16 5 5 11 11 Fast 24 – 8 – 9 2 10 10 10 10 24 4 4 9 9 2 10 10 10 10 4 8 8 8 8 6 5 5 5 5 4 6 6 6 6 6 5 5 5 5 8 4 4 4 4 4 4 4 4 2 2 2 2 8 3 3 3 3 12 12 3 3 3 3 16 16 3 3 3 3 QuietIO 24 – 2 – 2 2 36 36 76 76 24 2 2 2 2 2 40 40 80 80 4 32 32 46 46 6 24 24 32 32 4 24 24 48 48 6 20 20 36 36 8 16 16 26 26 16 16 18 18 8 16 16 27 27 12 12 12 12 16 16 16 12 12 14 14 24 – 10 – 10 16 9 9 13 13 24 9 9 12 12 DS529-3 (v2.0) August 19, 2010 www.xilinx.com 39 DC and Switching Characteristics Table 29: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (VCCAUX=3.3V)(Continued) Table 29: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (VCCAUX=3.3V)(Continued) Package Type VQ100, TQ144 Slow Fast QuietIO LVCMOS18 Slow Fast QuietIO 40 FT256, FG320, FG400, FG484, FG676 VQ100, TQ144 FT256, FG320, FG400, FG484, FG676 Top, Bottom Left, Right Top, Bottom Left, Right (Banks 0,2) (Banks 1,3) (Banks 0,2) (Banks 1,3) 2 12 12 55 55 Top, Bottom Left, Right Top, Bottom Left, Right (Banks 0,2) (Banks 1,3) (Banks 0,2) (Banks 1,3) 2 16 16 76 76 4 10 10 46 46 4 7 7 31 31 6 8 8 33 33 6 7 7 18 18 Signal Standard (IOSTANDARD) LVCMOS25 Package Type Signal Standard (IOSTANDARD) LVCMOS15 Slow 8 7 7 24 24 8 – 6 – 15 12 6 6 18 18 12 – 5 – 10 16 – 6 – 11 2 10 10 25 25 24 – 5 – 7 4 7 7 10 10 2 12 12 18 18 6 6 6 6 6 4 10 10 14 14 8 – 4 – 4 6 8 8 6 6 12 – 3 – 3 Fast 8 6 6 6 6 2 30 30 70 70 12 3 3 3 3 4 21 21 40 40 QuietIO 16 – 3 – 3 6 18 18 31 31 24 – 2 – 2 8 – 12 – 31 2 36 36 76 76 12 – 12 – 20 4 30 30 60 60 2 17 17 40 40 6 24 24 48 48 4 – 13 – 25 8 20 20 36 36 12 12 12 36 36 16 – 12 – 24 – 8 – LVCMOS12 Slow 6 – 10 – 18 2 12 9 31 31 36 4 – 9 – 13 8 6 – 9 – 9 2 36 36 55 55 4 – 33 – 36 Fast 2 13 13 64 64 4 8 8 34 34 QuietIO 6 8 8 22 22 – 27 – 36 8 7 7 18 18 PCI33_3 9 9 16 16 12 – 5 – 13 PCI66_3 – 9 – 13 16 – 5 – 10 HSTL_I – 11 – 20 2 13 13 18 18 HSTL_III – 7 – 8 4 8 8 9 9 HSTL_I_18 13 13 17 17 6 7 7 7 7 HSTL_II_18 – 5 – 5 8 4 4 4 4 HSTL_III_18 8 8 10 8 12 – 4 – 4 SSTL18_I 7 13 7 15 6 16 – 3 – 3 SSTL18_II – 9 – 9 2 30 30 64 64 SSTL2_I 10 10 18 18 4 24 24 64 64 SSTL2_II – 6 – 9 6 20 20 48 48 SSTL3_I 7 8 8 10 8 16 16 36 36 SSTL3_II 5 6 6 7 12 – 12 – 36 16 – 12 – 24 www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Table 29: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (VCCAUX=3.3V)(Continued) Package Type VQ100, TQ144 Signal Standard (IOSTANDARD) FT256, FG320, FG400, FG484, FG676 Top, Bottom Left, Right Top, Bottom Left, Right (Banks 0,2) (Banks 1,3) (Banks 0,2) (Banks 1,3) Differential Standards (Number of I/O Pairs or Channels) LVDS_25 8 – 22 – LVDS_33 8 – 27 – BLVDS_25 1 1 4 4 MINI_LVDS_25 8 – 22 – MINI_LVDS_33 8 – 27 – LVPECL_25 Input Only LVPECL_33 Input Only RSDS_25 8 – 22 – RSDS_33 8 – 27 – TMDS_33 8 – 27 – PPDS_25 8 – 22 – PPDS_33 8 – 27 – DIFF_HSTL_I – 5 – 10 DIFF_HSTL_III – 3 – 4 DIFF_HSTL_I_18 6 6 8 8 DIFF_HSTL_II_18 – 2 – 2 DIFF_HSTL_III_18 4 4 5 4 DIFF_SSTL18_I 3 6 3 7 DIFF_SSTL18_II – 4 – 4 DIFF_SSTL2_I 5 5 9 9 DIFF_SSTL2_II – 3 – 4 DIFF_SSTL3_I 3 4 4 5 DIFF_SSTL3_II 2 3 3 3 Notes: 1. 2. 3. Not all I/O standards are supported on all I/O banks. The left and right banks (I/O banks 1 and 3) support higher output drive current than the top and bottom banks (I/O banks 0 and 2). Similarly, true differential output standards, such as LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only supported in top or bottom banks (I/O banks 0 and 2). Refer to UG331: Spartan-3 Generation FPGA User Guide for additional information. The numbers in this table are recommendations that assume sound board lay out practice. Test limits are the VIL/VIH voltage limits for the respective I/O standard. If more than one signal standard is assigned to the I/Os of a given bank, refer to XAPP689: Managing Ground Bounce in Large FPGAs for information on how to perform weighted average SSO calculations. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 41 DC and Switching Characteristics Configurable Logic Block (CLB) Timing Table 30: CLB (SLICEM) Timing Speed Grade -5 Symbol -4 Description Min Max Min Max Units When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output – 0.60 – 0.68 ns TAS Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB 0.18 – 0.36 – ns TDICK Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB 1.58 – 1.88 – ns TAH Time from the active transition at the CLK input to the point where data is last held at the F or G input 0 – 0 – ns TCKDI Time from the active transition at the CLK input to the point where data is last held at the BX or BY input 0 – 0 – ns Clock-to-Output Times TCKO Setup Times Hold Times Clock Timing TCH The High pulse width of the CLB’s CLK signal 0.63 – 0.75 – ns TCL The Low pulse width of the CLK signal 0.63 – 0.75 – ns FTOG Toggle frequency (for export control) 0 770 0 667 MHz The time it takes for data to travel from the CLB’s F (G) input to the X (Y) output – 0.62 – 0.71 ns 1.33 – 1.61 – ns Propagation Times TILO Set/Reset Pulse Width TRPW_CLB The minimum allowable pulse width, High or Low, to the CLB’s SR input Notes: 1. 42 The numbers in this table are based on the operating conditions set forth in Table 8. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Table 31: CLB Distributed RAM Switching Characteristics -5 Symbol -4 Description Min Max Min Max Units Time from the active edge at the CLK input to data appearing on the distributed RAM output – 1.69 – 2.01 ns Clock-to-Output Times TSHCKO Setup Times TDS Setup time of data at the BX or BY input before the active transition at the CLK input of the distributed RAM –0.07 – –0.02 – ns TAS Setup time of the F/G address inputs before the active transition at the CLK input of the distributed RAM 0.18 – 0.36 – ns TWS Setup time of the write enable input before the active transition at the CLK input of the distributed RAM 0.30 – 0.59 – ns TDH Hold time of the BX and BY data inputs after the active transition at the CLK input of the distributed RAM 0.13 – 0.13 – ns TAH, TWH Hold time of the F/G address inputs or the write enable input after the active transition at the CLK input of the distributed RAM 0.01 – 0.01 – ns 0.88 – 1.01 – ns Hold Times Clock Pulse Width TWPH, TWPL Minimum High or Low pulse width at CLK input Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. Table 32: CLB Shift Register Switching Characteristics -5 Symbol -4 Description Min Max Min Max Units Time from the active edge at the CLK input to data appearing on the shift register output – 4.11 – 4.82 ns Setup time of data at the BX or BY input before the active transition at the CLK input of the shift register 0.13 – 0.18 – ns Hold time of the BX or BY data input after the active transition at the CLK input of the shift register 0.16 – 0.16 – ns 0.90 – 1.01 – ns Clock-to-Output Times TREG Setup Times TSRLDS Hold Times TSRLDH Clock Pulse Width TWPH, TWPL Minimum High or Low pulse width at CLK input Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 43 DC and Switching Characteristics Clock Buffer/Multiplexer Switching Characteristics Table 33: Clock Distribution Switching Characteristics Maximum Speed Grade Description Symbol Minimum -5 -4 Units Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay TGIO – 0.22 0.23 ns Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input TGSI – 0.56 0.63 ns FBUFG 0 350 334 MHz Frequency of signals distributed on global buffers (all sides) Notes: 1. 44 The numbers in this table are based on the operating conditions set forth in Table 8. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics 18 x 18 Embedded Multiplier Timing Table 34: 18 x 18 Embedded Multiplier Timing Speed Grade -5 Symbol -4 Description Min Max Min Max Units Combinational multiplier propagation delay from the A and B inputs to the P outputs, assuming 18-bit inputs and a 36-bit product (AREG, BREG, and PREG registers unused) – 4.36 – 4.88 ns Combinatorial Delay TMULT Clock-to-Output Times TMSCKP_P Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using the PREG register(2,3) – 0.84 – 1.30 ns TMSCKP_A TMSCKP_B Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using either the AREG or BREG register(2,4) – 4.44 – 4.97 ns TMSDCK_P Data setup time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused)(3) 3.56 – 3.98 – ns TMSDCK_A Data setup time at the A input before the active transition at the CLK when using the AREG input register(4) 0.00 – 0.00 – ns TMSDCK_B Data setup time at the B input before the active transition at the CLK when using the BREG input register(4) 0.00 – 0.00 – ns TMSCKD_P Data hold time at the A or B input after the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused)(3) 0.00 – 0.00 – ns TMSCKD_A Data hold time at the A input after the active transition at the CLK when using the AREG input register(4) 0.35 – 0.45 – ns TMSCKD_B Data hold time at the B input after the active transition at the CLK when using the BREG input register(4) 0.35 – 0.45 – ns 0 280 0 250 MHz Setup Times Hold Times Clock Frequency FMULT Internal operating frequency for a two-stage 18x18 multiplier using the AREG and BREG input registers and the PREG output register(1) Notes: 1. 2. 3. 4. 5. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations. The PREG register is typically used when inferring a single-stage multiplier. Input registers AREG or BREG are typically used when inferring a two-stage multiplier. The numbers in this table are based on the operating conditions set forth in Table 8. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 45 DC and Switching Characteristics Block RAM Timing Table 35: Block RAM Timing Speed Grade -5 Symbol Description -4 Min Max Min Max Units – 2.06 – 2.49 ns TRCCK_ADDR Setup time for the ADDR inputs before the active transition at the CLK input of the block RAM 0.32 – 0.36 – ns TRDCK_DIB Setup time for data at the DIN inputs before the active transition at the CLK input of the block RAM 0.28 – 0.31 – ns TRCCK_ENB Setup time for the EN input before the active transition at the CLK input of the block RAM 0.69 – 0.77 – ns TRCCK_WEB Setup time for the WE input before the active transition at the CLK input of the block RAM 1.12 – 1.26 – ns TRCKC_ADDR Hold time on the ADDR inputs after the active transition at the CLK input 0 – 0 – ns TRCKD_DIB Hold time on the DIN inputs after the active transition at the CLK input 0 – 0 – ns TRCKC_ENB Hold time on the EN input after the active transition at the CLK input 0 – 0 – ns TRCKC_WEB Hold time on the WE input after the active transition at the CLK input 0 – 0 – ns Clock-to-Output Times TRCKO When reading from block RAM, the delay from the active transition at the CLK input to data appearing at the DOUT output Setup Times Hold Times Clock Timing TBPWH High pulse width of the CLK signal 1.56 – 1.79 – ns TBPWL Low pulse width of the CLK signal 1.56 – 1.79 – ns 0 320 0 280 MHz Clock Frequency FBRAM Block RAM clock frequency Notes: 1. 46 The numbers in this table are based on the operating conditions set forth in Table 8. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Digital Clock Manager (DCM) Timing For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS). Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period. Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 36 and Table 37) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 38 through Table 41) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 36 and Table 37. Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero. Spread Spectrum DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See XAPP469, Spread-Spectrum Clocking Reception for Displays for details. Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value. Delay-Locked Loop (DLL) Table 36: Recommended Operating Conditions for the DLL Speed Grade -5 Symbol Description -4 Min Max Min Max Units Frequency of the CLKIN clock input 5(2) 280(3) 5(2) 250(3) MHz CLKIN pulse width as a percentage of the CLKIN period FCLKIN < 150 MHz 40% 60% 40% 60% – FCLKIN > 150 MHz 45% 55% 45% 55% – FCLKIN < 150 MHz – ±300 – ±300 ps FCLKIN > 150 MHz – ±150 – ±150 ps ±1 – ±1 ns ±1 ns Input Frequency Ranges FCLKIN CLKIN_FREQ_DLL Input Pulse Requirements CLKIN_PULSE Input Clock Jitter Tolerance and Delay Path CLKIN_CYC_JITT_DLL_LF CLKIN_CYC_JITT_DLL_HF Variation(4) Cycle-to-cycle jitter at the CLKIN input CLKIN_PER_JITT_DLL Period jitter at the CLKIN input – CLKFB_DELAY_VAR_EXT Allowable variation of off-chip feedback delay from the DCM output to the CLKFB input – ±1 – Notes: 1. 2. 3. 4. 5. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 38. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input. CLKIN input jitter beyond these limits might cause the DCM to lose lock. The DCM specifications are guaranteed when both adjacent DCMs are locked. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 47 DC and Switching Characteristics Table 37: Switching Characteristics for the DLL Speed Grade -5 Symbol Description -4 Device Min Max Min Max Units All 5 280 5 250 MHz Output Frequency Ranges CLKOUT_FREQ_CLK0 Frequency for the CLK0 and CLK180 outputs CLKOUT_FREQ_CLK90 Frequency for the CLK90 and CLK270 outputs 5 200 5 200 MHz CLKOUT_FREQ_2X Frequency for the CLK2X and CLK2X180 outputs 10 334 10 334 MHz CLKOUT_FREQ_DV Frequency for the CLKDV output 0.3125 186 0.3125 166 MHz Output Clock Jitter(2,3,4) CLKOUT_PER_JITT_0 Period jitter at the CLK0 output – ±100 – ±100 ps CLKOUT_PER_JITT_90 Period jitter at the CLK90 output – ±150 – ±150 ps CLKOUT_PER_JITT_180 Period jitter at the CLK180 output – ±150 – ±150 ps CLKOUT_PER_JITT_270 Period jitter at the CLK270 output – ±150 – ±150 ps CLKOUT_PER_JITT_2X Period jitter at the CLK2X and CLK2X180 outputs ±[0.5% of CLKIN period + 100] – ±[0.5% of CLKIN period + 100] ps – – ±150 – ±150 ps ±[0.5% of CLKIN period + 100] – ±[0.5% of CLKIN period + 100] ps – ±[1% of CLKIN period + 350] – ±[1% of CLKIN period + 350] ps – – ±150 – ±150 ps – ±[1% of CLKIN period + 100] ps – ±[1% of CLKIN period + 100] ±[1% of CLKIN period + 150] – ±[1% of CLKIN period + 150] ps – – 5 – 5 ms – 600 – 600 µs 15 35 15 35 ps All CLKOUT_PER_JITT_DV1 Period jitter at the CLKDV output when performing integer division CLKOUT_PER_JITT_DV2 Period jitter at the CLKDV output when performing non-integer division Duty Cycle(4) CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV outputs, including the BUFGMUX and clock tree duty-cycle distortion All Phase Alignment(4) CLKIN_CLKFB_PHASE Phase offset between the CLKIN and CLKFB inputs CLKOUT_PHASE_DLL Phase offset between DLL outputs All CLK0 to CLK2X (not CLK2X180) All others Lock Time LOCK_DLL(3) When using the DLL alone: The 5 MHz < FCLKIN < 15 MHz time from deassertion at the DCM’s FCLKIN > 15 MHz Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase All Finest delay resolution, averaged over all steps All Delay Lines DCM_DELAY_STEP(5) Notes: 1. 2. 3. 4. 5. 48 The numbers in this table are based on the operating conditions set forth in Table 8 and Table 36. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of “±[1% of CLKIN period + 150]”. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250ps. The typical delay step size is 23 ps. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Digital Frequency Synthesizer (DFS) Table 38: Recommended Operating Conditions for the DFS Speed Grade -5 Symbol Input Frequency FCLKIN Description -4 Min Max Min Max Units 0.200 333(4) 0.200 333(4) MHz FCLKFX < 150 MHz – ±300 – ±300 ps FCLKFX > 150 MHz – ±150 – ±150 ps – ±1 – ±1 ns Ranges(2) CLKIN_FREQ_FX Input Clock Jitter Frequency for the CLKIN input Tolerance(3) CLKIN_CYC_JITT_FX_LF CLKIN_CYC_JITT_FX_HF Cycle-to-cycle jitter at the CLKIN input, based on CLKFX output frequency CLKIN_PER_JITT_FX Period jitter at the CLKIN input Notes: 1. 2. 3. 4. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 36. CLKIN input jitter beyond these limits may cause the DCM to lose lock. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. Table 39: Switching Characteristics for the DFS Speed Grade -5 Symbol Description -4 Device Min Max Min Max Units Frequency for the CLKFX and CLKFX180 outputs All 5 350 5 320 MHz Period jitter at the CLKFX and CLKFX180 outputs. All Typ Max Typ Max Output Frequency Ranges CLKOUT_FREQ_FX(2) Output Clock Jitter(3,4) CLKOUT_PER_JITT_FX CLKIN ≤ 20 MHz CLKIN > 20 MHz Use the Spartan-3A Jitter Calculator: www.xilinx.com/support/documentatio n/data_sheets/s3a_jitter_calc.zip ps ±[1% of CLKFX period + 100] ±[1% of CLKFX period + 200] ±[1% of CLKFX period + 100] ±[1% of CLKFX period + 200] ps ±[1% of CLKFX period + 350] – ±[1% of CLKFX period + 350] ps – – ±200 – ±200 ps ±[1% of CLKFX period + 200] – ±[1% of CLKFX period + 200] ps – Duty Cycle(5,6) CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX and CLKFX180 outputs, including the BUFGMUX and clock tree duty-cycle distortion All CLKOUT_PHASE_FX Phase offset between the DFS CLKFX output and the DLL CLK0 output when both the DFS and DLL are used All CLKOUT_PHASE_FX180 Phase offset between the DFS CLKFX180 output and the DLL CLK0 output when both the DFS and DLL are used All Phase Alignment(6) DS529-3 (v2.0) August 19, 2010 www.xilinx.com 49 DC and Switching Characteristics Table 39: Switching Characteristics for the DFS(Continued) Speed Grade -5 Symbol Description -4 Device Min Max Min Max Units All – 5 – 5 ms 450 µs Lock Time LOCK_FX(2, 3) The time from deassertion at the DCM’s Reset input to the rising transition at its LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time. 5 MHz < FCLKIN < 15 MHz FCLKIN > 15 MHz 450 – – Notes: 1. 2. 3. 4. 5. 6. 50 The numbers in this table are based on the operating conditions set forth in Table 8 and Table 38. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute. Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching) on an XC3S1400A FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a maximum CLKFX jitter of “±[1% of CLKFX period + 200]”. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Phase Shifter (PS) Table 40: Recommended Operating Conditions for the PS in Variable Phase Mode Speed Grade -5 Symbol Description -4 Min Max Min Max Units 1 167 1 167 MHz 40% 60% 40% 60% - Operating Frequency Ranges PSCLK_FREQ (FPSCLK) Frequency for the PSCLK input Input Pulse Requirements PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period Table 41: Switching Characteristics for the PS in Variable Phase Mode Symbol Description Phase Shift Amount Units CLKIN < 60 MHz ±[INTEGER(10 • (TCLKIN – 3 ns))] steps CLKIN ≥ 60 MHz ±[INTEGER(15 • (TCLKIN – 3 ns))] Phase Shifting Range MAX_STEPS(2) Maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN clock period in ns. If using CLKIN_DIVIDE_BY_2 = TRUE, double the clock effective clock period. FINE_SHIFT_RANGE_MIN Minimum guaranteed delay for variable phase shifting ±[MAX_STEPS • DCM_DELAY_STEP_MIN] ns FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting ±[MAX_STEPS • DCM_DELAY_STEP_MAX] ns Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 40. 2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the PHASE_SHIFT attribute is set to 0. 3. The DCM_DELAY_STEP values are provided at the bottom of Table 37. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 51 DC and Switching Characteristics Miscellaneous DCM Timing Table 42: Miscellaneous DCM Timing Symbol Description Min Max Units – CLKIN cycles DCM_RST_PW_MIN Minimum duration of a RST pulse width 3 DCM_RST_PW_MAX(2) Maximum duration of a RST pulse width N/A N/A seconds N/A N/A seconds N/A N/A minutes N/A N/A minutes DCM_CONFIG_LAG_TIME(3) Maximum duration from VCCINT applied to FPGA configuration successfully completed (DONE pin goes High) and clocks applied to DCM DLL Notes: 1. 2. 3. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected. This specification is equivalent to the Virtex®-4 DCM_RESET specification. This specification does not apply for Spartan-3A FPGAs. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3A FPGAs. DNA Port Timing Table 43: DNA_PORT Interface Timing Symbol Description Min Max Units TDNASSU Setup time on SHIFT before the rising edge of CLK 1.0 – ns TDNASH Hold time on SHIFT after the rising edge of CLK 0.5 – ns TDNADSU Setup time on DIN before the rising edge of CLK 1.0 – ns TDNADH Hold time on DIN after the rising edge of CLK 0.5 – ns TDNARSU Setup time on READ before the rising edge of CLK 5.0 10,000 ns TDNARH Hold time on READ after the rising edge of CLK 0 – ns 0.5 1.5 ns TDNADCKO Clock-to-output delay on DOUT after rising edge of CLK TDNACLKF CLK frequency 0 100 MHz TDNACLKH CLK High time 1.0 ∞ ns TDNACLKL CLK Low time 1.0 ∞ ns Notes: 1. 2. 52 The minimum READ pulse width is 5 ns, the maximum READ pulse width is 10 µs. The numbers in this table are based on the operating conditions set forth in Table 8. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Suspend Mode Timing Entering Suspend Mode Exiting Suspend Mode sw_gwe_cycle sw_gts_cycle SUSPEND Input tSUSPENDHIGH_AWAKE tSUSPENDLOW_AWAKE AWAKE Output tAWAKE_GWE tSUSPEND_GWE Flip-Flops, Block RAM, Distributed RAM Write Protected tAWAKE_GTS tSUSPEND_GTS FPGA Outputs Defined by SUSPEND constraint tSUSPEND_DISABLE FPGA Inputs, Interconnect tSUSPEND_ENABLE Blocked DS610-3_08_061207 Figure 10: Suspend Mode Timing Table 44: Suspend Mode Timing Parameters Symbol Description Min Typ Max Units – 7 – ns +160 +300 +600 ns Entering Suspend Mode TSUSPENDHIGH_AWAKE Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter (suspend_filter:No) TSUSPENDFILTER Adjustment to SUSPEND pin rising edge parameters when glitch filter enabled (suspend_filter:Yes) TSUSPEND_GTS Rising edge of SUSPEND pin until FPGA output pins drive their defined SUSPEND constraint behavior – 10 – ns TSUSPEND_GWE Rising edge of SUSPEND pin to write-protect lock on all writable clocked elements – <5 – ns TSUSPEND_DISABLE Rising edge of the SUSPEND pin to FPGA input pins and interconnect disabled – 340 – ns Exiting Suspend Mode TSUSPENDLOW_AWAKE Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not include DCM lock time. – 4 to 108 – µs TSUSPEND_ENABLE Falling edge of the SUSPEND pin to FPGA input pins and interconnect re-enabled – 3.7 to 109 – µs TAWAKE_GWE1 Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1. – 67 – ns TAWAKE_GWE512 Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512. – 14 – µs TAWAKE_GTS1 Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1. – 57 – ns TAWAKE_GTS512 Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:512. – 14 – µs Notes: 1. 2. These parameters based on characterization. For information on using the Spartan-3A Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 53 DC and Switching Characteristics Configuration and JTAG Timing General Configuration Power-On/Reconfigure Timing 1.2V VCCINT (Supply) 1.0V VCCAUX (Supply) 2.0V 2.5V or 3.3V VCCO Bank 2 (Supply) 2.0V 2.5V or 3.3V TPOR PROG_B (Input) TPROG INIT_B (Open-Drain) TPL TICCK CCLK (Output) DS529-3_01_052708 Notes: 1. 2. 3. The VCCINT, VCCAUX, and VCCO supplies can be applied in any order. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2). Figure 11: Waveforms for Power-On and the Beginning of Configuration Table 45: Power-On Timing and the Beginning of Configuration All Speed Grades Min Max Units TPOR(2) Symbol The time from the application of VCCINT, VCCAUX, and VCCO Bank 2 supply voltage ramps (whichever occurs last) to the rising transition of the INIT_B pin Description All Device – 18 ms TPROG The width of the low-going pulse on the PROG_B pin All 0.5 - µs TPL(2) The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin XC3S50A – 0.5 ms XC3S200A – 0.5 ms XC3S400A – 1 ms XC3S700A – 2 ms XC3S1400A – 2 ms TINIT Minimum Low pulse width on INIT_B output All 250 – ns TICCK(3) The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin All 0.5 4 µs Notes: 1. 2. 3. 4. 54 The numbers in this table are based on the operating conditions set forth in Table 8. This means power must be applied to all VCCINT, VCCO, and VCCAUX lines. Power-on reset and the clearing of configuration memory occurs during this period. This specification applies only to the Master Serial, SPI, and BPI modes. For details on configuration, see UG332 Spartan-3 Generation Configuration User Guide. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Configuration Clock (CCLK) Characteristics Table 46: Master Mode CCLK Output Period by ConfigRate Opti0on Setting Symbol TCCLK1 Description CCLK clock period by ConfigRate setting ConfigRate Setting Temperature Range Minimum 1 (power-on value) Commercial 1,254 Industrial 1,180 Commercial 413 Industrial 390 Commercial 207 Industrial 195 Commercial 178 Industrial 168 Commercial 156 Industrial 147 Commercial 123 Industrial 116 Commercial 103 Industrial 97 Commercial 93 Industrial 88 Commercial 72 Industrial 68 Commercial 54 Industrial 51 Commercial 47 Industrial 45 Commercial 44 Industrial 42 Commercial 36 Industrial 34 Commercial 26 Industrial 25 Commercial 22 Industrial 21 Commercial 11.2 Industrial 10.6 TCCLK3 3 TCCLK6 6 (default) TCCLK7 7 TCCLK8 8 TCCLK10 10 TCCLK12 12 TCCLK13 13 TCCLK17 17 TCCLK22 22 TCCLK25 25 TCCLK27 27 TCCLK33 33 TCCLK44 44 TCCLK50 50 TCCLK100 100 Maximum 2,500 833 417 357 313 250 208 192 147 114 100 93 76 57 50 25 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Notes: 1. Set the ConfigRate option value when generating a configuration bitstream. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 55 DC and Switching Characteristics Table 47: Master Mode CCLK Output Frequency by ConfigRate Option Setting Symbol FCCLK1 Description ConfigRate Setting Temperature Range Equivalent CCLK clock frequency by ConfigRate setting 1 (power-on value) Commercial 3 FCCLK6 6 (default) 7 FCCLK8 8 FCCLK10 10 FCCLK12 12 FCCLK13 13 FCCLK17 17 FCCLK22 22 FCCLK25 25 FCCLK27 27 FCCLK33 33 FCCLK44 44 FCCLK50 50 Industrial 1.20 Industrial Commercial 2.40 Industrial Commercial 2.80 Industrial Commercial 3.20 Industrial Commercial 4.00 Industrial Commercial 4.80 Industrial Commercial 5.20 Industrial Commercial 6.80 Industrial Commercial 8.80 Industrial Commercial 10.00 Industrial Commercial 10.80 Industrial Commercial 13.20 Industrial Commercial 17.60 Industrial Commercial 20.00 Industrial Commercial 100 FCCLK100 0.400 Commercial FCCLK3 FCCLK7 Minimum 40.00 Industrial Maximum Units 0.797 MHz 0.847 MHz 2.42 MHz 2.57 MHz 4.83 MHz 5.13 MHz 5.61 MHz 5.96 MHz 6.41 MHz 6.81 MHz 8.12 MHz 8.63 MHz 9.70 MHz 10.31 MHz 10.69 MHz 11.37 MHz 13.74 MHz 14.61 MHz 18.44 MHz 19.61 MHz 20.90 MHz 22.23 MHz 22.39 MHz 23.81 MHz 27.48 MHz 29.23 MHz 37.60 MHz 40.00 MHz 44.80 MHz 47.66 MHz 88.68 MHz 94.34 MHz Table 48: Master Mode CCLK Output Minimum Low and High Time ConfigRate Setting Symbol Description 1 3 Master Mode Commercial CCLK Minimum Low Industrial and High Time 595 196 TMCCL, TMCCH 560 185 6 7 8 10 12 13 17 22 25 27 33 44 50 100 Units 98.3 84.5 74.1 58.4 48.9 44.1 34.2 25.6 22.3 20.9 17.1 12.3 10.4 5.3 ns 92.6 79.8 69.8 55.0 46.0 41.8 32.3 24.2 21.4 20.0 16.2 11.9 10.0 5.0 ns Table 49: Slave Mode CCLK Input Low and High Time Symbol TSCCL, TSCCH 56 Description CCLK Low and High time www.xilinx.com Min Max Units 5 ∞ ns DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Master Serial and Slave Serial Mode Timing PROG_B (Input) INIT_B (Open-Drain) TMCCH TSCCH TMCCL TSCCL CCLK (Input/Output) TDCC DIN (Input) 1/FCCSER TCCD Bit 0 Bit 1 Bit n Bit n+1 TCCO DOUT (Output) Bit n-64 Bit n-63 DS312-3_05_103105 Figure 12: Waveforms for Master Serial and Slave Serial Configuration Table 50: Timing for the Master Serial and Slave Serial Configuration Modes Description Slave/ Master The time from the falling transition on the CCLK pin to data appearing at the DOUT pin Symbol All Speed Grades Min Max Units Both 1.5 10 ns The time from the setup of data at the DIN pin to the rising transition at the CCLK pin Both 7 – ns The time from the rising transition at the CCLK pin to the point when data is last held at the DIN pin Master 0 Slave 1.0 Clock-to-Output Times TCCO Setup Times TDCC Hold Times TCCD – ns Clock Timing TCCH TCCL FCCSER High pulse width at the CCLK input pin Low pulse width at the CCLK input pin Frequency of the clock signal at the CCLK input pin No bitstream compression With bitstream compression Master See Table 48 Slave See Table 49 Master See Table 48 Slave See Table 49 Slave 0 100 MHz 0 100 MHz Notes: 1. 2. The numbers in this table are based on the operating conditions set forth in Table 8. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 57 DC and Switching Characteristics Slave Parallel Mode Timing PROG_B (Input) INIT_B (Open-Drain) TSMCSCC TSMCCCS CSI_B (Input) TSMCCW TSMWCC RDWR_B (Input) TMCCH TSCCH TMCCL TSCCL CCLK (Input) TSMDCC D0 - D7 (Inputs) TSMCCD Byte 0 1/FCCPAR Byte 1 Byte n Byte n+1 DS529-3_02_051607 Notes: 1. 2. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 - D7 bus. When RDWR_B switches High, be careful to avoid contention on the D0 - D7 bus. To pause configuration, pause CCLK instead of de-asserting CSI_B. See UG332 Chapter 7 section “Non-Continuous SelectMAP Data Loading” for more details. Figure 13: Waveforms for Slave Parallel Configuration Table 51: Timing for the Slave Parallel Configuration Mode All Speed Grades Symbol Description Min Max Units TSMDCC(2) The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin 7 – ns TSMCSCC Setup time on the CSI_B pin before the rising transition at the CCLK pin 7 – ns TSMCCW Setup time on the RDWR_B pin before the rising transition at the CCLK pin 15 – ns TSMCCD The time from the rising transition at the CCLK pin to the point when data is last held at the D0-D7 pins 1.0 – ns TSMCCCS The time from the rising transition at the CCLK pin to the point when a logic level is last held at the CSO_B pin 0 – ns TSMWCC The time from the rising transition at the CCLK pin to the point when a logic level is last held at the RDWR_B pin 0 – ns TCCH The High pulse width at the CCLK input pin 5 – ns TCCL The Low pulse width at the CCLK input pin 5 – ns FCCPAR Frequency of the clock signal No bitstream compression at the CCLK input pin With bitstream compression 0 80 MHz 0 80 MHz Setup Times Hold Times Clock Timing Notes: 1. 2. 58 The numbers in this table are based on the operating conditions set forth in Table 8. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Serial Peripheral Interface (SPI) Configuration Timing PROG_B (Input) PUDC_B PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process. (Input) VS[2:0] <1:1:1> (Input) M[2:0] Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B goes High. After this point, input values do not matter until DONE goes High, at which point these pins become user-I/O pins. <0:0:1> (Input) TMINIT TINITM INIT_B New ConfigRate active (Open-Drain) TCCLKn TMCCHn TMCCLn TCCLK1 TMCCL1 TMCCH1 T CCLK1 CCLK TV DIN Data (Input) TCSS Data Data TDCC Data TCCD CSO_B TCCO Command (msb) MOSI Command (msb-1) TDSU T DH Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low. Pin initially high-impedance (Hi-Z) if PUDC_B input is High. External pull-up resistor required on CSO_B. Shaded values indicate specifications on attached SPI Flash PROM. DS529-3_06_102506 Figure 14: Waveforms for Serial Peripheral Interface (SPI) Configuration Table 52: Timing for Serial Peripheral Interface (SPI) Configuration Mode Symbol Description Minimum Maximum Units TCCLK1 Initial CCLK clock period See Table 46 TCCLKn CCLK clock period after FPGA loads ConfigRate bitstream option setting See Table 46 TMINIT Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the rising edge of INIT_B 50 – ns TINITM Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the rising edge of INIT_B 0 – ns TCCO MOSI output valid delay after CCLK falling clock edge See Table 50 TDCC Setup time on the DIN data input before CCLK rising clock edge See Table 50 TCCD Hold time on the DIN data input after CCLK rising clock edge See Table 50 DS529-3 (v2.0) August 19, 2010 www.xilinx.com 59 DC and Switching Characteristics Table 53: Configuration Timing Requirements for Attached SPI Serial Flash Symbol Description Requirement Units TCCS SPI serial Flash PROM chip-select time T CCS ≤ T MCCL1 – T CCO ns TDSU SPI serial Flash PROM data input setup time T DSU ≤ T MCCL1 – T CCO ns TDH SPI serial Flash PROM data input hold time TV SPI serial Flash PROM data clock-to-output time fC or fR Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used) T DH ≤ T MCCH1 ns T V ≤ T MCCLn – T DCC ns 1 f C ≥ --------------------------------T CCLKn ( min ) MHz Notes: 1. 2. 60 These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA. Subtract additional printed circuit board routing delay as required by the application. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics Byte Peripheral Interface (BPI) Configuration Timing PROG_B (Input) PUDC_B (Input) PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process. M[2:0] (Input) Mode input pins M[2:0] are sampled when INIT_B goes High. After this point, input values do not matter until DONE goes High, at which point the mode pins become user-I/O pins. <0:1:0> TMINIT INIT_B Open-Drain) TINITM Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low. Pin initially high-impedance (Hi-Z) if PUDC_B input is High. LDC[2:0] HDC CSO_B New ConfigRate active TCCLK1 TCCLK1 T INITADDR TCCLKn CCLK TCCO 000_0000 A[25:0] Address 000_0001 TAVQV D[7:0] (Input) Byte 0 Byte 1 Address Address TCCD TDCC Data Data Data Shaded values indicate specifications on attached parallel NOR Flash PROM. Data DS529-3_05_021009 Figure 15: Waveforms for Byte-wide Peripheral Interface (BPI) Configuration Table 54: Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode Symbol Description Minimum Maximum Units TCCLK1 Initial CCLK clock period See Table 46 TCCLKn CCLK clock period after FPGA loads ConfigRate setting See Table 46 TMINIT Setup time on M[2:0] mode pins before the rising edge of INIT_B 50 – ns TINITM Hold time on M[2:0] mode pins after the rising edge of INIT_B 0 – ns TINITADDR Minimum period of initial A[25:0] address cycle; LDC[2:0] and HDC are asserted and valid 5 5 TCCLK1 cycles TCCO Address A[25:0] outputs valid after CCLK falling edge TDCC Setup time on D[7:0] data inputs before CCLK rising edge TCCD Hold time on D[7:0] data inputs after CCLK rising edge DS529-3 (v2.0) August 19, 2010 www.xilinx.com See Table 50 See TSMDCC in Table 51 0 – ns 61 DC and Switching Characteristics Table 55: Configuration Timing Requirements for Attached Parallel NOR BPI Flash Symbol Description Requirement Units TCE (tELQV) Parallel NOR Flash PROM chip-select time T CE ≤ T INITADDR ns TOE (tGLQV) Parallel NOR Flash PROM output-enable time T OE ≤ T INITADDR ns TACC (tAVQV) Parallel NOR Flash PROM read access time T ACC ≤ 50%T CCLKn ( min ) – T CCO – T DCC – PCB ns T BYTE ≤ T INITADDR ns TBYTE For x8/x16 PROMs only: BYTE# to output valid time(3) (tFLQV, tFHQV) Notes: 1. 2. 3. 62 These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA. Subtract additional printed circuit board routing delay as required by the application. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor value also depends on whether the FPGA’s PUDC_B pin is High or Low. www.xilinx.com DS529-3 (v2.0) August 19, 2010 DC and Switching Characteristics IEEE 1149.1/1532 JTAG Test Access Port Timing TCCH TCCL TCK (Input) 1/FTCK TTCKTMS TTMSTCK TMS (Input) TTDITCK TTCKTDI TDI (Input) TTCKTDO TDO (Output) DS099_06_020709 Figure 16: JTAG Waveforms Table 56: Timing for the JTAG Test Access Port All Speed Grades Symbol Description Min Max Units 1.0 11.0 ns All devices and functions except those shown below 7.0 – ns Boundary scan commands (INTEST, EXTEST, SAMPLE) on XC3S700A and XC3S1400A FPGAs 11.0 7.0 – ns 0 – ns 0 – ns 5 – ns 5 – ns 10 10,000 ns 10 10,000 ns 0 33 MHz Clock-to-Output Times TTCKTDO The time from the falling transition on the TCK pin to data appearing at the TDO pin Setup Times TTDITCK The time from the setup of data at the TDI pin to the rising transition at the TCK pin TTMSTCK The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin Hold Times TTCKTDI The time from the rising transition at the TCK pin to the point when data is last held at the TDI pin All functions except those shown below Configuration commands (CFG_IN, ISC_PROGRAM) TTCKTMS The time from the rising transition at the TCK pin to the point when a logic level is last held at the TMS pin 2.0 Clock Timing TCCH The High pulse width at the TCK pin TCCL The Low pulse width at the TCK pin TCCHDNA The High pulse width at the TCK pin All functions except ISC_DNA command During ISC_DNA command TCCLDNA The Low pulse width at the TCK pin FTCK Frequency of the TCK signal All operations on XC3S50A, XC3S200A, and XC3S400A FPGAs and for BYPASS or HIGHZ instructions on all FPGAs All operations on XC3S700A and XC3S1400A FPGAs, except for BYPASS or HIGHZ instructions 20 Notes: 1. 2. The numbers in this table are based on the operating conditions set forth in Table 8. For details on JTAG see Chapter 9 “JTAG Configuration Mode and Boundary-Scan” in UG332 Spartan-3 Generation Configuration User Guide. DS529-3 (v2.0) August 19, 2010 www.xilinx.com 63 DC and Switching Characteristics Revision History The following table shows the revision history for this document. Date Version 12/05/06 1.0 Initial release. 02/02/07 1.1 Promoted to Preliminary status. Moved Table 15 to under "DC Electrical Characteristics" section. Updated all timing specifications for the v1.32 speed files. Added recommended Simultaneous Switching Output (SSO) limits in Table 29. Set a 10 µs maximum pulse width for the DNA_PORT READ signal and the JTAG clock input during the ISC_DNA command, affecting both Table 43 and Table 56. Described "External Termination Requirements for Differential I/O." Added separate DIN hold time for Slave mode in Table 50. Corrected wording in Table 52 and Table 54; no specifications affected. 03/16/07 1.2 Updated all AC timing specifications to the v1.34 speeds file. Promoted the XC3S700A and XC3S1400A FPGAs offered in the -4 speed grade to Production status, as shown in Table 16. Added Note 2 to Table 39 regarding the extra logic (one LUT) automatically added by ISE 9.1i and later software revisions for any DCM application that leverages the Digital Frequency Synthesizer (DFS). Separated some JTAG specifications by array size or function, as shown in Table 56. Updated quiescent current limits in Table 10. 04/23/07 1.3 Updated all AC timing specifications to the v1.35 speeds file. Promoted all devices except the XC3S400A to Production status, as shown in Table 16. 05/08/07 1.4 Updated XC3S400A to Production and v1.36 speeds file. Added banking rules and other explanatory footnotes to Table 12 and Table 13. Corrected DIFF_SSTL3_II VOL Max in Table 14. Improved XC3S400A Pin-to-Pin Clock-to-Output times in Table 18. Updated XC3S400A Pin-to-Pin Setup Times in Table 19. Updated TIOICKPD for -5 in Table 20. Added SSO numbers to Table 28 and Table 29. Removed invalid Embedded Multiplier Hold Times in Table 34. Improved CLKOUT_FREQ_CLK90 in Table 37. Improved TTDITCK and FTCK performance for XC3S400A in Table 56. 07/10/07 1.5 Added DIFF_HSTL_I and DIFF_HSTL_III to Table 13, Table 14, Table 27, and Table 29. Updated TMDS DC characteristics in Table 14. Updated for speed file v1.37 in ISE 9.2.01i as shown in Table 17. Updated pin-to-pin setup and hold times in Table 19. Updated TMDS output adjustment in Table 26. Updated I/O Test Method values in Table 27. Added BLVDS SSO numbers inTable 29. For Multiplier block, updated setup times and added hold times to Table 34. Updated block RAM clock width in Table 35. Updated CLKOUT_PER_JITT_2X and CLKOUT_PER_JITT_DV2 in Table 37. Added CCLK specifications for Commercial in Table 46 through Table 48. 04/15/08 1.6 Added VIN to Recommended Operating Conditions in Table 8 and added reference to XAPP459, “Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.” Reduced typical ICCINTQ and ICCAUXQ quiescent current values by 12%-58% in Table 10. Increased VIL max to 0.4V for LVCMOS12/15/18 and improved VIH min to 0.7V for LVCMOS12 in Table 11. Changed VOL max to 0.4V and VOH min to VCCO-0.4V for LVCMOS15/18 in Table 12. Noted latest speed file v1.39 in ISE 10.1 software in Table 16. Added new packages to SSO limits in Table 28 and Table 29. Improved SSTL18_II SSO limit for FG packages in Table 29. Improved FBUFG for -4 to 334 MHz in Table 33. Added references to 375 MHz performance via SCD 4103 in Table 33,Table 38, Table 39, and Table 40. Restored Units column to Table 44. Updated CCLK output maximum period in Table 46 to match minimum frequency in Table 47. Corrected BPI active clock edge in Figure 15 and Table 54. 05/28/08 1.7 Improved VCCAUXT and VCCO2T POR minimum in Table 5 and updated VCCO POR levels in Figure 11. Clarified recommended VIN in Table 8. Added reference to VCCAUX in "Simultaneously Switching Output Guidelines". Added reference to Sample Window in Table 21. Removed DNA_RETENTION limit of 10 years in Table 15 since number of Read cycles is the only unique limit. Added references to UG332. 03/06/09 1.8 Changed typical quiescent current temperature from ambient to junction. Updated BPI configuration waveforms in Figure 15 and updated Table 55. Updated selected I/O standard DC characteristics. Added TIOPI and TIOPID in Table 22. Removed references to SCD 4103. 08/19/10 2.0 Added IIK to Table 4. Updated VIN in Table 8 and footnoted IL in Table 9 to note potential leakage between pins of a differential pair. Clarified LVPECL notes to Table 13. Corrected symbols for TSUSPEND_GTS and TSUSPEND_GWE in Table 44. 64 Revision www.xilinx.com DS529-3 (v2.0) August 19, 2010 132 Spartan-3A FPGA Family: Pinout Descriptions DS529-4 (v2.0) August 19, 2010 Product Specification 0 Introduction This section describes how the various pins on a Spartan®-3A FPGA connect within the supported component packages, and provides device-specific thermal characteristics. For general information on the pin functions and the package characteristics, see the Packaging section of UG331: Spartan-3 Generation FPGA User Guide. • UG331: Spartan-3 Generation FPGA User Guide www.xilinx.com/support/documentation /user_guides/ug331.pdf Spartan-3A FPGAs are available in both standard and Pb-free, RoHS versions of each package, with the Pb-free version adding a “G” to the middle of the package code. Except for the thermal characteristics, all information for the standard package applies equally to the Pb-free package. Pin Types Most pins on a Spartan-3A FPGA are general-purpose, user-defined I/O pins. There are, however, up to 12 different functional types of pins on Spartan-3A FPGA packages, as outlined in Table 57. In the package footprint drawings that follow, the individual pins are color-coded according to pin type as in the table. Table 57: Types of Pins on Spartan-3A FPGAs Type / Color Code Description Pin Name(s) in Type Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form differential I/Os. IO_# IO_Lxxy_# Unrestricted, general-purpose input-only pin. This pin does not have an output structure, differential termination resistor, or PCI clamp diode. IP_# IP_Lxxy_# Dual-purpose pin used in some configuration modes during the configuration process and then usually available as a user I/O after configuration. If the pin is not used during configuration, this pin behaves as an I/O-type pin. See UG332: Spartan-3 Generation Configuration User Guide for additional information on these signals. M[2:0] PUDC_B CCLK MOSI/CSI_B D[7:1] D0/DIN DOUT CSO_B RDWR_B INIT_B A[25:0] VS[2:0] LDC[2:0] HDC VREF Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other VREF pins in the same bank, provides a reference voltage input for certain I/O standards. If used for a reference voltage within a bank, all VREF pins within the bank must be connected. IP/VREF_# IP_Lxxy_#/VREF_# IO/VREF_# IO_Lxxy_#/VREF_# CLK Either a user-I/O pin or an input to a specific clock buffer driver. Most packages have 16 IO_Lxxy_#/GCLK[15:0], global clock inputs that optionally clock the entire device. The exceptions are the TQ144 IO_Lxxy_#/LHCLK[7:0], and the XC3S50A in the FT256 package). The RHCLK inputs optionally clock the right half IO_Lxxy_#/RHCLK[7:0] of the device. The LHCLK inputs optionally clock the left half of the device. See the Using Global Clock Resources chapter in UG331: Spartan-3 Generation FPGA User Guide for additional information on these signals. I/O INPUT DUAL CONFIG Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every package has two dedicated configuration pins. These pins are powered by VCCAUX. See the UG332: Spartan-3 Generation Configuration User Guide for additional information on the DONE and PROG_B signals. DONE, PROG_B © Copyright 2006–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI is a registered trademark of the PCI-SIG. All other trademarks are the property of their respective owners. DS529-4 (v2.0) August 19, 2010 www.xilinx.com 65 Pinout Descriptions Table 57: Types of Pins on Spartan-3A FPGAs(Continued) Type / Color Code Description PWR MGMT Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated pin and is powered by VCCAUX. AWAKE is a dual-purpose pin. Unless Suspend mode is enabled in the application, AWAKE is available as a user-I/O pin. SUSPEND, AWAKE JTAG Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has four dedicated JTAG pins. These pins are powered by VCCAUX. TDI, TMS, TCK, TDO GND Dedicated ground pin. The number of GND pins depends on the package used. All must be connected. GND Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package used. All must be connected. VCCAUX can be either 2.5V or 3.3V. Set on board and using CONFIG VCCAUX constraint. VCCAUX VCCAUX VCCINT Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the package used. All must be connected to +1.2V. VCCINT VCCO N.C. Pin Name(s) in Type Along with all the other VCCO pins in the same bank, this pin supplies power to the output VCCO_# buffers within the I/O bank and sets the input threshold voltage for some I/O standards. All must be connected. This package pin is not connected in this specific device/package combination but may be connected in larger devices in the same package. N.C. Notes: 1. # = I/O bank number, an integer between 0 and 3. Package Pins by Type Each package has three separate voltage supply inputs—VCCINT, VCCAUX, and VCCO—and a common ground return, GND. The numbers of pins dedicated to these functions vary by package, as shown in Table 58. Table 58: Power and Ground Supply Pins by Package Package VCCINT VCCAUX VCCO GND VQ100 4 3 6 13 TQ144 4 4 8 13 FT256 (50A/200A/400A) 6 4 16 28 FT256 (700A/1400A) 15 10 13 50 FG320 6 8 16 32 FG400 9 8 22 43 FG484 15 10 24 53 FG676 23 14 36 77 66 A majority of package pins are user-defined I/O or input pins. However, the numbers and characteristics of these I/O depend on the device type and the package in which it is available, as shown in Table 59. The table shows the maximum number of single-ended I/O pins available, assuming that all I/O-, INPUT-, DUAL-, VREF-, and CLK-type pins are used as general-purpose I/O. AWAKE is counted here as a dual-purpose I/O pin. Likewise, the table shows the maximum number of differential pin-pairs available on the package. Finally, the table shows how the total maximum user-I/Os are distributed by pin type, including the number of unconnected—N.C.—pins on the device. Not all I/O standards are supported on all I/O banks. The left and right banks (I/O banks 1 and 3) support higher output drive current than the top and bottom banks (I/O banks 0 and 2). Similarly, true differential output standards, such as LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only supported in the top or bottom banks (I/O banks 0 and 2). Inputs are unrestricted. For more details, see the chapter “Using I/O Resources” in UG331. www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions . Table 59: Maximum User I/O by Package Maximum User I/Os and Input-Only Maximum InputOnly Maximum Differential Pairs I/O INPUT DUAL VREF CLK N.C. 68 6 60 17 2 20 6 23 0 68 6 60 17 2 20 6 23 0 108 7 50 42 2 26 8 30 0 XC3S50A 144 32 64 53 20 26 15 30 51 XC3S200A 195 35 90 69 21 52 21 32 0 195 35 90 69 21 52 21 32 0 XC3S700A 161 13 60 59 2 52 18 30 0 XC3S1400A 161 13 60 59 2 52 18 30 0 248 56 112 101 40 52 23 32 3 251 59 112 101 42 52 24 32 0 311 63 142 155 46 52 26 32 0 311 63 142 155 46 52 26 32 0 372 84 165 194 61 52 33 32 3 375 87 165 195 62 52 34 32 0 502 94 227 313 67 52 38 32 17 Device XC3S50A XC3S200A XC3S50A XC3S400A XC3S200A XC3S400A XC3S400A XC3S700A XC3S700A XC3S1400A XC3S1400A Package VQ100 TQ144 FT256 FG320 FG400 FG484 FG676 All Possible I/Os by Type Notes: 1. Some VREFs are on INPUT pins. See pinout tables for details. Electronic versions of the package pinout tables and footprints are available for download from the Xilinx website. Using a spreadsheet program, the data can be sorted and reformatted according to any specific needs. Similarly, the ASCII-text file is easily parsed by most scripting programs. http://www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip DS529-4 (v2.0) August 19, 2010 www.xilinx.com 67 Pinout Descriptions Package Overview Table 60 shows the six low-cost, space-saving production package styles for the Spartan-3A family. Table 60: Spartan-3A Family Package Options Maximum I/O Lead Pitch (mm) Body Area (mm) Height (mm) Mass(1) (g) Very Thin Quad Flat Pack (VQFP) 68 0.5 14 x 14 1.20 0.6 144 Thin Quad Flat Pack (TQFP) 108 0.5 20 x 20 1.60 1.4 FT256 / FTG256 256 Fine-pitch Thin Ball Grid Array (FBGA) 195 1.0 17 x 17 1.55 0.9 FG320 / FGG320 320 Fine-pitch Ball Grid Array (FBGA) 251 1.0 19 x 19 2.00 1.4 FG400 / FGG400 400 Fine-pitch Ball Grid Array (FBGA) 311 1.0 21 x 21 2.43 2.2 FG484 / FGG484 484 Fine-pitch Ball Grid Array (FBGA) 375 1.0 23 x 23 2.60 2.2 FG676 / FGG676 676 Fine-pitch Ball Grid Array (FBGA) 502 1.0 27 x 27 2.60 3.4 Package Leads VQ100 / VQG100 100 TQ144 / TQG144 Type Notes: 1. Package mass is ±10%. Each package style is available in an environmentally friendly lead-free (Pb-free) option. The Pb-free packages include an extra ‘G’ in the package style name. For example, the standard “CS484” package becomes “CSG484” when ordered as the Pb-free option. The mechanical dimensions of the standard and Pb-free packages are similar, as shown in the mechanical drawings provided in Table 61. For additional package information, see UG112: Device Package User Guide. Mechanical Drawings Detailed mechanical drawings for each package type are available from the Xilinx web site at the specified location in Table 61. Material Declaration Data Sheets (MDDS) are also available on the Xilinx web site for each package. Table 61: Xilinx Package Documentation Package VQ100 Drawing Package Drawing VQG100 TQ144 Package Drawing Package Drawing Package Drawing Package Drawing FGG676 68 www.xilinx.com PK182_FG400 PK108_FGG400 Package Drawing FGG484 FG676 PK152_FG320 PK106_FGG320 FGG400 FG484 PK158_FT256 PK115_FTG256 FGG320 FG400 PK169_TQ144 PK126_TQG144 FTG256 FG320 PK173_VQ100 PK130_VQG100 TQG144 FT256 MDDS PK183_FG484 PK110_FGG484 Package Drawing PK155_FG676 PK111_FGG676 DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Package Thermal Characteristics The power dissipated by an FPGA application has implications on package selection and system design. The power consumed by a Spartan-3A FPGA is reported using either the XPower Power Estimator or the XPower Analyzer calculator integrated in the Xilinx® ISE® development software. Table 62 provides the thermal characteristics for the various Spartan-3A FPGA package offerings. This information is also available using the Thermal Query tool on xilinx.com (www.xilinx.com/cgi-bin/thermal/thermal.pl). The junction-to-case thermal resistance (θJC) indicates the difference between the temperature measured on the package body (case) and the die junction temperature per watt of power consumption. The junction-to-board (θJB) value similarly reports the difference between the board and junction temperature. The junction-to-ambient (θJA) value reports the temperature difference between the ambient environment and the junction temperature. The θJA value is reported at different air velocities, measured in linear feet per minute (LFM). The “Still Air (0 LFM)” column shows the θJA value in a system without a fan. The thermal resistance drops with increasing air flow. Table 62: Spartan-3A Package Thermal Characteristics Junction-to-Ambient (θJA) at Different Air Flows Package Device Junction-to-Case (θJC) Junction-toBoard (θJB) Still Air (0 LFM) 250 LFM 500 LFM 750 LFM Units VQ100 VQG100 XC3S50A 12.9 30.1 48.5 40.4 37.6 36.6 °C/Watt XC3S200A 10.9 25.7 42.9 35.7 33.2 32.4 °C/Watt TQ144 TQG144 XC3S50A 16.5 32.0 42.4 36.3 35.8 34.9 °C/Watt XC3S50A 16.0 33.5 42.3 35.6 35.5 34.5 °C/Watt XC3S200A 10.3 23.8 32.7 26.6 26.1 25.2 °C/Watt XC3S400A 8.4 19.3 29.9 24.9 23.0 22.3 °C/Watt XC3S700A 7.8 18.6 28.1 22.3 21.2 20.7 °C/Watt XC3S1400A 5.4 14.1 24.2 18.7 17.5 17.0 °C/Watt FG320 FGG320 XC3S200A 11.7 18.5 27.8 22.3 21.1 20.3 °C/Watt XC3S400A 9.9 15.4 25.2 19.8 18.6 17.8 °C/Watt FG400 FGG400 XC3S400A 9.8 15.5 25.6 19.2 18.0 17.3 °C/Watt XC3S700A 8.2 13.0 23.1 17.9 16.7 16.0 °C/Watt FG484 FGG484 XC3S700A 7.9 12.8 22.3 17.4 16.2 15.5 °C/Watt XC3S1400A 6.0 9.9 19.5 14.7 13.5 12.8 °C/Watt XC3S1400A 5.8 9.4 17.8 13.5 12.4 11.8 °C/Watt FT256 FTG256 FG676 FGG676 DS529-4 (v2.0) August 19, 2010 www.xilinx.com 69 Pinout Descriptions VQ100: 100-lead Very Thin Quad Flat Package The XC3S50A and XC3S200 are available in the 100-lead very thin quad flat package, VQ100. Table 63: Spartan-3A VQ100 Pinout(Continued) 1 IO_L02P_1/RHCLK0 P59 CLK Table 63 lists all the package pins. They are sorted by bank number and then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. 1 IO_L03N_1/TRDY1/RHCLK3 P62 CLK 1 IO_L03P_1/RHCLK2 P61 CLK 1 IO_L04N_1/RHCLK7 P65 CLK 1 IO_L04P_1/IRDY1/RHCLK6 P64 CLK The VQ100 does not support Suspend mode (SUSPEND and AWAKE are not connected), the address output pins for the Byte-wide Peripheral Interface (BPI) configuration mode, or daisy chain configuration (DOUT is not connected). 1 IO_L05N_1 P71 IO 1 IO_L05P_1 P70 IO 1 IO_L06N_1 P73 IO Table 63 also indicates that some differential I/O pairs have different assignments between the XC3S50A and the XC3S200A, highlighted in light blue. See "Footprint Migration Differences," page 72 for additional information. 1 IO_L06P_1 P72 IO 1 IP_1/VREF_1 P68 VREF 1 VCCO_1 P67 VCCO 2 IO_2/MOSI/CSI_B P46 DUAL 2 IO_L01N_2/M0 P25 DUAL 2 IO_L01P_2/M1 P23 DUAL 2 IO_L02N_2/CSO_B P27 DUAL 2 IO_L02P_2/M2 P24 DUAL Pinout Table 2 IO_L03N_2/VS1 (3S50A) IO_L04P_2/VS1 (3S200A) P30 DUAL Table 63: Spartan-3A VQ100 Pinout 2 IO_L03P_2/RDWR_B P28 DUAL 2 IO_L04N_2/VS0 P31 DUAL 2 IO_L04P_2/VS2 (3S50A) IO_L03N_2/VS2 (3S200A) P29 DUAL An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip. Bank 70 Pin Name Pin Type 0 IO_0/GCLK11 P90 CLK 0 IO_L01N_0 P78 IO 0 IO_L01P_0/VREF_0 P77 VREF 2 IO_L05N_2/D7 (3S50A) IO_L06P_2/D7 (3S200A) P34 DUAL 0 IO_L02N_0/GCLK5 P84 CLK 2 IO_L05P_2 P32 IO 0 IO_L02P_0/GCLK4 P83 CLK 2 IO_L06N_2/D6 P35 DUAL 0 IO_L03N_0/GCLK7 P86 CLK 2 P33 IO 0 IO_L03P_0/GCLK6 P85 CLK IO_L06P_2 (3S50A) IO_L05N_2 (3S200A) 0 IO_L04N_0/GCLK9 P89 CLK 2 IO_L07N_2/D4 P37 DUAL 0 IO_L04P_0/GCLK8 P88 CLK 2 IO_L07P_2/D5 P36 DUAL 0 IO_L05N_0 P94 IO 2 IO_L08N_2/GCLK15 P41 CLK 0 IO_L05P_0 P93 IO 2 IO_L08P_2/GCLK14 P40 CLK 0 IO_L06N_0/PUDC_B P99 DUAL 2 IO_L09N_2/GCLK1 P44 CLK 0 IO_L06P_0/VREF_0 P98 VREF 2 IO_L09P_2/GCLK0 P43 CLK 0 IP_0 P97 IP 2 IO_L10N_2/D3 P49 DUAL 0 IP_0/VREF_0 P82 VREF 2 IO_L10P_2/INIT_B P48 DUAL 0 VCCO_0 P79 VCCO 2 IO_L11N_2/D0/DIN/MISO (3S50A) IO_L12P_2/D0/DIN/MISO (3S200A) P51 DUAL 2 IO_L11P_2/D2 P50 DUAL 2 IO_L12N_2/CCLK P53 DUAL 0 VCCO_0 P96 VCCO 1 IO_L01N_1 P57 IO 1 IO_L01P_1 P56 IO 1 IO_L02N_1/RHCLK1 P60 CLK www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 63: Spartan-3A VQ100 Pinout(Continued) Table 63: Spartan-3A VQ100 Pinout(Continued) 2 IO_L12P_2/D1 (3S50A) IO_L11N_2/D1 (3S200A) P52 DUAL 2 IP_2/VREF_2 P39 VREF 2 VCCO_2 P26 VCCO 2 VCCO_2 P45 VCCO 3 IO_L01N_3 P4 IO 3 IO_L01P_3 P3 IO 3 IO_L02N_3 P6 IO 3 IO_L02P_3 P5 IO 3 IO_L03N_3/LHCLK1 P10 CLK 3 IO_L03P_3/LHCLK0 P9 CLK 3 IO_L04N_3/IRDY2/LHCLK3 P13 CLK 3 IO_L04P_3/LHCLK2 P12 CLK 3 IO_L05N_3/LHCLK7 P16 CLK 3 IO_L05P_3/TRDY2/LHCLK6 P15 CLK 3 IO_L06N_3 P20 IO 3 IO_L06P_3 P19 IO 3 IP_3 P21 IP 3 IP_3/VREF_3 P7 VREF 3 VCCO_3 P11 VCCO GND GND P14 GND GND GND P18 GND GND GND P42 GND GND GND P47 GND GND GND P58 GND GND GND P63 GND GND GND P69 GND GND GND P74 GND GND GND P8 GND GND GND P80 GND GND GND P87 GND GND GND P91 GND GND GND P95 GND VCCAUX DONE P54 CONFIG VCCAUX PROG_B P100 CONFIG VCCAUX TCK P76 JTAG VCCAUX TDI P2 JTAG VCCAUX TDO P75 JTAG VCCAUX TMS P1 JTAG VCCAUX VCCAUX P22 VCCAUX VCCAUX VCCAUX P55 VCCAUX VCCAUX VCCAUX P92 VCCAUX DS529-4 (v2.0) August 19, 2010 VCCINT VCCINT P17 VCCINT VCCINT VCCINT P38 VCCINT VCCINT VCCINT P66 VCCINT VCCINT VCCINT P81 VCCINT www.xilinx.com 71 Pinout Descriptions User I/Os by Bank Table 64 indicates how the 68 available user-I/O pins are distributed between the four I/O banks on the VQ100 package. Table 64: User I/Os Per Bank for the XC3S50A and XC3S200A in the VQ100 Package Package Edge I/O Bank Maximum I/O Top 0 Right All Possible I/O Pins by Type I/O INPUT DUAL VREF CLK 15 3 1 1 3 7 1 13 6 0 0 1 6 Bottom 2 26 2 0 19 1 4 Left 3 14 6 1 0 1 6 68 17 2 20 6 23 TOTAL Footprint Migration Differences The XC3S50A and XC3S200 have common VQ100 pinouts except for some differences in alignment of differential I/O pairs. Differential I/O Alignment Differences Some differential I/O pairs in the VQ100 on the XC3S50A FPGA are aligned differently than the corresponding pairs on the XC3S200A FPGAs, as shown in Table 65. All the mismatched pairs are in I/O Bank 2. These differences are indicated with the black diamond character () in the footprint diagrams Figure 17 and Figure 18. Table 65: Differential I/O Differences in VQ100 VQ100 Pin Bank XC3S200A P29 IIO_L04P_2/VS2 IO_L03N_2/VS2 P30 IO_L03N_2/VS1 IO_L04P_2/VS1 IO_L06P_2 IO_L05N_2 IO_L05N_2/D7 IO_L06P_2/D7 P33 P34 72 XC3S50A 2 P51 IO_L11N_2/D0/DIN/ IO_L12P_2/D0/DIN/ MISO MISO P52 IO_L12P_2/D1 IO_L11N_2/D1 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions VQ100 Footprint (XC3S50A) 76 TCK 77 IO_L01P_0/VREF_0 78 IO_L01N_0 79 VCCO_0 80 GND 81 VCCINT 82 IP_0/VREF_0 83 IO_L02P_0/GCLK4 84 IO_L02N_0/GCLK5 85 IO_L03P_0/GCLK6 86 IO_L03N_0/GCLK7 87 GND 88 IO_L04P_0/GCLK8 89 IO_L04N_0/GCLK9 90 IO_0/GCLK11 91 GND 92 VCCAUX 93 IO_L05P_0 94 IO_L05N_0 95 GND 96 VCCO_0 97 IP_0 98 IO_L06P_0/VREF_0 99 IO_L06N_0/PUDC_B 100 PROG_B Note pin 1 indicator in top-left corner and logo orientation. TMS 1 TDI 2 74 GND IO_L01P_3 3 73 IO_L06N_1 IO_L01N_3 4 72 IO_L06P_1 IO_L02P_3 5 71 IO_L05N_1 6 70 IO_L05P_1 7 69 GND GND 8 68 IP_1/VREF_1 IO_L03P_3/LHCLK0 9 67 VCCO_1 IO_L03N_3/LHCLK1 10 66 VCCINT IO_L04P_3/LHCLK2 12 IO_L04N_3/IRDY2/LHCLK3 13 Bank 1 VCCO_3 11 Bank 3 IO_L02N_3 IP_3/VREF_3 75 TDO Bank 0 GND 14 65 IO_L04N_1/RHCLK7 64 IO_L04P_1/IRDY1/RHCLK6 63 GND 62 IO_L03N_1/TRDY1/RHCLK3 IO_L05P_3/TRDY2/LHCLK6 15 61 IO_L03P_1/RHCLK2 IO_L05N_3/LHCLK7 16 60 IO_L02N_1/RHCLK1 VCCINT 17 59 IO_L02P_1/RHCLK0 GND 18 58 GND IO_L06P_3 19 57 IO_L01N_1 IO_L06N_3 20 56 IO_L01P_1 IP_3 21 55 VCCAUX VCCAUX 22 54 DONE IO_L01P_2/M1 23 53 IO_L12N_2/CCLK IO_L02P_2/M2 24 52 IO_L12P_2/D1(◆) IO_L11P_2/D2 50 IO_L10N_2/D3 49 IO_L10P_2/INIT_B 48 GND 47 IO_2/MOSI/CSI_B 46 VCCO_2 45 IO_L09N_2/GCLK1 44 IO_L09P_2/GCLK0 43 GND 42 IO_L08N_2/GCLK15 41 51 IO_L11N_2/D0/DIN/MISO (◆) IO_L08P_2/GCLK14 40 IP_2/VREF_2 39 VCCINT 38 IO_L07P_2/D5 36 IO_L06N_2/D6 35 IO_L05N_2/D7 (◆) 34 IO_L06P_2 (◆) 33 IO_L05P_2 32 IO_L04N_2/VS0 31 IO_L03N_2/VS1 (◆) 30 IO_L04P_2/VS2 (◆) 29 IO_L03P_2/RDWR_B 28 VCCO_2 26 IO_L02N_2/CSO_B 27 IO_L07N_2/D4 37 Bank 2 IO_L01N_2/M0 25 Figure 17: VQ100 Package Footprint - XC3S50A (Top View) I/O: Unrestricted, general-purpose user I/O 20 DUAL: Configuration pins, then possible user I/O 6 VREF: User I/O or input voltage reference for bank 2 INPUT: Unrestricted, general-purpose input pin 23 CLK: User I/O, input, or global buffer input 6 VCCO: Output voltage supply for bank 2 CONFIG: Dedicated configuration pins JTAG: Dedicated JTAG port pins 4 VCCINT: Internal core supply voltage (+1.2V) 0 N.C.: Not connected GND: Ground 3 VCCAUX: Auxiliary supply voltage 17 DS529-4 (v2.0) August 19, 2010 4 13 www.xilinx.com 73 Pinout Descriptions VQ100 Footprint (XC3S200A) 76 TCK 77 IO_L01P_0/VREF_0 78 IO_L01N_0 79 VCCO_0 80 GND 81 VCCINT 82 IP_0/VREF_0 83 IO_L02P_0/GCLK4 84 IO_L02N_0/GCLK5 85 IO_L03P_0/GCLK6 86 IO_L03N_0/GCLK7 87 GND 88 IO_L04P_0/GCLK8 89 IO_L04N_0/GCLK9 90 IO_0/GCLK11 91 GND 92 VCCAUX 93 IO_L05P_0 94 IO_L05N_0 95 GND 96 VCCO_0 97 IP_0 98 IO_L06P_0/VREF_0 99 IO_L06N_0/PUDC_B 100 PROG_B Note pin 1 indicator in top-left corner and logo orientation. TMS 1 TDI 2 74 GND IO_L01P_3 3 73 IO_L06N_1 IO_L01N_3 4 72 IO_L06P_1 IO_L02P_3 5 71 IO_L05N_1 6 70 IO_L05P_1 7 69 GND GND 8 68 IP_1/VREF_1 IO_L03P_3/LHCLK0 9 67 VCCO_1 IO_L03N_3/LHCLK1 10 66 VCCINT IO_L04P_3/LHCLK2 12 IO_L04N_3/IRDY2/LHCLK3 13 Bank 1 VCCO_3 11 Bank 3 IO_L02N_3 IP_3/VREF_3 75 TDO Bank 0 GND 14 65 IO_L04N_1/RHCLK7 64 IO_L04P_1/IRDY1/RHCLK6 63 GND 62 IO_L03N_1/TRDY1/RHCLK3 IO_L05P_3/TRDY2/LHCLK6 15 61 IO_L03P_1/RHCLK2 IO_L05N_3/LHCLK7 16 60 IO_L02N_1/RHCLK1 VCCINT 17 59 IO_L02P_1/RHCLK0 GND 18 58 GND IO_L06P_3 19 57 IO_L01N_1 IO_L06N_3 20 56 IO_L01P_1 IP_3 21 55 VCCAUX VCCAUX 22 54 DONE IO_L01P_2/M1 23 53 IO_L12N_2/CCLK IO_L02P_2/M2 24 52 IO_L11N_2/D1(◆) IO_L11P_2/D2 50 IO_L10N_2/D3 49 IO_L10P_2/INIT_B 48 GND 47 IO_2/MOSI/CSI_B 46 VCCO_2 45 IO_L09N_2/GCLK1 44 IO_L09P_2/GCLK0 43 GND 42 IO_L08N_2/GCLK15 41 51 IO_L12P_2/D0/DIN/MISO (◆) IO_L08P_2/GCLK14 40 IP_2/VREF_2 39 VCCINT 38 IO_L07P_2/D5 36 IO_L06N_2/D6 35 IO_L06P_2/D7 (◆) 34 IO_L05N_2 (◆) 33 IO_L05P_2 32 IO_L04N_2/VS0 31 IO_L04P_2/VS1(◆) 30 IO_L03N_2/VS2 (◆) 29 IO_L03P_2/RDWR_B 28 VCCO_2 26 IO_L02N_2/CSO_B 27 IO_L07N_2/D4 37 Bank 2 IO_L01N_2/M0 25 200A Figure 18: VQ100 Package Footprint - XC3S200A (Top View) I/O: Unrestricted, general-purpose user I/O 20 DUAL: Configuration pins, then possible user I/O 6 VREF: User I/O or input voltage reference for bank 2 INPUT: Unrestricted, general-purpose input pin 23 CLK: User I/O, input, or global buffer input 6 VCCO: Output voltage supply for bank 2 CONFIG: Dedicated configuration pins JTAG: Dedicated JTAG port pins 4 VCCINT: Internal core supply voltage (+1.2V) 0 N.C.: Not connected GND: Ground 3 VCCAUX: Auxiliary supply voltage 17 74 4 13 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions TQ144: 144-lead Thin Quad Flat Package The XC3S50A is available in the 144-lead thin quad flat package, TQ144. Table 66: Spartan-3A TQ144 Pinout(Continued) Bank Pin Name Pin Type Table 66 lists all the package pins. They are sorted by bank number and then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. 0 IP_0/VREF_0 P123 VREF 0 VCCO_0 P119 VCCO 0 VCCO_0 P136 VCCO 1 IO_1 P79 I/O The XC3S50A does not support the address output pins for the Byte-wide Peripheral Interface (BPI) configuration mode. 1 IO_L01N_1/LDC2 P78 DUAL 1 IO_L01P_1/HDC P76 DUAL An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at 1 IO_L02N_1/LDC0 P77 DUAL 1 IO_L02P_1/LDC1 P75 DUAL 1 IO_L03N_1 P84 I/O www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip. 1 IO_L03P_1 P82 I/O 1 IO_L04N_1/RHCLK1 P85 RHCLK 1 IO_L04P_1/RHCLK0 P83 RHCLK 1 IO_L05N_1/TRDY1/RHCLK3 P88 RHCLK 1 IO_L05P_1/RHCLK2 P87 RHCLK 1 IO_L06N_1/RHCLK5 P92 RHCLK 1 IO_L06P_1/RHCLK4 P90 RHCLK 1 IO_L07N_1/RHCLK7 P93 RHCLK 1 IO_L07P_1/IRDY1/RHCLK6 P91 RHCLK 1 IO_L08N_1 P98 I/O 1 IO_L08P_1 P96 I/O 1 IO_L09N_1 P101 I/O 1 IO_L09P_1 P99 I/O 1 IO_L10N_1 P104 I/O 1 IO_L10P_1 P102 I/O 1 IO_L11N_1 P105 I/O 1 IO_L11P_1 P103 I/O 1 IP_1/VREF_1 P80 VREF 1 IP_1/VREF_1 P97 VREF 1 VCCO_1 P86 VCCO 1 VCCO_1 P95 VCCO 2 IO_2/MOSI/CSI_B P62 DUAL 2 IO_L01N_2/M0 P38 DUAL 2 IO_L01P_2/M1 P37 DUAL 2 IO_L02N_2/CSO_B P41 DUAL 2 IO_L02P_2/M2 P39 DUAL 2 IO_L03N_2/VS1 P44 DUAL 2 IO_L03P_2/RDWR_B P42 DUAL 2 IO_L04N_2/VS0 P45 DUAL 2 IO_L04P_2/VS2 P43 DUAL 2 IO_L05N_2/D7 P48 DUAL Pinout Table Table 66: Spartan-3A TQ144 Pinout Bank Pin Name Pin Type 0 IO_0 P142 I/O 0 IO_L01N_0 P111 I/O 0 IO_L01P_0 P110 I/O 0 IO_L02N_0 P113 I/O 0 IO_L02P_0/VREF_0 P112 VREF 0 IO_L03N_0 P117 I/O 0 IO_L03P_0 P115 I/O 0 IO_L04N_0 P116 I/O 0 IO_L04P_0 P114 I/O 0 IO_L05N_0 P121 I/O 0 IO_L05P_0 P120 I/O 0 IO_L06N_0/GCLK5 P126 GCLK 0 IO_L06P_0/GCLK4 P124 GCLK 0 IO_L07N_0/GCLK7 P127 GCLK 0 IO_L07P_0/GCLK6 P125 GCLK 0 IO_L08N_0/GCLK9 P131 GCLK 0 IO_L08P_0/GCLK8 P129 GCLK 0 IO_L09N_0/GCLK11 P132 GCLK 0 IO_L09P_0/GCLK10 P130 GCLK 0 IO_L10N_0 P135 I/O 0 IO_L10P_0 P134 I/O 0 IO_L11N_0 P139 I/O 0 IO_L11P_0 P138 I/O 0 IO_L12N_0/PUDC_B P143 DUAL 0 IO_L12P_0/VREF_0 P141 VREF 0 IP_0 P140 INPUT DS529-4 (v2.0) August 19, 2010 www.xilinx.com 75 Pinout Descriptions Table 66: Spartan-3A TQ144 Pinout(Continued) Bank 76 Pin Name Table 66: Spartan-3A TQ144 Pinout(Continued) Pin Type Bank Pin Name Pin Type 2 IO_L05P_2 P46 I/O 3 IO_L10P_3 P27 I/O 2 IO_L06N_2/D6 P49 DUAL 3 IO_L11N_3 P30 I/O 2 IO_L06P_2 P47 I/O 3 IO_L11P_3 P28 I/O 2 IO_L07N_2/D4 P51 DUAL 3 IO_L12N_3 P32 I/O 2 IO_L07P_2/D5 P50 DUAL 3 IO_L12P_3 P31 I/O 2 IO_L08N_2/GCLK15 P55 GCLK 3 IP_L13N_3/VREF_3 P35 VREF 2 IO_L08P_2/GCLK14 P54 GCLK 3 IP_L13P_3 P33 INPUT 2 IO_L09N_2/GCLK1 P59 GCLK 3 VCCO_3 P14 VCCO 2 IO_L09P_2/GCLK0 P57 GCLK 3 VCCO_3 P23 VCCO 2 IO_L10N_2/GCLK3 P60 GCLK GND GND P9 GND 2 IO_L10P_2/GCLK2 P58 GCLK GND GND P17 GND 2 IO_L11N_2/DOUT P64 DUAL GND GND P26 GND GND GND P34 GND GND GND P56 GND GND GND P65 GND GND GND P81 GND GND GND P89 GND GND GND P100 GND GND GND P106 GND GND GND P118 GND GND GND P128 GND GND GND P137 GND 2 IO_L11P_2/AWAKE P63 PWR MGMT 2 IO_L12N_2/D3 P68 DUAL 2 IO_L12P_2/INIT_B P67 DUAL 2 IO_L13N_2/D0/DIN/MISO P71 DUAL 2 IO_L13P_2/D2 P69 DUAL 2 IO_L14N_2/CCLK P72 DUAL 2 IO_L14P_2/D1 P70 DUAL 2 IP_2/VREF_2 P53 VREF 2 VCCO_2 P40 VCCO 2 VCCO_2 P61 VCCO 3 IO_L01N_3 P6 I/O VCCAUX SUSPEND P74 PWR MGMT 3 IO_L01P_3 P4 I/O VCCAUX DONE P73 CONFIG 3 IO_L02N_3 P5 I/O VCCAUX PROG_B P144 CONFIG 3 IO_L02P_3 P3 I/O VCCAUX TCK P109 JTAG 3 IO_L03N_3 P8 I/O VCCAUX TDI P2 JTAG 3 IO_L03P_3 P7 I/O VCCAUX TDO P107 JTAG 3 IO_L04N_3/VREF_3 P11 VREF VCCAUX TMS P1 JTAG 3 IO_L04P_3 P10 I/O VCCAUX VCCAUX P36 VCCAUX 3 IO_L05N_3/LHCLK1 P13 LHCLK VCCAUX VCCAUX P66 VCCAUX 3 IO_L05P_3/LHCLK0 P12 LHCLK VCCAUX VCCAUX P108 VCCAUX 3 IO_L06N_3/IRDY2/LHCLK3 P16 LHCLK VCCAUX VCCAUX P133 VCCAUX 3 IO_L06P_3/LHCLK2 P15 LHCLK VCCINT VCCINT P22 VCCINT 3 IO_L07N_3/LHCLK5 P20 LHCLK VCCINT VCCINT P52 VCCINT 3 IO_L07P_3/LHCLK4 P18 LHCLK VCCINT VCCINT P94 VCCINT 3 IO_L08N_3/LHCLK7 P21 LHCLK VCCINT VCCINT P122 VCCINT 3 IO_L08P_3/TRDY2/LHCLK6 P19 LHCLK 3 IO_L09N_3 P25 I/O 3 IO_L09P_3 P24 I/O 3 IO_L10N_3 P29 I/O www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions User I/Os by Bank Table 67 indicates how the 108 available user-I/O pins are distributed between the four I/O banks on the TQ144 package. The AWAKE pin is counted as a dual-purpose I/O. Table 67: User I/Os Per Bank for the XC3S50A in the TQ144 Package Package Edge I/O Bank Maximum I/O Top 0 Right All Possible I/O Pins by Type I/O INPUT DUAL VREF CLK 27 14 1 1 3 8 1 25 11 0 4 2 8 Bottom 2 30 2 0 21 1 6 Left 3 26 15 1 0 2 8 108 42 2 26 8 30 TOTAL Footprint Migration Differences The XC3S50A FPGA is the only Spartan-3A device offered in the TQ144 package. DS529-4 (v2.0) August 19, 2010 www.xilinx.com 77 Pinout Descriptions TQ144 Footprint 116 IO_L04N_0 115 IO_L03P_0 114 IO_L04P_0 113 IO_L02N_0 112 IO_L02P_0/VREF_0 111 IO_L01N_0 110 IO_L01P_0 109 TCK IO_L07N_0/GCLK7 IO_L06N_0/GCLK5 IO_L07P_0/GCLK6 IO_L06P_0/GCLK4 IP_0/VREF_0 VCCINT IO_L05N_0 IO_L05P_0 VCCO_0 GND IO_L03N_0 IO_L09N_0/GCLK11 IO_L08N_0/GCLK9 IO_L09P_0/GCLK10 IO_L08P_0/GCLK8 GND 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 X Bank 1 IP_L13N_3/VREF_3 35 VCCAUX 36 GND IO_L11N_1 IO_L10N_1 IO_L11P_1 IO_L10P_1 IO_L09N_1 GND IO_L09P_1 IO_L08N_1 IP_1/VREF_1 IO_L08P_1 VCCO_1 VCCINT IO_L07N_1/RHCLK7 IO_L06N_1/RHCLK5 IO_L07P_1/RHCLK6 IO_L06P_1/RHCLK4 GND IO_L05N_1/RHCLK3 IO_L05P_1/RHCLK2 VCCO_1 IO_L04N_1/RHCLK1 IO_L03N_1 IO_L04P_1/RHCLK0 IO_L03P_1 GND IP_1/VREF_1 IO_1 IO_L01N_1/LDC2 IO_L02N_1/LDC0 IO_L01P_1/HDC IO_L02P_1/LDC1 IO_L14N_2/CCLK IO_L13P_2/D2 IO_L14P_2/D1 IO_L13N_2/D0/DIN/MISO 65 66 67 68 69 70 71 72 IO_L06P_2 47 IO_L05N_2/D7 48 IO_L06N_2/D6 49 IO_L07P_2/D5 50 IO_L07N_2/D4 51 VCCINT 52 IP_2/VREF_2 53 IO_L08P_2/GCLK14 54 IO_L08N_2/GCLK15 55 GND 56 IO_L09P_2/GCLK0 57 IO_L10P_2/GCLK2 58 VCCO_2 40 IO_L02N_2/CSO_B 41 IO_L03P_2/RDWR_B 42 IO_L04P_2/VS2 43 IO_L03N_2/VS1 44 IO_L04N_2/VS0 45 IO_L05P_2 46 IO_L01P_2/M1 37 IO_L01N_2/M0 38 IO_L02P_2/M2 39 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 SUSPEND 73 DONE Bank 2 GND VCCAUX IO_L12P_2/INIT_B IO_L12N_2/D3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 59 60 61 62 IO_L11P_2/AWAKE 63 IO_L11N_2/DOUT 64 IO_L02P_3 IO_L01P_3 IO_L02N_3 IO_L01N_3 IO_L03P_3 IO_L03N_3 GND IO_L04P_3 IO_L04N_3/VREF_3 IO_L05P_3/LHCLK0 IO_L05N_3/LHCLK1 VCCO_3 IO_L06P_3/LHCLK2 IO_L06N_3/LHCLK3 GND IO_L07P_3/LHCLK4 IO_L08P_3/LHCLK6 IO_L07N_3/LHCLK5 IO_L08N_3/LHCLK7 VCCINT VCCO_3 IO_L09P_3 IO_L09N_3 GND IO_L10P_3 IO_L11P_3 IO_L10N_3 IO_L11N_3 IO_L12P_3 IO_L12N_3 IP_L13P_3 GND 108 VCCAUX 107 TDO Bank 0 IO_L09N_2/GCLK1 IO_L10N_2/GCLK3 VCCO_2 IO_2/MOSI/CSI_B 1 2 Bank 3 TMS TDI 137 GND 136 VCCO_0 135 IO_L10N_0 134 IO_L10P_0 133 VCCAUX 144 PROG_B 143 IO_L12N_0/PUDC_B 142 IO_0 141 IO_L12P_0/VREF_0 140 IP_0 139 IO_L11N_0 138 IO_L11P_0 Note pin 1 indicator in top-left corner and logo orientation. DS529-4_10_031207 Figure 19: TQ144 Package Footprint (Top View) I/O: Unrestricted, general-purpose user I/O 25 DUAL: Configuration pins, then possible user I/O 8 VREF: User I/O or input voltage reference for bank 2 INPUT: Unrestricted, general-purpose input pin 30 CLK: User I/O, input, or global buffer input 8 VCCO: Output voltage supply for bank 2 CONFIG: Dedicated configuration pins JTAG: Dedicated JTAG port pins 4 VCCINT: Internal core supply voltage (+1.2V) 0 N.C.: Not connected GND: Ground 4 VCCAUX: Auxiliary supply voltage 2 SUSPEND: Dedicated SUSPEND and dual-purpose AWAKE Power Management pins 42 78 4 13 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions FT256: 256-ball Fine-pitch, Thin Ball Grid Array The 256-ball fine-pitch, thin ball grid array package, FT256, supports all five Spartan-3A FPGAs. The XC3S200A and XC3S400A have identical footprints, and the XC3S700A and XC3S1400A have identical footprints. The XC3S50A is compatible with the XC3S200A/XC3S400A but has 51 unconnected balls. The XC3S200A/XC3S400A is similar to the XC3S700A/XC3S1400A, but the XC3S700A/ XC3S1400A adds more power and ground pins and therefore is not compatible. Table 68 lists all the package pins for the XC3S50A, XC3S200A, and XC3S400A. They are sorted by bank number and then by pin name of the largest device. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. The highlighted rows indicate pinout differences between the XC3S50A, the XC3S200A, and the XC3S400A FPGAs. The XC3S50A has 51 unconnected balls, indicated as N.C. (No Connection) in Table 68 and Figure 20 and with the black diamond character () in Table 68. Figure 21 provides the common footprint for the XC3S200A and XC3S400A. Table 68 also indicates that some differential I/O pairs have different assignments between the XC3S50A and the XC3S200A/XC3S400A, highlighted in light blue. See "Footprint Migration Differences," page 99 for additional information. All other balls have nearly identical functionality on all three devices. Table 73 summarizes the XC3S50A FPGA footprint migration differences for the FT256 package. The XC3S50A does not support the address output pins for the Byte-wide Peripheral Interface (BPI) configuration mode. Table 69 lists all the package pins for the XC3S700A and XC3S1400A. They are sorted by bank number and then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. Figure 22 provides the common footprint for the XC3S200A and XC3S400A. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip. DS529-4 (v2.0) August 19, 2010 Pinout Table Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) Bank XC3S50A XC3S200A XC3S400A FT256 Ball Type 0 IO_L01N_0 IO_L01N_0 C13 I/O 0 IO_L01P_0 IO_L01P_0 D13 I/O 0 IO_L02N_0 IO_L02N_0 B14 I/O 0 IO_L02P_0/ VREF_0 IO_L02P_0/ VREF_0 B15 VREF 0 IO_L03N_0 IO_L03N_0 D11 I/O 0 IO_L03P_0 IO_L03P_0 C12 I/O 0 IO_L04N_0 IO_L04N_0 A13 I/O 0 IO_L04P_0 IO_L04P_0 A14 I/O 0 N.C. (◆) IO_L05N_0 A12 I/O 0 IP_0 IO_L05P_0 B12 I/O 0 N.C. (◆) IO_L06N_0/ VREF_0 E10 VREF 0 N.C. (◆) IO_L06P_0 D10 I/O 0 IO_L07N_0 IO_L07N_0 A11 I/O 0 IO_L07P_0 IO_L07P_0 C11 I/O 0 IO_L08N_0 IO_L08N_0 A10 I/O 0 IO_L08P_0 IO_L08P_0 B10 I/O 0 IO_L09N_0/ GCLK5 IO_L09N_0/ GCLK5 D9 GCLK 0 IO_L09P_0/ GCLK4 IO_L09P_0/ GCLK4 C10 GCLK 0 IO_L10N_0/ GCLK7 IO_L10N_0/ GCLK7 A9 GCLK 0 IO_L10P_0/ GCLK6 IO_L10P_0/ GCLK6 C9 GCLK 0 IO_L11N_0/ GCLK9 IO_L11N_0/ GCLK9 D8 GCLK 0 IO_L11P_0/ GCLK8 IO_L11P_0/ GCLK8 C8 GCLK 0 IO_L12N_0/ GCLK11 IO_L12N_0/ GCLK11 B8 GCLK 0 IO_L12P_0/ GCLK10 IO_L12P_0/ GCLK10 A8 GCLK 0 N.C. (◆) IO_L13N_0 C7 I/O 0 N.C. (◆) IO_L13P_0 A7 I/O 0 N.C. (◆) IO_L14N_0/ VREF_0 E7 VREF 0 N.C. (◆) IO_L14P_0 F8 I/O 0 IO_L15N_0 IO_L15N_0 B6 I/O 0 IO_L15P_0 IO_L15P_0 A6 I/O 0 IO_L16N_0 IO_L16N_0 C6 I/O 0 IO_L16P_0 IO_L16P_0 D7 I/O 0 IO_L17N_0 IO_L17N_0 C5 I/O www.xilinx.com 79 Pinout Descriptions Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) Bank 80 XC3S50A XC3S200A XC3S400A Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) FT256 Ball Type Bank FT256 Ball Type 1 IO_L12N_1/ TRDY1/RHCLK3 IO_L12N_1/ TRDY1/RHCLK3 J16 RHCLK 1 IO_L12P_1/ RHCLK2 IO_L12P_1/ RHCLK2 K16 RHCLK 1 IO_L14N_1/ RHCLK5 IO_L14N_1/ RHCLK5 H14 RHCLK 1 IO_L14P_1/ RHCLK4 IO_L14P_1/ RHCLK4 J14 RHCLK 1 IO_L15N_1/ RHCLK7 IO_L15N_1/ RHCLK7 H16 RHCLK H15 RHCLK XC3S50A XC3S200A XC3S400A 0 IO_L17P_0 IO_L17P_0 A5 I/O 0 IO_L18N_0 IO_L18N_0 B4 I/O 0 IO_L18P_0 IO_L18P_0 A4 I/O 0 IO_L19N_0 IO_L19N_0 B3 I/O 0 IO_L19P_0 IO_L19P_0 A3 I/O 0 IO_L20N_0/ PUDC_B IO_L20N_0/ PUDC_B D5 DUAL 0 IO_L20P_0/ VREF_0 IO_L20P_0/ VREF_0 C4 VREF 0 IP_0 IP_0 D6 INPUT 1 IO_L15P_1/ IRDY1/RHCLK6 IO_L15P_1/ IRDY1/RHCLK6 0 IP_0 IP_0 D12 INPUT 1 N.C. (◆) IO_L16N_1/A11 F16 DUAL 0 IP_0 IP_0 E6 INPUT 1 N.C. (◆) IO_L16P_1/A10 G16 DUAL 0 IP_0 IP_0 F7 INPUT 1 N.C. (◆) IO_L17N_1/A13 G14 DUAL 0 IP_0 IP_0 F9 INPUT 1 N.C. (◆) IO_L17P_1/A12 H13 DUAL 0 IP_0 IP_0 F10 INPUT 1 N.C. (◆) IO_L18N_1/A15 F15 DUAL 0 IP_0/VREF_0 IP_0/VREF_0 E9 VREF 1 N.C. (◆) IO_L18P_1/A14 E16 DUAL 0 VCCO_0 VCCO_0 B5 VCCO 1 N.C. (◆) IO_L19N_1/A17 F14 DUAL 0 VCCO_0 VCCO_0 B9 VCCO 1 N.C. (◆) IO_L19P_1/A16 G13 DUAL 0 VCCO_0 VCCO_0 B13 VCCO 1 IO_L20N_1 IO_L20N_1/A19 F13 DUAL 0 VCCO_0 VCCO_0 E8 VCCO 1 IO_L20P_1 IO_L20P_1/A18 E14 DUAL 1 IO_L01N_1/ LDC2 IO_L01N_1/ LDC2 N14 DUAL 1 IO_L22N_1 IO_L22N_1/A21 D15 DUAL IO_L01P_1/ HDC IO_L01P_1/ HDC 1 IO_L22P_1 IO_L22P_1/A20 D16 DUAL 1 N13 DUAL 1 IO_L23N_1 IO_L23N_1/A23 D14 DUAL 1 IO_L02N_1/ LDC0 IO_L02N_1/ LDC0 P15 DUAL 1 IO_L23P_1 IO_L23P_1/A22 E13 DUAL IO_L02P_1/ LDC1 IO_L02P_1/ LDC1 1 IO_L24N_1 IO_L24N_1/A25 C15 DUAL 1 R15 DUAL 1 IO_L24P_1 IO_L24P_1/A24 C16 DUAL 1 IO_L03N_1 IO_L03N_1/A1 N16 DUAL 1 IO_L03P_1/A0 P16 DUAL IP_L04N_1/ VREF_1 VREF IO_L03P_1 IP_L04N_1/ VREF_1 K12 1 IP_L04P_1 IP_L04P_1 K11 INPUT N.C. (◆) IO_L05N_1/ VREF_1 1 1 M14 VREF 1 N.C. (◆) IP_L09N_1 J11 INPUT 1 N.C. (◆) IO_L05P_1 M13 I/O 1 N.C. (◆) J10 VREF 1 N.C. (◆) IO_L06N_1/A3 K13 DUAL IP_L09P_1/ VREF_1 1 N.C. (◆) IO_L06P_1/A2 L13 DUAL 1 IP_L13N_1 IP_L13N_1 H11 INPUT 1 IP_L13P_1 IP_L13P_1 H10 INPUT 1 IP_L21N_1 IP_L21N_1 G11 INPUT 1 N.C. (◆) IO_L07N_1/A5 M16 DUAL 1 N.C. (◆) IO_L07P_1/A4 M15 DUAL 1 N.C. (◆) IO_L08N_1/A7 L16 DUAL 1 IP_L21P_1/ VREF_1 IP_L21P_1/ VREF_1 G12 VREF 1 N.C. (◆) IO_L08P_1/A6 L14 DUAL 1 IP_L25N_1 IP_L25N_1 F11 INPUT 1 IO_L10N_1 IO_L10N_1/A9 J13 DUAL 1 VREF IO_L10P_1 IO_L10P_1/A8 J12 DUAL IP_L25P_1/ VREF_1 F12 1 IP_L25P_1/ VREF_1 IO_L11N_1/ RHCLK1 IO_L11N_1/ RHCLK1 1 VCCO_1 VCCO_1 E15 VCCO 1 K14 RHCLK 1 VCCO_1 VCCO_1 H12 VCCO 1 IO_L11P_1/ RHCLK0 IO_L11P_1/ RHCLK0 K15 RHCLK 1 VCCO_1 VCCO_1 J15 VCCO 1 VCCO_1 VCCO_1 N15 VCCO www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) Bank XC3S200A XC3S400A XC3S50A Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) FT256 Ball Type Bank XC3S50A XC3S200A XC3S400A FT256 Ball Type 2 IO_L01N_2/M0 IO_L01N_2/M0 P4 DUAL 2 IO_L20P_2/D1 IO_L18N_2/D1 R13 DUAL 2 IO_L01P_2/M1 IO_L01P_2/M1 N4 DUAL 2 IO_L18P_2/D2 IO_L18P_2/D2 T13 DUAL 2 IO_L02N_2/ CSO_B IO_L02N_2/ CSO_B T2 DUAL 2 IO_L02P_2/M2 IO_L02P_2/M2 R2 DUAL 2 IO_L04P_2/VS2 IO_L03N_2/VS2 T3 2 IO_L03P_2/ RDWR_B IO_L03P_2/ RDWR_B 2 N.C. (◆) IO_L19N_2 P13 I/O 2 N.C. (◆) IO_L19P_2 N12 I/O DUAL 2 IO_L20N_2/ CCLK IO_L20N_2/ CCLK R14 DUAL R3 DUAL 2 IO_L18N_2/D0/ DIN/MISO IO_L20P_2/D0/ DIN/MISO T14 DUAL 2 IO_L04N_2/VS0 IO_L04N_2/VS0 P5 DUAL 2 IP_2 IP_2 L7 INPUT 2 IO_L03N_2/VS1 IO_L04P_2/VS1 N6 DUAL 2 IP_2 IP_2 L8 INPUT 2 IO_L06P_2 IO_L05N_2 R5 I/O 2 IP_2/VREF_2 IP_2/VREF_2 L9 VREF 2 IO_L05P_2 IO_L05P_2 T4 I/O 2 IP_2/VREF_2 IP_2/VREF_2 L10 VREF 2 IO_L06N_2/D6 IO_L06N_2/D6 T6 DUAL 2 IP_2/VREF_2 IP_2/VREF_2 M7 VREF 2 IO_L05N_2/D7 IO_L06P_2/D7 T5 DUAL 2 IP_2/VREF_2 IP_2/VREF_2 M8 VREF 2 N.C. (◆) IO_L07N_2 P6 I/O 2 IP_2/VREF_2 IP_2/VREF_2 M11 VREF 2 N.C. (◆) IO_L07P_2 N7 I/O 2 IP_2/VREF_2 IP_2/VREF_2 N5 VREF 2 IO_L08N_2/D4 IO_L08N_2/D4 N8 DUAL 2 VCCO_2 VCCO_2 M9 VCCO 2 IO_L08P_2/D5 IO_L08P_2/D5 P7 DUAL 2 VCCO_2 VCCO_2 R4 VCCO 2 N.C. (◆) IO_L09N_2/ GCLK13 T7 GCLK 2 VCCO_2 VCCO_2 R8 VCCO VCCO_2 VCCO_2 R12 VCCO N.C. (◆) IO_L09P_2/ GCLK12 2 2 R7 GCLK 3 IO_L01N_3 IO_L01N_3 C1 I/O 3 IO_L01P_3 IO_L01P_3 C2 I/O 3 IO_L02N_3 IO_L02N_3 D3 I/O 3 IO_L02P_3 IO_L02P_3 D4 I/O 3 IO_L03N_3 IO_L03N_3 E1 I/O 3 IO_L03P_3 IO_L03P_3 D1 I/O 3 N.C. (◆) IO_L05N_3 E2 I/O 3 N.C. (◆) IO_L05P_3 E3 I/O 2 IO_L10N_2/ GCLK15 IO_L10N_2/ GCLK15 T8 GCLK 2 IO_L10P_2/ GCLK14 IO_L10P_2/ GCLK14 P8 GCLK 2 IO_L11N_2/ GCLK1 IO_L11N_2/ GCLK1 P9 GCLK 2 IO_L11P_2/ GCLK0 IO_L11P_2/ GCLK0 N9 GCLK 2 IO_L12N_2/ GCLK3 IO_L12N_2/ GCLK3 T9 GCLK 3 N.C. (◆) IO_L07N_3 G4 I/O 2 IO_L12P_2/ GCLK2 IO_L12P_2/ GCLK2 R9 GCLK 3 N.C. (◆) IO_L07P_3 F3 I/O 2 N.C. (◆) IO_L13N_2 M10 I/O 3 IO_L08N_3/ VREF_3 IO_L08N_3/ VREF_3 G1 VREF 2 N.C. (◆) IO_L13P_2 N10 I/O 3 IO_L08P_3 IO_L08P_3 F1 I/O 2 IO_L14P_2/ MOSI/CSI_B IO_L14N_2/ MOSI/CSI_B P10 DUAL 3 N.C. (◆) IO_L09N_3 H4 I/O 3 N.C. (◆) IO_L09P_3 G3 I/O 3 N.C. (◆) IO_L10N_3 H5 I/O 3 N.C. (◆) IO_L10P_3 H6 I/O 3 IO_L11N_3/ LHCLK1 IO_L11N_3/ LHCLK1 H1 LHCLK 3 IO_L11P_3/ LHCLK0 IO_L11P_3/ LHCLK0 G2 LHCLK 2 IO_L14N_2 IO_L14P_2 T10 I/O 2 IO_L15N_2/ DOUT IO_L15N_2/ DOUT R11 DUAL 2 IO_L15P_2/ AWAKE IO_L15P_2/ AWAKE T11 PWR MGMT 2 IO_L16N_2 IO_L16N_2 N11 I/O 2 IO_L16P_2 IO_L16P_2 P11 I/O 2 IO_L17N_2/D3 IO_L17N_2/D3 P12 DUAL 3 IO_L12N_3/ IRDY2/LHCLK3 IO_L12N_3/ IRDY2/LHCLK3 J3 LHCLK 2 IO_L17P_2/ INIT_B IO_L17P_2/ INIT_B T12 DUAL 3 IO_L12P_3/ LHCLK2 IO_L12P_3/ LHCLK2 H3 LHCLK DS529-4 (v2.0) August 19, 2010 www.xilinx.com 81 Pinout Descriptions Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) Bank 82 XC3S50A XC3S200A XC3S400A Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) FT256 Ball Type Bank GND GND GND 3 IO_L14N_3/ LHCLK5 IO_L14N_3/ LHCLK5 J1 LHCLK 3 IO_L14P_3/ LHCLK4 IO_L14P_3/ LHCLK4 J2 LHCLK FT256 Ball Type GND B11 GND GND GND C3 GND GND GND GND C14 GND GND GND GND E5 GND XC3S50A XC3S200A XC3S400A 3 IO_L15N_3/ LHCLK7 IO_L15N_3/ LHCLK7 K1 LHCLK GND GND GND E12 GND 3 IO_L15P_3/ TRDY2/LHCLK6 IO_L15P_3/ TRDY2/LHCLK6 K3 LHCLK GND GND GND F2 GND 3 N.C. (◆) IO_L16N_3 L2 I/O GND GND GND F6 GND GND GND GND G8 GND GND GND GND G10 GND GND GND GND G15 GND GND GND GND H9 GND GND GND GND J8 GND GND GND GND K2 GND GND GND GND K7 GND GND GND GND K9 GND GND GND GND L11 GND GND GND GND L15 GND GND GND GND M5 GND GND GND GND M12 GND GND GND GND P3 GND GND GND GND P14 GND GND GND GND R6 GND 3 N.C. (◆) IO_L16P_3/ VREF_3 L1 VREF 3 N.C. (◆) IO_L17N_3 J6 I/O 3 N.C. (◆) IO_L17P_3 J4 I/O 3 N.C. (◆) IO_L18N_3 L3 I/O 3 N.C. (◆) IO_L18P_3 K4 I/O 3 N.C. (◆) IO_L19N_3 L4 I/O 3 N.C. (◆) IO_L19P_3 M3 I/O 3 IO_L20N_3 IO_L20N_3 N1 I/O 3 IO_L20P_3 IO_L20P_3 M1 I/O 3 IO_L22N_3 IO_L22N_3 P1 I/O 3 IO_L22P_3 IO_L22P_3 N2 I/O 3 IO_L23N_3 IO_L23N_3 P2 I/O 3 IO_L23P_3 IO_L23P_3 R1 I/O 3 IO_L24N_3 IO_L24N_3 M4 I/O 3 IO_L24P_3 IO_L24P_3 N3 I/O GND GND GND R10 GND 3 IP_L04N_3/ VREF_3 IP_L04N_3/ VREF_3 F4 VREF GND GND GND T1 GND 3 IP_L04P_3 IP_L04P_3 E4 INPUT GND GND GND T16 GND 3 N.C. (◆) IP_L06N_3/ VREF_3 G5 VREF VCCAUX SUSPEND SUSPEND R16 PWR MGMT 3 N.C. (◆) IP_L06P_3 G6 INPUT VCCAUX DONE DONE T15 CONFIG PROG_B A2 CONFIG 3 IP_L13N_3 IP_L13N_3 J7 INPUT VCCAUX PROG_B 3 IP_L13P_3 IP_L13P_3 H7 INPUT VCCAUX TCK TCK A15 JTAG 3 IP_L21N_3 IP_L21N_3 K6 INPUT VCCAUX TDI TDI B1 JTAG 3 IP_L21P_3 IP_L21P_3 K5 INPUT VCCAUX TDO TDO B16 JTAG VCCAUX TMS TMS B2 JTAG 3 IP_L25N_3/ VREF_3 IP_L25N_3/ VREF_3 L6 VREF VCCAUX VCCAUX VCCAUX E11 VCCAUX 3 IP_L25P_3 IP_L25P_3 L5 INPUT VCCAUX VCCAUX VCCAUX F5 VCCAUX 3 VCCO_3 VCCO_3 D2 VCCO VCCAUX VCCAUX VCCAUX L12 VCCAUX 3 VCCO_3 VCCO_3 H2 VCCO VCCAUX VCCAUX VCCAUX M6 VCCAUX 3 VCCO_3 VCCO_3 J5 VCCO VCCINT VCCINT VCCINT G7 VCCINT 3 VCCO_3 VCCO_3 M2 VCCO VCCINT VCCINT VCCINT G9 VCCINT GND GND GND A1 GND VCCINT VCCINT VCCINT H8 VCCINT GND GND GND A16 GND VCCINT VCCINT VCCINT J9 VCCINT GND GND GND B7 GND www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 68: Spartan-3A FT256 Pinout (XC3S50A, XC3S200A, XC3S400) (Continued) Bank XC3S200A XC3S400A XC3S50A Table 69: Spartan-3A FT256 Pinout (XC3S700A, Type VCCINT VCCINT VCCINT K8 VCCINT VCCINT VCCINT VCCINT K10 VCCINT Table 69: Spartan-3A FT256 Pinout (XC3S700A, XC3S1400A) Bank XC3S700A XC3S1400A XC3S700A XC3S1400A Bank FT256 Ball FT256 Ball Type FT256 Ball Type 0 IO_L18N_0 B4 I/O 0 IO_L18P_0 A4 I/O 0 IO_L19N_0 B3 I/O 0 IO_L19P_0 A3 I/O 0 IO_L20N_0/PUDC_B D5 DUAL 0 IO_L20P_0/VREF_0 C4 VREF 0 IO_L01N_0 C13 I/O 0 IP_0 E6 INPUT 0 IO_L01P_0 D13 I/O 0 VCCO_0 B13 VCCO 0 IO_L02N_0 B14 I/O 0 VCCO_0 B5 VCCO 0 IO_L02P_0/VREF_0 B15 VREF 0 VCCO_0 B9 VCCO 0 IO_L03N_0 D12 I/O 0 VCCO_0 E8 VCCO 0 IO_L03P_0 C12 I/O 1 IO_L01N_1/LDC2 N14 DUAL 0 IO_L04N_0 A13 I/O 1 IO_L01P_1/HDC N13 DUAL 0 IO_L04P_0 A14 I/O 1 IO_L02N_1/LDC0 P15 DUAL 0 IO_L05N_0 A12 I/O 1 IO_L02P_1/LDC1 R15 DUAL 0 IO_L05P_0 B12 I/O 1 IO_L03N_1/A1 N16 DUAL 0 IO_L06N_0/VREF_0 D10 VREF 1 IO_L03P_1/A0 P16 DUAL 0 IO_L06P_0 D11 I/O 1 IO_L06N_1/A3 K13 DUAL 0 IO_L07N_0 A11 I/O 1 IO_L06P_1/A2 L13 DUAL 0 IO_L07P_0 C11 I/O 1 IO_L07N_1/A5 M16 DUAL 0 IO_L08N_0 A10 I/O 1 IO_L07P_1/A4 M15 DUAL 0 IO_L08P_0 B10 I/O 1 IO_L08N_1/A7 L16 DUAL 0 IO_L09N_0/GCLK5 D9 GCLK 1 IO_L08P_1/A6 L14 DUAL 0 IO_L09P_0/GCLK4 C10 GCLK 1 IO_L10N_1/A9 J13 DUAL 0 IO_L10N_0/GCLK7 A9 GCLK 1 IO_L10P_1/A8 J12 DUAL 0 IO_L10P_0/GCLK6 C9 GCLK 1 IO_L11N_1/RHCLK1 K14 RHCLK 0 IO_L11N_0/GCLK9 D8 GCLK 1 IO_L11P_1/RHCLK0 K15 RHCLK 0 IO_L11P_0/GCLK8 C8 GCLK 1 IO_L12N_1/TRDY1/RHCLK3 J16 RHCLK 0 IO_L12N_0/GCLK11 B8 GCLK 1 IO_L12P_1/RHCLK2 K16 RHCLK 0 IO_L12P_0/GCLK10 A8 GCLK 1 IO_L15N_1/RHCLK7 H16 RHCLK 0 IO_L13N_0 C7 I/O 1 IO_L15P_1/IRDY1/RHCLK6 H15 RHCLK 0 IO_L13P_0 A7 I/O 1 IO_L16N_1/A11 F16 DUAL 0 IO_L14N_0/VREF_0 E7 VREF 1 IO_L16P_1/A10 G16 DUAL 0 IO_L14P_0 E9 I/O 1 IO_L17N_1/A13 G14 DUAL 0 IO_L15N_0 B6 I/O 1 IO_L17P_1/A12 H13 DUAL 0 IO_L15P_0 A6 I/O 1 IO_L18N_1/A15 F15 DUAL 0 IO_L16N_0 C6 I/O 1 IO_L18P_1/A14 E16 DUAL 0 IO_L16P_0 D7 I/O 1 IO_L19N_1/A17 F14 DUAL 0 IO_L17N_0 C5 I/O 1 IO_L19P_1/A16 G13 DUAL 0 IO_L17P_0 A5 I/O 1 IO_L20N_1/A19 F13 DUAL DS529-4 (v2.0) August 19, 2010 www.xilinx.com 83 Pinout Descriptions Table 69: Spartan-3A FT256 Pinout (XC3S700A, Bank 84 XC3S700A XC3S1400A Table 69: Spartan-3A FT256 Pinout (XC3S700A, FT256 Ball Type Bank XC3S700A XC3S1400A FT256 Ball Type 1 IO_L20P_1/A18 E14 DUAL 2 IO_L16N_2 N11 I/O 1 IO_L22N_1/A21 D15 DUAL 2 IO_L16P_2 P11 I/O 1 IO_L22P_1/A20 D16 DUAL 2 IO_L17N_2/D3 P12 DUAL 1 IO_L23N_1/A23 D14 DUAL 2 IO_L17P_2/INIT_B T12 DUAL 1 IO_L23P_1/A22 E13 DUAL 2 IO_L18N_2/D1 R13 DUAL 1 IO_L24N_1/A25 C15 DUAL 2 IO_L18P_2/D2 T13 DUAL 1 IO_L24P_1/A24 C16 DUAL 2 IO_L19N_2 P13 I/O 1 IP_1/VREF_1 H12 VREF 2 IO_L19P_2 N12 I/O 1 IP_1/VREF_1 J14 VREF 2 IO_L20N_2/CCLK R14 DUAL 1 IP_1/VREF_1 M13 VREF 2 IO_L20P_2/D0/DIN/MISO T14 DUAL 1 IP_1/VREF_1 M14 VREF 2 IP_2/VREF_2 M11 VREF 1 VCCO_1 E15 VCCO 2 IP_2/VREF_2 M7 VREF 1 VCCO_1 J15 VCCO 2 IP_2/VREF_2 M9 VREF 1 VCCO_1 N15 VCCO 2 IP_2/VREF_2 N5 VREF 2 IO_L01N_2/M0 P4 DUAL 2 IP_2/VREF_2 P6 VREF 2 IO_L01P_2/M1 N4 DUAL 2 VCCO_2 R12 VCCO 2 IO_L02N_2/CSO_B T2 DUAL 2 VCCO_2 R4 VCCO 2 IO_L02P_2/M2 R2 DUAL 2 VCCO_2 R8 VCCO 2 IO_L03N_2/VS2 T3 DUAL 3 IO_L01N_3 C1 I/O 2 IO_L03P_2/RDWR_B R3 DUAL 3 IO_L01P_3 C2 I/O 2 IO_L04N_2/VS0 P5 DUAL 3 IO_L02N_3 D3 I/O 2 IO_L04P_2/VS1 N6 DUAL 3 IO_L02P_3 D4 I/O 2 IO_L05N_2 R5 I/O 3 IO_L03N_3 E1 I/O 2 IO_L05P_2 T4 I/O 3 IO_L03P_3 D1 I/O 2 IO_L06N_2/D6 T6 DUAL 3 IO_L04N_3 F4 I/O 2 IO_L06P_2/D7 T5 DUAL 3 IO_L04P_3 E4 I/O 2 IO_L08N_2/D4 N8 DUAL 3 IO_L05N_3 E2 I/O 2 IO_L08P_2/D5 P7 DUAL 3 IO_L05P_3 E3 I/O 2 IO_L09N_2/GCLK13 T7 GCLK 3 IO_L07N_3 G3 I/O 2 IO_L09P_2/GCLK12 R7 GCLK 3 IO_L07P_3 F3 I/O 2 IO_L10N_2/GCLK15 T8 GCLK 3 IO_L08N_3/VREF_3 G1 VREF 2 IO_L10P_2/GCLK14 P8 GCLK 3 IO_L08P_3 F1 I/O 2 IO_L11N_2/GCLK1 P9 GCLK 3 IO_L11N_3/LHCLK1 H1 LHCLK 2 IO_L11P_2/GCLK0 N9 GCLK 3 IO_L11P_3/LHCLK0 G2 LHCLK 2 IO_L12N_2/GCLK3 T9 GCLK 3 IO_L12N_3/IRDY2/LHCLK3 J3 LHCLK 2 IO_L12P_2/GCLK2 R9 GCLK 3 IO_L12P_3/LHCLK2 H3 LHCLK 2 IO_L14N_2/MOSI/CSI_B P10 DUAL 3 IO_L14N_3/LHCLK5 J1 LHCLK 2 IO_L14P_2 T10 I/O 3 IO_L14P_3/LHCLK4 J2 LHCLK 2 IO_L15N_2/DOUT R11 DUAL 3 IO_L15N_3/LHCLK7 K1 LHCLK 2 IO_L15P_2/AWAKE T11 PWRMGT 3 IO_L15P_3/TRDY2/LHCLK6 K3 LHCLK www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 69: Spartan-3A FT256 Pinout (XC3S700A, XC3S700A XC3S1400A Bank Table 69: Spartan-3A FT256 Pinout (XC3S700A, FT256 Ball Type Bank XC3S700A XC3S1400A FT256 Ball Type 3 IO_L16N_3 L2 I/O GND GND G8 GND 3 IO_L16P_3/VREF_3 L1 VREF GND GND H11 GND 3 IO_L18N_3 L3 I/O GND GND H5 GND 3 IO_L18P_3 K4 I/O GND GND H7 GND 3 IO_L19N_3 L4 I/O GND GND H9 GND 3 IO_L19P_3 M3 I/O GND GND J10 GND 3 IO_L20N_3 N1 I/O GND GND J6 GND 3 IO_L20P_3 M1 I/O GND GND J8 GND 3 IO_L22N_3 P1 I/O GND GND K11 GND 3 IO_L22P_3/VREF_3 N2 VREF GND GND K12 GND 3 IO_L23N_3 P2 I/O GND GND K2 GND 3 IO_L23P_3 R1 I/O GND GND K5 GND 3 IO_L24N_3 M4 I/O GND GND K7 GND 3 IO_L24P_3 N3 I/O GND GND K9 GND 3 IP_3 J4 INPUT GND GND L10 GND 3 IP_3/VREF_3 G4 VREF GND GND L11 GND 3 IP_3/VREF_3 J5 VREF GND GND L15 GND 3 VCCO_3 D2 VCCO GND GND L6 GND 3 VCCO_3 H2 VCCO GND GND L8 GND 3 VCCO_3 M2 VCCO GND GND M12 GND GND GND A1 GND GND GND M5 GND GND GND A16 GND GND GND M8 GND GND GND B11 GND GND GND N10 GND GND GND B7 GND GND GND N7 GND GND GND C14 GND GND GND P14 GND GND GND C3 GND GND GND P3 GND GND GND E10 GND GND GND R10 GND GND GND E12 GND GND GND R6 GND GND GND E5 GND GND GND T1 GND GND GND F11 GND GND GND T16 GND GND GND F2 GND VCCAUX SUSPEND R16 PWRMGT GND GND F6 GND VCCAUX DONE T15 CONFIG GND GND F7 GND VCCAUX PROG_B A2 CONFIG GND GND F8 GND VCCAUX TCK A15 JTAG GND GND F9 GND VCCAUX TDI B1 JTAG GND GND G10 GND VCCAUX TDO B16 JTAG GND GND G12 GND VCCAUX TMS B2 JTAG GND GND G15 GND VCCAUX VCCAUX D6 VCCAUX GND GND G5 GND VCCAUX VCCAUX E11 VCCAUX GND GND G6 GND VCCAUX VCCAUX F12 VCCAUX DS529-4 (v2.0) August 19, 2010 www.xilinx.com 85 Pinout Descriptions Table 69: Spartan-3A FT256 Pinout (XC3S700A, Bank XC3S700A XC3S1400A FT256 Ball Type VCCAUX VCCAUX F5 VCCAUX VCCAUX VCCAUX H14 VCCAUX VCCAUX VCCAUX H4 VCCAUX VCCAUX VCCAUX L12 VCCAUX VCCAUX VCCAUX L5 VCCAUX VCCAUX VCCAUX M10 VCCAUX VCCAUX VCCAUX M6 VCCAUX VCCINT VCCINT F10 VCCINT VCCINT VCCINT G11 VCCINT VCCINT VCCINT G7 VCCINT VCCINT VCCINT G9 VCCINT VCCINT VCCINT H10 VCCINT VCCINT VCCINT H6 VCCINT VCCINT VCCINT H8 VCCINT VCCINT VCCINT J11 VCCINT VCCINT VCCINT J7 VCCINT VCCINT VCCINT J9 VCCINT VCCINT VCCINT K10 VCCINT VCCINT VCCINT K6 VCCINT VCCINT VCCINT K8 VCCINT VCCINT VCCINT L7 VCCINT VCCINT VCCINT L9 VCCINT 86 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions User I/Os by Bank Table 70, Table 71, and Table 72 indicate how the available user-I/O pins are distributed between the four I/O banks on the FT256 package. The AWAKE pin is counted as a dual-purpose I/O. The XC3S50A FPGA in the FT256 package has 51 unconnected balls, labeled with an “N.C.” type. These pins are also indicated in Figure 20. Table 70: User I/Os Per Bank on XC3S50A in the FT256 Package Package Edge I/O Bank Maximum I/O Top 0 Right All Possible I/O Pins by Type I/O INPUT DUAL VREF CLK 40 21 7 1 3 8 1 32 12 5 4 3 8 Bottom 2 40 5 2 21 6 6 Left 3 32 15 6 0 3 8 144 53 20 26 15 30 TOTAL . Table 71: User I/Os Per Bank on XC3S200A and XC3S400A in the FT256 Package Package Edge I/O Bank Maximum I/O Top 0 Right All Possible I/O Pins by Type I/O INPUT DUAL VREF CLK 47 27 6 1 5 8 1 50 1 6 30 5 8 Bottom 2 48 11 2 21 6 8 Left 3 50 30 7 0 5 8 195 69 21 52 21 32 TOTAL Table 72: User I/Os Per Bank on XC3S700A and XC3S1400A in the FT256 Package Package Edge I/O Bank Maximum I/O Top 0 Right All Possible I/O Pins by Type I/O INPUT DUAL VREF CLK 41 27 1 1 4 8 1 40 0 0 30 4 6 Bottom 2 41 7 0 21 5 8 Left 3 39 25 1 0 5 8 161 59 2 52 18 30 TOTAL DS529-4 (v2.0) August 19, 2010 www.xilinx.com 87 Pinout Descriptions Footprint Migration Differences Unconnected Balls on XC3S50A Table 73 summarizes any footprint and functionality differences between the XC3S50A and the XC3S200A or XC3S400A FPGAs that might affect easy migration between these devices in the FT256 package. The XC3S200A and XC3S400A have identical pinouts. The XC3S50A pinout is compatible, but there are 52 balls that are different. Generally, designs easily migrate upward from the XC3S50A to either the XC3S200A or XC3S400A. If using differential I/O, see Table 74. If using the BPI configuration mode (parallel Flash), see Table 75. Table 73: FT256 XC3S50A Footprint Migration Difference XC3S200A/ XC3S400A Type XC3S50A Type XC3S200A/ XC3S400A Type FT256 Ball Bank K4 3 N.C. Æ I/O K13 1 N.C. Æ I/O L1 3 N.C. Æ I/O L2 3 N.C. Æ I/O L3 3 N.C. Æ I/O L4 3 N.C. Æ I/O L13 1 N.C. Æ I/O L14 1 N.C. Æ I/O Migration FT256 Ball Bank A7 0 N.C. Æ I/O L16 1 N.C. Æ I/O A12 0 N.C. Æ I/O M3 3 N.C. Æ I/O B12 0 INPUT Æ I/O M10 2 N.C. Æ I/O 1 N.C. Æ I/O 88 XC3S50A Type Table 73: FT256 XC3S50A Footprint Migration Migration C7 0 N.C. Æ I/O M13 D10 0 N.C. Æ I/O M14 1 N.C. Æ I/O E2 3 N.C. Æ I/O M15 1 N.C. Æ I/O E3 3 N.C. Æ I/O M16 1 N.C. Æ I/O E7 0 N.C. Æ I/O N7 2 N.C. Æ I/O E10 0 N.C. Æ I/O N10 2 N.C. Æ I/O E16 1 N.C. Æ I/O N12 2 N.C. Æ I/O F3 3 N.C. Æ I/O P6 2 N.C. Æ I/O 2 N.C. Æ I/O F8 0 N.C. Æ I/O P13 F14 1 N.C. Æ I/O R7 2 N.C. Æ I/O F15 1 N.C. Æ I/O T7 2 N.C. Æ I/O F16 1 N.C. Æ I/O DIFFERENCES 52 G3 3 N.C. Æ I/O G4 3 N.C. Æ I/O G5 3 N.C. Æ INPUT G6 3 N.C. Æ INPUT G13 1 N.C. Æ I/O G14 1 N.C. Æ I/O G16 1 N.C. Æ I/O H4 3 N.C. Æ I/O H5 3 N.C. Æ I/O H6 3 N.C. Æ I/O H13 1 N.C. Æ I/O J4 3 N.C. Æ I/O J6 3 N.C. Æ I/O J10 1 N.C. Æ INPUT J11 1 N.C. Æ INPUT Legend: Æ www.xilinx.com This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right. DS529-4 (v2.0) August 19, 2010 Pinout Descriptions XC3S50A Differential I/O Alignment Differences Also, some differential I/O pairs on the XC3S50A FPGA are aligned differently than the corresponding pairs on the XC3S200A or XC3S400A FPGAs, as shown in Table 74. All the mismatched pairs are in I/O Bank 2. The shading highlights the N side of each pair. Table 74: Differential I/O Differences in FT256 FT256 Ball Bank XC3S50A XC3S200A XC3S400A T3 IO_L04P_2/VS2 IO_L03N_2/VS2 N6 IO_L03N_2/VS1 IO_L04P_2/VS1 R5 IO_L06P_2 IO_L05N_2 IO_L05N_2/D7 IO_L06P_2/D7 IO_L14P_2/MOSI /CSI_B IO_L14N_2/MOSI /CSI_B T10 IO_L14N_2 IO_L14P_2 R13 IO_L20P_2 IO_L18N_2 T14 IO_L18N_2 IO_L20P_2 T5 P10 2 XC3S50A Does Not Have BPI Mode Address Outputs The XC3S50A FPGA does not generate the BPI-mode address pins during configuration. Table 75 summarizes these differences. Table 75: XC3S50A BPI Functional Differences FT256 Ball Bank XC3S50A XC3S200A XC3S400A N16 IO_L03N_1 IO_L03N_1/A1 P16 IO_L03P_1 IO_L03P_1/A0 J13 IO_L10N_1 IO_L10N_1/A9 J12 IO_L10P_1 IO_L10P_1/A8 F13 IO_L20N_1 IO_L20N_1/A19 IO_L20P_1 IO_L20P_1/A18 IO_L22N_1 IO_L22N_1/A21 D16 IO_L22P_1 IO_L22P_1/A20 D14 IO_L23N_1 IO_L23N_1/A23 E13 IO_L23P_1 IO_L23P_1/A22 C15 IO_L24N_1 IO_L24N_1/A25 C16 IO_L24P_1 IO_L24P_1/A24 E14 D15 1 DS529-4 (v2.0) August 19, 2010 www.xilinx.com 89 Pinout Descriptions Differences Between XC3S200A/XC3S400A and XC3S700A/XC3S1400A The XC3S700A and XC3S1400A FPGAs have several additional power and ground pins as compared to the XC3S200A and XC3S400A. Table 76 summarizes all the differences. All dedicated and dual-purpose configuration pins are in the same location. Table 76: Differences Between XC3S200A/XC3S400A and XC3S700A/XC3S1400A FT256 Bank Ball XC3S200A XC3S400A Pin Name Type XC3S700A XC3S1400A Pin Name F8 0 IO_L14P_0 I/O GND D11 0 IO_L03N_0 I/O IO_L06P_0 I/O IO_L06N_0/ VREF_0 Type GND Table 76: Differences Between XC3S200A/XC3S400A and XC3S700A/XC3S1400A (Continued) FT256 Ball Bank XC3S200A XC3S400A Pin Name Type XC3S700A XC3S1400A Pin Name Type N10 2 IO_L13P_2 I/O GND M10 2 IO_L13N_2 I/O VCCAUX VCCAUX P6 2 IO_L07N_2 I/O IP_2/ VREF_2 VREF L8 2 IP_2 INPUT GND L7 2 IP_2 INPUT VCCINT M9 2 VCCO_2 VCCO IP_2/ VREF_2 VREF L10 2 IP_2/ VREF_2 VREF GND GND M8 2 IP_2/ VREF_2 VREF GND GND L9 2 IP_2/ VREF_2 VREF VCCINT H5 3 IO_L10N_3 I/O GND GND J6 3 IO_L17N_3 I/O GND GND G3 3 IO_L09P_3 I/O IO_L07N_3 I/O J4 3 IO_L17P_3 I/O IP_3 IP H4 3 IO_L09N_3 I/O VCCAUX VCCAUX H6 3 IO_L10P_3 I/O VCCINT VCCINT N2 3 IO_L22P_3 I/O IO_L22P_3/ VREF_3 VREF G4 3 IO_L07N_3 I/O IP_3/ VREF_3 VREF G6 3 IP_L06P_3 INPUT GND GND H7 3 IP_L13P_3 INPUT GND GND K5 3 IP_L21P_3 INPUT GND GND E4 3 IP_L04P_3 INPUT IO_L04P_3 L5 3 IP_L25P_3 INPUT VCCAUX VCCAUX J7 3 IP_L13N_3 INPUT VCCINT VCCINT VCCINT I/O GND VCCINT D10 0 IO_L06P_0 F7 0 IP_0 INPUT GND GND F9 0 IP_0 INPUT GND GND D12 0 IP_0 INPUT IO_L03N_0 I/O E9 0 IP_0/ VREF_0 INPUT IO_L14P_0 I/O D6 0 IP_0 INPUT VCCAUX VCCAUX F10 0 IP_0 INPUT VCCINT VCCINT E10 0 IO_L06N_0/ VREF_0 VREF M13 1 IO_L05P_1 I/O F11 1 IP_L25N_1 INPUT GND GND H11 1 IP_L13N_1 INPUT GND GND K11 1 IP_L04P_1 INPUT GND GND G11 1 IP_L21N_1 INPUT VCCINT VCCINT H10 1 IP_L13P_1 INPUT VCCINT VCCINT J11 1 IP_L09N_1 INPUT VCCINT VCCINT H14 1 IO_L14N_1/ RHCLK VCCAUX RHCLK5 VCCAUX J14 1 IO_L14P_1/ IP_1/ RHCLK VREF_1 RHCLK4 VREF H12 1 VCCO_1 VCCO IP_1/ VREF_1 VREF K6 3 IP_L21N_3 INPUT VCCINT G12 1 IP_L21P_1/ VREF_1 VREF GND GND J5 3 VCCO_3 VCCO IP_3/ VREF_3 VREF J10 1 IP_L09P_1/ VREF_1 VREF GND GND G5 3 IP_L06N_3/ VREF_3 VREF GND GND K12 1 IP_L04N_1/ VREF_1 VREF GND GND L6 3 IP_L25N_3/ VREF_3 VREF GND GND F12 1 IP_L25P_1/ VREF_1 VREF VCCAUX VCCAUX F4 3 IP_L04N_3/ VREF_3 VREF IO_L04N_3 M14 1 IO_L05N_1/ VREF_1 VREF IP_1/ VREF_1 VREF N7 2 IO_L07P_2 I/O GND GND 90 VREF GND GND GND IP_1/ VREF_1 VREF www.xilinx.com VCCINT I/O I/O DS529-4 (v2.0) August 19, 2010 Pinout Descriptions FT256 Footprint (XC3S50A) E F I/O L01P_3 I/O L03P_3 I/O L03N_3 I/O L08P_3 VCCO_3 Bank 3 I/O I/O L17P_0 L15P_0 I/O I/O L19N_0 L18N_0 GND L20P_0 VREF_0 I/O I/O L02P_3 INPUT I/O L10P_0 GCLK6 L09P_0 GCLK4 I/O I/O L16P_0 L11N_0 GCLK9 L09N_0 GCLK5 INPUT N.C. VCCO_0 L20N_0 PUDC_B INPUT GND I/O INPUT I/O L08P_0 N.C. N.C. INPUT INPUT N.C. N.C. N.C. VCCINT GND VCCINT GND N.C. N.C. N.C. VCCINT GND N.C. VCCO_3 N.C. GND INPUT INPUT L21P_3 L21N_3 GND VCCINT INPUT INPUT L12P_3 LHCLK2 I/O I/O J L14N_3 LHCLK5 L14P_3 LHCLK4 L04P_3 I/O VREF_0 N.C. INPUT L13P_3 GND L15N_3 LHCLK7 GND L15P_3 TRDY2 LHCLK6 N.C. L N.C. N.C. N.C. N.C. VCCO_3 N.C. I/O I/O I/O L20N_3 L22P_3 L24P_3 I/O I/O L22N_3 L23N_3 I/O L02P_2 M2 N.C. INPUT 13 I/O I/O L04P_0 VCCO_0 I/O I/O I/O L03P_0 L01N_0 I/O L03N_0 VCCAUX INPUT L25N_1 INPUT L21N_1 INPUT INPUT L13P_1 L13N_1 VCCINT N.C. N.C. GND VCCINT INPUT GND INPUT L25P_1 VREF_1 INPUT L13N_3 INPUT I/O L24N_3 I/O L01P_2 M1 L25N_3 VREF_3 GND VCCAUX INPUT VREF_2 I/O I/O L01N_2 M0 L04N_2 VS0 L03P_2 VCCO_2 RDWR_B L06P_2 GND I/O I/O I/O L02N_2 CSO_B L04P_2 VS2 I/O L05P_2 INPUT L25P_3 I/O INPUT INPUT VREF_2 VREF_2 VCCO_2 N.C. INPUT INPUT VREF_2 VREF_2 I/O I/O L03N_2 VS1 N.C. L08N_2 D4 L11P_2 GCLK0 I/O I/O I/O N.C. L08P_2 D5 L10P_2 GCLK14 L11N_2 GCLK1 GND N.C. VCCO_2 L12P_2 GCLK2 I/O I/O N.C. L10N_2 GCLK15 L12N_2 GCLK3 I/O N.C. I/O I/O I/O L05N_2 D7 L06N_2 D6 (Differential Outputs) I/O L14N_2 TCK GND I/O I/O L02N_0 GND L02P_0 VREF_0 TDO I/O I/O L24N_1 L24P_1 I/O I/O I/O I/O L01P_0 L23N_1 L22N_1 L22P_1 VCCO_1 N.C. N.C. N.C. N.C. GND N.C. I/O I/O L23P_1 L20P_1 I/O L20N_1 L21P_1 VREF_1 N.C. N.C. VCCO_1 N.C. L14N_1 RHCLK5 I/O I/O L10P_1 L10N_1 I/O I/O I/O L15N_1 RHCLK7 I/O VCCO_1 L12N_1 TRDY1 RHCLK3 I/O I/O I/O L04N_1 VREF_1 N.C. L11N_1 RHCLK1 L11P_1 RHCLK0 L12P_1 RHCLK2 GND VCCAUX N.C. N.C. GND N.C. GND N.C. N.C. N.C. N.C. I/O I/O N.C. L01P_1 HDC L01N_1 LDC2 VCCO_1 L17N_2 D3 N.C. GND L02N_1 LDC0 I/O I/O I/O VCCO_2 L20P_2 D1 L20N_2 CCLK L02P_1 LDC1 INPUT VREF_2 I/O L16N_2 I/O L16P_2 INPUT L15P_1 IRDY1 RHCLK6 I/O L14P_1 RHCLK4 L15N_2 DOUT I/O L03N_1 I/O I/O I/O I/O I/O L15P_2 AWAKE L17P_2 INIT_B L18P_2 D2 I/O L03P_1 I/O L18N_2 D0 DIN/MISO (Differential Outputs) Bank 2 16 INPUT I/O GND 15 L04P_1 INPUT I/O L14P_2 MOSI CSI_B 14 L04N_0 L07P_0 I/O I/O 12 I/O L12N_3 IRDY2 LHCLK3 K GND I/O L11P_0 GCLK8 VCCO_0 INPUT VCCO_3 T I/O N.C. I/O GND L11N_3 LHCLK1 I/O L12N_0 GCLK11 I/O L07N_0 VCCAUX H L23P_3 GND I/O L08N_0 L04N_3 VREF_3 N.C. R L10N_0 GCLK7 INPUT I/O P L12P_0 GCLK10 N.C. L11P_3 LHCLK0 N I/O L16N_0 N.C. GND I/O I/O I/O L17N_0 I/O N.C. L08N_3 VREF_3 L20P_3 I/O L15N_0 I/O I/O L02N_3 G M VCCO_0 11 I/O N.C. I/O (High Output Drive) I/O L18P_0 10 (High Output Drive) D I/O L01N_3 I/O L19P_0 (Differential Outputs) Bank 0 8 9 7 Bank 1 TMS 6 (High Output Drive) TDI 5 D PR O G _B B 4 EN GND 3 SP A C (High Output Drive) 2 SU (Differential Outputs) 1 DONE GND DS529-4_09_012009 Figure 20: XC3S50A FT256 Package Footprint (Top View) 53 I/O: Unrestricted, general-purpose user I/O 25 DUAL: Configuration pins, then possible user I/O 15 VREF: User I/O or input voltage reference for bank 20 INPUT: Unrestricted, general-purpose input pin 30 CLK: User I/O, input, or global buffer input 16 VCCO: Output voltage supply for bank JTAG: Dedicated JTAG port pins 6 VCCINT: Internal core supply voltage (+1.2V) GND: Ground 4 VCCAUX: Auxiliary supply voltage 2 CONFIG: Dedicated configuration pins 4 51 N.C.: Not connected (XC3S50A only) 28 DS529-4 (v2.0) August 19, 2010 www.xilinx.com 2 SUSPEND: Dedicated SUSPEND and dual-purpose AWAKE Power Management pins 91 Pinout Descriptions FT256 Footprint (XC3S200A, XC3S400A) 7 I/O I/O I/O I/O I/O L19P_0 L18P_0 L17P_0 L15P_0 L13P_0 TDI G B O GND PR A C D E F TMS I/O I/O L01N_3 L01P_3 I/O L03P_3 VCCO_3 I/O I/O L19N_0 L18N_0 GND L20P_0 VREF_0 I/O I/O I/O L02N_3 L02P_3 I/O I/O I/O INPUT L03N_3 L05N_3 L05P_3 L04P_3 I/O L08P_3 GND I/O I/O G L08N_3 VREF_3 L11P_3 LHCLK0 H L11N_3 LHCLK1 I/O I/O J L14N_3 LHCLK5 L14P_3 LHCLK4 I/O I/O L09P_3 L07N_3 L15N_3 LHCLK7 L L16P_3 VREF_3 Bank 3 I/O M N P R T I/O L20P_3 L12P_3 LHCLK2 GND L15P_3 TRDY2 LHCLK6 I/O I/O L16N_0 L13N_0 L10N_0 GCLK7 L12N_0 GCLK11 I/O L20N_0 PUDC_B INPUT GND INPUT L14N_0 VREF_0 VCCAUX GND INPUT L16P_0 INPUT L06N_3 VREF_3 INPUT L06P_3 I/O I/O I/O INPUT L10N_3 L10P_3 L13P_3 I/O INPUT L17N_3 L13N_3 I/O L17P_3 VCCO_3 11 12 13 14 I/O I/O I/O I/O L08N_0 L07N_0 L05N_0 L04N_0 L04P_0 I/O L08P_0 I/O I/O I/O L10P_0 GCLK6 L09P_0 GCLK4 I/O I/O L11N_0 GCLK9 L09N_0 GCLK5 VCCO_0 INPUT I/O L01N_0 I/O INPUT INPUT L18P_3 L21P_3 L21N_3 VCCINT GND VCCINT GND VCCAUX INPUT L25N_1 INPUT L21N_1 INPUT INPUT L13P_1 L13N_1 INPUT VCCINT L09P_1 INPUT VREF_1 I/O INPUT L19N_3 L25P_3 L25N_3 VREF_3 GND VCCAUX I/O I/O L19P_3 L24N_3 I/O I/O I/O L24P_3 I/O I/O L22N_3 L23N_3 INPUT VREF_2 I/O I/O L01N_2 M0 L04N_2 VS0 L03P_2 VCCO_2 RDWR_B L05N_2 GND I/O L02P_2 M2 L01P_2 M1 I/O I/O I/O L02N_2 CSO_B L03N_2 VS2 I/O L05P_2 I/O VCCINT INPUT INPUT INPUT I/O L18N_3 VCCO_3 GND I/O L04P_2 VS1 I/O L07N_2 INPUT INPUT VREF_2 VREF_2 I/O L07P_2 GND INPUT INPUT VREF_2 I/O I/O L08N_2 D4 L11P_2 GCLK0 I/O I/O I/O L08P_2 D5 L10P_2 GCLK14 L11N_2 GCLK1 VCCO_2 L12P_2 GCLK2 I/O GND VCCINT VREF_2 VCCO_2 L09N_1 I/O I/O I/O I/O I/O L06P_2 D7 L06N_2 D6 L09N_2 GCLK13 L10N_2 GCLK15 L12N_2 GCLK3 GND I/O L02P_0 VREF_0 GND TDO I/O I/O L24N_1 A25 L24P_1 A24 I/O I/O I/O L23N_1 A23 L22N_1 A21 L22P_1 A20 VCCO_1 L18P_1 A14 I/O I/O L23P_1 A22 L20P_1 A18 I/O INPUT I/O I/O I/O I/O L25P_1 VREF_1 L20N_1 A19 L19N_1 A17 L18N_1 A15 L16N_1 A11 GND L16P_1 A10 INPUT I/O I/O L21P_1 VREF_1 L19P_1 A16 L17N_1 A13 I/O I/O VCCO_1 L17P_1 A12 L14N_1 RHCLK5 I/O I/O I/O L10P_1 A8 L10N_1 A9 L14P_1 RHCLK4 I/O I/O L15P_1 IRDY1 RHCLK6 I/O L15N_1 RHCLK7 I/O VCCO_1 L12N_1 TRDY1 RHCLK3 I/O I/O I/O I/O L11N_1 RHCLK1 L11P_1 RHCLK0 L12P_1 RHCLK2 I/O I/O GND VCCAUX L06P_1 A2 L08P_1 A6 GND L08N_1 A7 GND I/O I/O I/O L13P_2 L16N_2 L19P_2 I/O I/O L16P_2 I/O L17N_2 D3 I/O L14P_2 GND L06N_1 A3 INPUT I/O TCK L04N_1 VREF_1 VREF_2 GND 16 INPUT I/O L14N_2 MOSI CSI_B I/O L01P_0 I/O L02N_0 15 L04P_1 INPUT L13N_2 I/O L09P_2 GCLK12 INPUT I/O GND GND I/O L03P_0 I/O INPUT VCCO_0 I/O L03N_0 INPUT I/O I/O L05P_0 L07P_0 I/O L06N_0 VREF_0 L14P_0 GND L06P_0 VREF_0 VCCINT L09N_3 VCCO_0 10 I/O L11P_0 GCLK8 I/O I/O L22P_3 GND I/O L16N_3 I/O I/O L12P_0 GCLK10 I/O L12N_3 IRDY2 LHCLK3 L20N_3 L23P_3 I/O I/O GND L17N_0 I/O I/O I/O I/O K L04N_3 VREF_3 I/O VCCO_3 I/O L15N_0 INPUT I/O L07P_3 I/O VCCO_0 Bank 0 8 9 L15N_2 DOUT VCCO_2 I/O L05P_1 I/O I/O I/O I/O L05N_1 VREF_1 L07P_1 A4 L07N_1 A5 L03N_1 A1 I/O I/O L01P_1 HDC L01N_1 LDC2 VCCO_1 I/O I/O GND L02N_1 LDC0 L03P_1 A0 I/O L19N_2 I/O I/O I/O I/O L18N_2 D1 L20N_2 CCLK L02P_1 LDC1 I/O I/O I/O L15P_2 AWAKE L17P_2 INIT_B L18P_2 D2 Bank 1 6 D 5 N 4 SP E 3 SU 2 _B 1 I/O L20P_2 D0 DIN/MISO Bank 2 DONE GND DS529-4_06_012009 Figure 21: XC3S200A and XC3S400A FT256 Package Footprint (Top View) 69 I/O: Unrestricted, general-purpose user I/O 51 DUAL: Configuration pins, then possible user I/O 21 VREF: User I/O or input voltage reference for bank 21 INPUT: Unrestricted, general-purpose input pin 32 CLK: User I/O, input, or global buffer input 16 VCCO: Output voltage supply for bank JTAG: Dedicated JTAG port pins 6 VCCINT: Internal core supply voltage (+1.2V) GND: Ground 4 VCCAUX: Auxiliary supply voltage 2 CONFIG: Dedicated configuration pins 4 0 N.C.: Not connected 28 92 www.xilinx.com 2 SUSPEND: Dedicated SUSPEND and dual-purpose AWAKE Power Management pins DS529-4 (v2.0) August 19, 2010 Pinout Descriptions FT256 Footprint (XC3S700A, XC3S1400A) GND B TDI 3 4 5 6 Bank 0 8 9 7 I/O I/O I/O I/O I/O I/O I/O PROG_B L19P_0 L18P_0 L17P_0 L15P_0 L13P_0 L12P_0 L10N_0 GCLK10 GCLK7 TMS I/O I/O I/O L19N_0 L18N_0 VCCO_0 L15N_0 GND 10 11 12 13 14 I/O I/O I/O I/O I/O L08N_0 L07N_0 L05N_0 L04N_0 L04P_0 I/O I/O L12N_0 VCCO_0 L08P_0 GCLK11 I/O I/O I/O I/O I/O I/O I/O L20P_0 L17N_0 L16N_0 L13N_0 L11P_0 L10P_0 L09P_0 VREF_0 GCLK8 GCLK6 GCLK4 GND 15 16 TCK GND I/O I/O I/O L05P_0 VCCO_0 L02N_0 L02P_0 VREF_0 I/O I/O L24N_1 L24P_1 A25 A24 C I/O I/O L01N_3 L01P_3 D I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L03P_3 VCCO_3 L02N_3 L02P_3 L20N_0 VCCAUX L16P_0 L11N_0 L09N_0 L06N_0 L06P_0 L03N_0 L01P_0 L23N_1 L22N_1 L22P_1 GCLK9 GCLK5 VREF_0 A23 A21 A20 PUDC_B E I/O I/O I/O I/O L03N_3 L05N_3 L05P_3 L04P_3 F I/O L08P_3 G I/O I/O I/O INPUT L08N_3 L11P_3 L07N_3 VREF_3 VREF_3 LHCLK0 H I/O I/O L11N_3 VCCO_3 L12P_3 VCCAUX LHCLK1 LHCLK2 J K GND GND GND I/O I/O L07P_3 L04N_3 VCCAUX INPUT GND VCCAUX GND GND GND GND VCCINT GND GND GND VCCINT GND VCCINT GND VCCINT GND VCCINT GND VCCINT GND VCCINT I/O I/O I/O INPUT L12N_3 L14N_3 L14P_3 INPUT VREF_3 GND VCCINT GND VCCINT GND IRDY2 LHCLK5 LHCLK4 LHCLK3 I/O I/O I/O L15P_3 L15N_3 GND GND VCCINT GND VCCINT GND VCCINT TRDY2 L18P_3 LHCLK7 LHCLK6 L I/O I/O I/O I/O L16P_3 L16N_3 L18N_3 L19N_3 VCCAUX VREF_3 M I/O I/O I/O L20P_3 VCCO_3 L19P_3 L24N_3 N I/O I/O I/O INPUT I/O I/O L20N_3 L22P_3 L24P_3 L01P_2 VREF_2 L04P_2 VS1 M1 VREF_3 P I/O I/O L22N_3 L23N_3 R I/O I/O I/O I/O L23P_3 L02P_2 L03P_2 VCCO_2 L05N_2 M2 RDWR_B T I/O I/O L14N_0 VCCO_0 L14P_0 VREF_0 GND GND I/O I/O I/O L07P_0 L03P_0 L01N_0 TDO GND GND GND VCCINT INPUT VCCAUX VREF_2 GND INPUT INPUT VREF_2 VCCAUX VREF_2 GND I/O I/O I/O I/O VCCAUX L20N_1 L19N_1 L18N_1 L16N_1 A19 A17 A15 A11 GND I/O I/O L19P_1 L17N_1 A16 A13 GND GND I/O I/O L09P_2 VCCO_2 L12P_2 GCLK12 GCLK2 GND I/O L16P_1 A10 I/O I/O I/O I/O L06N_1 L11N_1 L11P_1 L12P_1 A3 RHCLK1 RHCLK0 RHCLK2 I/O I/O VCCAUX L06P_1 L08P_1 A2 A6 GND GND I/O L08N_1 A7 I/O I/O INPUT INPUT VREF_1 VREF_1 L07P_1 L07N_1 A4 A5 I/O I/O I/O I/O I/O L16N_2 L19P_2 L01P_1 L01N_1 VCCO_1 L03N_1 HDC LDC2 A1 I/O I/O I/O I/O I/O I/O I/O I/O I/O INPUT L01N_2 L04N_2 VREF_2 L08P_2 L10P_2 L11N_2 L14N_2 L16P_2 L17N_2 L19N_2 MOSI GCLK14 GCLK1 CSI_B D3 D5 VS0 M0 GND GND I/O I/O I/O INPUT L15P_1 VREF_1 L17P_1 VCCAUX IRDY1 L15N_1 RHCLK7 A12 RHCLK6 I/O I/O I/O INPUT VCCINT L10P_1 L10N_1 VREF_1 VCCO_1 L12N_1 TRDY1 A8 A9 RHCLK3 GND I/O I/O L08N_2 L11P_2 D4 GCLK0 I/O I/O I/O L23P_1 L20P_1 VCCO_1 L18P_1 A22 A14 A18 GND VCCINT GND GND GND GND Bank 1 A 2 GND I/O I/O L02N_1 L03P_1 A0 LDC0 I/O I/O I/O I/O L15N_2 VCCO_2 L18N_2 L20N_2 L02P_1 DOUT D1 CCLK LDC1 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L02N_2 L03N_2 L06P_2 L06N_2 L09N_2 L10N_2 L12N_2 L14P_2 L15P_2 L17P_2 L18P_2 L20P_2 L05P_2 D0/DIN D2 CSO_B VS2 D7 D6 GCLK13 GCLK15 GCLK3 AWAKE INIT_B MISO DONE SU SP EN D Bank 3 1 GND Bank 2 DS529-4_012009 Figure 22: XC3S700A and XC3S1400A FT256 Package Footprint (Top View) 59 I/O: Unrestricted, general-purpose user I/O 51 DUAL: Configuration, then possible user I/O 18 VREF: User I/O or input voltage reference for bank 2 INPUT: Unrestricted, general-purpose input pin 30 CLK: User I/O, input, or global buffer input 13 VCCO: Output voltage supply for bank 2 CONFIG: Dedicated configuration pins 4 JTAG: Dedicated JTAG port pins 15 VCCINT: Internal core supply voltage (+1.2V) 0 N.C.: Not connected 50 GND: Ground 10 VCCAUX: Auxiliary supply voltage DS529-4 (v2.0) August 19, 2010 www.xilinx.com 2 SUSPEND: Dedicated SUSPEND and dual-purpose AWAKE Power Management pins 93 Pinout Descriptions FG320: 320-ball Fine-pitch Ball Grid Array The 320-ball fine-pitch ball grid array package, FG320, supports two Spartan-3A FPGAs, the XC3S200A and the XC3S400A, as shown in Table 77 and Figure 23. Table 77: Spartan-3A FG320 Pinout(Continued) Bank Pin Name FG320 Ball Type The FG320 package is an 18 x 18 array of solder balls minus the four center balls. 0 IO_L09P_0 B11 I/O 0 IO_L10N_0 D10 I/O Table 77 lists all the package pins. They are sorted by bank number and then by pin name of the largest device. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. 0 IO_L10P_0 C11 I/O 0 IO_L11N_0/GCLK5 C9 GCLK 0 IO_L11P_0/GCLK4 B10 GCLK 0 IO_L12N_0/GCLK7 B9 GCLK The shaded rows indicate pinout differences between the XC3S200A and the XC3S400A FPGAs. The XC3S200A has three unconnected balls, indicated as N.C. (No Connection) in Table 77 and with the black diamond character () in Table 77 and Figure 23. 0 IO_L12P_0/GCLK6 A10 GCLK 0 IO_L13N_0/GCLK9 B7 GCLK 0 IO_L13P_0/GCLK8 A8 GCLK 0 IO_L14N_0/GCLK11 C8 GCLK All other balls have nearly identical functionality on all three devices. Table 80 summarizes the Spartan-3A FPGA footprint migration differences for the FG320 package. 0 IO_L14P_0/GCLK10 B8 GCLK 0 IO_L15N_0 C7 I/O 0 IO_L15P_0 D8 I/O An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at 0 IO_L16N_0 E9 I/O 0 IO_L16P_0 D9 I/O 0 IO_L17N_0 B6 I/O 0 IO_L17P_0 A6 I/O www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip. 0 IO_L18N_0/VREF_0 A4 VREF Pinout Table 0 IO_L18P_0 A5 I/O Table 77: Spartan-3A FG320 Pinout 0 IO_L19N_0 E7 I/O 0 IO_L19P_0 F8 I/O 0 IO_L20N_0 D6 I/O 0 IO_L20P_0 C6 I/O 0 IO_L21N_0 A3 I/O 0 IO_L21P_0 B4 I/O 0 IO_L22N_0 D5 I/O 0 IO_L22P_0 C5 I/O 0 IO_L23N_0 A2 I/O 0 IO_L23P_0 B3 I/O 0 IO_L24N_0/PUDC_B E5 DUAL 0 IO_L24P_0/VREF_0 E6 VREF 0 IP_0 D13 INPUT 0 IP_0 D14 INPUT 0 IP_0 E12 INPUT 0 XC3S400A: IP_0 XC3S200A: N.C. (◆) E13 INPUT Bank 94 Pin Name FG320 Ball Type 0 IO_L01N_0 C15 I/O 0 IO_L01P_0 C16 I/O 0 IO_L02N_0 A16 I/O 0 IO_L02P_0/VREF_0 B16 VREF 0 IO_L03N_0 A14 I/O 0 IO_L03P_0 A15 I/O 0 IO_L04N_0 C14 I/O 0 IO_L04P_0 B15 I/O 0 IO_L05N_0 D12 I/O 0 IO_L05P_0 C13 I/O 0 IO_L06N_0/VREF_0 A13 VREF 0 IO_L06P_0 B13 I/O 0 IO_L07N_0 B12 I/O 0 IO_L07P_0 C12 I/O 0 IO_L08N_0 F11 I/O 0 IP_0 F7 INPUT 0 IO_L08P_0 E11 I/O 0 IP_0 F9 INPUT 0 IO_L09N_0 A11 I/O 0 IP_0 F10 INPUT www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 77: Spartan-3A FG320 Pinout(Continued) Bank Pin Name Table 77: Spartan-3A FG320 Pinout(Continued) FG320 Ball Type Bank Pin Name FG320 Ball Type 0 IP_0 F12 INPUT 1 IO_L21N_1 F17 I/O 0 IP_0 G7 INPUT 1 IO_L21P_1 G17 I/O 0 IP_0 G8 INPUT 1 IO_L22N_1/A13 E18 DUAL 0 IP_0 G9 INPUT 1 IO_L22P_1/A12 F18 DUAL 0 IP_0 G11 INPUT 1 IO_L23N_1/A15 H15 DUAL 0 IP_0/VREF_0 E10 VREF 1 IO_L23P_1/A14 J14 DUAL 0 VCCO_0 B5 VCCO 1 IO_L25N_1 D17 I/O 0 VCCO_0 B14 VCCO 1 IO_L25P_1 D18 I/O 0 VCCO_0 D11 VCCO 1 IO_L26N_1/A17 E16 DUAL 0 VCCO_0 E8 VCCO 1 IO_L26P_1/A16 F16 DUAL 1 IO_L01N_1/LDC2 T17 DUAL 1 IO_L27N_1/A19 F15 DUAL 1 IO_L01P_1/HDC R16 DUAL 1 IO_L27P_1/A18 G15 DUAL 1 IO_L02N_1/LDC0 U18 DUAL 1 IO_L29N_1/A21 E15 DUAL 1 IO_L02P_1/LDC1 U17 DUAL 1 IO_L29P_1/A20 D16 DUAL 1 IO_L03N_1/A1 R17 DUAL 1 IO_L30N_1/A23 B18 DUAL 1 IO_L03P_1/A0 T18 DUAL 1 IO_L30P_1/A22 C18 DUAL 1 IO_L05N_1 N16 I/O 1 IO_L31N_1/A25 B17 DUAL 1 IO_L05P_1 P16 I/O 1 IO_L31P_1/A24 C17 DUAL 1 IO_L06N_1 M14 I/O 1 IP_L04N_1/VREF_1 N14 VREF 1 IO_L06P_1 N15 I/O 1 IP_L04P_1 P15 INPUT 1 IO_L07N_1/VREF_1 P18 VREF 1 IP_L08N_1/VREF_1 L14 VREF 1 IO_L07P_1 R18 I/O 1 IP_L08P_1 M13 INPUT 1 IO_L09N_1/A3 M17 DUAL 1 IP_L12N_1 L16 INPUT 1 IO_L09P_1/A2 M16 DUAL 1 IP_L12P_1/VREF_1 M15 VREF 1 IO_L10N_1/A5 N18 DUAL 1 IP_L16N_1 K14 INPUT 1 IO_L10P_1/A4 N17 DUAL 1 IP_L16P_1 K13 INPUT 1 IO_L11N_1/A7 L12 DUAL 1 IP_L20N_1 J13 INPUT 1 IO_L11P_1/A6 L13 DUAL 1 IP_L20P_1/VREF_1 K12 VREF 1 IO_L13N_1/A9 K16 DUAL 1 IP_L24N_1 G14 INPUT 1 IO_L13P_1/A8 L17 DUAL 1 IP_L24P_1 H13 INPUT 1 IO_L14N_1/RHCLK1 K17 RHCLK 1 IP_L28N_1 G13 INPUT 1 IO_L14P_1/RHCLK0 L18 RHCLK 1 IP_L28P_1/VREF_1 H12 VREF 1 IO_L15N_1/TRDY1/RHCLK3 J17 RHCLK 1 IP_L32N_1 F13 INPUT 1 IO_L15P_1/RHCLK2 K18 RHCLK 1 IP_L32P_1/VREF_1 F14 VREF 1 IO_L17N_1/RHCLK5 K15 RHCLK 1 VCCO_1 E17 VCCO 1 IO_L17P_1/RHCLK4 J16 RHCLK 1 VCCO_1 H14 VCCO 1 IO_L18N_1/RHCLK7 H17 RHCLK 1 VCCO_1 L15 VCCO 1 IO_L18P_1/IRDY1/RHCLK6 H18 RHCLK 1 VCCO_1 P17 VCCO 1 IO_L19N_1/A11 G16 DUAL 2 IO_L01N_2/M0 U3 DUAL 1 IO_L19P_1/A10 H16 DUAL 2 IO_L01P_2/M1 T3 DUAL DS529-4 (v2.0) August 19, 2010 www.xilinx.com 95 Pinout Descriptions Table 77: Spartan-3A FG320 Pinout(Continued) Bank 96 Pin Name Table 77: Spartan-3A FG320 Pinout(Continued) FG320 Ball Type Bank Pin Name FG320 Ball Type 2 IO_L02N_2/CSO_B V3 DUAL 2 IO_L21P_2 V14 I/O 2 IO_L02P_2/M2 V2 DUAL 2 IO_L22N_2/D1 U15 DUAL 2 IO_L03N_2/VS2 U4 DUAL 2 IO_L22P_2/D2 V15 DUAL 2 IO_L03P_2/RDWR_B T4 DUAL 2 IO_L23N_2 T15 I/O 2 IO_L04N_2 T5 I/O 2 IO_L23P_2 R14 I/O 2 IO_L04P_2 R5 I/O 2 IO_L24N_2/CCLK U16 DUAL 2 IO_L05N_2/VS0 V5 DUAL 2 IO_L24P_2/D0/DIN/MISO V16 DUAL 2 IO_L05P_2/VS1 V4 DUAL 2 IP_2 M8 INPUT 2 IO_L06N_2 U6 I/O 2 IP_2 M9 INPUT 2 IO_L06P_2 T6 I/O 2 IP_2 M12 INPUT 2 IO_L07N_2 P8 I/O 2 N7 INPUT 2 IO_L07P_2 N8 I/O XC3S400A: IP_2 XC3S200A: N.C. (◆) 2 IO_L08N_2/D6 T7 DUAL 2 IP_2 N9 INPUT 2 IO_L08P_2/D7 R7 DUAL 2 IP_2 N11 INPUT 2 IO_L09N_2 R9 I/O 2 IP_2 R6 INPUT 2 IO_L09P_2 T8 I/O 2 IP_2/VREF_2 M11 VREF 2 IO_L10N_2/D4 V6 DUAL 2 IP_2/VREF_2 N10 VREF 2 IO_L10P_2/D5 U7 DUAL 2 IP_2/VREF_2 P6 VREF 2 IO_L11N_2/GCLK13 V8 GCLK 2 IP_2/VREF_2 P7 VREF 2 IO_L11P_2/GCLK12 U8 GCLK 2 IP_2/VREF_2 P9 VREF 2 IO_L12N_2/GCLK15 V9 GCLK 2 IP_2/VREF_2 P13 VREF 2 IO_L12P_2/GCLK14 U9 GCLK 2 XC3S400A: IP_2/VREF_2 XC3S200A: N.C. (◆) P14 VREF 2 IO_L13N_2/GCLK1 T10 GCLK 2 VCCO_2 P11 VCCO 2 IO_L13P_2/GCLK0 U10 GCLK 2 VCCO_2 R8 VCCO 2 IO_L14N_2/GCLK3 U11 GCLK 2 VCCO_2 U5 VCCO 2 IO_L14P_2/GCLK2 V11 GCLK 2 VCCO_2 U14 VCCO 2 IO_L15N_2 R10 I/O 3 IO_L01N_3 C1 I/O 2 IO_L15P_2 P10 I/O 3 IO_L01P_3 C2 I/O 2 IO_L16N_2/MOSI/CSI_B T11 DUAL 3 IO_L02N_3 B1 I/O 2 IO_L16P_2 R11 I/O 3 IO_L02P_3 B2 I/O 2 IO_L17N_2 V13 I/O 3 IO_L03N_3 D2 I/O 2 IO_L17P_2 U12 I/O 3 IO_L03P_3 D3 I/O 2 IO_L18N_2/DOUT U13 DUAL 3 IO_L05N_3 G5 I/O 2 IO_L18P_2/AWAKE T12 PWR MGMT 3 IO_L05P_3 F5 I/O 2 IO_L19N_2 P12 I/O 3 IO_L06N_3 E3 I/O 2 IO_L19P_2 N12 I/O 3 IO_L06P_3 F4 I/O 2 IO_L20N_2/D3 R13 DUAL 3 IO_L07N_3 E1 I/O 2 IO_L20P_2/INIT_B T13 DUAL 3 IO_L07P_3 D1 I/O 2 IO_L21N_2 T14 I/O 3 IO_L09N_3 G4 I/O 3 IO_L09P_3 F3 I/O www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 77: Spartan-3A FG320 Pinout(Continued) Bank Pin Name Table 77: Spartan-3A FG320 Pinout(Continued) FG320 Ball Type Bank Pin Name FG320 Ball Type 3 IO_L10N_3/VREF_3 F1 VREF 3 IP_L16N_3 K6 INPUT 3 IO_L10P_3 F2 I/O 3 IP_L16P_3 J5 INPUT 3 IO_L11N_3 J6 I/O 3 IP_L20N_3 L6 INPUT 3 IO_L11P_3 J7 I/O 3 IP_L20P_3 L7 INPUT 3 IO_L13N_3 H1 I/O 3 IP_L24N_3 M4 INPUT 3 IO_L13P_3 H2 I/O 3 IP_L24P_3 M3 INPUT 3 IO_L14N_3/LHCLK1 J3 LHCLK 3 IP_L28N_3 M5 INPUT 3 IO_L14P_3/LHCLK0 H3 LHCLK 3 IP_L28P_3 M6 INPUT 3 IO_L15N_3/IRDY2/LHCLK3 J1 LHCLK 3 IP_L32N_3/VREF_3 P4 VREF 3 IO_L15P_3/LHCLK2 J2 LHCLK 3 IP_L32P_3 P5 INPUT 3 IO_L17N_3/LHCLK5 K5 LHCLK 3 VCCO_3 E2 VCCO 3 IO_L17P_3/LHCLK4 J4 LHCLK 3 VCCO_3 H4 VCCO 3 IO_L18N_3/LHCLK7 K3 LHCLK 3 VCCO_3 L5 VCCO 3 IO_L18P_3/TRDY2/LHCLK6 K2 LHCLK 3 VCCO_3 P2 VCCO 3 IO_L19N_3 L2 I/O GND GND A1 GND 3 IO_L19P_3/VREF_3 L1 VREF GND GND A7 GND 3 IO_L21N_3 M2 I/O GND GND A12 GND 3 IO_L21P_3 N1 I/O GND GND A18 GND 3 IO_L22N_3 N2 I/O GND GND C10 GND 3 IO_L22P_3 P1 I/O GND GND D4 GND 3 IO_L23N_3 L4 I/O GND GND D7 GND 3 IO_L23P_3 L3 I/O GND GND D15 GND 3 IO_L25N_3 R2 I/O GND GND F6 GND 3 IO_L25P_3 R1 I/O GND GND G1 GND 3 IO_L26N_3 N4 I/O GND GND G12 GND 3 IO_L26P_3 N3 I/O GND GND G18 GND 3 IO_L27N_3 T2 I/O GND GND H8 GND 3 IO_L27P_3 T1 I/O GND GND H10 GND 3 IO_L29N_3 N6 I/O GND GND J11 GND 3 IO_L29P_3 N5 I/O GND GND J15 GND 3 IO_L30N_3 R3 I/O GND GND K4 GND 3 IO_L30P_3 P3 I/O GND GND K8 GND 3 IO_L31N_3 U2 I/O GND GND L9 GND 3 IO_L31P_3 U1 I/O GND GND L11 GND 3 IP_L04N_3/VREF_3 H7 VREF GND GND M1 GND 3 IP_L04P_3 G6 INPUT GND GND M7 GND 3 IP_L08N_3/VREF_3 H5 VREF GND GND M18 GND 3 IP_L08P_3 H6 INPUT GND GND N13 GND 3 IP_L12N_3 G2 INPUT GND GND R4 GND 3 IP_L12P_3 G3 INPUT GND GND R12 GND DS529-4 (v2.0) August 19, 2010 www.xilinx.com 97 Pinout Descriptions Table 77: Spartan-3A FG320 Pinout(Continued) Bank Pin Name FG320 Ball Type GND GND R15 GND GND GND T9 GND GND GND V1 GND GND GND V7 GND GND GND V12 GND GND GND V18 GND VCCAUX SUSPEND T16 PWR MGMT VCCAUX DONE V17 CONFIG VCCAUX PROG_B C4 CONFIG VCCAUX TCK A17 JTAG VCCAUX TDI E4 JTAG VCCAUX TDO E14 JTAG VCCAUX TMS C3 JTAG VCCAUX VCCAUX A9 VCCAUX VCCAUX VCCAUX G10 VCCAUX VCCAUX VCCAUX J12 VCCAUX VCCAUX VCCAUX J18 VCCAUX VCCAUX VCCAUX K1 VCCAUX VCCAUX VCCAUX K7 VCCAUX VCCAUX VCCAUX M10 VCCAUX VCCAUX VCCAUX V10 VCCAUX VCCINT VCCINT H9 VCCINT VCCINT VCCINT H11 VCCINT VCCINT VCCINT J8 VCCINT VCCINT VCCINT K11 VCCINT VCCINT VCCINT L8 VCCINT VCCINT VCCINT L10 VCCINT 98 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions User I/Os by Bank Table 78 and Table 79 indicate how the available user-I/O pins are distributed between the four I/O banks on the FG320 package. The AWAKE pin is counted as a dual-purpose I/O. Table 78: User I/Os Per Bank for XC3S200A in the FG320 Package Package Edge I/O Bank Maximum I/O Top 0 Right All Possible I/O Pins by Type I/O INPUT DUAL VREF CLK 60 35 11 1 5 8 1 64 9 10 30 7 8 Bottom 2 60 19 6 21 6 8 Left 3 64 38 13 0 5 8 248 101 40 52 23 32 TOTAL Table 79: User I/Os Per Bank for XC3S400A in the FG320 Package Package Edge I/O Bank Maximum I/O Top 0 Right All Possible I/O Pins by Type I/O INPUT DUAL VREF CLK 61 35 12 1 5 8 1 64 9 10 30 7 8 Bottom 2 62 19 7 21 7 8 Left 3 64 38 13 0 5 8 251 101 42 52 24 32 TOTAL Footprint Migration Differences Table 80 summarizes any footprint and functionality differences between the XC3S200A and the XC3S400A FPGAs that might affect easy migration between devices available in the FG320 package. There are three such balls. All other pins not listed in Table 80 unconditionally migrate between Spartan-3A devices available in the FG320 package. The arrows indicate the direction for easy migration. Table 80: FG320 Footprint Migration Differences Pin Bank XC3S200A E13 0 N.C. Æ INPUT N7 2 N.C. Æ INPUT P14 2 N.C. Æ INPUT/VREF DIFFERENCES Migration XC3S400A 3 Legend: Æ This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right. DS529-4 (v2.0) August 19, 2010 www.xilinx.com 99 Pinout Descriptions FG320 Footprint Bank 0 I/O I/O L23P_0 L21P_0 I/O I/O L01N_3 L01P_3 I/O I/O I/O L07P_3 L03N_3 L03P_3 I/O L07N_3 I/O G GND VCCO_3 VCCAUX L L19P_3 VREF_3 M GND P R T U V I/O I/O L19N_0 GND INPUT INPUT I/O I/O INPUT L12N_3 L12P_3 L09N_3 L05N_3 L04P_3 INPUT I/O I/O I/O L14N_3 LHCLK1 L17P_3 LHCLK4 L18P_3 TRDY2 LHCLK6 I/O L18N_3 LHCLK7 L08N_3 VREF_3 INPUT L08P_3 I/O L11P_3 INPUT L16N_3 I/O I/O I/O L19N_3 L23P_3 L23N_3 I/O INPUT INPUT INPUT INPUT L21N_3 L24P_3 L24N_3 L28N_3 L28P_3 VCCO_3 INPUT L20N_3 L20P_3 I/O I/O I/O I/O I/O L26P_3 L26N_3 L29P_3 L29N_3 I/O L30P_3 I/O I/O I/O L25P_3 L25N_3 L30N_3 I/O I/O L27P_3 L27N_3 INPUT L32N_3 VREF_3 GND I/O I/O L01P_2 M1 L03P_2 RDWR_B I/O I/O L01N_2 M0 L03N_2 VS2 I/O L11N_0 GCLK5 GND I/O I/O I/O L15P_0 L16P_0 L10N_0 GND INPUT ◆ I/O I/O I/O I/O I/O GND L02P_2 M2 L02N_2 CSO_B L05P_2 VS1 L05N_2 VS0 L10N_2 D4 L29P_1 A20 I/O I/O TDO L29N_1 A21 L26N_1 A17 I/O INPUT L28P_1 VREF_1 VCCINT GND VCCAUX GND VCCINT L20P_1 VREF_1 I/O I/O INPUT GND L11N_1 A7 L11P_1 A6 L08N_1 VREF_1 I/O L08N_0 INPUT GND INPUT VCCINT INPUT INPUT VCCAUX I/O VCCO_2 INPUT VREF_2 INPUT INPUT L07P_2 I/O I/O GND VCCINT INPUT VREF_2 L08P_2 D7 L06N_2 INPUT GND INPUT VCCO_2 INPUT VCCINT I/O I/O I/O L01P_0 GND L15P_2 L31N_3 I/O L01N_0 INPUT INPUT I/O I/O L04N_0 VCCAUX GND VCCO_2 I/O I/O I/O L09N_2 L15N_2 L16P_2 GND L13N_2 GCLK1 I/O I/O L09P_2 I/O L30N_1 A23 I/O INPUT I/O L16N_2 MOSI CSI_B I/O I/O I/O I/O I/O L10P_2 D5 L11P_2 GCLK12 L12P_2 GCLK14 L13P_2 GCLK0 L14N_2 GCLK3 I/O I/O GND L11N_2 GCLK13 L12N_2 GCLK15 VCCAUX L14P_2 GCLK2 INPUT I/O L19P_2 ◆ INPUT I/O I/O L32P_1 VREF_1 L27N_1 A19 L26P_1 A16 INPUT INPUT L28N_1 L24N_1 INPUT L24P_1 INPUT L23P_1 A14 INPUT INPUT L16P_1 L16N_1 INPUT I/O L08P_1 L06N_1 GND L04N_1 VREF_1 INPUT VREF_2 GND L20N_2 D3 I/O I/O I/O L18P_2 AWAKE L20P_2 INIT_B I/O GND I/O L19N_1 A11 INPUT VREF_2 ◆ I/O I/O L25N_1 L25P_1 VCCO_1 L22N_1 A13 I/O I/O L21N_1 I/O L21P_1 L22P_1 A12 GND I/O I/O I/O I/O L19P_1 A10 L18N_1 RHCLK7 GND L17P_1 RHCLK4 L18P_1 IRDY1 RHCLK6 I/O I/O L15N_1 TRDY1 RHCLK3 VCCAUX I/O I/O I/O I/O L17N_1 RHCLK5 L13N_1 A9 L14N_1 RHCLK1 L15P_1 RHCLK2 VCCO_1 INPUT L12N_1 I/O I/O L13P_1 A8 L14P_1 RHCLK0 INPUT I/O I/O L12P_1 VREF_1 L09P_1 A2 L09N_1 A3 I/O I/O L06P_1 L05N_1 I/O I/O L10N_1 A5 VCCO_1 L07N_1 VREF_1 I/O I/O L04P_1 L05P_1 I/O I/O GND L01P_1 HDC L03N_1 A1 I/O L23P_2 GND L10P_1 A4 INPUT I/O L07P_1 I/O I/O L01N_1 LDC2 L03P_1 A0 I/O I/O L21N_2 L23N_2 I/O I/O I/O I/O VCCO_2 L22N_2 D1 L24N_2 CCLK L02P_1 LDC1 L02N_1 LDC0 DONE GND I/O L18N_2 DOUT I/O L30P_1 A22 L23N_1 A15 INPUT I/O I/O I/O L27P_1 A18 I/O L20N_1 L19N_2 L17P_2 VCCO_1 I/O L31P_1 A24 I/O L32N_1 INPUT GND I/O L05P_0 I/O TCK L31N_1 A25 I/O L05N_0 18 I/O L07P_0 VCCO_0 17 L02P_0 VREF_0 I/O INPUT VCCINT I/O L04P_0 L10P_0 INPUT VREF_2 I/O VCCO_0 INPUT I/O L08N_2 D6 L02N_0 INPUT I/O L19P_0 L07N_2 L31P_3 I/O L06P_0 L03P_0 I/O INPUT I/O I/O L07N_0 L03N_0 L08P_0 VREF_2 L06P_2 I/O L09P_0 16 I/O INPUT INPUT I/O L06N_0 VREF_0 15 I/O VREF_0 VREF_2 L04N_2 GND 14 I/O I/O L32P_3 I/O 13 I/O L16N_0 VCCO_0 INPUT L04P_2 12 INPUT VCCAUX INPUT L22N_3 VCCO_3 L04N_3 VREF_3 I/O L17N_3 LHCLK5 I/O L14N_0 GCLK11 L09N_0 INPUT L11N_3 I/O I/O INPUT L16P_3 L21P_3 L22P_3 I/O INPUT I/O GND GND L24P_0 VREF_0 INPUT L15P_3 LHCLK2 I/O L11P_0 GCLK4 I/O I/O VCCO_3 I/O L12N_0 GCLK7 L24N_0 PUDC_B L05P_3 I/O I/O I/O 11 I/O L12P_0 GCLK6 L14P_0 GCLK10 L15N_0 L20N_0 VCCAUX L13P_0 GCLK8 I/O I/O I/O 10 I/O L13N_0 GCLK9 L20P_0 I/O L14P_3 LHCLK0 GND I/O L22N_0 9 I/O L22P_0 L06P_3 I/O I/O I/O L17N_0 I/O I/O K VCCO_0 L09P_3 L13P_3 L15N_3 IRDY2 LHCLK3 TDI L17P_0 I/O I/O J I/O L06N_3 GND L18P_0 L10P_3 L13N_3 I/O Bank 3 TMS I/O 8 I/O I/O L17N_2 L21P_2 Bank 1 I/O L02P_3 I/O 7 D I/O L10N_3 VREF_3 N L18N_0 VREF_0 L02N_3 F H L21N_0 6 EN E L23N_0 I/O 5 SP D I/O _B C I/O 4 G B GND 3 PR O A 2 SU 1 I/O I/O L22P_2 D2 L24P_2 D0 DIN/MISO Bank 2 DS529-4_05_012009 Figure 23: FG320 Package Footprint (Top View) 101 I/O: Unrestricted, general-purpose user I/O 51 DUAL: Configuration pins, then possible user-I/O 40 42 INPUT: Unrestricted, general-purpose input pin 32 CLK: User I/O, input, or global buffer input 16 VCCO: Output voltage supply for bank 4 JTAG: Dedicated JTAG port pins 6 VCCINT: Internal core supply voltage (+1.2V) 8 VCCAUX: Auxiliary supply voltage 2 CONFIG: Dedicated configuration pins 3 N.C.: Not connected. Only the XC3S200A has these pins (). 100 32 GND: Ground 23 24 www.xilinx.com VREF: User I/O or input voltage reference for bank 2 SUSPEND: Dedicated SUSPEND and dual-purpose AWAKE Power Management pins DS529-4 (v2.0) August 19, 2010 Pinout Descriptions FG400: 400-ball Fine-pitch Ball Grid Array The 400-ball fine-pitch ball grid array, FG400, supports two different Spartan-3A FPGAs, the XC3S400A and the XC3S700A. Both devices share a common footprint for this package as shown in Table 81 and Figure 24. Table 81: Spartan-3A FG400 Pinout(Continued) Bank Pin Name FG400 Ball Type 0 IO_L13P_0 B12 I/O 0 IO_L14N_0 C11 I/O 0 IO_L14P_0 B11 I/O 0 IO_L15N_0/GCLK5 E11 GCLK 0 IO_L15P_0/GCLK4 D11 GCLK 0 IO_L16N_0/GCLK7 C10 GCLK 0 IO_L16P_0/GCLK6 A10 GCLK 0 IO_L17N_0/GCLK9 E10 GCLK 0 IO_L17P_0/GCLK8 D10 GCLK 0 IO_L18N_0/GCLK11 A8 GCLK Pinout Table 0 IO_L18P_0/GCLK10 A9 GCLK Table 81: Spartan-3A FG400 Pinout 0 IO_L19N_0 C9 I/O 0 IO_L19P_0 B9 I/O Table 81 lists all the FG400 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip. Bank Pin Name FG400 Ball Type 0 IO_L20N_0 C8 I/O 0 IO_L01N_0 A18 I/O 0 IO_L20P_0 B8 I/O 0 IO_L01P_0 B18 I/O 0 IO_L21N_0 D8 I/O 0 IO_L02N_0 C17 I/O 0 IO_L21P_0 C7 I/O 0 IO_L02P_0/VREF_0 D17 VREF 0 IO_L22N_0/VREF_0 F9 VREF 0 IO_L03N_0 E15 I/O 0 IO_L22P_0 E9 I/O 0 IO_L03P_0 D16 I/O 0 IO_L23N_0 F8 I/O 0 IO_L04N_0 A17 I/O 0 IO_L23P_0 E8 I/O 0 IO_L04P_0/VREF_0 B17 VREF 0 IO_L24N_0 A7 I/O 0 IO_L05N_0 A16 I/O 0 IO_L24P_0 B7 I/O 0 IO_L05P_0 C16 I/O 0 IO_L25N_0 C6 I/O 0 IO_L06N_0 C15 I/O 0 IO_L25P_0 A6 I/O 0 IO_L06P_0 D15 I/O 0 IO_L26N_0 B5 I/O 0 IO_L07N_0 A14 I/O 0 IO_L26P_0 A5 I/O 0 IO_L07P_0 C14 I/O 0 IO_L27N_0 F7 I/O 0 IO_L08N_0 A15 I/O 0 IO_L27P_0 E7 I/O 0 IO_L08P_0 B15 I/O 0 IO_L28N_0 D6 I/O 0 IO_L09N_0 F13 I/O 0 IO_L28P_0 C5 I/O 0 IO_L09P_0 E13 I/O 0 IO_L29N_0 C4 I/O 0 IO_L10N_0/VREF_0 C13 VREF 0 IO_L29P_0 A4 I/O 0 IO_L10P_0 D14 I/O 0 IO_L30N_0 B3 I/O 0 IO_L11N_0 C12 I/O 0 IO_L30P_0 A3 I/O 0 IO_L11P_0 B13 I/O 0 IO_L31N_0 F6 I/O 0 IO_L12N_0 F12 I/O 0 IO_L31P_0 E6 I/O 0 IO_L12P_0 D12 I/O 0 IO_L32N_0/PUDC_B B2 DUAL 0 IO_L13N_0 A12 I/O DS529-4 (v2.0) August 19, 2010 www.xilinx.com 101 Pinout Descriptions Table 81: Spartan-3A FG400 Pinout(Continued) Bank 102 Pin Name Table 81: Spartan-3A FG400 Pinout(Continued) FG400 Ball Type Bank Pin Name FG400 Ball Type 0 IO_L32P_0/VREF_0 A2 VREF 1 IO_L13N_1/A5 N19 DUAL 0 IP_0 E14 INPUT 1 IO_L13P_1/A4 N18 DUAL 0 IP_0 F11 INPUT 1 IO_L14N_1/A7 M18 DUAL 0 IP_0 F14 INPUT 1 IO_L14P_1/A6 M17 DUAL 0 IP_0 G8 INPUT 1 IO_L16N_1/A9 L16 DUAL 0 IP_0 G9 INPUT 1 IO_L16P_1/A8 L15 DUAL 0 IP_0 G10 INPUT 1 IO_L17N_1/RHCLK1 M20 RHCLK 0 IP_0 G12 INPUT 1 IO_L17P_1/RHCLK0 M19 RHCLK 0 IP_0 G13 INPUT 1 IO_L18N_1/TRDY1/RHCLK3 L18 RHCLK 0 IP_0 H9 INPUT 1 IO_L18P_1/RHCLK2 L19 RHCLK 0 IP_0 H10 INPUT 1 IO_L20N_1/RHCLK5 L17 RHCLK 0 IP_0 H11 INPUT 1 IO_L20P_1/RHCLK4 K18 RHCLK 0 IP_0 H12 INPUT 1 IO_L21N_1/RHCLK7 J20 RHCLK 0 IP_0/VREF_0 G11 VREF 1 IO_L21P_1/IRDY1/RHCLK6 K20 RHCLK 0 VCCO_0 B4 VCCO 1 IO_L22N_1/A11 J18 DUAL 0 VCCO_0 B10 VCCO 1 IO_L22P_1/A10 J19 DUAL 0 VCCO_0 B16 VCCO 1 IO_L24N_1 K16 I/O 0 VCCO_0 D7 VCCO 1 IO_L24P_1 J17 I/O 0 VCCO_0 D13 VCCO 1 IO_L25N_1/A13 H18 DUAL 0 VCCO_0 F10 VCCO 1 IO_L25P_1/A12 H19 DUAL 1 IO_L01N_1/LDC2 V20 DUAL 1 IO_L26N_1/A15 G20 DUAL 1 IO_L01P_1/HDC W20 DUAL 1 IO_L26P_1/A14 H20 DUAL 1 IO_L02N_1/LDC0 U18 DUAL 1 IO_L28N_1 H17 I/O 1 IO_L02P_1/LDC1 V19 DUAL 1 IO_L28P_1 G18 I/O 1 IO_L03N_1/A1 R16 DUAL 1 IO_L29N_1/A17 F19 DUAL 1 IO_L03P_1/A0 T17 DUAL 1 IO_L29P_1/A16 F20 DUAL 1 IO_L05N_1 T20 I/O 1 IO_L30N_1/A19 F18 DUAL 1 IO_L05P_1 T18 I/O 1 IO_L30P_1/A18 G17 DUAL 1 IO_L06N_1 U20 I/O 1 IO_L32N_1 E19 I/O 1 IO_L06P_1 U19 I/O 1 IO_L32P_1 E20 I/O 1 IO_L07N_1 P17 I/O 1 IO_L33N_1 F17 I/O 1 IO_L07P_1 P16 I/O 1 IO_L33P_1 E18 I/O 1 IO_L08N_1 R17 I/O 1 IO_L34N_1 D18 I/O 1 IO_L08P_1 R18 I/O 1 IO_L34P_1 D20 I/O 1 IO_L09N_1 R20 I/O 1 IO_L36N_1/A21 F16 DUAL 1 IO_L09P_1 R19 I/O 1 IO_L36P_1/A20 G16 DUAL 1 IO_L10N_1/VREF_1 P20 VREF 1 IO_L37N_1/A23 C19 DUAL 1 IO_L10P_1 P18 I/O 1 IO_L37P_1/A22 C20 DUAL 1 IO_L12N_1/A3 N17 DUAL 1 IO_L38N_1/A25 B19 DUAL 1 IO_L12P_1/A2 N15 DUAL 1 IO_L38P_1/A24 B20 DUAL www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 81: Spartan-3A FG400 Pinout(Continued) Bank Pin Name Table 81: Spartan-3A FG400 Pinout(Continued) FG400 Ball Type Bank Pin Name FG400 Ball Type 1 IP_1/VREF_1 N14 VREF 2 IO_L09N_2/VS0 W6 DUAL 1 IP_L04N_1/VREF_1 P15 VREF 2 IO_L09P_2/VS1 V6 DUAL 1 IP_L04P_1 P14 INPUT 2 IO_L10N_2 Y7 I/O 1 IP_L11N_1/VREF_1 M15 VREF 2 IO_L10P_2 Y6 I/O 1 IP_L11P_1 M16 INPUT 2 IO_L11N_2 U9 I/O 1 IP_L15N_1 M13 INPUT 2 IO_L11P_2 T9 I/O 1 IP_L15P_1/VREF_1 M14 VREF 2 IO_L12N_2/D6 W8 DUAL 1 IP_L19N_1 L13 INPUT 2 IO_L12P_2/D7 V7 DUAL 1 IP_L19P_1 L14 INPUT 2 IO_L13N_2 V9 I/O 1 IP_L23N_1 K14 INPUT 2 IO_L13P_2 V8 I/O 1 IP_L23P_1/VREF_1 K15 VREF 2 IO_L14N_2/D4 T10 DUAL 1 IP_L27N_1 J15 INPUT 2 IO_L14P_2/D5 U10 DUAL 1 IP_L27P_1 J16 INPUT 2 IO_L15N_2/GCLK13 Y9 GCLK 1 IP_L31N_1 J13 INPUT 2 IO_L15P_2/GCLK12 W9 GCLK 1 IP_L31P_1/VREF_1 J14 VREF 2 IO_L16N_2/GCLK15 W10 GCLK 1 IP_L35N_1 H14 INPUT 2 IO_L16P_2/GCLK14 V10 GCLK 1 IP_L35P_1 H15 INPUT 2 IO_L17N_2/GCLK1 V11 GCLK 1 IP_L39N_1 G14 INPUT 2 IO_L17P_2/GCLK0 Y11 GCLK 1 IP_L39P_1/VREF_1 G15 VREF 2 IO_L18N_2/GCLK3 V12 GCLK 1 VCCO_1 D19 VCCO 2 IO_L18P_2/GCLK2 U11 GCLK 1 VCCO_1 H16 VCCO 2 IO_L19N_2 R12 I/O 1 VCCO_1 K19 VCCO 2 IO_L19P_2 T12 I/O 1 VCCO_1 N16 VCCO 2 IO_L20N_2/MOSI/CSI_B W12 DUAL 1 VCCO_1 T19 VCCO 2 IO_L20P_2 Y12 I/O 2 IO_L01N_2/M0 V4 DUAL 2 IO_L21N_2 W13 I/O 2 IO_L01P_2/M1 U4 DUAL 2 IO_L21P_2 Y13 I/O 2 IO_L02N_2/CSO_B Y2 DUAL 2 IO_L22N_2/DOUT V13 DUAL 2 IO_L02P_2/M2 W3 DUAL IO_L22P_2/AWAKE U13 2 IO_L03N_2 W4 I/O PWR MGMT 2 IO_L03P_2 Y3 I/O 2 IO_L23N_2 R13 I/O 2 IO_L04N_2 R7 I/O 2 IO_L23P_2 T13 I/O 2 IO_L04P_2 T6 I/O 2 IO_L24N_2/D3 W14 DUAL 2 IO_L05N_2 U5 I/O 2 IO_L24P_2/INIT_B Y14 DUAL 2 IO_L05P_2 V5 I/O 2 IO_L25N_2 T14 I/O 2 IO_L06N_2 U6 I/O 2 IO_L25P_2 V14 I/O 2 IO_L06P_2 T7 I/O 2 IO_L26N_2/D1 V15 DUAL 2 IO_L07N_2/VS2 U7 DUAL 2 IO_L26P_2/D2 Y15 DUAL 2 IO_L07P_2/RDWR_B T8 DUAL 2 IO_L27N_2 T15 I/O 2 IO_L08N_2 Y5 I/O 2 IO_L27P_2 U15 I/O 2 IO_L08P_2 Y4 I/O 2 IO_L28N_2 W16 I/O DS529-4 (v2.0) August 19, 2010 2 www.xilinx.com 103 Pinout Descriptions Table 81: Spartan-3A FG400 Pinout(Continued) Bank 104 Pin Name Table 81: Spartan-3A FG400 Pinout(Continued) FG400 Ball Type Bank Pin Name FG400 Ball Type 2 IO_L28P_2 Y16 I/O 3 IO_L08P_3 H6 I/O 2 IO_L29N_2 U16 I/O 3 IO_L09N_3 G4 I/O 2 IO_L29P_2 V16 I/O 3 IO_L09P_3 F3 I/O 2 IO_L30N_2 Y18 I/O 3 IO_L10N_3 F2 I/O 2 IO_L30P_2 Y17 I/O 3 IO_L10P_3 E3 I/O 2 IO_L31N_2 U17 I/O 3 IO_L12N_3 H2 I/O 2 IO_L31P_2 V17 I/O 3 IO_L12P_3 G3 I/O 2 IO_L32N_2/CCLK Y19 DUAL 3 IO_L13N_3/VREF_3 G1 VREF 2 IO_L32P_2/D0/DIN/MISO W18 DUAL 3 IO_L13P_3 F1 I/O 2 IP_2 P9 INPUT 3 IO_L14N_3 H3 I/O 2 IP_2 P12 INPUT 3 IO_L14P_3 J4 I/O 2 IP_2 P13 INPUT 3 IO_L16N_3 J2 I/O 2 IP_2 R8 INPUT 3 IO_L16P_3 J3 I/O 2 IP_2 R10 INPUT 3 IO_L17N_3/LHCLK1 K2 LHCLK 2 IP_2 T11 INPUT 3 IO_L17P_3/LHCLK0 J1 LHCLK 2 IP_2/VREF_2 N9 VREF 3 IO_L18N_3/IRDY2/LHCLK3 L3 LHCLK 2 IP_2/VREF_2 N12 VREF 3 IO_L18P_3/LHCLK2 K3 LHCLK 2 IP_2/VREF_2 P8 VREF 3 IO_L20N_3/LHCLK5 L5 LHCLK 2 IP_2/VREF_2 P10 VREF 3 IO_L20P_3/LHCLK4 K4 LHCLK 2 IP_2/VREF_2 P11 VREF 3 IO_L21N_3/LHCLK7 M1 LHCLK 2 IP_2/VREF_2 R14 VREF 3 IO_L21P_3/TRDY2/LHCLK6 L1 LHCLK 2 VCCO_2 R11 VCCO 3 IO_L22N_3 M3 I/O 2 VCCO_2 U8 VCCO 3 IO_L22P_3/VREF_3 M2 VREF 2 VCCO_2 U14 VCCO 3 IO_L24N_3 M5 I/O 2 VCCO_2 W5 VCCO 3 IO_L24P_3 M4 I/O 2 VCCO_2 W11 VCCO 3 IO_L25N_3 N2 I/O 2 VCCO_2 W17 VCCO 3 IO_L25P_3 N1 I/O 3 IO_L01N_3 D3 I/O 3 IO_L26N_3 N4 I/O 3 IO_L01P_3 D4 I/O 3 IO_L26P_3 N3 I/O 3 IO_L02N_3 C2 I/O 3 IO_L28N_3 R1 I/O 3 IO_L02P_3 B1 I/O 3 IO_L28P_3 P1 I/O 3 IO_L03N_3 D2 I/O 3 IO_L29N_3 P4 I/O 3 IO_L03P_3 C1 I/O 3 IO_L29P_3 P3 I/O 3 IO_L05N_3 E1 I/O 3 IO_L30N_3 R3 I/O 3 IO_L05P_3 D1 I/O 3 IO_L30P_3 R2 I/O 3 IO_L06N_3 G5 I/O 3 IO_L32N_3 T2 I/O 3 IO_L06P_3 F4 I/O 3 IO_L32P_3/VREF_3 T1 VREF 3 IO_L07N_3 J5 I/O 3 IO_L33N_3 R4 I/O 3 IO_L07P_3 J6 I/O 3 IO_L33P_3 T3 I/O 3 IO_L08N_3 H4 I/O 3 IO_L34N_3 U3 I/O www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 81: Spartan-3A FG400 Pinout(Continued) Bank Pin Name Table 81: Spartan-3A FG400 Pinout(Continued) FG400 Ball Type Bank Pin Name FG400 Ball Type 3 IO_L34P_3 U1 I/O GND GND E12 GND 3 IO_L36N_3 T4 I/O GND GND F15 GND 3 IO_L36P_3 R5 I/O GND GND G2 GND 3 IO_L37N_3 V2 I/O GND GND G19 GND 3 IO_L37P_3 V1 I/O GND GND H8 GND 3 IO_L38N_3 W2 I/O GND GND H13 GND 3 IO_L38P_3 W1 I/O GND GND J9 GND 3 IP_3 H7 INPUT GND GND J11 GND 3 IP_L04N_3/VREF_3 G6 VREF GND GND K1 GND 3 IP_L04P_3 G7 INPUT GND GND K10 GND 3 IP_L11N_3/VREF_3 J7 VREF GND GND K12 GND 3 IP_L11P_3 J8 INPUT GND GND K17 GND 3 IP_L15N_3 K7 INPUT GND GND L4 GND 3 IP_L15P_3 K8 INPUT GND GND L9 GND 3 IP_L19N_3 K5 INPUT GND GND L11 GND 3 IP_L19P_3 K6 INPUT GND GND L20 GND 3 IP_L23N_3 L6 INPUT GND GND M10 GND 3 IP_L23P_3 L7 INPUT GND GND M12 GND 3 IP_L27N_3 M7 INPUT GND GND N8 GND 3 IP_L27P_3 M8 INPUT GND GND N11 GND 3 IP_L31N_3 N7 INPUT GND GND N13 GND 3 IP_L31P_3 M6 INPUT GND GND P2 GND 3 IP_L35N_3 N6 INPUT GND GND P19 GND 3 IP_L35P_3 P5 INPUT GND GND R6 GND 3 IP_L39N_3/VREF_3 P7 VREF GND GND R9 GND 3 IP_L39P_3 P6 INPUT GND GND T16 GND 3 VCCO_3 E2 VCCO GND GND U12 GND 3 VCCO_3 H5 VCCO GND GND V3 GND 3 VCCO_3 L2 VCCO GND GND V18 GND 3 VCCO_3 N5 VCCO GND GND W7 GND 3 VCCO_3 U2 VCCO GND GND W15 GND GND GND A1 GND GND GND Y1 GND GND GND A11 GND GND GND Y10 GND GND GND A20 GND GND GND Y20 GND GND GND B6 GND VCCAUX SUSPEND R15 GND GND B14 GND PWR MGMT GND GND C3 GND VCCAUX DONE W19 CONFIG GND GND C18 GND VCCAUX PROG_B D5 CONFIG GND GND D9 GND VCCAUX TCK A19 JTAG GND GND E5 GND VCCAUX TDI F5 JTAG DS529-4 (v2.0) August 19, 2010 www.xilinx.com 105 Pinout Descriptions Table 81: Spartan-3A FG400 Pinout(Continued) FG400 Ball Type VCCAUX TDO E17 JTAG VCCAUX TMS E4 JTAG VCCAUX VCCAUX A13 VCCAUX VCCAUX VCCAUX E16 VCCAUX VCCAUX VCCAUX H1 VCCAUX VCCAUX VCCAUX K13 VCCAUX VCCAUX VCCAUX L8 VCCAUX VCCAUX VCCAUX N20 VCCAUX VCCAUX VCCAUX T5 VCCAUX VCCAUX VCCAUX Y8 VCCAUX VCCINT VCCINT J10 VCCINT VCCINT VCCINT J12 VCCINT VCCINT VCCINT K9 VCCINT VCCINT VCCINT K11 VCCINT VCCINT VCCINT L10 VCCINT VCCINT VCCINT L12 VCCINT VCCINT VCCINT M9 VCCINT VCCINT VCCINT M11 VCCINT VCCINT VCCINT N10 VCCINT Bank Pin Name User I/Os by Bank Table 82 indicates how the 311 available user-I/O pins are distributed between the four I/O banks on the FG400 package. The AWAKE pin is counted as a dual-purpose I/O. Table 82: User I/Os Per Bank for the XC3S400A and XC3S700A in the FG400 Package Package Edge I/O Bank Maximum I/O Top 0 Right All Possible I/O Pins by Type I/O INPUT DUAL VREF CLK 77 50 12 1 6 8 1 79 21 12 30 8 8 Bottom 2 76 35 6 21 6 8 Left 3 79 49 16 0 6 8 311 155 46 52 26 32 TOTAL Footprint Migration Differences The XC3S400A and XC3S700A FPGAs have identical footprints in the FG400 package. Designs can migrate between the XC3S400A and XC3S700A FPGAs without further consideration. 106 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions FG400 Footprint Bank 0 A B 155 I/O: Unrestricted, general-purpose user I/O C 46 INPUT: Unrestricted, general-purpose input pin D DUAL: Configuration pins, then possible user I/O E 26 VREF: User I/O or input voltage reference for bank F 32 CLK: User I/O, input, or clock buffer input 51 GND I/O L02P_3 L32P_0 VREF_0 I/O L32N_0 PUDC_B I/O I/O L03P_3 L02N_3 I/O I/O L21N_3 LHCLK7 L22P_3 VREF_3 Bank 3 8 R U V W VCCO_3 I/O I/O I/O I/O L27P_0 L23P_0 L22P_0 I/O L23N_0 L22N_0 VREF_0 VCCO_0 INPUT INPUT INPUT GND INPUT INPUT GND VCCINT VCCINT GND GND VCCINT VCCINT GND INPUT L04N_3 VREF_3 I/O L08P_3 INPUT L04P_3 INPUT INPUT I/O L07P_3 L11N_3 VREF_3 INPUT INPUT INPUT INPUT L19N_3 L19P_3 L15N_3 L15P_3 INPUT INPUT VCCAUX I/O L20P_3 LHCLK4 I/O VCCO_3 L18N_3 IRDY2 LHCLK3 I/O GND I/O I/O INPUT INPUT INPUT L24N_3 L31P_3 L27N_3 L27P_3 INPUT INPUT L35N_3 L31N_3 VCCO_3 I/O I/O INPUT INPUT L29P_3 L29N_3 L35P_3 L39P_3 I/O I/O I/O I/O I/O L30P_3 L30N_3 L33N_3 L36P_3 I/O I/O I/O L32N_3 L33P_3 L36N_3 I/O I/O L37N_3 I/O I/O L38P_3 L38N_3 GND L02N_2 CSO_B L23P_3 L24P_3 L28N_3 L37P_3 L11P_3 I/O I/O VCCO_3 L23N_3 INPUT L22N_3 L26N_3 GND L20N_3 LHCLK5 I/O L34N_3 I/O L01P_2 M1 I/O GND I/O L02P_2 M2 L01N_2 M0 I/O L03N_2 VCCAUX GND L39N_3 VREF_3 I/O L04N_2 I/O I/O L06P_2 I/O I/O L06N_2 I/O INPUT L04P_2 L05N_2 L05P_2 I/O I/O L09P_2 VS1 L12P_2 D7 L09N_2 VS0 GND I/O I/O I/O I/O I/O L03P_2 L08P_2 L08N_2 L10P_2 L10N_2 Bank 2 GND INPUT VREF_2 INPUT I/O L07P_2 RDWR_B I/O L07N_2 VS2 I/O VCCO_2 I/O I/O I/O I/O I/O L17N_0 GCLK9 L27N_0 L07N_3 L18P_3 LHCLK2 L17P_0 GCLK8 I/O I/O I/O I/O L16N_0 GCLK7 L31N_0 L14P_3 L17N_3 LHCLK1 VCCO_0 I/O GND L31P_0 I/O I/O I/O I/O L21N_0 L16P_3 L26P_3 L34P_3 VCCO_0 I/O I/O L32P_3 VREF_3 I/O L28N_0 L16N_3 I/O Y I/O L06N_3 L25N_3 I/O T I/O L09N_3 I/O I/O TDI I/O L25P_3 L28P_3 GND L12P_3 I/O M VCCAUX: Auxiliary supply voltage TMS L08N_3 I/O 9 I/O L19N_0 I/O L21P_3 TRDY2 LHCLK6 P I/O L14N_3 L I/O L19P_0 L20N_0 I/O GND I/O L20P_0 I/O L12N_3 K I/O L24P_0 L21P_0 I/O 4 L16P_0 GCLK6 I/O L06P_3 I/O L18P_0 GCLK10 L25N_0 I/O L17P_3 LHCLK0 L18N_0 GCLK11 I/O L09P_3 J 10 I/O L28P_0 I/O GND GND 9 I/O I/O L10N_3 JTAG: Dedicated JTAG port pins VCCINT: Internal core supply voltage (+1.2V) I/O L10P_3 I/O L26N_0 8 I/O L29N_0 I/O VCCAUX N GND VCCO_0 L13P_3 I/O VCCO: Output voltage supply for bank I/O L30N_0 I/O L13N_3 VREF_3 22 I/O L24N_0 L01P_3 G GND: Ground I/O L25P_0 I/O H 43 I/O L26P_0 L01N_3 CONFIG: Dedicated configuration pins 2 I/O I/O VCCO_3 7 L29P_0 L03N_3 I/O 6 I/O I/O L05N_3 5 L30P_0 L05P_3 2 SUSPEND: Dedicated SUSPEND and dual-purpose AWAKE Power Management pins 4 _B I/O 3 G Left Half of FG400 Package (Top View) 2 PR O 1 VCCO_2 INPUT VREF_2 INPUT GND I/O L11P_2 I/O L11N_2 I/O I/O L13P_2 L13N_2 VCCINT INPUT VREF_2 INPUT I/O L14N_2 D4 I/O L14P_2 D5 I/O L16P_2 GCLK14 I/O I/O I/O L12N_2 D6 L15P_2 GCLK12 L16N_2 GCLK15 VCCAUX L15N_2 GCLK13 I/O GND DS529-4_03_011608 Figure 24: FG400 Package Footprint (Top View) DS529-4 (v2.0) August 19, 2010 www.xilinx.com 107 Pinout Descriptions Bank 0 I/O L13N_0 13 VCCAUX I/O I/O I/O L14P_0 L13P_0 L11P_0 I/O I/O L14N_0 L11N_0 I/O L15P_0 GCLK4 I/O L12P_0 I/O L15N_0 GCLK5 GND I/O L10N_0 VREF_0 VCCO_0 I/O L09P_0 I/O I/O L12N_0 L09N_0 INPUT INPUT INPUT INPUT GND GND VCCINT VCCINT GND GND VCCINT VCCINT GND INPUT INPUT VREF_0 GND INPUT INPUT L31N_1 VCCAUX 15 16 17 18 I/O I/O I/O I/O I/O L07N_0 L08N_0 L05N_0 L04N_0 L01N_0 VCCO_0 L04P_0 VREF_0 GND I/O L08P_0 I/O I/O I/O I/O L06N_0 L05P_0 L02N_0 INPUT I/O I/O L06P_0 L03P_0 L02P_0 VREF_0 VCCAUX TDO INPUT I/O L03N_0 I/O INPUT GND INPUT I/O I/O L39P_1 VREF_1 L36P_1 A20 L30P_1 A18 INPUT INPUT L35N_1 L35P_1 INPUT L31P_1 VREF_1 INPUT L23N_1 INPUT INPUT I/O L27N_1 L27P_1 L24P_1 INPUT L23P_1 VREF_1 L24N_1 I/O I/O I/O L16N_1 A9 L20N_1 RHCLK5 INPUT INPUT L15P_1 VREF_1 L11N_1 VREF_1 INPUT L15N_1 GND INPUT INPUT VREF_1 INPUT INPUT L04N_1 VREF_1 I/O INPUT VREF_2 I/O I/O I/O I/O L19P_2 L23P_2 L25N_2 L27N_2 GND L22P_2 AWAKE I/O I/O L22N_2 DOUT I/O I/O L21N_2 I/O I/O L20P_2 L21P_2 VCCO_2 I/O L25P_2 VCCO_1 I/O L26P_2 D2 Bank 2 I/O I/O I/O L30N_1 A19 L29N_1 A17 L29P_1 A16 GND L26N_1 A15 I/O L28P_1 I/O I/O I/O L25P_1 A12 L26P_1 A14 I/O I/O I/O L22N_1 A11 L22P_1 A10 L21N_1 RHCLK7 I/O L18N_1 TRDY1 RHCLK3 D E F I/O L25N_1 A13 L20P_1 RHCLK4 C G H J I/O VCCO_1 L21P_1 IRDY1 RHCLK6 K GND L I/O L18P_1 RHCLK2 I/O I/O L17N_1 RHCLK1 M N I/O I/O I/O L12N_1 A3 L13P_1 A4 L13N_1 A5 VCCAUX GND L10N_1 VREF_1 I/O I/O I/O I/O I/O I/O L08N_1 L08P_1 L09P_1 L09N_1 I/O L03P_1 A0 I/O I/O I/O B L17P_1 RHCLK0 L31N_2 L24P_2 INIT_B I/O L34P_1 L32P_1 L10P_1 I/O I/O L29P_2 L31P_2 L28N_2 VCCO_1 I/O I/O I/O I/O L37P_1 A22 I/O L05P_1 I/O L02N_1 LDC0 GND VCCO_1 L32P_2 D0 DIN/MISO I/O I/O I/O L28P_2 L30P_2 L30N_2 I/O L05N_1 I/O I/O L06P_1 L06N_1 P R T U I/O I/O L02P_1 LDC1 L01N_1 LDC2 DONE L01P_1 HDC W GND Y I/O VCCO_2 Right Half of FG400 Package (Top View) A I/O I/O GND I/O L37N_1 A23 L32N_1 L07N_1 GND I/O L38P_1 A24 I/O I/O I/O I/O L38N_1 A25 L33P_1 L07P_1 L03N_1 A1 GND L14N_1 A7 L29N_2 I/O I/O L34N_1 TCK I/O I/O L26N_2 D1 GND 20 L14P_1 A6 L27P_2 I/O L24N_2 D3 L11P_1 I/O L12P_1 A2 L04P_1 L23N_2 INPUT I/O L01P_0 19 I/O GND L16P_1 A8 I/O 108 I/O L19P_1 L18N_2 GCLK3 I/O I/O L28N_1 INPUT I/O L17P_2 GCLK0 VCCO_1 L19N_1 I/O L20N_2 MOSI CSI_B I/O L33N_1 INPUT L17N_2 GCLK1 VCCO_2 L36N_1 A21 L39N_1 INPUT L19N_2 I/O L18P_2 GCLK2 I/O I/O L10P_0 SU VCCO_2 I/O L07P_0 D VREF_2 INPUT VREF_2 INPUT 14 Bank 1 GND 12 SP EN 11 V I/O I/O L32N_2 CCLK DS529-4_04_012009 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions FG484: 484-ball Fine-pitch Ball Grid Array The 484-ball fine-pitch ball grid array, FG484, supports both the XC3S700A and the XC3S1400A FPGAs. There are three pinout differences, as described in Table 86. Table 83: Spartan-3A FG484 Pinout(Continued) Bank Pin Name FG484 Ball Type Table 83 lists all the FG484 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. 0 IO_L11P_0 D15 I/O 0 IO_L12N_0/VREF_0 A15 VREF 0 IO_L12P_0 A16 I/O 0 IO_L13N_0 A14 I/O The shaded rows indicate pinout differences between the XC3S700A and the XC3S1400A FPGAs. The XC3S700A has three unconnected balls, indicated as N.C. (No Connection) in Table 83 and with the black diamond character () in Table 83 and Figure 25. 0 IO_L13P_0 B15 I/O 0 IO_L14N_0 E13 I/O 0 IO_L14P_0 F13 I/O 0 IO_L15N_0 C13 I/O An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at 0 IO_L15P_0 D13 I/O 0 IO_L16N_0 A13 I/O 0 IO_L16P_0 B13 I/O www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip. 0 IO_L17N_0/GCLK5 E12 GCLK 0 IO_L17P_0/GCLK4 C12 GCLK 0 IO_L18N_0/GCLK7 A11 GCLK 0 IO_L18P_0/GCLK6 A12 GCLK 0 IO_L19N_0/GCLK9 C11 GCLK Pinout Table Table 83: Spartan-3A FG484 Pinout Bank Pin Name FG484 Ball Type 0 IO_L19P_0/GCLK8 B11 GCLK 0 IO_L01N_0 D18 I/O 0 IO_L20N_0/GCLK11 E11 GCLK 0 IO_L01P_0 E17 I/O 0 IO_L20P_0/GCLK10 D11 GCLK 0 IO_L02N_0 C19 I/O 0 IO_L21N_0 C10 I/O 0 IO_L02P_0/VREF_0 D19 VREF 0 IO_L21P_0 A10 I/O 0 IO_L03N_0 A20 I/O 0 IO_L22N_0 A8 I/O 0 IO_L03P_0 B20 I/O 0 IO_L22P_0 A9 I/O 0 IO_L04N_0 F15 I/O 0 IO_L23N_0 E10 I/O 0 IO_L04P_0 E15 I/O 0 IO_L23P_0 D10 I/O 0 IO_L05N_0 A18 I/O 0 IO_L24N_0/VREF_0 C9 VREF 0 IO_L05P_0 C18 I/O 0 IO_L24P_0 B9 I/O 0 IO_L06N_0 A19 I/O 0 IO_L25N_0 C8 I/O 0 IO_L06P_0/VREF_0 B19 VREF 0 IO_L25P_0 B8 I/O 0 IO_L07N_0 C17 I/O 0 IO_L26N_0 A6 I/O 0 IO_L07P_0 D17 I/O 0 IO_L26P_0 A7 I/O 0 IO_L08N_0 C16 I/O 0 IO_L27N_0 C7 I/O 0 IO_L08P_0 D16 I/O 0 IO_L27P_0 D7 I/O 0 IO_L09N_0 E14 I/O 0 IO_L28N_0 A5 I/O 0 IO_L09P_0 C14 I/O 0 IO_L28P_0 B6 I/O 0 IO_L10N_0 A17 I/O 0 IO_L29N_0 D6 I/O 0 IO_L10P_0 B17 I/O 0 IO_L29P_0 C6 I/O 0 IO_L11N_0 C15 I/O 0 IO_L30N_0 D8 I/O DS529-4 (v2.0) August 19, 2010 www.xilinx.com 109 Pinout Descriptions Table 83: Spartan-3A FG484 Pinout(Continued) Bank 110 Pin Name Table 83: Spartan-3A FG484 Pinout(Continued) FG484 Ball Type Bank Pin Name FG484 Ball Type 0 IO_L30P_0 E9 I/O 1 IO_L01P_1/HDC AA22 DUAL 0 IO_L31N_0 B4 I/O 1 IO_L02N_1/LDC0 W20 DUAL 0 IO_L31P_0 A4 I/O 1 IO_L02P_1/LDC1 W19 DUAL 0 IO_L32N_0 D5 I/O 1 IO_L03N_1/A1 T18 DUAL 0 IO_L32P_0 C5 I/O 1 IO_L03P_1/A0 T17 DUAL 0 IO_L33N_0 B3 I/O 1 IO_L05N_1 W21 I/O 0 IO_L33P_0 A3 I/O 1 IO_L05P_1 Y22 I/O 0 IO_L34N_0 F8 I/O 1 IO_L06N_1 V20 I/O 0 IO_L34P_0 E7 I/O 1 IO_L06P_1 V19 I/O 0 IO_L35N_0 E6 I/O 1 IO_L07N_1 V22 I/O 0 IO_L35P_0 F7 I/O 1 IO_L07P_1 W22 I/O 0 IO_L36N_0/PUDC_B A2 DUAL 1 IO_L09N_1 U21 I/O 0 IO_L36P_0/VREF_0 B2 VREF 1 IO_L09P_1 U22 I/O 0 IP_0 E16 INPUT 1 IO_L10N_1 U19 I/O 0 IP_0 E8 INPUT 1 IO_L10P_1 U20 I/O 0 IP_0 F10 INPUT 1 IO_L11N_1 T22 I/O 0 IP_0 F12 INPUT 1 IO_L11P_1 T20 I/O 0 IP_0 F16 INPUT 1 IO_L13N_1 T19 I/O 0 IP_0 G10 INPUT 1 IO_L13P_1 R20 I/O 0 IP_0 G11 INPUT 1 IO_L14N_1 R22 I/O 0 IP_0 G12 INPUT 1 IO_L14P_1 R21 I/O 0 IP_0 G13 INPUT 1 IO_L15N_1/VREF_1 P22 VREF 0 IP_0 G14 INPUT 1 IO_L15P_1 P20 I/O 0 IP_0 G15 INPUT 1 IO_L17N_1/A3 P18 DUAL 0 IP_0 G16 INPUT 1 IO_L17P_1/A2 R19 DUAL 0 IP_0 G7 INPUT 1 IO_L18N_1/A5 N21 DUAL 0 IP_0 G9 INPUT 1 IO_L18P_1/A4 N22 DUAL 0 IP_0 H10 INPUT 1 IO_L19N_1/A7 N19 DUAL 0 IP_0 H13 INPUT 1 IO_L19P_1/A6 N20 DUAL 0 IP_0 H14 INPUT 1 IO_L20N_1/A9 N17 DUAL 0 IP_0/VREF_0 G8 VREF 1 IO_L20P_1/A8 N18 DUAL 0 IP_0/VREF_0 H12 VREF 1 IO_L21N_1/RHCLK1 L22 RHCLK 0 IP_0/VREF_0 H9 VREF 1 IO_L21P_1/RHCLK0 M22 RHCLK 0 VCCO_0 B10 VCCO 1 IO_L22N_1/TRDY1/RHCLK3 L20 RHCLK 0 VCCO_0 B14 VCCO 1 IO_L22P_1/RHCLK2 L21 RHCLK 0 VCCO_0 B18 VCCO 1 IO_L24N_1/RHCLK5 M20 RHCLK 0 VCCO_0 B5 VCCO 1 IO_L24P_1/RHCLK4 M18 RHCLK 0 VCCO_0 F14 VCCO 1 IO_L25N_1/RHCLK7 K19 RHCLK 0 VCCO_0 F9 VCCO 1 IO_L25P_1/IRDY1/RHCLK6 K20 RHCLK 1 IO_L01N_1/LDC2 Y21 DUAL 1 IO_L26N_1/A11 J22 DUAL www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 83: Spartan-3A FG484 Pinout(Continued) Bank Pin Name Table 83: Spartan-3A FG484 Pinout(Continued) FG484 Ball Type Bank Pin Name FG484 Ball Type 1 IO_L26P_1/A10 K22 DUAL 1 IP_L23P_1 M17 INPUT 1 IO_L28N_1 L19 I/O 1 IP_L27N_1 L16 INPUT 1 IO_L28P_1 L18 I/O 1 IP_L27P_1/VREF_1 M15 VREF 1 IO_L29N_1/A13 J20 DUAL 1 IP_L31N_1 K16 INPUT 1 IO_L29P_1/A12 J21 DUAL 1 IP_L31P_1 L15 INPUT 1 IO_L30N_1/A15 G22 DUAL 1 IP_L35N_1 K15 INPUT 1 IO_L30P_1/A14 H22 DUAL 1 IP_L35P_1/VREF_1 K14 VREF 1 IO_L32N_1 K18 I/O 1 IP_L39N_1 H18 INPUT 1 IO_L32P_1 K17 I/O 1 IP_L39P_1 H17 INPUT 1 IO_L33N_1/A17 H20 DUAL 1 IP_L43N_1/VREF_1 J15 VREF 1 IO_L33P_1/A16 H21 DUAL 1 IP_L43P_1 J16 INPUT 1 IO_L34N_1/A19 F21 DUAL 1 IP_L47N_1 H15 INPUT 1 IO_L34P_1/A18 F22 DUAL 1 IP_L47P_1/VREF_1 H16 VREF 1 IO_L36N_1 G20 I/O U18 1 IO_L36P_1 G19 I/O PWR MGMT 1 IO_L37N_1 H19 I/O 1 IO_L37P_1 J18 I/O 1 IO_L38N_1 F20 I/O 1 IO_L38P_1 E20 I/O 1 IO_L40N_1 F18 I/O 1 IO_L40P_1 F19 I/O 1 IO_L41N_1 D22 I/O 1 IO_L41P_1 E22 I/O 1 IO_L42N_1 D20 I/O 1 IO_L42P_1 D21 I/O 1 IO_L44N_1/A21 C21 DUAL 1 IO_L44P_1/A20 C22 DUAL 1 IO_L45N_1/A23 B21 DUAL 1 IO_L45P_1/A22 B22 DUAL 1 IO_L46N_1/A25 G17 DUAL 1 IO_L46P_1/A24 G18 DUAL 1 IP_L04N_1/VREF_1 R16 VREF 1 IP_L04P_1 R15 INPUT 1 IP_L08N_1 P16 INPUT 1 IP_L08P_1 P15 INPUT 1 IP_L12N_1/VREF_1 R18 VREF 1 IP_L12P_1 R17 INPUT 1 IP_L16N_1/VREF_1 N16 VREF 1 IP_L16P_1 N15 INPUT 1 IP_L23N_1 M16 INPUT DS529-4 (v2.0) August 19, 2010 VCCAUX SUSPEND 1 VCCO_1 E21 VCCO 1 VCCO_1 J17 VCCO 1 VCCO_1 K21 VCCO 1 VCCO_1 P17 VCCO 1 VCCO_1 P21 VCCO 1 VCCO_1 V21 VCCO 2 IO_L01N_2/M0 W5 DUAL 2 IO_L01P_2/M1 V6 DUAL 2 IO_L02N_2/CSO_B Y4 DUAL 2 IO_L02P_2/M2 W4 DUAL 2 IO_L03N_2 AA3 I/O 2 IO_L03P_2 AB2 I/O 2 IO_L04N_2 AA4 I/O 2 IO_L04P_2 AB3 I/O 2 IO_L05N_2 Y5 I/O 2 IO_L05P_2 W6 I/O 2 IO_L06N_2 AB5 I/O 2 IO_L06P_2 AB4 I/O 2 IO_L07N_2 Y6 I/O 2 IO_L07P_2 W7 I/O 2 IO_L08N_2 AB6 I/O 2 IO_L08P_2 AA6 I/O 2 IO_L09N_2/VS2 W9 DUAL 2 IO_L09P_2/RDWR_B V9 DUAL 2 IO_L10N_2 AB7 I/O www.xilinx.com 111 Pinout Descriptions Table 83: Spartan-3A FG484 Pinout(Continued) Bank 112 Pin Name Table 83: Spartan-3A FG484 Pinout(Continued) FG484 Ball Type Bank Pin Name FG484 Ball Type 2 IO_L10P_2 Y7 I/O 2 IO_L30N_2 V15 I/O 2 IO_L11N_2/VS0 Y8 DUAL 2 IO_L30P_2 V14 I/O 2 IO_L11P_2/VS1 W8 DUAL 2 IO_L31N_2 V16 I/O 2 IO_L12N_2 AB8 I/O 2 IO_L31P_2 W16 I/O 2 IO_L12P_2 AA8 I/O 2 IO_L32N_2 AA19 I/O 2 IO_L13N_2 Y10 I/O 2 IO_L32P_2 AB19 I/O 2 IO_L13P_2 V10 I/O 2 IO_L33N_2 V17 I/O 2 IO_L14N_2/D6 AB9 DUAL 2 IO_L33P_2 W18 I/O 2 IO_L14P_2/D7 Y9 DUAL 2 IO_L34N_2 W17 I/O 2 IO_L15N_2 AB10 I/O 2 IO_L34P_2 Y18 I/O 2 IO_L15P_2 AA10 I/O 2 IO_L35N_2 AA21 I/O 2 IO_L16N_2/D4 AB11 DUAL 2 IO_L35P_2 AB21 I/O 2 IO_L16P_2/D5 Y11 DUAL 2 IO_L36N_2/CCLK AA20 DUAL 2 IO_L17N_2/GCLK13 V11 GCLK 2 IO_L36P_2/D0/DIN/MISO AB20 DUAL 2 IO_L17P_2/GCLK12 U11 GCLK 2 IP_2 P12 INPUT 2 IO_L18N_2/GCLK15 Y12 GCLK 2 IP_2 R10 INPUT 2 IO_L18P_2/GCLK14 W12 GCLK 2 IP_2 R11 INPUT 2 IO_L19N_2/GCLK1 AB12 GCLK 2 IP_2 R9 INPUT 2 IO_L19P_2/GCLK0 AA12 GCLK 2 IP_2 T13 INPUT 2 IO_L20N_2/GCLK3 U12 GCLK 2 IP_2 T14 INPUT 2 IO_L20P_2/GCLK2 V12 GCLK 2 IP_2 T9 INPUT 2 IO_L21N_2 Y13 I/O 2 IP_2 U10 INPUT 2 IO_L21P_2 AB13 I/O 2 IP_2 U15 INPUT 2 IO_L22N_2/MOSI/CSI_B AB14 DUAL 2 U16 INPUT 2 IO_L22P_2 AA14 I/O XC3S1400A: IP_2 XC3S700A: N.C. (◆) 2 IO_L23N_2 Y14 I/O 2 U7 INPUT 2 IO_L23P_2 W13 I/O XC3S1400A: IP_2 XC3S700A: N.C. (◆) IO_L24N_2/ DOUT 2 IP_2 U8 INPUT 2 AA15 DUAL 2 IP_2 V7 INPUT 2 IO_L24P_2/AWAKE AB15 PWR MGMT 2 IP_2/VREF_2 R12 VREF 2 IP_2/VREF_2 R13 VREF 2 IO_L25N_2 Y15 I/O 2 IP_2/VREF_2 R14 VREF 2 IO_L25P_2 W15 I/O 2 IP_2/VREF_2 T10 VREF 2 IO_L26N_2/D3 U13 DUAL 2 IP_2/VREF_2 T11 VREF 2 IO_L26P_2/INIT_B V13 DUAL 2 IP_2/VREF_2 T15 VREF 2 IO_L27N_2 Y16 I/O 2 IP_2/VREF_2 T16 VREF 2 IO_L27P_2 AB16 I/O 2 IP_2/VREF_2 T7 VREF 2 IO_L28N_2/D1 Y17 DUAL 2 IO_L28P_2/D2 AA17 DUAL 2 XC3S1400A: IP_2/VREF_2 XC3S700A: N.C. (◆) T8 VREF 2 IO_L29N_2 AB18 I/O 2 IP_2/VREF_2 V8 VREF 2 IO_L29P_2 AB17 I/O 2 VCCO_2 AA13 VCCO www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 83: Spartan-3A FG484 Pinout(Continued) Bank Pin Name Table 83: Spartan-3A FG484 Pinout(Continued) FG484 Ball Type Bank Pin Name FG484 Ball Type 2 VCCO_2 AA18 VCCO 3 IO_L22P_3/LHCLK2 K1 LHCLK 2 VCCO_2 AA5 VCCO 3 IO_L24N_3/LHCLK5 M2 LHCLK 2 VCCO_2 AA9 VCCO 3 IO_L24P_3/LHCLK4 M1 LHCLK 2 VCCO_2 U14 VCCO 3 IO_L25N_3/LHCLK7 M4 LHCLK 2 VCCO_2 U9 VCCO 3 IO_L25P_3/TRDY2/LHCLK6 M3 LHCLK 3 IO_L01N_3 D2 I/O 3 IO_L26N_3 N3 I/O 3 IO_L01P_3 C1 I/O 3 IO_L26P_3/VREF_3 N1 VREF 3 IO_L02N_3 C2 I/O 3 IO_L28N_3 P2 I/O 3 IO_L02P_3 B1 I/O 3 IO_L28P_3 P1 I/O 3 IO_L03N_3 E4 I/O 3 IO_L29N_3 P5 I/O 3 IO_L03P_3 D3 I/O 3 IO_L29P_3 P3 I/O 3 IO_L05N_3 G5 I/O 3 IO_L30N_3 N4 I/O 3 IO_L05P_3 G6 I/O 3 IO_L30P_3 M5 I/O 3 IO_L06N_3 E1 I/O 3 IO_L32N_3 R2 I/O 3 IO_L06P_3 D1 I/O 3 IO_L32P_3 R1 I/O 3 IO_L07N_3 E3 I/O 3 IO_L33N_3 R4 I/O 3 IO_L07P_3 F4 I/O 3 IO_L33P_3 R3 I/O 3 IO_L08N_3 G4 I/O 3 IO_L34N_3 T4 I/O 3 IO_L08P_3 F3 I/O 3 IO_L34P_3 R5 I/O 3 IO_L09N_3 H6 I/O 3 IO_L36N_3 T3 I/O 3 IO_L09P_3 H5 I/O 3 IO_L36P_3/VREF_3 T1 VREF 3 IO_L10N_3 J5 I/O 3 IO_L37N_3 U2 I/O 3 IO_L10P_3 K6 I/O 3 IO_L37P_3 U1 I/O 3 IO_L12N_3 F1 I/O 3 IO_L38N_3 V3 I/O 3 IO_L12P_3 F2 I/O 3 IO_L38P_3 V1 I/O 3 IO_L13N_3 G1 I/O 3 IO_L40N_3 U5 I/O 3 IO_L13P_3 G3 I/O 3 IO_L40P_3 T5 I/O 3 IO_L14N_3 H3 I/O 3 IO_L41N_3 U4 I/O 3 IO_L14P_3 H4 I/O 3 IO_L41P_3 U3 I/O 3 IO_L16N_3 H1 I/O 3 IO_L42N_3 W2 I/O 3 IO_L16P_3 H2 I/O 3 IO_L42P_3 W1 I/O 3 IO_L17N_3/VREF_3 J1 VREF 3 IO_L43N_3 W3 I/O 3 IO_L17P_3 J3 I/O 3 IO_L43P_3 V4 I/O 3 IO_L18N_3 K4 I/O 3 IO_L44N_3 Y2 I/O 3 IO_L18P_3 K5 I/O 3 IO_L44P_3 Y1 I/O 3 IO_L20N_3 K2 I/O 3 IO_L45N_3 AA2 I/O 3 IO_L20P_3 K3 I/O 3 IO_L45P_3 AA1 I/O 3 IO_L21N_3/LHCLK1 L3 LHCLK 3 IP_3/VREF_3 J8 VREF 3 IO_L21P_3/LHCLK0 L5 LHCLK 3 IP_3/VREF_3 R6 VREF 3 IO_L22N_3/IRDY2/LHCLK3 L1 LHCLK 3 IP_L04N_3/VREF_3 H7 VREF DS529-4 (v2.0) August 19, 2010 www.xilinx.com 113 Pinout Descriptions Table 83: Spartan-3A FG484 Pinout(Continued) Bank Pin Name Table 83: Spartan-3A FG484 Pinout(Continued) FG484 Ball Type Bank Pin Name FG484 Ball Type 3 IP_L04P_3 H8 INPUT GND GND F17 GND 3 IP_L11N_3 K8 INPUT GND GND F6 GND 3 IP_L11P_3 J7 INPUT GND GND G2 GND 3 IP_L15N_3/VREF_3 L8 VREF GND GND G21 GND 3 IP_L15P_3 K7 INPUT GND GND J11 GND 3 IP_L19N_3 M8 INPUT GND GND J13 GND 3 IP_L19P_3 L7 INPUT GND GND J14 GND 3 IP_L23N_3 M6 INPUT GND GND J19 GND 3 IP_L23P_3 M7 INPUT GND GND J4 GND 3 IP_L27N_3 N9 INPUT GND GND J9 GND 3 IP_L27P_3 N8 INPUT GND GND K10 GND 3 IP_L31N_3 N5 INPUT GND GND K12 GND 3 IP_L31P_3 N6 INPUT GND GND L11 GND 3 IP_L35N_3 P8 INPUT GND GND L13 GND 3 IP_L35P_3 N7 INPUT GND GND L17 GND 3 IP_L39N_3 R8 INPUT GND GND L2 GND 3 IP_L39P_3 P7 INPUT GND GND L6 GND 3 IP_L46N_3/VREF_3 T6 VREF GND GND L9 GND 3 IP_L46P_3 R7 INPUT GND GND M10 GND 3 VCCO_3 E2 VCCO GND GND M12 GND 3 VCCO_3 J2 VCCO GND GND M14 GND 3 VCCO_3 J6 VCCO GND GND M21 GND 3 VCCO_3 N2 VCCO GND GND N11 GND 3 VCCO_3 P6 VCCO GND GND N13 GND 3 VCCO_3 V2 VCCO GND GND P10 GND GND GND A1 GND GND GND P14 GND GND GND A22 GND GND GND P19 GND GND GND AA11 GND GND GND P4 GND GND GND AA16 GND GND GND P9 GND GND GND AA7 GND GND GND T12 GND GND GND AB1 GND GND GND T2 GND GND GND AB22 GND GND GND T21 GND GND GND B12 GND GND GND U17 GND GND GND B16 GND GND GND U6 GND GND GND B7 GND GND GND W10 GND GND GND C20 GND GND GND W14 GND GND GND C3 GND GND GND Y20 GND GND GND D14 GND GND GND Y3 GND GND GND D9 GND U18 GND GND F11 GND PWR MGMT 114 VCCAUX SUSPEND www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 83: Spartan-3A FG484 Pinout(Continued) FG484 Ball Type VCCAUX DONE Y19 CONFIG VCCAUX PROG_B C4 CONFIG VCCAUX TCK A21 JTAG VCCAUX TDI F5 JTAG VCCAUX TDO E19 JTAG VCCAUX TMS D4 JTAG VCCAUX VCCAUX D12 VCCAUX VCCAUX VCCAUX E18 VCCAUX VCCAUX VCCAUX E5 VCCAUX VCCAUX VCCAUX H11 VCCAUX VCCAUX VCCAUX L4 VCCAUX VCCAUX VCCAUX M19 VCCAUX VCCAUX VCCAUX P11 VCCAUX VCCAUX VCCAUX V18 VCCAUX VCCAUX VCCAUX V5 VCCAUX VCCAUX VCCAUX W11 VCCAUX VCCINT VCCINT J10 VCCINT VCCINT VCCINT J12 VCCINT VCCINT VCCINT K11 VCCINT VCCINT VCCINT K13 VCCINT VCCINT VCCINT K9 VCCINT VCCINT VCCINT L10 VCCINT VCCINT VCCINT L12 VCCINT VCCINT VCCINT L14 VCCINT VCCINT VCCINT M11 VCCINT VCCINT VCCINT M13 VCCINT VCCINT VCCINT M9 VCCINT VCCINT VCCINT N10 VCCINT VCCINT VCCINT N12 VCCINT VCCINT VCCINT N14 VCCINT VCCINT VCCINT P13 VCCINT Bank Pin Name DS529-4 (v2.0) August 19, 2010 www.xilinx.com 115 Pinout Descriptions User I/Os by Bank Table 84 and Table 85 indicate how the user-I/O pins are distributed between the four I/O banks on the FG484 package. The AWAKE pin is counted as a dual-purpose I/O. Table 84: User I/Os Per Bank for the XC3S700A in the FG484 Package All Possible I/O Pins by Type Package Edge I/O Bank Maximum I/O I/O INPUT DUAL VREF CLK Top 0 92 58 17 1 8 8 Right 1 94 33 15 30 8 8 Bottom 2 92 43 11 21 9 8 Left 3 94 61 17 0 8 8 372 195 60 52 33 32 TOTAL Table 85: User I/Os Per Bank for the XC3S1400A in the FG484 Package All Possible I/O Pins by Type Package Edge I/O Bank Maximum I/O I/O INPUT DUAL VREF CLK Top 0 92 58 17 1 8 8 Right 1 94 33 15 30 8 8 Bottom 2 95 43 13 21 10 8 Left 3 94 61 17 0 8 8 375 195 62 52 34 32 TOTAL Footprint Migration Differences Table 86 summarizes any footprint and functionality differences between the XC3S700A and the XC3S1400A FPGAs that might affect easy migration between devices available in the FG484 package. There are three such balls. All other pins not listed in Table 86 unconditionally migrate between Spartan-3A devices available in the FG484 package. The arrows indicate the direction for easy migration. Table 86: FG484 Footprint Migration Differences Pin Bank XC3S700A T8 2 N.C. Æ INPUT/VREF U7 2 N.C. Æ INPUT U16 2 N.C. Æ INPUT DIFFERENCES Migration XC3S1400A 3 Legend: Æ 116 This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right. www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions FG484 Footprint Bank 0 A B I/O: Unrestricted, 195 general-purpose user I/O C INPUT: Unrestricted, 60- general-purpose input pin 62 D E DUAL: Configuration pins, 51 then possible user I/O F VREF: User I/O or input 33- voltage reference for bank 34 G CLK: User I/O, input, or 32 clock buffer input H GND I/O L02P_3 L36N_0 PUDC_B I/O L36P_0 VREF_0 I/O I/O L01P_3 L02N_3 TMS I/O I/O L07N_3 L03N_3 VCCO_0 I/O L28P_0 I/O I/O I/O L27N_0 L25N_0 I/O I/O I/O I/O L32N_0 L29N_0 L27P_0 L30N_0 VCCAUX TDI I/O I/O L35N_0 L34P_0 GND I/O I/O I/O I/O L08N_3 L05N_3 L05P_3 I/O I/O I/O I/O I/O L16P_3 L14N_3 L14P_3 L09P_3 L09N_3 I/O I/O M L24P_3 LHCLK4 L24N_3 LHCLK5 53 N L26P_3 VREF_3 VCCO: Output voltage 24 supply for bank P I/O GND I/O L24P_0 L29P_0 L13P_3 L17P_3 I/O L25P_0 I/O I/O VCCO_3 GND L32P_0 L16N_3 I/O L10N_3 VCCO_3 INPUT I/O I/O L35P_0 L34N_0 INPUT INPUT L04N_3 VREF_3 INPUT VREF_0 INPUT L11P_3 VREF_3 I/O I/O I/O I/O INPUT INPUT L18N_3 L18P_3 L10P_3 L15P_3 L11N_3 GND L21N_3 LHCLK1 VCCAUX L21P_3 LHCLK0 GND I/O VCCO_3 I/O I/O INPUT GND INPUT INPUT INPUT VCCINT GND VCCINT GND VCCINT GND VCCINT GND VCCINT GND VCCINT VCCINT GND GND GND VCCAUX INPUT INPUT INPUT INPUT L19P_3 L15N_3 VREF_3 INPUT L23P_3 L19N_3 I/O I/O INPUT INPUT INPUT INPUT INPUT L26N_3 L30N_3 L31N_3 L31P_3 L35P_3 L27P_3 L27N_3 INPUT INPUT L39P_3 L35N_3 I/O GND I/O L29N_3 VCCO_3 INPUT VCCAUX GND INPUT L29P_3 I/O INPUT L23N_3 I/O I/O L20P_0 GCLK10 VCCO_0 INPUT L28N_3 I/O L23P_0 I/O L19N_0 GCLK9 L20N_0 GCLK11 I/O I/O I/O L21N_0 L19P_0 GCLK8 I/O L30P_3 L28P_3 I/O VCCO_0 L23N_0 L25N_3 LHCLK7 L25P_3 TRDY2 LHCLK6 I/O L18N_0 GCLK7 I/O INPUT INPUT 11 L30P_0 VREF_0 L20P_3 I/O GND L04P_3 I/O I/O I/O L24N_0 VREF_0 INPUT L20N_3 I/O Bank 3 GND I/O L22N_3 IRDY2 LHCLK3 R I/O L31N_0 L07P_3 I/O GND: Ground I/O L33N_0 I/O L 4 I/O L21P_0 L08P_3 L22P_3 LHCLK2 JTAG: Dedicated JTAG port pins I/O L22P_0 I/O K 2 I/O L22N_0 L12P_3 L17N_3 VREF_3 CONFIG: Dedicated configuration pins I/O L26P_0 I/O J 2 I/O L26N_0 L12N_3 I/O SUSPEND: Dedicated SUSPEND and dual-purpose AWAKE Power Management pins 10 I/O I/O GND 9 L28N_0 L03P_3 I/O 8 I/O I/O L13N_3 7 L31P_0 L01N_3 VCCO_3 6 I/O I/O I/O 5 L33P_0 L06P_3 L06N_3 4 _B I/O 3 G Left Half of FG484 Package (Top View) 2 PR O 1 I/O I/O I/O I/O I/O INPUT INPUT INPUT L32P_3 L32N_3 L33P_3 L33N_3 L34P_3 VREF_3 L46P_3 L39N_3 INPUT VREF_2 VREF_2 ◆ VCCINT: Internal core 15 supply voltage (+1.2V) VCCAUX: Auxiliary supply 10 voltage 3 ◆ N.C.: Not connected (XC3S700A only) I/O T U V W Y A A A B L36P_3 VREF_3 GND I/O I/O I/O L36N_3 L34N_3 L40P_3 I/O I/O I/O I/O I/O L37P_3 L37N_3 L41P_3 L41N_3 L40N_3 I/O L38P_3 VCCO_3 I/O I/O L38N_3 L43P_3 I/O I/O I/O L42P_3 L42N_3 L43N_3 I/O I/O L44P_3 L44N_3 I/O I/O L01N_2 M0 L02N_2 CSO_B I/O I/O I/O I/O L45P_3 L45N_3 L03N_2 L04N_2 GND L46N_3 VREF_3 ◆ L01P_2 M1 INPUT I/O I/O L05P_2 L07P_2 I/O I/O I/O L05N_2 L07N_2 L10P_2 VCCO_2 INPUT INPUT INPUT INPUT VREF_2 VREF_2 INPUT L17P_2 GCLK12 I/O INPUT GND I/O VCCAUX L02P_2 M2 I/O GND INPUT I/O L08P_2 GND INPUT INPUT VREF_2 I/O L09P_2 RDWR_B I/O I/O L11P_2 VS1 L09N_2 VS2 I/O I/O L11N_2 VS0 L14P_2 D7 I/O L12P_2 I/O I/O I/O I/O I/O I/O I/O L03P_2 L04P_2 L06P_2 L06N_2 L08N_2 L10N_2 L12N_2 Bank 2 VCCO_2 VCCO_2 I/O L14N_2 D6 I/O I/O L13P_2 L17N_2 GCLK13 GND VCCAUX I/O L13N_2 I/O L15P_2 I/O L15N_2 I/O L16P_2 D5 GND I/O L16N_2 D4 DS529-4 01 101106 Figure 25: FG484 Package Footprint (Top View) DS529-4 (v2.0) August 19, 2010 www.xilinx.com 117 Pinout Descriptions Bank 0 I/O L18P_0 GCLK6 GND I/O L17P_0 GCLK4 VCCAUX I/O L17N_0 GCLK5 INPUT INPUT INPUT VREF_0 13 14 I/O I/O L16N_0 L13N_0 I/O L16P_0 VCCO_0 15 I/O L12N_0 VREF_0 I/O L13P_0 GND 17 18 19 20 I/O I/O I/O I/O I/O L12P_0 L10N_0 L05N_0 L06N_0 L03N_0 VCCO_0 L06P_0 VREF_0 GND I/O L10P_0 I/O I/O I/O I/O I/O I/O I/O I/O L15N_0 L09P_0 L11N_0 L08N_0 L07N_0 L05P_0 L02N_0 I/O L15P_0 GND I/O I/O I/O L08P_0 L07P_0 L01N_0 L02P_0 VREF_0 VCCAUX TDO I/O I/O I/O L14N_0 L09N_0 L04P_0 I/O L14P_0 VCCO_0 INPUT INPUT INPUT INPUT GND GND INPUT VCCINT L35P_1 VREF_1 I/O I/O L11P_0 I/O L04N_0 INPUT INPUT L47N_1 INPUT VCCINT 16 L43N_1 VREF_1 INPUT I/O L01P_0 I/O INPUT INPUT I/O L39P_1 L39N_1 L37N_1 INPUT L43P_1 VCCO_1 I/O L37P_1 INPUT INPUT I/O I/O L35N_1 L31N_1 L32P_1 L32N_1 I/O L38P_1 INPUT INPUT L31P_1 L27N_1 I/O L36N_1 I/O VCCINT GND VCCINT GND VCCINT GND VCCINT INPUT GND I/O I/O I/O L33P_1 A16 L30P_1 A14 I/O I/O I/O L29N_1 A13 L29P_1 A12 L26N_1 A11 VCCO_1 L26P_1 A10 I/O L25P_1 IRDY1 RHCLK6 I/O I/O I/O L18N_1 A5 L18P_1 A4 INPUT INPUT L08P_1 L08N_1 VCCO_1 L17N_1 A3 VCCO_1 L15N_1 VREF_1 INPUT I/O I/O L18N_2 GCLK15 I/O L23P_2 I/O L19N_2 GCLK1 L04N_1 VREF_1 INPUT INPUT VREF_2 VREF_2 I/O L12N_1 VREF_1 L17P_1 A2 I/O I/O L03N_1 A1 I/O I/O I/O L30N_2 L31N_2 L33N_2 GND I/O I/O I/O I/O L31P_2 L34N_2 L33P_2 I/O I/O L27N_2 I/O I/O L22N_2 MOSI CSI_B VCCAUX L25P_2 L25N_2 L22P_2 EN GND I/O I/O I/O INPUT L03P_1 A0 L30P_2 L23N_2 L21P_2 L12P_1 SP ◆ I/O VCCO_2 INPUT INPUT INPUT L21N_2 I/O L19P_2 GCLK0 INPUT I/O L24N_2 DOUT I/O L24P_2 AWAKE I/O L28N_2 D1 I/O L34P_2 I/O GND GND D E F G H J K L I/O L19P_1 A6 INPUT L18P_2 GCLK14 L21P_1 RHCLK0 I/O GND I/O GND I/O L19N_1 A7 L04P_1 L26P_2 INIT_B I/O L21N_1 RHCLK1 I/O INPUT I/O I/O L22P_1 RHCLK2 L20P_1 A8 INPUT L20P_2 GCLK2 L22N_1 TRDY1 RHCLK3 L24P_1 VCCAUX L24N_1 RHCLK4 RHCLK5 I/O C I/O I/O VREF_2 VCCO_2 L30N_1 A15 L20N_1 A9 INPUT I/O I/O GND L16N_1 VREF_1 VREF_2 L26N_2 D3 L23P_1 I/O L34P_1 A18 INPUT INPUT I/O INPUT L23N_1 I/O L28N_1 I/O L34N_1 A19 L16P_1 INPUT VREF_2 L20N_2 GCLK3 INPUT I/O L28P_1 SU INPUT VCCINT L27P_1 VREF_1 GND I/O L41P_1 B M N I/O I/O L15P_1 I/O I/O I/O L13P_1 L14P_1 L14N_1 I/O I/O L13N_1 L11P_1 GND I/O L11N_1 P R T D GND VCCO_1 L33N_1 A17 I/O VCCINT I/O L44P_1 A20 Right Half of FG484 Package (Top View) A I/O I/O L25N_1 RHCLK7 I/O L44N_1 A21 I/O L36P_1 GND I/O L45P_1 A22 L41N_1 I/O L46P_1 A24 I/O L45N_1 A23 I/O L38N_1 I/O GND L42P_1 I/O L46N_1 A25 TCK I/O L40P_1 INPUT 22 L42N_1 I/O GND L47P_1 VREF_1 GND L40N_1 INPUT INPUT I/O L03P_0 21 Bank 1 12 L28P_2 D2 VCCO_2 I/O I/O I/O I/O L10N_1 L10P_1 L09N_1 L09P_1 I/O I/O L06P_1 L06N_1 I/O I/O L02P_1 LDC1 L02N_1 LDC0 DONE GND VCCO_1 I/O I/O L05N_1 L07P_1 I/O I/O L32N_2 I/O L36N_2 CCLK I/O L07N_1 L01N_1 LDC2 I/O L35N_2 I/O L05P_1 I/O L01P_1 HDC I/O I/O I/O I/O I/O L27P_2 L29P_2 L29N_2 L32P_2 Bank 2 L36P_2 D0 DIN/MISO I/O L35P_2 GND U V W Y A A A B DS529-4_02_012009 Figure 26: 118 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions FG676: 676-ball Fine-pitch Ball Grid Array The 676-ball fine-pitch ball grid array, FG676, supports the XC3S1400A FPGA. Table 87 lists all the FG676 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. Table 87: Spartan-3A FG676 Pinout(Continued) Bank Pin Name FG676 Ball Type 0 IO_L15N_0 A19 I/O 0 IO_L15P_0 B19 I/O 0 IO_L16N_0 H15 I/O 0 IO_L16P_0 G15 I/O 0 IO_L17N_0 C18 I/O 0 IO_L17P_0 D18 I/O 0 IO_L18N_0 A18 I/O 0 IO_L18P_0 B18 I/O 0 IO_L19N_0 B17 I/O 0 IO_L19P_0 C17 I/O 0 IO_L20N_0/VREF_0 E15 VREF Pinout Table 0 IO_L20P_0 F15 I/O Table 87: Spartan-3A FG676 Pinout 0 IO_L21N_0 C16 I/O 0 IO_L21P_0 D17 I/O The XC3S1400A has 17 unconnected balls, indicated as N.C. (No Connection) in Table 87 and with the black diamond character () in Table 87 and Figure 27. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at: www.xilinx.com/support/documentation/data_sheets/ s3a_pin.zip. Bank Pin Name FG676 Ball Type 0 IO_L22N_0 C15 I/O I/O 0 IO_L22P_0 D16 I/O 0 IO_L01N_0 F20 0 IO_L01P_0 G20 I/O 0 IO_L23N_0 A15 I/O 0 IO_L02N_0 F19 I/O 0 IO_L23P_0 B15 I/O 0 IO_L02P_0/VREF_0 G19 VREF 0 IO_L24N_0 F14 I/O 0 IO_L05N_0 C22 I/O 0 IO_L24P_0 E14 I/O 0 IO_L05P_0 D22 I/O 0 IO_L25N_0/GCLK5 J14 GCLK 0 IO_L06N_0 C23 I/O 0 IO_L25P_0/GCLK4 K14 GCLK 0 IO_L06P_0 D23 I/O 0 IO_L26N_0/GCLK7 A14 GCLK 0 IO_L07N_0 A22 I/O 0 IO_L26P_0/GCLK6 B14 GCLK 0 IO_L07P_0 B23 I/O 0 IO_L27N_0/GCLK9 G13 GCLK 0 IO_L08N_0 G17 I/O 0 IO_L27P_0/GCLK8 F13 GCLK 0 IO_L08P_0 H17 I/O 0 IO_L28N_0/GCLK11 C13 GCLK 0 IO_L09N_0 B21 I/O 0 IO_L28P_0/GCLK10 B13 GCLK 0 IO_L09P_0 C21 I/O 0 IO_L29N_0 B12 I/O 0 IO_L10N_0 D21 I/O 0 IO_L29P_0 A12 I/O 0 IO_L10P_0 E21 I/O 0 IO_L30N_0 C12 I/O 0 IO_L11N_0 C20 I/O 0 IO_L30P_0 D13 I/O 0 IO_L11P_0 D20 I/O 0 IO_L31N_0 F12 I/O 0 IO_L12N_0 K16 I/O 0 IO_L31P_0 E12 I/O 0 IO_L12P_0 J16 I/O 0 IO_L32N_0/VREF_0 D11 VREF 0 IO_L13N_0 E17 I/O 0 IO_L32P_0 C11 I/O 0 IO_L13P_0 F17 I/O 0 IO_L33N_0 B10 I/O 0 IO_L14N_0 A20 I/O 0 IO_L33P_0 A10 I/O 0 IO_L14P_0/VREF_0 B20 VREF DS529-4 (v2.0) August 19, 2010 www.xilinx.com 119 Pinout Descriptions Table 87: Spartan-3A FG676 Pinout(Continued) Bank 120 Pin Name Table 87: Spartan-3A FG676 Pinout(Continued) FG676 Ball Type Bank Pin Name FG676 Ball Type 0 IO_L34N_0 D10 I/O 0 IP_0 D12 INPUT 0 IO_L34P_0 C10 I/O 0 IP_0 D15 INPUT 0 IO_L35N_0 H12 I/O 0 IP_0 D19 INPUT 0 IO_L35P_0 G12 I/O 0 IP_0 E11 INPUT 0 IO_L36N_0 B9 I/O 0 IP_0 E18 INPUT 0 IO_L36P_0 A9 I/O 0 IP_0 E20 INPUT 0 IO_L37N_0 D9 I/O 0 IP_0 F10 INPUT 0 IO_L37P_0 E10 I/O 0 IP_0 G14 INPUT 0 IO_L38N_0 B8 I/O 0 IP_0 G16 INPUT 0 IO_L38P_0 A8 I/O 0 IP_0 H13 INPUT 0 IO_L39N_0 K12 I/O 0 IP_0 H18 INPUT 0 IO_L39P_0 J12 I/O 0 IP_0 J10 INPUT 0 IO_L40N_0 D8 I/O 0 IP_0 J13 INPUT 0 IO_L40P_0 C8 I/O 0 IP_0 J15 INPUT 0 IO_L41N_0 C6 I/O 0 IP_0/VREF_0 D7 VREF 0 IO_L41P_0 B6 I/O 0 IP_0/VREF_0 D14 VREF 0 IO_L42N_0 C7 I/O 0 IP_0/VREF_0 G11 VREF 0 IO_L42P_0 B7 I/O 0 IP_0/VREF_0 J17 VREF 0 IO_L43N_0 K11 I/O 0 N.C. (◆) A24 N.C. 0 IO_L43P_0 J11 I/O 0 N.C. (◆) B24 N.C. 0 IO_L44N_0 D6 I/O 0 N.C. (◆) D5 N.C. 0 IO_L44P_0 C5 I/O 0 N.C. (◆) E9 N.C. 0 IO_L45N_0 B4 I/O 0 N.C. (◆) F18 N.C. 0 IO_L45P_0 A4 I/O 0 N.C. (◆) E6 N.C. 0 IO_L46N_0 H10 I/O 0 N.C. (◆) F9 N.C. 0 IO_L46P_0 G10 I/O 0 N.C. (◆) G18 N.C. 0 IO_L47N_0 H9 I/O 0 VCCO_0 B5 VCCO 0 IO_L47P_0 G9 I/O 0 VCCO_0 B11 VCCO 0 IO_L48N_0 E7 I/O 0 VCCO_0 B16 VCCO 0 IO_L48P_0 F7 I/O 0 VCCO_0 B22 VCCO 0 IO_L51N_0 B3 I/O 0 VCCO_0 E8 VCCO 0 IO_L51P_0 A3 I/O 0 VCCO_0 E13 VCCO 0 IO_L52N_0/PUDC_B G8 DUAL 0 VCCO_0 E19 VCCO 0 IO_L52P_0/VREF_0 F8 VREF 0 VCCO_0 H11 VCCO 0 IP_0 A5 INPUT 0 VCCO_0 H16 VCCO 0 IP_0 A7 INPUT 1 IO_L01N_1/LDC2 Y21 DUAL 0 IP_0 A13 INPUT 1 IO_L01P_1/HDC Y20 DUAL 0 IP_0 A17 INPUT 1 IO_L02N_1/LDC0 AD25 DUAL 0 IP_0 A23 INPUT 1 IO_L02P_1/LDC1 AE26 DUAL 0 IP_0 C4 INPUT 1 IO_L03N_1/A1 AC24 DUAL www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 87: Spartan-3A FG676 Pinout(Continued) Bank Pin Name Table 87: Spartan-3A FG676 Pinout(Continued) FG676 Ball Type Bank Pin Name FG676 Ball Type 1 IO_L03P_1/A0 AC23 DUAL 1 IO_L26P_1/A4 T23 DUAL 1 IO_L04N_1 W21 I/O 1 IO_L27N_1/A7 R17 DUAL 1 IO_L04P_1 W20 I/O 1 IO_L27P_1/A6 R18 DUAL 1 IO_L05N_1 AC25 I/O 1 IO_L29N_1/A9 R26 DUAL 1 IO_L05P_1 AD26 I/O 1 IO_L29P_1/A8 R25 DUAL 1 IO_L06N_1 AB26 I/O 1 IO_L30N_1/RHCLK1 P20 RHCLK 1 IO_L06P_1 AC26 I/O 1 IO_L30P_1/RHCLK0 P21 RHCLK 1 IO_L07N_1/VREF_1 AB24 VREF 1 IO_L31N_1/TRDY1/RHCLK3 P25 RHCLK 1 IO_L07P_1 AB23 I/O 1 IO_L31P_1/RHCLK2 P26 RHCLK 1 IO_L08N_1 V19 I/O 1 IO_L33N_1/RHCLK5 N24 RHCLK 1 IO_L08P_1 V18 I/O 1 IO_L33P_1/RHCLK4 P23 RHCLK 1 IO_L09N_1 AA23 I/O 1 IO_L34N_1/RHCLK7 N19 RHCLK 1 IO_L09P_1 AA22 I/O 1 IO_L34P_1/IRDY1/RHCLK6 P18 RHCLK 1 IO_L10N_1 U20 I/O 1 IO_L35N_1/A11 M25 DUAL 1 IO_L10P_1 V21 I/O 1 IO_L35P_1/A10 M26 DUAL 1 IO_L11N_1 AA25 I/O 1 IO_L37N_1 N21 I/O 1 IO_L11P_1 AA24 I/O 1 IO_L37P_1 P22 I/O 1 IO_L12N_1 U18 I/O 1 IO_L38N_1/A13 M23 DUAL 1 IO_L12P_1 U19 I/O 1 IO_L38P_1/A12 L24 DUAL 1 IO_L13N_1 Y23 I/O 1 IO_L39N_1/A15 N17 DUAL 1 IO_L13P_1 Y22 I/O 1 IO_L39P_1/A14 N18 DUAL 1 IO_L14N_1 T20 I/O 1 IO_L41N_1 K26 I/O 1 IO_L14P_1 U21 I/O 1 IO_L41P_1 K25 I/O 1 IO_L15N_1 Y25 I/O 1 IO_L42N_1/A17 M20 DUAL 1 IO_L15P_1 Y24 I/O 1 IO_L42P_1/A16 N20 DUAL 1 IO_L17N_1 T17 I/O 1 IO_L43N_1/A19 J25 DUAL 1 IO_L17P_1 T18 I/O 1 IO_L43P_1/A18 J26 DUAL 1 IO_L18N_1 V22 I/O 1 IO_L45N_1 M22 I/O 1 IO_L18P_1 W23 I/O 1 IO_L45P_1 M21 I/O 1 IO_L19N_1 V25 I/O 1 IO_L46N_1 K22 I/O 1 IO_L19P_1 V24 I/O 1 IO_L46P_1 K23 I/O 1 IO_L21N_1 U22 I/O 1 IO_L47N_1 M18 I/O 1 IO_L21P_1 V23 I/O 1 IO_L47P_1 M19 I/O 1 IO_L22N_1 R20 I/O 1 IO_L49N_1 J22 I/O 1 IO_L22P_1 R19 I/O 1 IO_L49P_1 J23 I/O 1 IO_L23N_1/VREF_1 U24 VREF 1 IO_L50N_1 K21 I/O 1 IO_L23P_1 U23 I/O 1 IO_L50P_1 L22 I/O 1 IO_L25N_1/A3 R22 DUAL 1 IO_L51N_1 G24 I/O 1 IO_L25P_1/A2 R21 DUAL 1 IO_L51P_1 G23 I/O 1 IO_L26N_1/A5 T24 DUAL 1 IO_L53N_1 K20 I/O DS529-4 (v2.0) August 19, 2010 www.xilinx.com 121 Pinout Descriptions Table 87: Spartan-3A FG676 Pinout(Continued) Bank 122 Pin Name Table 87: Spartan-3A FG676 Pinout(Continued) FG676 Ball Type Bank Pin Name FG676 Ball Type 1 IO_L53P_1 L20 I/O 1 IP_L48P_1 H23 INPUT 1 IO_L54N_1 F24 I/O 1 IP_L52N_1/VREF_1 G25 VREF 1 IO_L54P_1 F25 I/O 1 IP_L52P_1 G26 INPUT 1 IO_L55N_1 L17 I/O 1 IP_L65N_1 B25 INPUT 1 IO_L55P_1 L18 I/O 1 IP_L65P_1/VREF_1 B26 VREF 1 IO_L56N_1 F23 I/O 1 VCCO_1 AB25 VCCO 1 IO_L56P_1 E24 I/O 1 VCCO_1 E25 VCCO 1 IO_L57N_1 K18 I/O 1 VCCO_1 H22 VCCO 1 IO_L57P_1 K19 I/O 1 VCCO_1 L19 VCCO 1 IO_L58N_1 G22 I/O 1 VCCO_1 L25 VCCO 1 IO_L58P_1/VREF_1 F22 VREF 1 VCCO_1 N22 VCCO 1 IO_L59N_1 J20 I/O 1 VCCO_1 T19 VCCO 1 IO_L59P_1 J19 I/O 1 VCCO_1 T25 VCCO 1 IO_L60N_1 D26 I/O 1 VCCO_1 W22 VCCO 1 IO_L60P_1 E26 I/O 2 IO_L01N_2/M0 AD4 DUAL 1 IO_L61N_1 D24 I/O 2 IO_L01P_2/M1 AC4 DUAL 1 IO_L61P_1 D25 I/O 2 IO_L02N_2/CSO_B AA7 DUAL 1 IO_L62N_1/A21 H21 DUAL 2 IO_L02P_2/M2 Y7 DUAL 1 IO_L62P_1/A20 J21 DUAL 2 IO_L05N_2 Y9 I/O 1 IO_L63N_1/A23 C25 DUAL 2 IO_L05P_2 W9 I/O 1 IO_L63P_1/A22 C26 DUAL 2 IO_L06N_2 AF3 I/O 1 IO_L64N_1/A25 G21 DUAL 2 IO_L06P_2 AE3 I/O 1 IO_L64P_1/A24 H20 DUAL 2 IO_L07N_2 AF4 I/O 1 IP_L16N_1 Y26 INPUT 2 IO_L07P_2 AE4 I/O 1 IP_L16P_1 W25 INPUT 2 IO_L08N_2 AD6 I/O 1 IP_L20N_1/VREF_1 V26 VREF 2 IO_L08P_2 AC6 I/O 1 IP_L20P_1 W26 INPUT 2 IO_L09N_2 W10 I/O 1 IP_L24N_1/VREF_1 U26 VREF 2 IO_L09P_2 V10 I/O 1 IP_L24P_1 U25 INPUT 2 IO_L10N_2 AE6 I/O 1 IP_L28N_1 R24 INPUT 2 IO_L10P_2 AF5 I/O 1 IP_L28P_1/VREF_1 R23 VREF 2 IO_L11N_2 AE7 I/O 1 IP_L32N_1 N25 INPUT 2 IO_L11P_2 AD7 I/O 1 IP_L32P_1 N26 INPUT 2 IO_L12N_2 AA10 I/O 1 IP_L36N_1 N23 INPUT 2 IO_L12P_2 Y10 I/O 1 IP_L36P_1/VREF_1 M24 VREF 2 IO_L13N_2 U11 I/O 1 IP_L40N_1 L23 INPUT 2 IO_L13P_2 V11 I/O 1 IP_L40P_1 K24 INPUT 2 IO_L14N_2 AB7 I/O 1 IP_L44N_1 H25 INPUT 2 IO_L14P_2 AC8 I/O 1 IP_L44P_1/VREF_1 H26 VREF 2 IO_L15N_2 AC9 I/O 1 IP_L48N_1 H24 INPUT 2 IO_L15P_2 AB9 I/O www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 87: Spartan-3A FG676 Pinout(Continued) Bank Pin Name Table 87: Spartan-3A FG676 Pinout(Continued) FG676 Ball Type Bank Pin Name FG676 Ball Type V15 I/O 2 IO_L16N_2 W12 I/O 2 IO_L35P_2 2 IO_L16P_2 V12 I/O 2 IO_L36N_2/D1 AE18 DUAL 2 IO_L17N_2/VS2 AA12 DUAL 2 IO_L36P_2/D2 AF18 DUAL 2 IO_L17P_2/RDWR_B Y12 DUAL 2 IO_L37N_2 AE19 I/O 2 IO_L18N_2 AF8 I/O 2 IO_L37P_2 AF19 I/O 2 IO_L18P_2 AE8 I/O 2 IO_L38N_2 AB16 I/O 2 IO_L19N_2/VS0 AF9 DUAL 2 IO_L38P_2 AC16 I/O 2 IO_L19P_2/VS1 AE9 DUAL 2 IO_L39N_2 AE20 I/O 2 IO_L20N_2 W13 I/O 2 IO_L39P_2 AF20 I/O 2 IO_L20P_2 V13 I/O 2 IO_L40N_2 AC19 I/O 2 IO_L21N_2 AC12 I/O 2 IO_L40P_2 AD19 I/O 2 IO_L21P_2 AB12 I/O 2 IO_L41N_2 AC20 I/O 2 IO_L22N_2/D6 AF10 DUAL 2 IO_L41P_2 AD20 I/O 2 IO_L22P_2/D7 AE10 DUAL 2 IO_L42N_2 U16 I/O 2 IO_L23N_2 AC11 I/O 2 IO_L42P_2 V16 I/O 2 IO_L23P_2 AD11 I/O 2 IO_L43N_2 Y17 I/O 2 IO_L24N_2/D4 AE12 DUAL 2 IO_L43P_2 AA17 I/O 2 IO_L24P_2/D5 AF12 DUAL 2 IO_L44N_2 AD21 I/O 2 IO_L25N_2/GCLK13 Y13 GCLK 2 IO_L44P_2 AE21 I/O 2 IO_L25P_2/GCLK12 AA13 GCLK 2 IO_L45N_2 AC21 I/O 2 IO_L26N_2/GCLK15 AE13 GCLK 2 IO_L45P_2 AD22 I/O 2 IO_L26P_2/GCLK14 AF13 GCLK 2 IO_L46N_2 V17 I/O 2 IO_L27N_2/GCLK1 AA14 GCLK 2 IO_L46P_2 W17 I/O 2 IO_L27P_2/GCLK0 Y14 GCLK 2 IO_L47N_2 AA18 I/O 2 IO_L28N_2/GCLK3 AE14 GCLK 2 IO_L47P_2 AB18 I/O 2 IO_L28P_2/GCLK2 AF14 GCLK 2 IO_L48N_2 AE23 I/O 2 IO_L29N_2 AC14 I/O 2 IO_L48P_2 AF23 I/O 2 IO_L29P_2 AD14 I/O 2 IO_L51N_2 AE25 I/O 2 IO_L30N_2/MOSI/CSI_B AB15 DUAL 2 IO_L51P_2 AF25 I/O 2 IO_L30P_2 AC15 I/O 2 IO_L52N_2/CCLK AE24 DUAL 2 IO_L31N_2 W15 I/O 2 IO_L52P_2/D0/DIN/MISO AF24 DUAL 2 IO_L31P_2 V14 I/O 2 IP_2 AA19 INPUT 2 IO_L32N_2/DOUT AE15 DUAL 2 IP_2 AB13 INPUT 2 IO_L32P_2/AWAKE AD15 PWR MGMT 2 IP_2 AB17 INPUT 2 IP_2 AB20 INPUT 2 IO_L33N_2 AD17 I/O 2 IP_2 AC7 INPUT 2 IO_L33P_2 AE17 I/O 2 IP_2 AC13 INPUT 2 IO_L34N_2/D3 Y15 DUAL 2 IP_2 AC17 INPUT 2 IO_L34P_2/INIT_B AA15 DUAL 2 IP_2 AC18 INPUT 2 IO_L35N_2 U15 I/O 2 IP_2 AD9 INPUT DS529-4 (v2.0) August 19, 2010 www.xilinx.com 123 Pinout Descriptions Table 87: Spartan-3A FG676 Pinout(Continued) Bank 124 Pin Name Table 87: Spartan-3A FG676 Pinout(Continued) FG676 Ball Type Bank Pin Name FG676 Ball Type 2 IP_2 AD10 INPUT 3 IO_L05P_3 K9 I/O 2 IP_2 AD16 INPUT 3 IO_L06N_3 E4 I/O 2 IP_2 AF2 INPUT 3 IO_L06P_3 D3 I/O 2 IP_2 AF7 INPUT 3 IO_L07N_3 F4 I/O 2 IP_2 Y11 INPUT 3 IO_L07P_3 E3 I/O 2 IP_2/VREF_2 AA9 VREF 3 IO_L09N_3 G4 I/O 2 IP_2/VREF_2 AA20 VREF 3 IO_L09P_3 F5 I/O 2 IP_2/VREF_2 AB6 VREF 3 IO_L10N_3 H6 I/O 2 IP_2/VREF_2 AB10 VREF 3 IO_L10P_3 J7 I/O 2 IP_2/VREF_2 AC10 VREF 3 IO_L11N_3 F2 I/O 2 IP_2/VREF_2 AD12 VREF 3 IO_L11P_3 E1 I/O 2 IP_2/VREF_2 AF15 VREF 3 IO_L13N_3 J6 I/O 2 IP_2/VREF_2 AF17 VREF 3 IO_L13P_3 K7 I/O 2 IP_2/VREF_2 AF22 VREF 3 IO_L14N_3 F3 I/O 2 IP_2/VREF_2 Y16 VREF 3 IO_L14P_3 G3 I/O 2 N.C. (◆) AA8 N.C. 3 IO_L15N_3 L9 I/O 2 N.C. (◆) AC5 N.C. 3 IO_L15P_3 L10 I/O 2 N.C. (◆) AC22 N.C. 3 IO_L17N_3 H1 I/O 2 N.C. (◆) AD5 N.C. 3 IO_L17P_3 H2 I/O 2 N.C. (◆) Y18 N.C. 3 IO_L18N_3 L7 I/O 2 N.C. (◆) Y19 N.C. 3 IO_L18P_3 K6 I/O 2 N.C. (◆) AD23 N.C. 3 IO_L19N_3 J4 I/O 2 N.C. (◆) W18 N.C. 3 IO_L19P_3 J5 I/O 2 N.C. (◆) Y8 N.C. 3 IO_L21N_3 M9 I/O 2 VCCO_2 AB8 VCCO 3 IO_L21P_3 M10 I/O 2 VCCO_2 AB14 VCCO 3 IO_L22N_3 K4 I/O 2 VCCO_2 AB19 VCCO 3 IO_L22P_3 K5 I/O 2 VCCO_2 AE5 VCCO 3 IO_L23N_3 K2 I/O 2 VCCO_2 AE11 VCCO 3 IO_L23P_3 K3 I/O 2 VCCO_2 AE16 VCCO 3 IO_L25N_3 L3 I/O 2 VCCO_2 AE22 VCCO 3 IO_L25P_3 L4 I/O 2 VCCO_2 W11 VCCO 3 IO_L26N_3 M7 I/O 2 VCCO_2 W16 VCCO 3 IO_L26P_3 M8 I/O 3 IO_L01N_3 J9 I/O 3 IO_L27N_3 M3 I/O 3 IO_L01P_3 J8 I/O 3 IO_L27P_3 M4 I/O 3 IO_L02N_3 B1 I/O 3 IO_L28N_3 M6 I/O 3 IO_L02P_3 B2 I/O 3 IO_L28P_3 M5 I/O 3 IO_L03N_3 H7 I/O 3 IO_L29N_3/VREF_3 M1 VREF 3 IO_L03P_3 G6 I/O 3 IO_L29P_3 M2 I/O 3 IO_L05N_3 K8 I/O 3 IO_L30N_3 N4 I/O www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 87: Spartan-3A FG676 Pinout(Continued) Bank Pin Name Table 87: Spartan-3A FG676 Pinout(Continued) FG676 Ball Type Bank Pin Name FG676 Ball Type 3 IO_L30P_3 N5 I/O 3 IO_L52P_3 W3 I/O 3 IO_L31N_3 N2 I/O 3 IO_L53N_3 Y2 I/O 3 IO_L31P_3 N1 I/O 3 IO_L53P_3 Y1 I/O 3 IO_L32N_3/LHCLK1 N7 LHCLK 3 IO_L55N_3 AA3 I/O 3 IO_L32P_3/LHCLK0 N6 LHCLK 3 IO_L55P_3 AA2 I/O 3 IO_L33N_3/IRDY2/LHCLK3 P2 LHCLK 3 IO_L56N_3 U8 I/O 3 IO_L33P_3/LHCLK2 P1 LHCLK 3 IO_L56P_3 U7 I/O 3 IO_L34N_3/LHCLK5 P3 LHCLK 3 IO_L57N_3 Y6 I/O 3 IO_L34P_3/LHCLK4 P4 LHCLK 3 IO_L57P_3 Y5 I/O 3 IO_L35N_3/LHCLK7 P10 LHCLK 3 IO_L59N_3 V6 I/O 3 IO_L35P_3/TRDY2/LHCLK6 N9 LHCLK 3 IO_L59P_3 V7 I/O 3 IO_L36N_3 R2 I/O 3 IO_L60N_3 AC1 I/O 3 IO_L36P_3/VREF_3 R1 VREF 3 IO_L60P_3 AB1 I/O 3 IO_L37N_3 R4 I/O 3 IO_L61N_3 V8 I/O 3 IO_L37P_3 R3 I/O 3 IO_L61P_3 U9 I/O 3 IO_L38N_3 T4 I/O 3 IO_L63N_3 W6 I/O 3 IO_L38P_3 T3 I/O 3 IO_L63P_3 W7 I/O 3 IO_L39N_3 P6 I/O 3 IO_L64N_3 AC3 I/O 3 IO_L39P_3 P7 I/O 3 IO_L64P_3 AC2 I/O 3 IO_L40N_3 R6 I/O 3 IO_L65N_3 AD2 I/O 3 IO_L40P_3 R5 I/O 3 IO_L65P_3 AD1 I/O 3 IO_L41N_3 P9 I/O 3 IP_L04N_3/VREF_3 C1 VREF 3 IO_L41P_3 P8 I/O 3 IP_L04P_3 C2 INPUT 3 IO_L42N_3 U4 I/O 3 IP_L08N_3 D1 INPUT 3 IO_L42P_3 T5 I/O 3 IP_L08P_3 D2 INPUT 3 IO_L43N_3 R9 I/O 3 IP_L12N_3/VREF_3 H4 VREF 3 IO_L43P_3/VREF_3 R10 VREF 3 IP_L12P_3 G5 INPUT 3 IO_L44N_3 U2 I/O 3 IP_L16N_3 G1 INPUT 3 IO_L44P_3 U1 I/O 3 IP_L16P_3 G2 INPUT 3 IO_L45N_3 R7 I/O 3 IP_L20N_3/VREF_3 J2 VREF 3 IO_L45P_3 R8 I/O 3 IP_L20P_3 J3 INPUT 3 IO_L47N_3 V2 I/O 3 IP_L24N_3 K1 INPUT 3 IO_L47P_3 V1 I/O 3 IP_L24P_3 J1 INPUT 3 IO_L48N_3 T9 I/O 3 IP_L46N_3 V4 INPUT 3 IO_L48P_3 T10 I/O 3 IP_L46P_3 U3 INPUT 3 IO_L49N_3 V5 I/O 3 IP_L50N_3/VREF_3 W2 VREF 3 IO_L49P_3 U5 I/O 3 IP_L50P_3 W1 INPUT 3 IO_L51N_3 U6 I/O 3 IP_L54N_3 Y4 INPUT 3 IO_L51P_3 T7 I/O 3 IP_L54P_3 Y3 INPUT 3 IO_L52N_3 W4 I/O 3 IP_L58N_3/VREF_3 AA5 VREF DS529-4 (v2.0) August 19, 2010 www.xilinx.com 125 Pinout Descriptions Table 87: Spartan-3A FG676 Pinout(Continued) Bank Pin Name Table 87: Spartan-3A FG676 Pinout(Continued) FG676 Ball Type Bank Pin Name FG676 Ball Type 3 IP_L58P_3 AA4 INPUT GND GND C19 GND 3 IP_L62N_3 AB4 INPUT GND GND C24 GND 3 IP_L62P_3 AB3 INPUT GND GND F1 GND 3 IP_L66N_3/VREF_3 AE2 VREF GND GND F6 GND 3 IP_L66P_3 AE1 INPUT GND GND F11 GND 3 VCCO_3 AB2 VCCO GND GND F16 GND 3 VCCO_3 E2 VCCO GND GND F21 GND 3 VCCO_3 H5 VCCO GND GND F26 GND 3 VCCO_3 L2 VCCO GND GND H3 GND 3 VCCO_3 L8 VCCO GND GND H8 GND 3 VCCO_3 P5 VCCO GND GND H14 GND 3 VCCO_3 T2 VCCO GND GND H19 GND 3 VCCO_3 T8 VCCO GND GND J24 GND 3 VCCO_3 W5 VCCO GND GND K10 GND GND GND A1 GND GND GND K17 GND GND GND A6 GND GND GND L1 GND GND GND A11 GND GND GND L6 GND GND GND A16 GND GND GND L11 GND GND GND A21 GND GND GND L13 GND GND GND A26 GND GND GND L15 GND GND GND AA1 GND GND GND L21 GND GND GND AA6 GND GND GND L26 GND GND GND AA11 GND GND GND M12 GND GND GND AA16 GND GND GND M14 GND GND GND AA21 GND GND GND M16 GND GND GND AA26 GND GND GND N3 GND GND GND AD3 GND GND GND N8 GND GND GND AD8 GND GND GND N11 GND GND GND AD13 GND GND GND N15 GND GND GND AD18 GND GND GND P12 GND GND GND AD24 GND GND GND P16 GND GND GND AF1 GND GND GND P19 GND GND GND AF6 GND GND GND P24 GND GND GND AF11 GND GND GND R11 GND GND GND AF16 GND GND GND R13 GND GND GND AF21 GND GND GND R15 GND GND GND AF26 GND GND GND T1 GND GND GND C3 GND GND GND T6 GND GND GND C9 GND GND GND T12 GND GND GND C14 GND GND GND T14 GND 126 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Table 87: Spartan-3A FG676 Pinout(Continued) Bank Pin Name Table 87: Spartan-3A FG676 Pinout(Continued) FG676 Ball Type Bank Pin Name FG676 Ball Type GND GND T16 GND VCCINT VCCINT M17 VCCINT GND GND T21 GND VCCINT VCCINT N12 VCCINT GND GND T26 GND VCCINT VCCINT N13 VCCINT GND GND U10 GND VCCINT VCCINT N14 VCCINT GND GND U13 GND VCCINT VCCINT N16 VCCINT GND GND U17 GND VCCINT VCCINT P11 VCCINT GND GND V3 GND VCCINT VCCINT P13 VCCINT GND GND W8 GND VCCINT VCCINT P14 VCCINT GND GND W14 GND VCCINT VCCINT P15 VCCINT GND GND W19 GND VCCINT VCCINT R12 VCCINT GND GND W24 GND VCCINT VCCINT R14 VCCINT V20 PWR MGMT VCCINT VCCINT R16 VCCINT VCCINT VCCINT T11 VCCINT AB21 CONFIG VCCINT VCCINT T13 VCCINT VCCAUX PROG_B A2 CONFIG VCCINT VCCINT T15 VCCINT VCCAUX TCK A25 JTAG VCCINT VCCINT U12 VCCINT VCCAUX TDI G7 JTAG VCCAUX TDO E23 JTAG VCCAUX TMS D4 JTAG VCCAUX VCCAUX AB5 VCCAUX VCCAUX VCCAUX AB11 VCCAUX VCCAUX VCCAUX AB22 VCCAUX VCCAUX VCCAUX E5 VCCAUX VCCAUX VCCAUX E16 VCCAUX VCCAUX VCCAUX E22 VCCAUX VCCAUX VCCAUX J18 VCCAUX VCCAUX VCCAUX K13 VCCAUX VCCAUX VCCAUX L5 VCCAUX VCCAUX VCCAUX N10 VCCAUX VCCAUX VCCAUX P17 VCCAUX VCCAUX VCCAUX T22 VCCAUX VCCAUX VCCAUX U14 VCCAUX VCCAUX VCCAUX V9 VCCAUX VCCINT VCCINT K15 VCCINT VCCINT VCCINT L12 VCCINT VCCINT VCCINT L14 VCCINT VCCINT VCCINT L16 VCCINT VCCINT VCCINT M11 VCCINT VCCINT VCCINT M13 VCCINT VCCINT VCCINT M15 VCCINT VCCAUX SUSPEND VCCAUX DONE DS529-4 (v2.0) August 19, 2010 www.xilinx.com 127 Pinout Descriptions User I/Os by Bank Table 88 indicates how the 502 available user-I/O pins are distributed between the four I/O banks on the FG676 package. The AWAKE pin is counted as a dual-purpose I/O. Table 88: User I/Os Per Bank for the XC3S1400A in the FG676 Package Package Edge All Possible I/O Pins by Type I/O Bank Maximum I/O I/O INPUT DUAL VREF CLK Top 0 120 82 20 1 9 8 Right 1 130 67 15 30 10 8 Bottom 2 120 67 14 21 10 8 Left 3 132 97 18 0 9 8 502 313 67 52 38 32 TOTAL Footprint Migration Differences The XC3S1400A FPGA is the only Spartan-3A device offered in the FG676 package. However, Table 89 summarizes footprint and functionality differences between the XC3S1400A and the XC3SD1800A in the Spartan-3A DSP family. There are 17 unconnected balls in the XC3S1400A that become 16 input-only pins and one I/O pin in the XC3SD1800A. All other pins not listed in Table 89 unconditionally migrate between the Spartan-3A devices and the Spartan-3A DSP devices available in the FG676 package. The arrows indicate the direction for easy migration. For more details on the Spartan-3A DSP family and pinouts, and additional differences in the FG676 pinout for the XC3SD3400A device, see DS610. Table 89: FG676 Footprint Differences Pin Bank XC3S1400A Migration A24 0 N.C. Æ INPUT B24 0 N.C. Æ INPUT D5 0 N.C. Æ INPUT E6 0 N.C. Æ VREF (INPUT) E9 0 N.C. Æ INPUT F9 0 N.C. Æ VREF (INPUT) F18 0 N.C. Æ INPUT G18 0 N.C. Æ VREF (INPUT) W18 2 N.C. Æ VREF (INPUT) Y8 2 N.C. Æ VREF (INPUT) Y18 2 N.C. Æ INPUT Y19 2 N.C. Æ INPUT AA8 2 N.C. Æ INPUT AC5 2 N.C. Æ INPUT AC22 2 N.C. Æ I/O AD5 2 N.C. Æ INPUT AD23 2 N.C. Æ VREF(INPUT) DIFFERENCES XC3SD1800A 17 Legend: Æ 128 www.xilinx.com This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction is possible depending on how the pin is configured for the device on the right. DS529-4 (v2.0) August 19, 2010 Pinout Descriptions FG676 Footprint Bank 0 1 B C Unrestricted, 67 INPUT: general-purpose input pin D E Configuration pins, 51 DUAL: then possible user I/O SUSPEND: Dedicated SUSPEND and dual-purpose AWAKE Power Management pins 77 O I/O L51P_0 L45P_0 I/O I/O I/O I/O L02P_3 L51N_0 L45N_0 GND INPUT L04N_3 VREF_3 INPUT L04P_3 INPUT INPUT I/O L08N_3 L08P_3 L06P_3 I/O L11P_3 VCCO_3 INPUT VCCO_0 I/O L06N_3 I/O I/O I/O L36N_0 L33N_0 I/O I/O I/O L41N_0 L42N_0 L40P_0 I/O I/O L37N_0 L34N_0 I/O I/O I/O INPUT I/O L14P_3 L09N_3 L12P_3 L03P_3 GND L12N_3 VREF_3 I/O I/O L17P_3 INPUT INPUT VCCO_3 GND I/O L48P_0 N.C. VCCO_0 I/O I/O I/O L10N_3 L03N_3 L52N_0 PUDC_B GND INPUT I/O INPUT I/O VREF_0 L35P_0 I/O I/O L47N_0 L46N_0 I/O I/O I/O I/O I/O I/O I/O I/O L24N_3 L23N_3 L23P_3 L22N_3 L22P_3 L18P_3 L13P_3 L05N_3 L05P_3 CONFIG: Dedicated configuration pins L GND VCCO_3 VCCAUX GND JTAG: Dedicated JTAG port pins M L29N_3 VREF_3 GND: Ground Output voltage 36 VCCO: supply for bank I/O N I/O I/O I/O L10P_3 L01P_3 L01N_3 I/O I/O L18N_3 VCCO_3 I/O L15P_3 I/O I/O I/O I/O I/O I/O I/O I/O L27N_3 L27P_3 L28P_3 L28N_3 L26N_3 L26P_3 L21N_3 L21P_3 GND L35P_3 TRDY2 LHCLK6 I/O L31N_3 I/O L33N_3 IRDY2 LHCLK3 GND I/O I/O L30N_3 L30P_3 I/O I/O L34N_3 LHCLK5 L34P_3 LHCLK4 I/O I/O L32P_3 LHCLK0 L32N_3 LHCLK1 I/O I/O I/O I/O L39N_3 L39P_3 L41P_3 L41N_3 L36P_3 VREF_3 I/O I/O I/O I/O I/O I/O I/O I/O L36N_3 L37P_3 L37N_3 L40P_3 L40N_3 L45N_3 L45P_3 L43N_3 T GND VCCO_3 W Y A A I/O I/O I/O L38P_3 L38N_3 L42P_3 I/O L51P_3 VCCO_3 I/O I/O I/O I/O I/O I/O L46P_3 L42N_3 L49P_3 L51N_3 L56P_3 L56N_3 L61P_3 I/O INPUT INPUT GND INPUT I/O I/O I/O I/O L46N_3 L49N_3 L59N_3 L59P_3 L61N_3 L50N_3 VREF_3 I/O I/O L52P_3 L52N_3 I/O I/O INPUT INPUT I/O I/O L53P_3 L53N_3 L54P_3 L54N_3 L57P_3 L57N_3 I/O I/O INPUT L55P_3 L55N_3 L58P_3 INPUT INPUT L62P_3 L62N_3 L50P_3 GND A C I/O I/O I/O L60N_3 L64P_3 L64N_3 A D I/O I/O L65P_3 L65N_3 I/O INPUT VCCO_3 INPUT L66P_3 L66N_3 VREF_3 GND INPUT I/O VCCAUX N.C. I/O I/O L07P_2 I/O L63P_3 N.C. VCCO_2 I/O I/O I/O L06N_2 L07N_2 L10P_2 I/O N.C. N.C. L02N_2 CSO_B INPUT I/O VREF_2 L14N_2 I/O GND L02P_2 M2 I/O GND L08P_2 L01N_2 M0 L06P_2 I/O L63N_3 INPUT L58N_3 VREF_3 L01P_2 M1 I/O GND VCCO_3 INPUT I/O I/O L08N_2 L11P_2 I/O L39P_0 I/O L28P_0 GCLK10 I/O L28N_0 GCLK11 I/O L30P_0 VCCO_0 I/O L27P_0 GCLK8 I/O L27N_0 GCLK9 INPUT INPUT I/O I/O L43N_0 L39N_0 GND VCCINT GND VCCINT GND VCCINT VCCAUX VCCO_2 VCCAUX GND VCCINT VCCINT GND VCCINT GND VCCINT GND VCCINT GND VCCINT VCCINT GND I/O L43P_3 VREF_3 I/O INPUT L47N_3 I/O INPUT I/O L48P_3 I/O I/O I/O L35N_0 L43P_0 L35N_3 VCCINT LHCLK7 I/O L44N_3 L47P_3 VCCAUX L48N_3 I/O L60P_3 A F GND L44P_3 A B A E VCCO_3 VCCO_0 13 I/O R V GND I/O L33P_3 LHCLK2 U INPUT L15N_3 P Internal core 23 VCCINT: supply voltage (+1.2V) 17 N.C.: Not connected ◆ I/O L13N_3 I/O I/O I/O Auxiliary supply 14 VCCAUX: voltage I/O L19P_3 L29P_3 L31P_3 I/O I/O L19N_3 L25P_3 I/O L31N_0 L46P_0 L20P_3 I/O GND I/O L31P_0 I/O INPUT L25N_3 INPUT INPUT L47P_0 INPUT L20N_3 VREF_3 I/O L32N_0 VREF_0 N.C. L52P_0 VREF_0 I/O TDI I/O L37P_0 K L24P_3 I/O L30N_0 I/O I/O I/O L29N_0 I/O L40N_0 L48N_0 VCCO_0 L29P_0 L32P_0 INPUT N.C. GND 12 I/O I/O VREF_0 VCCAUX 11 L34P_0 I/O L09P_3 L17N_3 GND L44N_0 I/O L16P_3 L33P_0 L38N_0 L07N_3 INPUT L36P_0 I/O I/O L16N_3 L38P_0 L42P_0 L14N_3 INPUT 10 I/O I/O I/O G 9 I/O L41P_0 L11N_3 GND INPUT 8 I/O I/O N.C. I/O GND 7 L44P_0 TMS L07P_3 6 INPUT Bank 3 4 I/O 5 J User I/O, input, or 32 CLK: clock buffer input 2 4 F H User I/O or input 38 VREF: voltage reference for bank 3 L02N_3 INPUT Unrestricted, 313 I/O: general-purpose user I/O 2 GND PR A G _B Left Half of FG676 Package (Top View) 2 GND I/O L13N_2 I/O I/O I/O I/O L09P_2 L13P_2 L16P_2 L20P_2 I/O I/O L05P_2 L09N_2 I/O I/O L05N_2 L12P_2 INPUT I/O VREF_2 L12N_2 I/O INPUT L15P_2 VREF_2 VCCO_2 I/O I/O L16N_2 L20N_2 I/O I/O INPUT L17P_2 RDWR_B L25N_2 GCLK13 I/O I/O GND L17N_2 VS2 L25P_2 GCLK12 VCCAUX I/O L21P_2 I/O I/O INPUT I/O I/O L14P_2 L15N_2 VREF_2 L23N_2 L21N_2 GND INPUT INPUT I/O I/O I/O L10N_2 L11N_2 L18P_2 GND INPUT I/O L18N_2 Bank 2 I/O I/O L19P_2 VS1 L22P_2 D7 I/O I/O L19N_2 VS0 L22N_2 D6 INPUT INPUT I/O INPUT L23P_2 VREF_2 I/O I/O VCCO_2 L24N_2 D4 L26N_2 GCLK15 I/O I/O GND L24P_2 D5 L26P_2 GCLK14 GND DS529-4_07_102506 Figure 27: FG676 Package Footprint (Top View) DS529-4 (v2.0) August 19, 2010 www.xilinx.com 129 Pinout Descriptions Bank 0 I/O L26N_0 GCLK7 I/O L26P_0 GCLK6 GND INPUT VREF_0 I/O L24P_0 15 I/O L23N_0 I/O L23P_0 19 20 I/O I/O I/O L18N_0 L15N_0 L14N_0 I/O I/O I/O L19N_0 L18P_0 L15P_0 I/O I/O I/O L21N_0 L19P_0 L17N_0 INPUT I/O I/O I/O L22P_0 L21P_0 L17P_0 I/O L20N_0 VREF_0 I/O L20P_0 I/O L16P_0 I/O L16N_0 I/O L25N_0 GCLK5 VCCO_0 INPUT 18 I/O I/O GND GND 17 L22N_0 L24N_0 INPUT 16 INPUT I/O VCCAUX GND INPUT VCCO_0 I/O L13N_0 I/O I/O I/O L08P_0 INPUT VREF_0 I/O VCCINT GND VCCINT GND VCCINT GND VCCINT GND L12N_0 N.C. GND INPUT VCCAUX VCCINT GND GND I/O I/O I/O L09P_0 L05N_0 L06N_0 I/O VCCINT L27N_1 A7 GND GND I/O I/O L35N_2 L42N_2 TCK GND INPUT L65N_1 GND I/O I/O L63N_1 A23 L63P_1 A22 I/O I/O I/O I/O I/O I/O I/O L11P_0 L10N_0 L05P_0 L06P_0 L61N_1 L61P_1 L60N_1 VCCAUX TDO INPUT I/O I/O I/O L01N_0 I/O I/O L10P_0 GND I/O I/O L01P_0 L64N_1 A25 I/O I/O L64P_1 A24 L62N_1 A21 I/O I/O I/O L59P_1 L59N_1 L62P_1 A20 L58P_1 VREF_1 I/O L56P_1 VCCO_1 I/O I/O I/O L56N_1 L54N_1 L54P_1 INPUT L52N_1 VREF_1 INPUT INPUT INPUT L48P_1 L48N_1 L44N_1 I/O I/O GND L43N_1 A19 L43P_1 A18 I/O I/O I/O INPUT I/O I/O L46N_1 L46P_1 L40P_1 L41P_1 L41N_1 I/O INPUT L50P_1 L40N_1 VCCO_1 GND I/O I/O L47N_1 L47P_1 I/O L53P_1 I/O L42N_1 A17 GND I/O I/O L45P_1 L45N_1 I/O I/O I/O L39P_1 A14 L34N_1 RHCLK7 L42P_1 A16 I/O I/O GND L30N_1 RHCLK1 L30P_1 RHCLK0 L34P_1 IRDY1 RHCLK6 I/O L27P_1 A6 I/O I/O L17P_1 I/O I/O L22P_1 L22N_1 VCCO_1 I/O L14N_1 I/O L37N_1 VCCO_1 I/O L37P_1 I/O INPUT I/O I/O L36P_1 VREF_1 L35N_1 A11 L35P_1 A10 INPUT INPUT L32N_1 L32P_1 INPUT L36N_1 I/O L33N_1 RHCLK5 I/O I/O L33P_1 RHCLK4 GND I/O I/O INPUT L25P_1 A2 L25N_1 A3 L28P_1 VREF_1 I/O I/O GND VCCAUX L26P_1 A4 L26N_1 A5 INPUT L28N_1 I/O I/O I/O I/O I/O I/O I/O L12P_1 L10N_1 L14P_1 L21N_1 L23P_1 I/O I/O L08P_1 L08N_1 VCCO_2 I/O I/O INPUT L27P_2 GCLK0 L34N_2 D3 2 VREF_2 I/O I/O L27N_2 GCLK1 L34P_2 INIT_B I/O VCCO_2 L30N_2 MOSI CSI_B GND I/O L38N_2 I/O I/O I/O L29N_2 L30P_2 L38P_2 I/O L29P_2 I/O L32P_2 AWAKE I/O I/O L28N_2 GCLK3 L32N_2 DOUT I/O L28P_2 GCLK2 INPUT VREF_2 INPUT VCCO_2 GND I/O N.C. GND L46P_2 I/O N.C. N.C. L43N_2 I/O I/O L43P_2 L47N_2 INPUT INPUT I/O L33N_2 I/O L33P_2 INPUT VREF_2 I/O L47P_2 INPUT GND I/O L36N_2 D1 I/O L36P_2 D2 INPUT VCCO_2 EN I/O L46N_2 SP I/O L42P_2 SU I/O L23N_1 VREF_1 L31N_1 TRDY1 RHCLK3 VCCO_1 GND T INPUT L24P_1 L20N_1 VREF_1 INPUT INPUT L16P_1 L20P_1 I/O I/O L01N_1 LDC2 INPUT INPUT GND DONE I/O I/O I/O L40N_2 L41N_2 L45N_2 I/O I/O I/O I/O INPUT L13P_1 L13N_1 L15P_1 L15N_1 L16N_1 I/O I/O I/O I/O L09P_1 L09N_1 L11P_1 L11N_1 VCCAUX N.C. I/O I/O I/O I/O L40P_2 L41P_2 L44N_2 L45P_2 I/O I/O I/O L37N_2 L39N_2 L44P_2 I/O I/O L37P_2 L39P_2 Bank 2 130 I/O L19N_1 GND GND VCCO_2 I/O I/O L07P_1 L07N_1 VREF_1 I/O I/O L03P_1 A0 L03N_1 A1 VCCO_1 GND I/O I/O L48N_2 L52N_2 CCLK I/O INPUT I/O VREF_2 L48P_2 L52P_2 D0 DIN/MISO GND I/O L06N_1 I/O I/O L05N_1 L06P_1 I/O N.C. L02N_1 LDC0 I/O L51N_2 I/O L51P_2 U INPUT I/O L01P_1 HDC VREF_2 INPUT L24N_1 VREF_1 L19P_1 I/O P R I/O L18P_1 N I/O L21P_1 VCCO_1 M L29N_1 A9 I/O I/O L I/O L18N_1 L04N_1 K L29P_1 A8 I/O I/O J I/O L31P_1 RHCLK2 L10P_1 L04P_1 H I/O L38P_1 A12 L38N_1 A13 L12N_1 L35P_2 I/O INPUT L44P_1 VREF_1 I/O I/O L31N_2 L52P_1 L50N_1 VCCO_1 E G I/O L51N_1 L49P_1 D INPUT I/O L51P_1 I/O C F I/O L49N_1 B GND I/O L31P_2 GND I/O L60P_1 L58N_1 VCCO_1 Right Half of FG676 Package (Top View) A INPUT L65P_1 VREF_1 L53N_1 L17N_1 GND 26 D VCCAUX VCCINT 25 I/O I/O VCCAUX N.C. I/O L07P_0 I/O I/O VCCINT VCCINT INPUT N.C. L57P_1 L55P_1 A15 VCCO_0 24 L11N_0 L02N_0 GND I/O L09N_0 L07N_0 23 I/O I/O I/O VCCINT L39N_1 VCCO_0 I/O L14P_0 VREF_0 GND 22 I/O L57N_1 L55N_1 VCCINT INPUT L02P_0 VREF_0 L08N_0 I/O VCCINT N.C. L13P_0 L12P_0 L25P_0 GCLK4 INPUT GND 21 Bank 1 14 I/O L05P_1 I/O L02P_1 LDC1 GND V W Y A A A B A C A D A E A F DS529-4_08_012009 www.xilinx.com DS529-4 (v2.0) August 19, 2010 Pinout Descriptions Revision History The following table shows the revision history for this document. Date Version 12/05/06 1.0 Initial release. 02/02/07 1.1 Promoted to Preliminary status. Added DOUT pin to DUAL-type pins in Table 57. Corrected counts for DUAL pins and differential pairs in Table 59. Corrected minor typographical error on pin names for pin numbers P24 and P25 in Table 66. Highlighted the differences in differential I/O pairs between the XC3S50A and XC3S200A in the FT256 package, shown in Table 68 and added Table 74 and Table 75 to summarize the differences. 03/16/07 1.2 Corrected minor typographical error in Figure 19. 04/23/07 1.3 Added reference to compatible Spartan-3A DSP family. 05/08/07 1.4 Added note regarding banking rules. 07/10/07 1.5 Updated Thermal Characteristics in Table 62. 04/15/08 1.6 Added VQ100 for XC3S50A and XC3S200A and added FT256 for XC3S700A and XCS1400A to Table 58, Table 59, and Table 62. Updated Thermal Characteristics with latest data in Table 62. Corrected bank for T8 and type for U16 in Table 86. Removed VREF name on 6 unconnected N.C. pins for XC3S1400A FG676 in Table 87 and Figure 27. These pins are noted as VREF if migrating up to the XC3SD1800A in Table 89. 05/28/08 1.7 Added "Package Overview" section. 03/06/09 1.8 Corrected bank designation for SUSPEND to VCCAUX. Corrected bank designation for JTAG pins in XC3S700A and XC3S1400A FT256 to VCCAUX. 08/19/10 2.0 Corrected pin 36 number in Figure 17 and Figure 18. Noted difference in FT256 P10/T10 function between XC3S50A and larger devices in Table 68 and Table 74. DS529-4 (v2.0) August 19, 2010 Revision www.xilinx.com 131 Pinout Descriptions 132 www.xilinx.com DS529-4 (v2.0) August 19, 2010