TOREX XC9251B085QR-G

XC9250/XC9251 Series
ETR05023-004
30V Driver Transistor Built-In Step-Down DC/DC Converters
■GENERAL DESCRIPTION
The XC9250/XC9251 series are 30V operation step-down DC/DC converter ICs with an internal driver transistor. The internal Nch driver
transistor is driven by bootstrap to achieve a stable, high-efficiency power supply up to an output current of 2.0A. Low ESR capacitors such as
ceramic capacitors can be used for the load capacitor (CL).
A 0.8V reference voltage source is incorporated in the IC, and the output voltage can be set to a value from 1.2V to 12.0V using external
resistors (RFB1, RFB2).
300kHz or 500kHz can be selected for the switching frequency. The generation of unneeded noise can be suppressed by synchronizing to an
external CLK in a range of ±25% of the free running frequency using the SYNC pin. In automatic PWM/PFM control, the IC operates by PFM
control when the load is light to achieve high efficiency over the full load range from light to heavy.
The soft start time can be set as desired by adding an external capacitance to the SS pin.
With the built-in UVLO function, the driver transistor is forced OFF when input voltage becomes 4.5V or lower.
Internal protection circuits include over current protection, integral latch protection, short-circuit protection, and thermal shutdown circuits to
enable safe use.
■APPLICATIONS
● Car navigation systems
● Car audios
● Industrial equipment
■FEATURES
Input Voltage
:
7~30V
FB Voltage
:
0.8V±2%
300kHz, 500kHz
Oscillation Frequency
:
Maximum Output Current
:
2.0A
Control Method
:
PWM (XC9250)
PWM/PFM (XC9251)
Soft-start
:
Protection Circuit
:
External Capacitor
(set by external capacitor C)
Over Current Protection 3.2A (TYP.)
Integral Latch Method (XC9250/51A)
Automatic Recovery (XC9250/51B)
Thermal Shutdown
Low ESR Ceramic Capacitor
:
Ceramic Capacitor
Operating Ambient Temperature
:
-40℃ ~ +105℃
Package
:
SOP-8FD
Environmentally Friendly
:
EU RoHS Compliant, Pb Free
*Performance depends on external components and wiring on the PCB.
■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE
CHARACTERISTICS
XC9250x085/XC9251x085
(VIN=12V , VOUT=5V)
L=15μH(CLF12555-150M), C IN1 =10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL =22μF×2(GRM32ER71E226KE15L)
100
Efficiency :EFFI[%]
90
80
70
60
50
40
30
20
XC9251
10
XC9250
0
1
10
100
1000
10000
Output Current :IOUT[mA]
1/28
XC9250/XC9251 Series
■BLOCK DIAGRAM
1) XC9250 Series, Type A
* Diodes inside the circuit are ESD protection diodes and parasitic diodes.
2) XC9250 Series, Type B
* Diodes inside the circuit are ESD protection diodes and parasitic diodes.
2/28
XC9250/XC9251
Series
■BLOCK DIAGRAM (Continued)
3) XC9251 Series, Type A
* Diodes inside the circuit are ESD protection diodes and parasitic diodes.
4) XC9251 Series, Type B
* Diodes inside the circuit are ESD protection diodes and parasitic diodes.
3/28
XC9250/XC9251 Series
■PRODUCT CLASSIFICATION
●Ordering Information
XC9250①②③④⑤⑥-⑦
PWM
XC9251①②③④⑤⑥-⑦
PWM/PFM Auto
DESIGNATOR
ITEM
①
Functional selection
②③
Adjustable Output Voltage
④
Oscillation Frequency
⑤⑥-⑦ (*1)
Package (Order Unit)
(*1)
SYMBOL
A
DESCRIPTION
Refer to Selection Guide
B
08
Output voltage can be adjusted in 1.2V to 12V
3
300kHz
5
500kHz
QR-G
SOP-8FD (1,000/Reel)
The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.
●Selection Guide
TYPE
CURRENT
LIMITTER
LATCH
PROTECTION
CHIP ENABLE
UVLO
A
YES
YES (*1)
YES
YES
B
YES
NO
YES
YES
TYPE
THERMAL
SHUTDOWN
SOFT-START
SYNCHRONIZED with
EXTERNAL CLOCK
A
YES
YES
YES
B
YES
YES
YES
(*1)
The over-current protection latch is an integral latch type.
■PIN CONFIGURATION
* The dissipation pad for this IC should be solder-plated for mounting strength and heat
dissipation.
Please refer to the reference mount pattern and metal masking.
pad should be connected to the GND (No. 6) pin.
4/28
The dissipation
XC9250/XC9251
Series
■PIN ASSIGNMENT
PIN NUMBER
PIN NAME
FUNCTIONS
1
VIN
Power Input
2
CE
Chip Enable
3
SYNC
External CLK Sync Pin
4
FB
Output Voltage Sense
5
SS
Soft-start Adjustment
6
GND
Ground
7
BST
Bootstrap
8
Lx
Switching Output
SIGNAL
STATUS
L
Stand-by
H
Active
OPEN
Undefined State (*1)
SOP-8FD
■FUNCTION
PIN NAME
CE
L
SYNC
(*1)
H
Operates with internal clock frequency
CLK
Synchronizes with External Clock Signal
OPEN
Undefined State (*1)
Please do not leave the CE and SYNC pin open.
■ABSOLUTE MAXIMUM RATINGS
Ta=25℃
PARAMETER
SYMBOL
RATINGS
VIN Pin Voltage
VIN
-0.3 ~ +36
(*1)
UNITS
V
(*2)
V
BST Pin Voltage
VBST
FB Pin Voltage
VFB
-0.3 ~ +6.5
V
SYNC Pin Voltage
VSYNC
-0.3 ~ +6.5
V
CE Pin Voltage
VCE
-0.3 ~ +36
V
SS Pin Voltage
VCSS
-0.3 ~ +6.5
-0.3 or VLX-0.3
~ VLX+6.5 or +36
V
(*3)
V
Lx Pin Voltage
VLx
Lx Pin Current
ILx
Power Dissipation
Pd
Surge Voltage
VSURGE
Operating Ambient Temperature
Topr
-40 ~ +105
℃
Storage Temperature
Tstg
-55 ~ +125
℃
-0.3 ~ VIN+0.3 or +36
4.2
300
1500 (PCB mounted)
46 (*4)
A
mW
V
* All voltages are described based on the GND pin.
(*1)
The maximum value should be either -0.3 or VLX-0.3 in the lowest.
(*2)
The maximum value should be either VLX+6.5 or +36 in the lowest.
(*3)
The maximum value should be either VIN+0.3 or +36 in the lowest.
(*4)
Applied Time≦400ms
5/28
XC9250/XC9251 Series
■ELECTRICAL CHARACTERISTICS
Ta=25℃
●XC9250A/B083
PARAMETER
FB Voltage
SYMBOL
VFB1
FB Voltage
∆VFB/
Temperature Characteristics
(∆Topr・VFB)
Output Voltage
Setting Range
Operating Voltage Range
VOUTSET
VIN
CONDITIONS
VFB=0.816V→0.784V, VSS=6V,
VFB Voltage when Lx pin oscillates
-40℃≦Topr≦105℃
MIN.
TYP.
MAX.
UNITS
CIRCUIT
0.784
0.8
0.816
V
③
-
±50
-
ppm/℃
③
-
12
V
-
(*1)
-
1.2
-
7
-
30
V
-
4.3
4.6
4.9
V
③
4.7
5.0
5.3
V
③
VIN=4.9V→4.3V, VFB=0.65V, VSS=6V
UVLO detect voltage
VUVLO1
VIN Voltage when Lx pin voltage changes from "H"
level to "L" level
VIN=4.7V→5.3V, VFB=0.65V, VSS=6V
UVLO release voltage
VUVLO2
VIN Voltage when Lx pin voltage changes from "L"
level to "H" level
Quiescent Current
Iq
VIN=VCE=30V, VFB=0.95V
-
200
310
μA
④
Stand-by Current
ISTB
VIN=30V, VCE=0V, VSS=0V, VSYNC=0V
-
0.01
0.1
μA
④
Oscillation Frequency
fOSC
Connected to external components, IOUT=300mA
270
300
330
kHz
①
External Clock Signal
SYNCOSC
Connected to external components, IOUT=0mA
fOSCx0.75
fOSC
fOSCx1.25
kHz
②
DSYNC
Connected to external components, IOUT=0mA
25
-
75
%
②
Maximum Duty Cycle
DMAX
VFB=0.65V
83
85
88
%
③
Minimum Duty Cycle
DMIN
VFB=0.95V
-
-
0
%
③
Lx SW On Resistance
RLx
VFB=0.65V, VSS=6V
-
0.3
0.6
Ω
③
VFB=0.65V, VSS=6V
2.4
3.2
-
A
③
0.8
1.3
1.8
ms
⑤
0.35
0.40
0.45
V
⑤
0.8
1.3
2.0
ms
③
9
15
24
ms
③
-
91
-
%
①
1.5
-
6
V
②
Synchronized Frequency
External Clock Signal
Duty Cycle
Current Limit
(*2)
ILIM
Latch Time
tLAT
Short Detect Voltage
VSHORT
XC9250A series only
Connected to external components, VFB=0.65V, VSS=6V
XC9250B series only, Connected to external components,
VFB=0.45V→0.35V, VSS=6V
VFB Voltage when Oscillation Frequency is decreased
Internal Soft-start Time
tSS1
External Soft-start Time
tSS2
Efficiency
(*3)
EFFI
SYNC ‘H’ Voltage
VSYNCH
VCE=0→12V, VSS=6V, VFB=VFB1×0.9V
Time until Lx pin oscillates
VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF
Time until Lx pin oscillates
Connected to external components, IOUT=1A
Connected to external components, IOUT=0mA
SYNC ‘L’ Voltage
VSYNCL
Connected to external components, IOUT=0mA
-
-
0.4
V
②
SYNC ‘H’ Current
ISYNCH
VIN=VCE=30V, VSYNC=6V, VFB=0.95V
-0.1
0
0.1
μA
④
SYNC ‘L’ Current
ISYNCL
VIN=VCE=30V, VSYNC=0V, VFB=0.95V
-0.1
0
0.1
μA
④
FB ‘H’ Current
IFBH
VIN=VCE=30V, VFB=6V, VSS=6V
-0.1
0
0.1
V
④
FB ‘L’ Current
IFBL
VIN=VCE=30V, VFB=0V, VSS=6V
-0.1
0
0.1
V
④
2.8
-
30
V
③
-
-
1
V
③
0
0.1
μA
④
VCE=1.0V→2.8V, VFB=0.65V, VSS=6V
CE ‘H’ Voltage
VCEH
CE ‘L’ Voltage
VCEL
CE ‘H’ Current
ICEH
VIN=VCE=30V, VFB=0.95V
-0.1
VCE Voltage when Lx pin voltage changes from "L" level to "H"
VCE=2.8V→1.0V, VFB=0.65V, VSS=6V
VCE Voltage when Lx pin voltage changes from "H" level to "L"
CE ‘L’ Current
ICEL
VIN=30V, VCE=0V, VFB=0.95V
-0.1
0
0.1
μA
④
Thermal Shutdown Temperature
TTSD
Junction Temperature
-
150
-
℃
-
Hysteresis Width
THYS
Junction Temperature
-
25
-
℃
-
NOTE:
Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V
External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF
(*1)
Limited by a minimum ON time of 0.22μs (TYP.).
(*2)
Current limit denotes the level of detection at peak of coil current.
(*3)
EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100
6/28
XC9250/XC9251
Series
■ ELECTRICAL CHARACTERISTICS (Continued)
●XC9251A/B083
Ta=25℃
PARAMETER
SYMBOL
FB Voltage
VFB1
FB Voltage
∆VFB/
Temperature Characteristics
(∆Topr・VFB)
Output Voltage
Setting Range
Operating Voltage Range
VOUTSET
VIN
CONDITIONS
VFB=0.816V→0.784V, VSS=6V
VFB Voltage when Lx pin oscillates
-40℃≦Topr≦105℃
MIN.
TYP.
MAX.
UNITS
CIRCUIT
0.784
0.8
0.816
V
③
-
±50
-
ppm/℃
③
V
-
(*1)
-
VIN-3 or
-
1.2
-
7
-
30
V
-
4.3
4.6
4.9
V
③
4.7
5.0
5.3
V
③
12
(*2)
VIN=4.9V→4.3V, VFB=0.65V, VSS=6V
UVLO detect voltage
VUVLO1
VIN Voltage when Lx pin voltage changes from "H"
level to "L" level
VIN=4.7V→5.3V, VFB=0.65V, VSS=6V
UVLO release voltage
VUVLO2
VIN Voltage when Lx pin voltage changes from "L"
level to "H" level
Quiescent Current
Iq
VIN=VCE=30V, VFB=0.95V
-
200
310
μA
④
Stand-by Current
ISTB
VIN=30V, VCE=0V, VSS=0V, VSYNC=0V
-
0.01
0.1
μA
④
Oscillation Frequency
fOSC
Connected to external components, IOUT=300mA
270
300
330
kHz
①
External Clock Signal
SYNCOSC
Connected to external components, IOUT=0mA
fOSCx0.75
fOSC
fOSCx1.25
kHz
②
DSYNC
Connected to external components, IOUT=0mA
25
-
75
%
②
Maximum Duty Cycle
DMAX
VFB=0.65V
83
85
88
%
③
③
Synchronized Frequency
External Clock Signal
Duty Cycle
Minimum Duty Cycle
DMIN
VFB=0.95V
-
-
0
%
Lx SW On Resistance
RLx
VFB=0.65V, VSS=6V
-
0.3
0.6
Ω
③
PFM Switch Current
IPFM
Connected to external components, IOUT=0mA
80
160
240
mA
①
VFB=0.65V, VSS=6V
2.4
3.2
-
A
③
0.8
1.3
1.8
ms
⑤
0.35
0.40
0.45
V
⑤
0.8
1.3
2.0
ms
③
9
15
24
ms
③
Current Limit
(*3)
ILIM
Latch Time
tLAT
Short Detect Voltage
VSHORT
XC9251A series only, Connected to external components,
VFB=0.65V, VSS=6V
XC9251B series only, Connected to external components,
VFB=0.45V→0.35V, VSS=6V
VFB Voltage when Oscillation Frequency is decreased
Internal Soft-start Time
tSS1
External Soft-start Time
tSS2
Efficiency
(*4)
EFFI
VCE=0→12V, VSS=6V, VFB=VFB1×0.9V
Time until Lx pin oscillates
VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF
Time until Lx pin oscillates
-
91
-
%
①
SYNC ‘H’ Voltage
VSYNCH
Connected to external components, IOUT=0mA
Connected to external components, IOUT=1A
1.5
-
6
V
②
SYNC ‘L’ Voltage
VSYNCL
Connected to external components, IOUT=0mA
-
-
0.4
V
②
SYNC ‘H’ Current
ISYNCH
VIN=VCE=30V, VSYNC=6V, VFB=0.95V
-0.1
0
0.1
μA
④
SYNC ‘L’ Current
ISYNCL
VIN=VCE=30V, VSYNC=0V, VFB=0.95V
-0.1
0
0.1
μA
④
FB ‘H’ Current
IFBH
VIN=VCE=30V, VFB=6V, VSS=6V
-0.1
0
0.1
V
④
FB ‘L’ Current
IFBL
VIN=VCE=30V, VFB=0V, VSS=6V
-0.1
0
0.1
V
④
2.8
-
30
V
③
-
-
1
V
③
VCE=1.0V→2.8V, VFB=0.65V, VSS=6V
CE ‘H’ Voltage
VCEH
CE ‘L’ Voltage
VCEL
CE ‘H’ Current
ICEH
VIN=VCE=30V, VFB=0.95V
-0.1
0
0.1
μA
④
CE ‘L’ Current
ICEL
VIN=30V, VCE=0V, VFB=0.95V
-0.1
0
0.1
μA
④
Thermal Shutdown Temperature
TTSD
Junction Temperature
-
150
-
℃
-
Hysteresis Width
THYS
Junction Temperature
-
25
-
℃
-
VCE Voltage when Lx pin voltage changes from "L" level to "H"
VCE=2.8V→1.0V, VFB=0.65V, VSS=6V
VCE Voltage when Lx pin voltage changes from "H" level to "L"
NOTE:
Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V
External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF
(*1)
Limited by a minimum ON time of 0.22μs (TYP.).
(*2)
VIN-3 or 12, whichever is lower.
(*3)
Current limit denotes the level of detection at peak of coil current.
(*4)
EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100
7/28
XC9250/XC9251 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XC9250A/B085
Ta=25℃
PARAMETER
SYMBOL
FB Voltage
VFB1
FB Voltage
∆VFB/
Temperature Characteristics
(∆Topr・VFB)
Output Voltage
Setting Range
Operating Voltage Range
CONDITIONS
VFB=0.816V→0.784V, VSS=6V
VFB Voltage when Lx pin oscillates
-40℃≦Topr≦105℃
MIN.
TYP.
MAX.
UNITS
CIRCUIT
0.784
0.8
0.816
V
③
-
±50
-
ppm/℃
③
-
12
V
-
7
-
30
V
-
4.3
4.6
4.9
V
③
4.7
5.0
5.3
V
③
-
250
360
μA
④
1.2
VOUTSET
VIN
(*1)
VIN=4.9V→4.3V, VFB=0.65V, VSS=6V
UVLO detect voltage
VUVLO1
VIN Voltage when Lx pin voltage changes from "H"
level to "L" level
VIN=4.7V→5.3V, VFB=0.65V, VSS=6V
UVLO release voltage
VUVLO2
VIN Voltage when Lx pin voltage changes from "L"
level to "H" level
Quiescent Current
Iq
VIN=VCE=30V, VFB=0.95V
Stand-by Current
ISTB
VIN=30V, VCE=0V, VSS=0V, VSYNC=0V
Oscillation Frequency
fOSC
Connected to external components, IOUT=300mA
External Clock Signal
Synchronized Frequency
External Clock Signal
Duty Cycle
-
0.01
0.1
μA
④
450
500
550
kHz
①
SYNCOSC
Connected to external components, IOUT=0mA
fOSCx0.75
fOSC
fOSCx1.25
kHz
②
DSYNC
Connected to external components, IOUT=0mA
25
-
75
%
②
③
Maximum Duty Cycle
DMAX
VFB=0.65V
83
85
88
%
Minimum Duty Cycle
DMIN
VFB=0.95V
-
-
0
%
③
Lx SW On Resistance
RLx
VFB=0.65V, VSS=6V
-
0.3
0.6
Ω
③
VFB=0.65V, VSS=6V
2.4
3.2
-
A
③
0.4
0.7
1.0
ms
⑤
0.35
0.40
0.45
V
⑤
0.4
0.7
1.2
ms
③
5
9
15
ms
③
Current Limit
(*2)
ILIM
Latch Time
tLAT
Short Detect Voltage
VSHORT
XC9250A series only, Connected to external components,
VFB=0.65V, VSS=6V
XC9250B series only, Connected to external components,
VFB=0.45V→0.35V, VSS=6V
VFB Voltage when Oscillation Frequency is decreased
Internal Soft-start Time
tSS1
External Soft-start Time
tSS2
Efficiency
(*3)
EFFI
VCE=0→12V, VSS=6V, VFB=VFB1×0.9V
Time until Lx pin oscillates
VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF
Time until Lx pin oscillates
-
91
-
%
①
SYNC ‘H’ Voltage
VSYNCH
Connected to external components, IOUT=0mA
Connected to external components, IOUT=1A
1.5
-
6
V
②
SYNC ‘L’ Voltage
VSYNCL
Connected to external components, IOUT=0mA
-
-
0.4
V
②
SYNC ‘H’ Current
ISYNCH
VIN=VCE=30V, VSYNC=6V, VFB=0.95V
-0.1
0
0.1
μA
④
SYNC ‘L’ Current
ISYNCL
VIN=VCE=30V, VSYNC=0V, VFB=0.95V
-0.1
0
0.1
μA
④
FB ‘H’ Current
IFBH
VIN=VCE=30V, VFB=6V, VSS=6V
-0.1
0
0.1
V
④
FB ‘L’ Current
IFBL
VIN=VCE=30V, VFB=0V, VSS=6V
-0.1
0
0.1
V
④
2.8
-
30
V
③
-
-
1
V
③
VCE=1.0V→2.8V, VFB=0.65V, VSS=6V
CE ‘H’ Voltage
VCEH
CE ‘L’ Voltage
VCEL
CE ‘H’ Current
ICEH
VIN=VCE=30V, VFB=0.95V
-0.1
0
0.1
μA
④
CE ‘L’ Current
ICEL
VIN=30V, VCE=0V, VFB=0.95V
-0.1
0
0.1
μA
④
Thermal Shutdown Temperature
TTSD
Junction Temperature
-
150
-
℃
-
Hysteresis Width
THYS
Junction Temperature
-
25
-
℃
-
VCE Voltage when Lx pin voltage changes from "L" level to "H"
VCE=2.8V→1.0V, VFB=0.65V, VSS=6V
VCE Voltage when Lx pin voltage changes from "H" level to "L"
NOTE:
Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V
External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF
(*1)
Limited by a minimum ON time of 0.15μs (TYP.).
(*2)
Current limit denotes the level of detection at peak of coil current.
(*3)
EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100
8/28
XC9250/XC9251
Series
■ ELECTRICAL CHARACTERISTICS (Continued)
●XC9251A/B085
Ta=25℃
PARAMETER
SYMBOL
FB Voltage
VFB1
FB Voltage
Temperature Characteristics
∆VFB/
(∆Topr・VFB)
Output Voltage
Setting Range
VOUTSET
Operating Voltage Range
VIN
CONDITIONS
VFB=0.816V→0.784V, VSS=6V
VFB Voltage when Lx pin oscillates
-40℃≦Topr≦105℃
MIN.
TYP.
MAX.
UNITS
CIRCUIT
0.784
0.8
0.816
V
③
-
±50
-
ppm/℃
③
V
-
V
-
7
-
VIN-3
or
(*2)
12
30
4.3
4.6
4.9
V
③
4.7
5.0
5.3
V
③
450
250
0.01
500
360
0.1
550
μA
μA
kHz
④
④
①
1.2
VIN=4.9V→4.3V, VFB=0.65V, VSS=6V
VIN Voltage when Lx pin voltage changes from "H"
level to "L" level
VIN=4.7V→5.3V, VFB=0.65V, VSS=6V
VIN Voltage when Lx pin voltage changes from "L"
level to "H" level
VIN=VCE=30V, VFB=0.95V
VIN=30V, VCE=0V, VSS=0V, VSYNC=0V
Connected to external components, IOUT=300mA
(*1)
-
UVLO detect voltage
VUVLO1
UVLO release voltage
VUVLO2
Quiescent Current
Stand-by Current
Oscillation Frequency
Iq
ISTB
fOSC
External Clock Signal
Synchronized Frequency
SYNCOSC
Connected to external components, IOUT=0mA
fOSCx0.75
fOSC
fOSCx1.25
kHz
②
DSYNC
Connected to external components, IOUT=0mA
25
-
75
%
②
DMAX
DMIN
RLx
IPFM
ILIM
VFB=0.65V
VFB=0.95V
VFB=0.65V, VSS=6V
Connected to external components, IOUT=0mA
VFB=0.65V, VSS=6V
XC9251A series only, Connected to external components,
VFB=0.65V, VSS=6V
XC9251B series only, Connected to external components,
VFB=0.45V→0.35V, VSS=6V
VFB Voltage when Oscillation Frequency is decreased
VCE=0→12V, VSS=6V, VFB=VFB1×0.9V
Time until Lx pin oscillates
VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF
Time until Lx pin oscillates
Connected to external components, IOUT=1A
Connected to external components, IOUT=0mA
Connected to external components, IOUT=0mA
VIN=VCE=30V, VSYNC=6V, VFB=0.95V
VIN=VCE=30V, VSYNC=0V, VFB=0.95V
VIN=VCE=30V, VFB=6V, VSS=6V
VIN=VCE=30V, VFB=0V, VSS=6V
VCE=0.8V→2.8V, VFB=0.65V, VSS=6V
VCE Voltage when Lx pin voltage changes from "L" level to "H"
VCE=2.8V→0.8V, VFB=0.65V, VSS=6V
VCE Voltage when Lx pin voltage changes from "H" level to "L"
VIN=VCE=30V, VFB=0.95V
VIN=30V, VCE=0V, VFB=0.95V
Junction Temperature
Junction Temperature
83
80
2.4
85
0.3
160
3.2
88
0
0.6
240
-
%
%
Ω
mA
A
③
③
③
①
③
0.4
0.7
1.0
ms
⑤
0.35
0.40
0.45
V
⑤
0.4
0.7
1.2
ms
③
5
9
15
ms
③
1.5
-0.1
-0.1
-0.1
-0.1
91
0
0
0
0
6
0.4
0.1
0.1
0.1
0.1
%
V
V
μA
μA
V
V
①
②
②
④
④
④
④
2.8
-
30
V
③
-
-
1
V
③
-0.1
-0.1
-
0
0
150
25
0.1
0.1
-
μA
μA
℃
℃
④
④
-
External Clock Signal
Duty Cycle
Maximum Duty Cycle
Minimum Duty Cycle
Lx SW On Resistance
PFM Switch Current
(*3)
Current Limit
Latch Time
tLAT
Short Detect Voltage
VSHORT
Internal Soft-Start Time
tSS1
External Soft-Start Time
tSS2
(*4)
Efficiency
SYNC ‘H’ Voltage
SYNC ‘L’ Voltage
SYNC ‘H’ Current
SYNC ‘L’ Current
FB ‘H’ Current
FB ‘L’ Current
EFFI
VSYNCH
VSYNCL
ISYNCH
ISYNCL
IFBH
IFBL
CE ‘H’ Voltage
VCEH
CE ‘L’ Voltage
VCEL
CE ‘H’ Current
CE ‘L’ Current
Thermal Shutdown Temperature
Hysteresis Width
ICEH
ICEL
TTSD
THYS
NOTE:
Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V
External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF
(*1)
Limited by a minimum ON time of 0.15μs (TYP.).
(*2)
VIN-3 or 12, whichever is lower.
(*3)
Current limit denotes the level of detection at peak of coil current.
(*4)
EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100
9/28
XC9250/XC9251 Series
■TEST CIRCUITS
Circuit①
A
VIN
BST
SS
Lx
SYNC
FB
Probe
1μF
22μH
V
10μF
CE
A
CFB
RFB1
RFB2 47μF
SBD
GND
V
Circuit②
Circuit③
Probe
A
VIN
CE
BST
6V
V
10μF
0.01μF
10/28
SS
Lx
SYNC
FB
V
GND
V
V
XC9250/XC9251
Series
■TEST CIRCUITS (Continued)
Circuit④
Circuit⑤
11/28
XC9250/XC9251 Series
■TYPICAL APPLICATION CIRCUIT
【Typical Examples】
MANUFACTURER
PRODUCT NUMBER
VALUE
CLF12555-150M
15μH
CLF12555-220M
22μH
CLF12555-330M
33μH
Toho Zinc
TCM-0840-200
20μH
CIN1
Murata
GRM32ER71H106K
10μF/50V
CIN2
Murata
GRM21BB31H105K
1μF/50V
GRM32ER71A476K
47μF/10V
GRM32ER71E226K
22μF/25V 2parallel
Panasonic
25SVPD47M
47μF/25V, ESR=30mΩ
TOSHIBA
CMS15
TDK
L
Murata
CL
SBD
(*1)
(*2)
VF=0.58V (3A)
CSS
0.01μF/10V (*1)
CSYNC
1000pF/10V (*2)
CBST
1μF/10V
Can also be used without CSS (SS pin OPEN). When used without CSS, the IC starts at the soft start time set internally.
Can be used without CSYNC if the external CLK synchronization function is not used. In this case, connect the SYNC pin to GND in close
proximity to the IC.
<Output voltage setting>
The output voltage can be set by adding an external dividing resistor. The output voltage is determined by the equation below based on the
values of RFB1 and RFB2.
VOUT=0.8 × (RFB1+RFB2)/RFB2
with RFB2≦15kΩ
Adjust the value of the phase compensation speed-up capacitor.
Adjust the CFB value so that fzfb = 1/(2×π×CFB×RFB1) is about 10kHz.
【Setting Example】
When RFB1=68kΩ, RFB2=13kΩ, VOUT=0.8×(68kΩ+13kΩ) / 13kΩ≒4.98V
When fzfb is set to a target of 10.64kHz using the above equation, CFB=1/(2×π×10.64kHz×68kΩ)≒220pF
If the dropout voltage is too large and the minimum Lx ON time is not attained, pulse skipping will occur and the output voltage will not be stable.
Use with an Lx ON time longer than the minimum. The minimum ON time is 0.22μs (TYP.) at a set frequency of 300kHz, or 0.15μs (TYP.) at a
set frequency of 500kHz.
12/28
XC9250/XC9251
Series
■TYPICAL APPLICATION CIRCUIT (Continued)
<Inductance value setting>
In the XC9250 and XC9251 series, it is optimum to set an inductance value within the range below based on the set frequency and setting output
voltage.
fOSCSET: Set frequency
VOUTSET: Setting output voltage
fOSCSET
1.2V≦VOUTSET≦6V
6V<VOUTSET≦12V
300kHz
20μH
22μH
33μH
500kHz
15μH
20μH
22μH
<Soft-start function>
The soft start time of the XC9250 and XC9251 series can be adjusted externally (SS pin). The soft start time is the time from the start of VCE until
the output voltage reaches 90% of the set voltage.
The soft start time depends on the external capacitance CSS, and is determined by the
equation below.
tSS2 = 1.08 × CSS / ISS [ms]
CSS: External capacitance [nF]
ISS: When fOSCSET=300kHz, 0.72 [μA (TYP.)]
When fOSCSET=500kHz, 1.2 [μA(TYP.)]
fOSCSET: Set frequency [kHz]
* Note that the value of the soft start time tSS2 varies depending on the effective capacitance value of the delay capacitance CSS.
【Calculation Example】
When fOSCSET=300kHz and CSS=10nF, tss2=1.08×10/0.72=15ms
When fOSCSET=500kHz and CSS=10nF, tss2=1.08×10/1.2=9ms
The minimum value tSS2 of the soft-start time is set internally. The internal soft-start time tSS1 is determined by the equation below.
When fOSCSET=300kHz, tss1=1.3ms (TYP.)
When fOSCSET=500kHz, tss1=0.7ms (TYP.)
13/28
XC9250/XC9251 Series
■OPERATIONAL EXPLANATION
The XC9250/XC9251 series consists internally of a reference voltage supply, ramp wave circuit, error amp, PWM comparator, phase
compensation circuit, N-ch MOS driver transistor, current limiting circuit, under-voltage lockout (UVLO) circuit, internal power supply (VL) circuit,
thermal shutdown (TSD) circuit, oscillator (OSC) circuit, soft-start circuit, control block and other elements.
The voltage feed back from the FB pin is compared to the internal reference voltage by the error amp, the output from the error amp is phase
compensated, and the signal is input to the PWM comparator to determine the ON time of switching during PWM operation. The output signal
from the error amp is compared to the ramp wave by the PWM comparator, and the output is sent to the buffer drive circuit and output from the Lx
pin as the duty width of switching. This operation is performed continuously to stabilize the output voltage.
The driver transistor current is monitored at each switching by the output signal from the error amp is modulated as a multi-feedback signal. This
allows a stable feedback system to be obtained even when a low ESR capacitor such as a ceramic capacitor is used, and this stabilizes the
output voltage.
Because the IC uses an N-ch MOS transistor for the Hi side driver, a voltage higher than the VIN voltage is required to turn on the driver. To
generate a voltage higher than the VIN voltage, the bootstrap method is used.
XC9251 Series, Type B
<Reference voltage source>
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.
<Oscillator circuit>
The ramp wave circuit determines switching frequency.
The frequency is fixed internally and can be selected from 300kHz, 500 kHz. Clock
pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation.
<Error amplifier>
The error amplifier is designed to monitor output voltage.
the internal split resistors, RFB1 and RFB2.
The amplifier compares the reference voltage with the feedback voltage divided by
When a voltage is lower than the reference voltage, then the voltage is fed back, the output voltage of
the error amplifier increases. The error amplifier output is fixed internally to deliver an optimized signal to the mixer which is a part of a PWM
comparator.
<Chip enable>
The XC9250/XC9251 series can be put in the standby state by inputting L level into the CE pin. In the standby state, the quiescent current of the
IC is 0.01μA (TYP.). When H level is input into CE pin, operation starts. The input of the CE pin is CMOS input and the sink current is 0μA
(TYP.).
14/28
XC9250/XC9251
Series
■OPERATIONAL EXPLANATION (Continued)
<Current limiting, short-circuit protection>
The current limiting circuits of type B combine both current limiting and short-circuit protection.
(1) The current in the N-ch MOS driver transistor connected to the Lx pin is monitored, and when the load current attains the limiting current, the
current limiting circuit activates and the output voltage drops.
(2) As the current limiting state continues, the switching frequency drops to prevent coil current (IL) overlay. When the current limiting state is
released, the switching frequency returns to the set frequency.
(3) If the output voltage drops further from states (2), the output current is limited, the switching frequency is lowered further, and the short-circuit
state is entered. When the load becomes lighter than the short-circuit state, restart takes place automatically. To prevent overshoot during
restart, restart takes place by soft-start.
② If the current limiting
①
state continues, the
Current limiting
switching frequency is
operates
lowered
③ If VOUT drops to 50% (TYP.) or less of the regular level in
the state of ① or ②, the output current is reduced, the
switching frequency is further lowered, and the IC enters
the short-circuit state
<Integral latch protection>
When the current limiting state continues for a certain time, the correct limiting circuit of type A latches and stops the Lx pin in the "H" level state
(turning off the driver Tr). To restart operation by soft-start once in the latch stop state, "L" level must be input into the CE pin followed by "H" level,
or briefly lowering the VIN voltage below the UVLO detection voltage must be performed.
①
Current limiting ② When the state of ① continues for 1.3ms
operates (TYP. fOSCSET=300kHz) or 0.7ms (TYP., fOSCSET=500kHz),
the Lx pin is latched to “L” level and operation stops
③ Operation restarts by soft
start when CE=“L”→“H”
<Thermal shutdown>
The thermal shutdown (TSD) as an over current limit is built in the XC9250/XC9251 series.
When the junction temperature reaches the detection temperature, the driver transistor is forcibly turned off.
When the junction temperature falls
to the release temperature while in the output stop state, restart takes place by soft-start.
<UVLO>
When the VIN pin voltage falls below 4.6V (TYP.), EXTB becomes "H" level and forcibly stops output to prevent false pulse output due to instable
operation of the internal circuits. When the VIN pin voltage rises above 5.0V (TYP.), the UVLO function is released, the soft-start function activates,
and output start operation begins. Stopping by UVLO is not shutdown; only pulse output is stopped and the internal circuits continue to operate.
15/28
XC9250/XC9251 Series
■OPERATIONAL EXPLANATION (Continued)
<SYNC function>
When an external CLK (±25% of free running frequency, on duty 25% to 75%) is input into the SYNC pin, operation is synchronized to the
falling edge of the external CLK (external CLK synchronization function). When synchronized to the external CLK, the control mode is
automatically PWM control. When the external CLK is fixed at "H" voltage or "L" voltage for about 3 cycles of the free running frequency, external
CLK synchronization stops and operation at the free running frequency takes place.
(1) Switching from free running frequency ⇒ external CLK synchronization
Operation at free running frequency
Synchronized to external CLK
Cycles at falling edge of external CLK
Free running frequency → external CLK synchronization switching delay (about 5 cycles)
(2) Switching from external CLK synchronization ⇒ free running frequency
Synchronized to external CLK
Synchronized to external CLK
When there is no pulse for about 3 cycles, switches to free running frequency
16/28
XC9250/XC9251
Series
■NOTE ON USE
1. For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used
beyond the absolute MAX. specifications.
2. Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded.
3. The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics of this IC, so
refer to the specifications and standard circuit examples of each component when carefully considering which components to select. Be
especially careful of the capacitor characteristics and use B characteristics (JIS standard) or X7R, X5R (EIA standard) ceramic capacitors.
4. The DC/DC converter of this IC uses a current-limiting circuit to monitor the coil peak current. If the potential dropout voltage is large or the load
current is large, the peak current will increase, which makes it easier for current limitation to be applied which in turn could cause the operation
to become unstable. When the peak current becomes large, adjust the coil inductance and sufficiently check the operation. The following
formula is used to show the peak current.
Peak Current: Ipk = ( VIN – VOUT ) × OnDuty / ( 2 × L × fOSC ) + IOUT
L: Coil Inductance [H]
fOSC: Oscillation Frequency [Hz]
IOUT: Load Current [A]
5. If the difference between input voltage and output voltage is large, when the current limit circuit activates, the switching current might overlap
and exceed the current limit spec. due to the circuit delay time.
6. The ripple voltage could be increased when switching from discontinuous conduction mode to Continuous conduction mode. Please apply the
ICs only after careful examination by the customer.
7. In some cases, ripple voltage may increase in the XC9251 series when the load is light. This is for the purpose of charging the CBST, and is
normal operation.
8. The IC enters test mode when a 6V external power supply is applied to the SS pin. Do not apply an external power supply to the SS pin during use.
9. The operation of the IC becomes unstable below the minimum operating voltage.
10. The effects of ambient noise and the state of the circuit board may cause release from the current limiting state, and the latch time may
lengthen or latch operation may not take place. Test sufficiently using the actual equipment.
11. When operation changes from free running frequency to external CLK synchronization, the output voltage may fluctuate. Please apply the ICs
only after careful examination by the customer.
12. Instructions of pattern layouts
The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high, please place the
input capacitor(CIN1, CIN2) and the output capacitor (CL) as close to the IC as possible.
(1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN1) be connected as close as possible to the VIN pin.
(2) In order to stabilize GND voltage level, we recommend that a by-pass capacitor (CIN2) be connected as close as possible to the GND pin.
(3) Please mount each external component as close to the IC as possible.
(4) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance.
(5) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of
switching may result in instability of the IC.
(6) Because this product contains an internal driver, heat is generated due to the IOUT current and ON resistance of the N-ch MOS driver transistor.
17/28
XC9250/XC9251 Series
■NOTE ON USE (Continued)
<Reference Pattern Layout>
Front
Back
13. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.
18/28
XC9250/XC9251
Series
■TYPICAL PERFORMANCE CHARACTERISTICS
(1) Efficiency vs. Output current
XC9250x083/XC9251x083
(VIN=12V , VOUT=1.8V)
XC9250x083/XC9251x083
(VIN=12V , VOUT=5V)
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
100
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
100
80
70
60
50
40
30
XC9251
20
XC9250
10
Efficiency :EFFI[%]
Efficiency :EFFI[%]
90
10
100
1000
XC9250
1
10
100
1000
10000
XC9250x083/XC9251x083
(VIN=24V , VOUT=5V)
XC9250x083/XC9251x083
(VIN=24V , VOUT=12V)
L=30μH(CLF12555-300M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
100
80
70
60
50
40
30
XC9251
20
XC9250
Efficiency :EFFI[%]
Efficiency :EFFI[%]
XC9251
20
Output Current :IOUT[mA]
10
10
100
1000
90
80
70
60
50
40
30
20
XC9251
XC9250
10
0
0
10000
1
10
100
1000
10000
Output Current :IOUT[mA]
Output Current :IOUT[mA]
XC9250x085/XC9251x085
(VIN=12V , VOUT=1.8V)
XC9250x085/XC9251x085
(VIN=12V , VOUT=5V)
90
80
70
60
50
40
30
XC9251
20
10
XC9250
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
100
Efficiency :EFFI[%]
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
100
Efficiency :EFFI[%]
30
10000
90
0
90
80
70
60
50
40
30
XC9251
20
10
XC9250
0
1
10
100
1000
10000
1
10
100
1000
10000
Output Current :IOUT[mA]
Output Current :IOUT[mA]
XC9250x085/XC9251x085
(VIN=24V , VOUT=5V)
XC9250x085/XC9251x085
(VIN=24V , VOUT=12V)
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
100
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
100
90
80
70
60
50
40
30
XC9251
20
XC9250
10
Efficiency :EFFI[%]
90
Efficiency :EFFI[%]
50
40
Output Current :IOUT[mA]
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
100
1
70
60
10
0
0
1
90
80
80
70
60
50
40
30
XC9251
20
XC9250
10
0
0
1
10
100
1000
Output Current :IOUT[mA]
10000
1
10
100
1000
10000
Output Current :IOUT[mA]
19/28
XC9250/XC9251 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Output Voltage vs. Output Currnt
XC9250x083/XC9251x083
(VIN=12V , VOUT=1.8V)
XC9250x083/XC9251x083
(VIN=12V , VOUT=5V)
XC9251
2.10
XC9250
2.00
1.90
1.80
1.70
1.60
1.50
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
5.60
Output Voltage : VOUT[V]
Output Voltage : VOUT[V]
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
2.20
1.40
XC9251
5.40
XC9250
5.20
5.00
4.80
4.60
4.40
1
10
100
1000
10000
1
10
Output Current :IOUT[mA]
XC9250x083/XC9251x083
(VIN=24V , VOUT=5V)
XC9250
5.20
5.00
4.80
4.60
Output Voltage : VOUT[V]
Output Voltage : VOUT[V]
XC9251
12.80
XC9251
12.60
XC9250
12.40
12.20
12.00
11.80
11.60
11.40
11.20
11.00
1
10
100
1000
10000
1
Output Current :IOUT[mA]
100
1000
10000
XC9250x085/XC9251x085
(VIN=12V , VOUT=5V)
2.10
XC9251
2.00
XC9250
1.90
1.80
1.70
1.60
1.50
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
5.60
Output Voltage : VOUT[V]
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
2.20
Output Voltage : VOUT[V]
10
Output Current :IOUT[mA]
XC9250x085/XC9251x085
(VIN=12V , VOUT=1.8V)
1.40
XC9251
5.40
XC9250
5.20
5.00
4.80
4.60
4.40
1
10
100
1000
10000
1
Output Current :IOUT[mA]
10
100
1000
10000
Output Current :IOUT[mA]
XC9250x085/XC9251x085
(VIN=24V , VOUT=5V)
XC9250x085/XC9251x085
(VIN=24V , VOUT=12V)
5.80
XC9251
5.60
XC9250
5.40
5.20
5.00
4.80
4.60
4.40
4.20
4.00
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
13.00
Output Voltage : VOUT[V]
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
6.00
Output Voltage : VOUT[V]
10000
L=30μH(CLF12555-300M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
13.00
4.40
12.80
XC9251
12.60
XC9250
12.40
12.20
12.00
11.80
11.60
11.40
11.20
11.00
1
10
100
1000
Output Current :IOUT[mA]
20/28
1000
XC9250x083/XC9251x083
(VIN=24V , VOUT=12V)
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
5.60
5.40
100
Output Current :IOUT[mA]
10000
1
10
100
1000
Output Current :IOUT[mA]
10000
XC9250/XC9251
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Ripple Voltage vs. Output Current
XC9250x083/XC9251x083
(VIN=12V , VOUT=5V)
XC9250x085/XC9251x085
(VIN=12V , VOUT=5V)
XC9250
40
35
30
25
20
15
10
5
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
50
XC9251
45
Ripple Voltage :Vr[mV]
Ripple Voltage :Vr[mV]
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
50
XC9251
45
XC9250
40
35
30
25
20
15
10
5
0
0
0.1
1
10
100
1000
10000
0.1
1
Output Current :IOUT[mA]
10
(4) FB Voltage vs. Ambient Temperature
5.6
UVLO Voltage :VUVLO1,VUVLO2[V]
FB Voltage :VFB[V]
VIN=12V
0.802
0.800
0.798
0.796
0.794
0.792
0.790
0.788
0
25
50
10000
XC9250/XC9251
0.812
0.810
0.808
0.806
0.804
-25
1000
(5) UVLO Voltage vs. Ambient Temperature
XC9250/XC9251
-50
100
Output Current :IOUT[mA]
75
100
125
Detection
5.4
Release
5.2
5.0
4.8
4.6
4.4
4.2
-50
Ambient Temperature :Ta[℃]
-25
0
25
50
75
100
125
Ambient Temperature :Ta[℃]
(6) Oscillation Frequency vs. Ambient Temperature
XC9250x083/XC9251x083
XC9250x085/XC9251x085
VIN=12V
340
540
330
530
320
310
300
290
280
270
VIN=12V
550
Oscillation Frequency
:fosc[kHz]
Oscillation Frequency
:fosc[kHz]
350
260
520
510
500
490
480
470
460
250
450
-50
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
125
-50
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
125
(7) Supply Current vs. Ambient Temperature
XC9250x083/XC9251x083
XC9250x085/XC9251x085
VIN=30V
500
400
300
200
100
0
VIN=30V
600
Supply Current :Iq[μA]
Supply Current :Iq[μA]
600
500
400
300
200
100
0
-50
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
125
-50
-25
0
25
50
75
100
125
Ambient Temperature :Ta[℃]
21/28
XC9250/XC9251 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(8) Stand-by Current vs. Ambient Temperature
(9) Lx SW ON Resistance vs. Ambient Temperature
XC9250/XC9251
XC9250/XC9251
VIN=30V
0.70
Lx SW ON Resistance :RLX[Ω]
Stand-by Current :ISTB[μA]
5
4
3
2
1
0
-50
-25
0
25
50
75
100
0.60
0.50
0.40
0.30
0.20
0.10
0.00
-50
125
Ambient Temperature :Ta[℃]
-25
(10) Max Duty vs. Ambient Temperature
25
50
75
100
XC9250/XC9251
92.0
VIN=12V
PFM Switch Current :IPFM[mA]
350
90.0
88.0
86.0
84.0
82.0
80.0
300
250
200
150
100
50
0
78.0
-50
-25
0
25
50
75
100
-50
125
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
Ambient Temperature :Ta[℃]
(12) CE "H" Voltage vs. Ambient Temperature
(13) CE "L" Voltage vs. Ambient Temperature
XC9250/XC9251
125
XC9250/XC9251
3.0
3.0
VIN=30V
CE "L" Voltage :VCEL[V]
VIN=30V
CE "H" Voltage :VCEH[V]
125
(11) PFM Switch Current vs. Ambient Temperature
XC9250/XC9251
Max Duty :DMAX [%]
0
Ambient Temperature :Ta[℃]
VIN=12V
2.5
VIN=7V
2.0
1.5
1.0
0.5
VIN=12V
2.5
VIN=7V
2.0
1.5
1.0
0.5
-50
-25
0
25
50
75
100
125
-50
Ambient Temperature :Ta[℃]
-25
0
25
50
75
100
125
Ambient Temperature :Ta[℃]
(14) Internal Soft-Start Time vs. Ambient Temperature
XC9250x083/XC9251x083
VIN=12V
2.5
2.0
1.5
1.0
0.5
0.0
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-50
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
22/28
VIN=12V
1.6
Internal Soft-Start Time
:tSS1[ms]
3.0
Internal Soft-Start Time
:tSS1[ms]
XC9250x085/XC9251x085
125
-50
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
125
XC9250/XC9251
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) External Soft-Start Time vs. Ambient Temperature
XC9250x083/XC9251x083
VIN=12V
35
30
25
20
15
10
5
0
VIN=12V
20
External Soft-Start Time
:tSS2[ms]
External Soft-Start Time
:tSS2[ms]
XC9250x085/XC9251x085
18
16
14
12
10
8
6
4
2
0
-50
-25
0
25
50
75
100
Ambient Temperature :Ta[℃]
125
-50
-25
0
25
50
75
100
125
Ambient Temperature :Ta[℃]
23/28
XC9250/XC9251 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(16) Load Transient Response
XC9250x083/XC9251x083
XC9250x083/XC9251x083
VIN=12V, VOUT=5V, IOUT=300mA→1A
VIN=12V, VOUT=5V, IOUT=1A→300mA
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
1ms/div
1ms/div
VOUT: 500mV/div
VOUT: 500mV/div
IOUT=300mA→1A
IOUT=1A→300mA
XC9250x083/XC9251x083
XC9250x083/XC9251x083
VIN=12V, VOUT=5V, IOUT=1A→2A
VIN=12V, VOUT=5V, IOUT=2A→1A
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
1ms/div
1ms/div
VOUT: 500mV/div
VOUT: 500mV/div
IOUT=1A→2A
IOUT=2A→1A
XC9250x085/XC9251x085
XC9250x085/XC9251x085
VIN=12V, VOUT=5V, IOUT=300mA→1A
VIN=12V, VOUT=5V, IOUT=1A→300mA
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
1ms/div
1ms/div
VOUT: 500mV/div
VOUT: 500mV/div
IOUT=300mA→1A
IOUT=1A→300mA
XC9250x085/XC9251x085
XC9250x085/XC9251x085
VIN=12V, VOUT=5V, IOUT=1A→2A
VIN=12V, VOUT=5V, IOUT=2A→1A
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
1ms/div
VOUT: 500mV/div
1ms/div
VOUT: 500mV/div
IOUT=1A→2A
IOUT=2A→1A
24/28
XC9250/XC9251
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(17) Rising Response Time
XC9250x083/XC9251x083
XC9250x083/XC9251x083
VIN=0→12V, VOUT=5V, IOUT=1mA
VIN=0→24V, VOUT=5V, IOUT=1mA
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
1ms/div
VIN: 0→12V
1ms/div
VIN: 0→24V
VOUT: 2V/div
VOUT: 2V/div
XC9250x085/XC9251x085
XC9250x085/XC9251x085
VIN=0→12V, VOUT=5V, IOUT=1mA
VIN=0→24V, VOUT=5V, IOUT=1mA
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
VIN: 0→12V
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
1ms/div
1ms/div
VIN: 0→24V
VOUT: 2V/div
VOUT: 2V/div
(18) Input Transient Response
XC9250x083/XC9251x083
XC9250x083/XC9251x083
VIN=12V→30V, VOUT=5V, IOUT=1A
VIN=30V→12V, VOUT=5V, IOUT=1A
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
1ms/div
1ms/div
VOUT: 200mV/div
VOUT: 200mV/div
VIN=12V→30V
VIN=30V→12V
XC9250x085/XC9251x085
XC9250x085/XC9251x085
VIN=12V→30V, VOUT=5V, IOUT=1A
VIN=30V→12V, VOUT=5V, IOUT=1A
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L),
SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L)
1ms/div
VOUT: 200mV/div
1ms/div
VOUT: 200mV/div
VIN=12V→30V
VIN=30V→12V
25/28
XC9250/XC9251 Series
■PACKAGING INFORMATION
●SOP-8FD (unit: mm)
0.22±0.03
4.9±0.1
0.1
(1.27)
0.42±0.09
(3.3)
BOTTOM VIEW
●SOP-8FD Reference Pattern Layout (unit: mm)
●SOP-8FD Reference Metal Mask Design (unit: mm)
0.6
1.52
1.27
26/28
4.88
2.3
3.3
XC9250/XC9251
Series
■MARKING RULE
① represents products series
SOP-8FD
8
MARK
7
6
5
① ② ③
MARK
A
2
3
XC9250******-G
F
XC9251******-G
② represents products type
④ ⑤
1
PRODUCT SERIES
4
B
PRODUCT SERIES
XC9250A*****-G
XC9251A*****-G
XC9250B*****-G
XC9251B*****-G
③ represents FB voltage and oscillation frequency
MARK
3
5
A
B
VOLTAGE (V)
0.8
0.8
OSCILLATION
FREQUENCY
PRODUCT SERIES
300kHz
500kHz
300kHz
500kHz
XC9250*083**-G
XC9250*085**-G
XC9251*083**-G
XC9251*085**-G
④⑤ represents production lot number
01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order.
(G, I, J, O, Q, W excluded)
* No character inversion used.
27/28
XC9250/XC9251 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
28/28