XC9250/XC9251 Series ETR05023-004 30V Driver Transistor Built-In Step-Down DC/DC Converters ■GENERAL DESCRIPTION The XC9250/XC9251 series are 30V operation step-down DC/DC converter ICs with an internal driver transistor. The internal Nch driver transistor is driven by bootstrap to achieve a stable, high-efficiency power supply up to an output current of 2.0A. Low ESR capacitors such as ceramic capacitors can be used for the load capacitor (CL). A 0.8V reference voltage source is incorporated in the IC, and the output voltage can be set to a value from 1.2V to 12.0V using external resistors (RFB1, RFB2). 300kHz or 500kHz can be selected for the switching frequency. The generation of unneeded noise can be suppressed by synchronizing to an external CLK in a range of ±25% of the free running frequency using the SYNC pin. In automatic PWM/PFM control, the IC operates by PFM control when the load is light to achieve high efficiency over the full load range from light to heavy. The soft start time can be set as desired by adding an external capacitance to the SS pin. With the built-in UVLO function, the driver transistor is forced OFF when input voltage becomes 4.5V or lower. Internal protection circuits include over current protection, integral latch protection, short-circuit protection, and thermal shutdown circuits to enable safe use. ■APPLICATIONS ● Car navigation systems ● Car audios ● Industrial equipment ■FEATURES Input Voltage : 7~30V FB Voltage : 0.8V±2% 300kHz, 500kHz Oscillation Frequency : Maximum Output Current : 2.0A Control Method : PWM (XC9250) PWM/PFM (XC9251) Soft-start : Protection Circuit : External Capacitor (set by external capacitor C) Over Current Protection 3.2A (TYP.) Integral Latch Method (XC9250/51A) Automatic Recovery (XC9250/51B) Thermal Shutdown Low ESR Ceramic Capacitor : Ceramic Capacitor Operating Ambient Temperature : -40℃ ~ +105℃ Package : SOP-8FD Environmentally Friendly : EU RoHS Compliant, Pb Free *Performance depends on external components and wiring on the PCB. ■TYPICAL APPLICATION CIRCUIT ■TYPICAL PERFORMANCE CHARACTERISTICS XC9250x085/XC9251x085 (VIN=12V , VOUT=5V) L=15μH(CLF12555-150M), C IN1 =10μF(GRM32ER71H106KA12L), SBD=CMS15, CL =22μF×2(GRM32ER71E226KE15L) 100 Efficiency :EFFI[%] 90 80 70 60 50 40 30 20 XC9251 10 XC9250 0 1 10 100 1000 10000 Output Current :IOUT[mA] 1/28 XC9250/XC9251 Series ■BLOCK DIAGRAM 1) XC9250 Series, Type A * Diodes inside the circuit are ESD protection diodes and parasitic diodes. 2) XC9250 Series, Type B * Diodes inside the circuit are ESD protection diodes and parasitic diodes. 2/28 XC9250/XC9251 Series ■BLOCK DIAGRAM (Continued) 3) XC9251 Series, Type A * Diodes inside the circuit are ESD protection diodes and parasitic diodes. 4) XC9251 Series, Type B * Diodes inside the circuit are ESD protection diodes and parasitic diodes. 3/28 XC9250/XC9251 Series ■PRODUCT CLASSIFICATION ●Ordering Information XC9250①②③④⑤⑥-⑦ PWM XC9251①②③④⑤⑥-⑦ PWM/PFM Auto DESIGNATOR ITEM ① Functional selection ②③ Adjustable Output Voltage ④ Oscillation Frequency ⑤⑥-⑦ (*1) Package (Order Unit) (*1) SYMBOL A DESCRIPTION Refer to Selection Guide B 08 Output voltage can be adjusted in 1.2V to 12V 3 300kHz 5 500kHz QR-G SOP-8FD (1,000/Reel) The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant. ●Selection Guide TYPE CURRENT LIMITTER LATCH PROTECTION CHIP ENABLE UVLO A YES YES (*1) YES YES B YES NO YES YES TYPE THERMAL SHUTDOWN SOFT-START SYNCHRONIZED with EXTERNAL CLOCK A YES YES YES B YES YES YES (*1) The over-current protection latch is an integral latch type. ■PIN CONFIGURATION * The dissipation pad for this IC should be solder-plated for mounting strength and heat dissipation. Please refer to the reference mount pattern and metal masking. pad should be connected to the GND (No. 6) pin. 4/28 The dissipation XC9250/XC9251 Series ■PIN ASSIGNMENT PIN NUMBER PIN NAME FUNCTIONS 1 VIN Power Input 2 CE Chip Enable 3 SYNC External CLK Sync Pin 4 FB Output Voltage Sense 5 SS Soft-start Adjustment 6 GND Ground 7 BST Bootstrap 8 Lx Switching Output SIGNAL STATUS L Stand-by H Active OPEN Undefined State (*1) SOP-8FD ■FUNCTION PIN NAME CE L SYNC (*1) H Operates with internal clock frequency CLK Synchronizes with External Clock Signal OPEN Undefined State (*1) Please do not leave the CE and SYNC pin open. ■ABSOLUTE MAXIMUM RATINGS Ta=25℃ PARAMETER SYMBOL RATINGS VIN Pin Voltage VIN -0.3 ~ +36 (*1) UNITS V (*2) V BST Pin Voltage VBST FB Pin Voltage VFB -0.3 ~ +6.5 V SYNC Pin Voltage VSYNC -0.3 ~ +6.5 V CE Pin Voltage VCE -0.3 ~ +36 V SS Pin Voltage VCSS -0.3 ~ +6.5 -0.3 or VLX-0.3 ~ VLX+6.5 or +36 V (*3) V Lx Pin Voltage VLx Lx Pin Current ILx Power Dissipation Pd Surge Voltage VSURGE Operating Ambient Temperature Topr -40 ~ +105 ℃ Storage Temperature Tstg -55 ~ +125 ℃ -0.3 ~ VIN+0.3 or +36 4.2 300 1500 (PCB mounted) 46 (*4) A mW V * All voltages are described based on the GND pin. (*1) The maximum value should be either -0.3 or VLX-0.3 in the lowest. (*2) The maximum value should be either VLX+6.5 or +36 in the lowest. (*3) The maximum value should be either VIN+0.3 or +36 in the lowest. (*4) Applied Time≦400ms 5/28 XC9250/XC9251 Series ■ELECTRICAL CHARACTERISTICS Ta=25℃ ●XC9250A/B083 PARAMETER FB Voltage SYMBOL VFB1 FB Voltage ∆VFB/ Temperature Characteristics (∆Topr・VFB) Output Voltage Setting Range Operating Voltage Range VOUTSET VIN CONDITIONS VFB=0.816V→0.784V, VSS=6V, VFB Voltage when Lx pin oscillates -40℃≦Topr≦105℃ MIN. TYP. MAX. UNITS CIRCUIT 0.784 0.8 0.816 V ③ - ±50 - ppm/℃ ③ - 12 V - (*1) - 1.2 - 7 - 30 V - 4.3 4.6 4.9 V ③ 4.7 5.0 5.3 V ③ VIN=4.9V→4.3V, VFB=0.65V, VSS=6V UVLO detect voltage VUVLO1 VIN Voltage when Lx pin voltage changes from "H" level to "L" level VIN=4.7V→5.3V, VFB=0.65V, VSS=6V UVLO release voltage VUVLO2 VIN Voltage when Lx pin voltage changes from "L" level to "H" level Quiescent Current Iq VIN=VCE=30V, VFB=0.95V - 200 310 μA ④ Stand-by Current ISTB VIN=30V, VCE=0V, VSS=0V, VSYNC=0V - 0.01 0.1 μA ④ Oscillation Frequency fOSC Connected to external components, IOUT=300mA 270 300 330 kHz ① External Clock Signal SYNCOSC Connected to external components, IOUT=0mA fOSCx0.75 fOSC fOSCx1.25 kHz ② DSYNC Connected to external components, IOUT=0mA 25 - 75 % ② Maximum Duty Cycle DMAX VFB=0.65V 83 85 88 % ③ Minimum Duty Cycle DMIN VFB=0.95V - - 0 % ③ Lx SW On Resistance RLx VFB=0.65V, VSS=6V - 0.3 0.6 Ω ③ VFB=0.65V, VSS=6V 2.4 3.2 - A ③ 0.8 1.3 1.8 ms ⑤ 0.35 0.40 0.45 V ⑤ 0.8 1.3 2.0 ms ③ 9 15 24 ms ③ - 91 - % ① 1.5 - 6 V ② Synchronized Frequency External Clock Signal Duty Cycle Current Limit (*2) ILIM Latch Time tLAT Short Detect Voltage VSHORT XC9250A series only Connected to external components, VFB=0.65V, VSS=6V XC9250B series only, Connected to external components, VFB=0.45V→0.35V, VSS=6V VFB Voltage when Oscillation Frequency is decreased Internal Soft-start Time tSS1 External Soft-start Time tSS2 Efficiency (*3) EFFI SYNC ‘H’ Voltage VSYNCH VCE=0→12V, VSS=6V, VFB=VFB1×0.9V Time until Lx pin oscillates VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF Time until Lx pin oscillates Connected to external components, IOUT=1A Connected to external components, IOUT=0mA SYNC ‘L’ Voltage VSYNCL Connected to external components, IOUT=0mA - - 0.4 V ② SYNC ‘H’ Current ISYNCH VIN=VCE=30V, VSYNC=6V, VFB=0.95V -0.1 0 0.1 μA ④ SYNC ‘L’ Current ISYNCL VIN=VCE=30V, VSYNC=0V, VFB=0.95V -0.1 0 0.1 μA ④ FB ‘H’ Current IFBH VIN=VCE=30V, VFB=6V, VSS=6V -0.1 0 0.1 V ④ FB ‘L’ Current IFBL VIN=VCE=30V, VFB=0V, VSS=6V -0.1 0 0.1 V ④ 2.8 - 30 V ③ - - 1 V ③ 0 0.1 μA ④ VCE=1.0V→2.8V, VFB=0.65V, VSS=6V CE ‘H’ Voltage VCEH CE ‘L’ Voltage VCEL CE ‘H’ Current ICEH VIN=VCE=30V, VFB=0.95V -0.1 VCE Voltage when Lx pin voltage changes from "L" level to "H" VCE=2.8V→1.0V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "H" level to "L" CE ‘L’ Current ICEL VIN=30V, VCE=0V, VFB=0.95V -0.1 0 0.1 μA ④ Thermal Shutdown Temperature TTSD Junction Temperature - 150 - ℃ - Hysteresis Width THYS Junction Temperature - 25 - ℃ - NOTE: Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF (*1) Limited by a minimum ON time of 0.22μs (TYP.). (*2) Current limit denotes the level of detection at peak of coil current. (*3) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100 6/28 XC9250/XC9251 Series ■ ELECTRICAL CHARACTERISTICS (Continued) ●XC9251A/B083 Ta=25℃ PARAMETER SYMBOL FB Voltage VFB1 FB Voltage ∆VFB/ Temperature Characteristics (∆Topr・VFB) Output Voltage Setting Range Operating Voltage Range VOUTSET VIN CONDITIONS VFB=0.816V→0.784V, VSS=6V VFB Voltage when Lx pin oscillates -40℃≦Topr≦105℃ MIN. TYP. MAX. UNITS CIRCUIT 0.784 0.8 0.816 V ③ - ±50 - ppm/℃ ③ V - (*1) - VIN-3 or - 1.2 - 7 - 30 V - 4.3 4.6 4.9 V ③ 4.7 5.0 5.3 V ③ 12 (*2) VIN=4.9V→4.3V, VFB=0.65V, VSS=6V UVLO detect voltage VUVLO1 VIN Voltage when Lx pin voltage changes from "H" level to "L" level VIN=4.7V→5.3V, VFB=0.65V, VSS=6V UVLO release voltage VUVLO2 VIN Voltage when Lx pin voltage changes from "L" level to "H" level Quiescent Current Iq VIN=VCE=30V, VFB=0.95V - 200 310 μA ④ Stand-by Current ISTB VIN=30V, VCE=0V, VSS=0V, VSYNC=0V - 0.01 0.1 μA ④ Oscillation Frequency fOSC Connected to external components, IOUT=300mA 270 300 330 kHz ① External Clock Signal SYNCOSC Connected to external components, IOUT=0mA fOSCx0.75 fOSC fOSCx1.25 kHz ② DSYNC Connected to external components, IOUT=0mA 25 - 75 % ② Maximum Duty Cycle DMAX VFB=0.65V 83 85 88 % ③ ③ Synchronized Frequency External Clock Signal Duty Cycle Minimum Duty Cycle DMIN VFB=0.95V - - 0 % Lx SW On Resistance RLx VFB=0.65V, VSS=6V - 0.3 0.6 Ω ③ PFM Switch Current IPFM Connected to external components, IOUT=0mA 80 160 240 mA ① VFB=0.65V, VSS=6V 2.4 3.2 - A ③ 0.8 1.3 1.8 ms ⑤ 0.35 0.40 0.45 V ⑤ 0.8 1.3 2.0 ms ③ 9 15 24 ms ③ Current Limit (*3) ILIM Latch Time tLAT Short Detect Voltage VSHORT XC9251A series only, Connected to external components, VFB=0.65V, VSS=6V XC9251B series only, Connected to external components, VFB=0.45V→0.35V, VSS=6V VFB Voltage when Oscillation Frequency is decreased Internal Soft-start Time tSS1 External Soft-start Time tSS2 Efficiency (*4) EFFI VCE=0→12V, VSS=6V, VFB=VFB1×0.9V Time until Lx pin oscillates VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF Time until Lx pin oscillates - 91 - % ① SYNC ‘H’ Voltage VSYNCH Connected to external components, IOUT=0mA Connected to external components, IOUT=1A 1.5 - 6 V ② SYNC ‘L’ Voltage VSYNCL Connected to external components, IOUT=0mA - - 0.4 V ② SYNC ‘H’ Current ISYNCH VIN=VCE=30V, VSYNC=6V, VFB=0.95V -0.1 0 0.1 μA ④ SYNC ‘L’ Current ISYNCL VIN=VCE=30V, VSYNC=0V, VFB=0.95V -0.1 0 0.1 μA ④ FB ‘H’ Current IFBH VIN=VCE=30V, VFB=6V, VSS=6V -0.1 0 0.1 V ④ FB ‘L’ Current IFBL VIN=VCE=30V, VFB=0V, VSS=6V -0.1 0 0.1 V ④ 2.8 - 30 V ③ - - 1 V ③ VCE=1.0V→2.8V, VFB=0.65V, VSS=6V CE ‘H’ Voltage VCEH CE ‘L’ Voltage VCEL CE ‘H’ Current ICEH VIN=VCE=30V, VFB=0.95V -0.1 0 0.1 μA ④ CE ‘L’ Current ICEL VIN=30V, VCE=0V, VFB=0.95V -0.1 0 0.1 μA ④ Thermal Shutdown Temperature TTSD Junction Temperature - 150 - ℃ - Hysteresis Width THYS Junction Temperature - 25 - ℃ - VCE Voltage when Lx pin voltage changes from "L" level to "H" VCE=2.8V→1.0V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "H" level to "L" NOTE: Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF (*1) Limited by a minimum ON time of 0.22μs (TYP.). (*2) VIN-3 or 12, whichever is lower. (*3) Current limit denotes the level of detection at peak of coil current. (*4) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100 7/28 XC9250/XC9251 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XC9250A/B085 Ta=25℃ PARAMETER SYMBOL FB Voltage VFB1 FB Voltage ∆VFB/ Temperature Characteristics (∆Topr・VFB) Output Voltage Setting Range Operating Voltage Range CONDITIONS VFB=0.816V→0.784V, VSS=6V VFB Voltage when Lx pin oscillates -40℃≦Topr≦105℃ MIN. TYP. MAX. UNITS CIRCUIT 0.784 0.8 0.816 V ③ - ±50 - ppm/℃ ③ - 12 V - 7 - 30 V - 4.3 4.6 4.9 V ③ 4.7 5.0 5.3 V ③ - 250 360 μA ④ 1.2 VOUTSET VIN (*1) VIN=4.9V→4.3V, VFB=0.65V, VSS=6V UVLO detect voltage VUVLO1 VIN Voltage when Lx pin voltage changes from "H" level to "L" level VIN=4.7V→5.3V, VFB=0.65V, VSS=6V UVLO release voltage VUVLO2 VIN Voltage when Lx pin voltage changes from "L" level to "H" level Quiescent Current Iq VIN=VCE=30V, VFB=0.95V Stand-by Current ISTB VIN=30V, VCE=0V, VSS=0V, VSYNC=0V Oscillation Frequency fOSC Connected to external components, IOUT=300mA External Clock Signal Synchronized Frequency External Clock Signal Duty Cycle - 0.01 0.1 μA ④ 450 500 550 kHz ① SYNCOSC Connected to external components, IOUT=0mA fOSCx0.75 fOSC fOSCx1.25 kHz ② DSYNC Connected to external components, IOUT=0mA 25 - 75 % ② ③ Maximum Duty Cycle DMAX VFB=0.65V 83 85 88 % Minimum Duty Cycle DMIN VFB=0.95V - - 0 % ③ Lx SW On Resistance RLx VFB=0.65V, VSS=6V - 0.3 0.6 Ω ③ VFB=0.65V, VSS=6V 2.4 3.2 - A ③ 0.4 0.7 1.0 ms ⑤ 0.35 0.40 0.45 V ⑤ 0.4 0.7 1.2 ms ③ 5 9 15 ms ③ Current Limit (*2) ILIM Latch Time tLAT Short Detect Voltage VSHORT XC9250A series only, Connected to external components, VFB=0.65V, VSS=6V XC9250B series only, Connected to external components, VFB=0.45V→0.35V, VSS=6V VFB Voltage when Oscillation Frequency is decreased Internal Soft-start Time tSS1 External Soft-start Time tSS2 Efficiency (*3) EFFI VCE=0→12V, VSS=6V, VFB=VFB1×0.9V Time until Lx pin oscillates VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF Time until Lx pin oscillates - 91 - % ① SYNC ‘H’ Voltage VSYNCH Connected to external components, IOUT=0mA Connected to external components, IOUT=1A 1.5 - 6 V ② SYNC ‘L’ Voltage VSYNCL Connected to external components, IOUT=0mA - - 0.4 V ② SYNC ‘H’ Current ISYNCH VIN=VCE=30V, VSYNC=6V, VFB=0.95V -0.1 0 0.1 μA ④ SYNC ‘L’ Current ISYNCL VIN=VCE=30V, VSYNC=0V, VFB=0.95V -0.1 0 0.1 μA ④ FB ‘H’ Current IFBH VIN=VCE=30V, VFB=6V, VSS=6V -0.1 0 0.1 V ④ FB ‘L’ Current IFBL VIN=VCE=30V, VFB=0V, VSS=6V -0.1 0 0.1 V ④ 2.8 - 30 V ③ - - 1 V ③ VCE=1.0V→2.8V, VFB=0.65V, VSS=6V CE ‘H’ Voltage VCEH CE ‘L’ Voltage VCEL CE ‘H’ Current ICEH VIN=VCE=30V, VFB=0.95V -0.1 0 0.1 μA ④ CE ‘L’ Current ICEL VIN=30V, VCE=0V, VFB=0.95V -0.1 0 0.1 μA ④ Thermal Shutdown Temperature TTSD Junction Temperature - 150 - ℃ - Hysteresis Width THYS Junction Temperature - 25 - ℃ - VCE Voltage when Lx pin voltage changes from "L" level to "H" VCE=2.8V→1.0V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "H" level to "L" NOTE: Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF (*1) Limited by a minimum ON time of 0.15μs (TYP.). (*2) Current limit denotes the level of detection at peak of coil current. (*3) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100 8/28 XC9250/XC9251 Series ■ ELECTRICAL CHARACTERISTICS (Continued) ●XC9251A/B085 Ta=25℃ PARAMETER SYMBOL FB Voltage VFB1 FB Voltage Temperature Characteristics ∆VFB/ (∆Topr・VFB) Output Voltage Setting Range VOUTSET Operating Voltage Range VIN CONDITIONS VFB=0.816V→0.784V, VSS=6V VFB Voltage when Lx pin oscillates -40℃≦Topr≦105℃ MIN. TYP. MAX. UNITS CIRCUIT 0.784 0.8 0.816 V ③ - ±50 - ppm/℃ ③ V - V - 7 - VIN-3 or (*2) 12 30 4.3 4.6 4.9 V ③ 4.7 5.0 5.3 V ③ 450 250 0.01 500 360 0.1 550 μA μA kHz ④ ④ ① 1.2 VIN=4.9V→4.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "H" level to "L" level VIN=4.7V→5.3V, VFB=0.65V, VSS=6V VIN Voltage when Lx pin voltage changes from "L" level to "H" level VIN=VCE=30V, VFB=0.95V VIN=30V, VCE=0V, VSS=0V, VSYNC=0V Connected to external components, IOUT=300mA (*1) - UVLO detect voltage VUVLO1 UVLO release voltage VUVLO2 Quiescent Current Stand-by Current Oscillation Frequency Iq ISTB fOSC External Clock Signal Synchronized Frequency SYNCOSC Connected to external components, IOUT=0mA fOSCx0.75 fOSC fOSCx1.25 kHz ② DSYNC Connected to external components, IOUT=0mA 25 - 75 % ② DMAX DMIN RLx IPFM ILIM VFB=0.65V VFB=0.95V VFB=0.65V, VSS=6V Connected to external components, IOUT=0mA VFB=0.65V, VSS=6V XC9251A series only, Connected to external components, VFB=0.65V, VSS=6V XC9251B series only, Connected to external components, VFB=0.45V→0.35V, VSS=6V VFB Voltage when Oscillation Frequency is decreased VCE=0→12V, VSS=6V, VFB=VFB1×0.9V Time until Lx pin oscillates VCE=0→12V, VSS=6V, VFB=VFB1×0.9V, CSS=0.01μF Time until Lx pin oscillates Connected to external components, IOUT=1A Connected to external components, IOUT=0mA Connected to external components, IOUT=0mA VIN=VCE=30V, VSYNC=6V, VFB=0.95V VIN=VCE=30V, VSYNC=0V, VFB=0.95V VIN=VCE=30V, VFB=6V, VSS=6V VIN=VCE=30V, VFB=0V, VSS=6V VCE=0.8V→2.8V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "L" level to "H" VCE=2.8V→0.8V, VFB=0.65V, VSS=6V VCE Voltage when Lx pin voltage changes from "H" level to "L" VIN=VCE=30V, VFB=0.95V VIN=30V, VCE=0V, VFB=0.95V Junction Temperature Junction Temperature 83 80 2.4 85 0.3 160 3.2 88 0 0.6 240 - % % Ω mA A ③ ③ ③ ① ③ 0.4 0.7 1.0 ms ⑤ 0.35 0.40 0.45 V ⑤ 0.4 0.7 1.2 ms ③ 5 9 15 ms ③ 1.5 -0.1 -0.1 -0.1 -0.1 91 0 0 0 0 6 0.4 0.1 0.1 0.1 0.1 % V V μA μA V V ① ② ② ④ ④ ④ ④ 2.8 - 30 V ③ - - 1 V ③ -0.1 -0.1 - 0 0 150 25 0.1 0.1 - μA μA ℃ ℃ ④ ④ - External Clock Signal Duty Cycle Maximum Duty Cycle Minimum Duty Cycle Lx SW On Resistance PFM Switch Current (*3) Current Limit Latch Time tLAT Short Detect Voltage VSHORT Internal Soft-Start Time tSS1 External Soft-Start Time tSS2 (*4) Efficiency SYNC ‘H’ Voltage SYNC ‘L’ Voltage SYNC ‘H’ Current SYNC ‘L’ Current FB ‘H’ Current FB ‘L’ Current EFFI VSYNCH VSYNCL ISYNCH ISYNCL IFBH IFBL CE ‘H’ Voltage VCEH CE ‘L’ Voltage VCEL CE ‘H’ Current CE ‘L’ Current Thermal Shutdown Temperature Hysteresis Width ICEH ICEL TTSD THYS NOTE: Unless otherwise stated, VIN=VCE=12V, VSYNC=2V, VSS=2V External Components: Unless otherwise stated, L=22μH, CIN=10μF, CL=47μF, CBST=1μF, RFB1=2kΩ, RFB2=390Ω, CFB=10nF (*1) Limited by a minimum ON time of 0.15μs (TYP.). (*2) VIN-3 or 12, whichever is lower. (*3) Current limit denotes the level of detection at peak of coil current. (*4) EFFI=[(output voltage × output current)÷(inputvoltage × input current)]×100 9/28 XC9250/XC9251 Series ■TEST CIRCUITS Circuit① A VIN BST SS Lx SYNC FB Probe 1μF 22μH V 10μF CE A CFB RFB1 RFB2 47μF SBD GND V Circuit② Circuit③ Probe A VIN CE BST 6V V 10μF 0.01μF 10/28 SS Lx SYNC FB V GND V V XC9250/XC9251 Series ■TEST CIRCUITS (Continued) Circuit④ Circuit⑤ 11/28 XC9250/XC9251 Series ■TYPICAL APPLICATION CIRCUIT 【Typical Examples】 MANUFACTURER PRODUCT NUMBER VALUE CLF12555-150M 15μH CLF12555-220M 22μH CLF12555-330M 33μH Toho Zinc TCM-0840-200 20μH CIN1 Murata GRM32ER71H106K 10μF/50V CIN2 Murata GRM21BB31H105K 1μF/50V GRM32ER71A476K 47μF/10V GRM32ER71E226K 22μF/25V 2parallel Panasonic 25SVPD47M 47μF/25V, ESR=30mΩ TOSHIBA CMS15 TDK L Murata CL SBD (*1) (*2) VF=0.58V (3A) CSS 0.01μF/10V (*1) CSYNC 1000pF/10V (*2) CBST 1μF/10V Can also be used without CSS (SS pin OPEN). When used without CSS, the IC starts at the soft start time set internally. Can be used without CSYNC if the external CLK synchronization function is not used. In this case, connect the SYNC pin to GND in close proximity to the IC. <Output voltage setting> The output voltage can be set by adding an external dividing resistor. The output voltage is determined by the equation below based on the values of RFB1 and RFB2. VOUT=0.8 × (RFB1+RFB2)/RFB2 with RFB2≦15kΩ Adjust the value of the phase compensation speed-up capacitor. Adjust the CFB value so that fzfb = 1/(2×π×CFB×RFB1) is about 10kHz. 【Setting Example】 When RFB1=68kΩ, RFB2=13kΩ, VOUT=0.8×(68kΩ+13kΩ) / 13kΩ≒4.98V When fzfb is set to a target of 10.64kHz using the above equation, CFB=1/(2×π×10.64kHz×68kΩ)≒220pF If the dropout voltage is too large and the minimum Lx ON time is not attained, pulse skipping will occur and the output voltage will not be stable. Use with an Lx ON time longer than the minimum. The minimum ON time is 0.22μs (TYP.) at a set frequency of 300kHz, or 0.15μs (TYP.) at a set frequency of 500kHz. 12/28 XC9250/XC9251 Series ■TYPICAL APPLICATION CIRCUIT (Continued) <Inductance value setting> In the XC9250 and XC9251 series, it is optimum to set an inductance value within the range below based on the set frequency and setting output voltage. fOSCSET: Set frequency VOUTSET: Setting output voltage fOSCSET 1.2V≦VOUTSET≦6V 6V<VOUTSET≦12V 300kHz 20μH 22μH 33μH 500kHz 15μH 20μH 22μH <Soft-start function> The soft start time of the XC9250 and XC9251 series can be adjusted externally (SS pin). The soft start time is the time from the start of VCE until the output voltage reaches 90% of the set voltage. The soft start time depends on the external capacitance CSS, and is determined by the equation below. tSS2 = 1.08 × CSS / ISS [ms] CSS: External capacitance [nF] ISS: When fOSCSET=300kHz, 0.72 [μA (TYP.)] When fOSCSET=500kHz, 1.2 [μA(TYP.)] fOSCSET: Set frequency [kHz] * Note that the value of the soft start time tSS2 varies depending on the effective capacitance value of the delay capacitance CSS. 【Calculation Example】 When fOSCSET=300kHz and CSS=10nF, tss2=1.08×10/0.72=15ms When fOSCSET=500kHz and CSS=10nF, tss2=1.08×10/1.2=9ms The minimum value tSS2 of the soft-start time is set internally. The internal soft-start time tSS1 is determined by the equation below. When fOSCSET=300kHz, tss1=1.3ms (TYP.) When fOSCSET=500kHz, tss1=0.7ms (TYP.) 13/28 XC9250/XC9251 Series ■OPERATIONAL EXPLANATION The XC9250/XC9251 series consists internally of a reference voltage supply, ramp wave circuit, error amp, PWM comparator, phase compensation circuit, N-ch MOS driver transistor, current limiting circuit, under-voltage lockout (UVLO) circuit, internal power supply (VL) circuit, thermal shutdown (TSD) circuit, oscillator (OSC) circuit, soft-start circuit, control block and other elements. The voltage feed back from the FB pin is compared to the internal reference voltage by the error amp, the output from the error amp is phase compensated, and the signal is input to the PWM comparator to determine the ON time of switching during PWM operation. The output signal from the error amp is compared to the ramp wave by the PWM comparator, and the output is sent to the buffer drive circuit and output from the Lx pin as the duty width of switching. This operation is performed continuously to stabilize the output voltage. The driver transistor current is monitored at each switching by the output signal from the error amp is modulated as a multi-feedback signal. This allows a stable feedback system to be obtained even when a low ESR capacitor such as a ceramic capacitor is used, and this stabilizes the output voltage. Because the IC uses an N-ch MOS transistor for the Hi side driver, a voltage higher than the VIN voltage is required to turn on the driver. To generate a voltage higher than the VIN voltage, the bootstrap method is used. XC9251 Series, Type B <Reference voltage source> The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter. <Oscillator circuit> The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 300kHz, 500 kHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation. <Error amplifier> The error amplifier is designed to monitor output voltage. the internal split resistors, RFB1 and RFB2. The amplifier compares the reference voltage with the feedback voltage divided by When a voltage is lower than the reference voltage, then the voltage is fed back, the output voltage of the error amplifier increases. The error amplifier output is fixed internally to deliver an optimized signal to the mixer which is a part of a PWM comparator. <Chip enable> The XC9250/XC9251 series can be put in the standby state by inputting L level into the CE pin. In the standby state, the quiescent current of the IC is 0.01μA (TYP.). When H level is input into CE pin, operation starts. The input of the CE pin is CMOS input and the sink current is 0μA (TYP.). 14/28 XC9250/XC9251 Series ■OPERATIONAL EXPLANATION (Continued) <Current limiting, short-circuit protection> The current limiting circuits of type B combine both current limiting and short-circuit protection. (1) The current in the N-ch MOS driver transistor connected to the Lx pin is monitored, and when the load current attains the limiting current, the current limiting circuit activates and the output voltage drops. (2) As the current limiting state continues, the switching frequency drops to prevent coil current (IL) overlay. When the current limiting state is released, the switching frequency returns to the set frequency. (3) If the output voltage drops further from states (2), the output current is limited, the switching frequency is lowered further, and the short-circuit state is entered. When the load becomes lighter than the short-circuit state, restart takes place automatically. To prevent overshoot during restart, restart takes place by soft-start. ② If the current limiting ① state continues, the Current limiting switching frequency is operates lowered ③ If VOUT drops to 50% (TYP.) or less of the regular level in the state of ① or ②, the output current is reduced, the switching frequency is further lowered, and the IC enters the short-circuit state <Integral latch protection> When the current limiting state continues for a certain time, the correct limiting circuit of type A latches and stops the Lx pin in the "H" level state (turning off the driver Tr). To restart operation by soft-start once in the latch stop state, "L" level must be input into the CE pin followed by "H" level, or briefly lowering the VIN voltage below the UVLO detection voltage must be performed. ① Current limiting ② When the state of ① continues for 1.3ms operates (TYP. fOSCSET=300kHz) or 0.7ms (TYP., fOSCSET=500kHz), the Lx pin is latched to “L” level and operation stops ③ Operation restarts by soft start when CE=“L”→“H” <Thermal shutdown> The thermal shutdown (TSD) as an over current limit is built in the XC9250/XC9251 series. When the junction temperature reaches the detection temperature, the driver transistor is forcibly turned off. When the junction temperature falls to the release temperature while in the output stop state, restart takes place by soft-start. <UVLO> When the VIN pin voltage falls below 4.6V (TYP.), EXTB becomes "H" level and forcibly stops output to prevent false pulse output due to instable operation of the internal circuits. When the VIN pin voltage rises above 5.0V (TYP.), the UVLO function is released, the soft-start function activates, and output start operation begins. Stopping by UVLO is not shutdown; only pulse output is stopped and the internal circuits continue to operate. 15/28 XC9250/XC9251 Series ■OPERATIONAL EXPLANATION (Continued) <SYNC function> When an external CLK (±25% of free running frequency, on duty 25% to 75%) is input into the SYNC pin, operation is synchronized to the falling edge of the external CLK (external CLK synchronization function). When synchronized to the external CLK, the control mode is automatically PWM control. When the external CLK is fixed at "H" voltage or "L" voltage for about 3 cycles of the free running frequency, external CLK synchronization stops and operation at the free running frequency takes place. (1) Switching from free running frequency ⇒ external CLK synchronization Operation at free running frequency Synchronized to external CLK Cycles at falling edge of external CLK Free running frequency → external CLK synchronization switching delay (about 5 cycles) (2) Switching from external CLK synchronization ⇒ free running frequency Synchronized to external CLK Synchronized to external CLK When there is no pulse for about 3 cycles, switches to free running frequency 16/28 XC9250/XC9251 Series ■NOTE ON USE 1. For the phenomenon of temporal and transitional voltage decrease or voltage increase, the IC may be damaged or deteriorated if IC is used beyond the absolute MAX. specifications. 2. Make sure that the absolute maximum ratings of the external components and of this IC are not exceeded. 3. The DC/DC converter characteristics depend greatly on the externally connected components as well as on the characteristics of this IC, so refer to the specifications and standard circuit examples of each component when carefully considering which components to select. Be especially careful of the capacitor characteristics and use B characteristics (JIS standard) or X7R, X5R (EIA standard) ceramic capacitors. 4. The DC/DC converter of this IC uses a current-limiting circuit to monitor the coil peak current. If the potential dropout voltage is large or the load current is large, the peak current will increase, which makes it easier for current limitation to be applied which in turn could cause the operation to become unstable. When the peak current becomes large, adjust the coil inductance and sufficiently check the operation. The following formula is used to show the peak current. Peak Current: Ipk = ( VIN – VOUT ) × OnDuty / ( 2 × L × fOSC ) + IOUT L: Coil Inductance [H] fOSC: Oscillation Frequency [Hz] IOUT: Load Current [A] 5. If the difference between input voltage and output voltage is large, when the current limit circuit activates, the switching current might overlap and exceed the current limit spec. due to the circuit delay time. 6. The ripple voltage could be increased when switching from discontinuous conduction mode to Continuous conduction mode. Please apply the ICs only after careful examination by the customer. 7. In some cases, ripple voltage may increase in the XC9251 series when the load is light. This is for the purpose of charging the CBST, and is normal operation. 8. The IC enters test mode when a 6V external power supply is applied to the SS pin. Do not apply an external power supply to the SS pin during use. 9. The operation of the IC becomes unstable below the minimum operating voltage. 10. The effects of ambient noise and the state of the circuit board may cause release from the current limiting state, and the latch time may lengthen or latch operation may not take place. Test sufficiently using the actual equipment. 11. When operation changes from free running frequency to external CLK synchronization, the output voltage may fluctuate. Please apply the ICs only after careful examination by the customer. 12. Instructions of pattern layouts The operation may become unstable due to noise and/or phase lag from the output current when the wire impedance is high, please place the input capacitor(CIN1, CIN2) and the output capacitor (CL) as close to the IC as possible. (1) In order to stabilize VIN voltage level, we recommend that a by-pass capacitor (CIN1) be connected as close as possible to the VIN pin. (2) In order to stabilize GND voltage level, we recommend that a by-pass capacitor (CIN2) be connected as close as possible to the GND pin. (3) Please mount each external component as close to the IC as possible. (4) Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. (5) Make sure that the GND traces are as thick as possible, as variations in ground potential caused by high ground currents at the time of switching may result in instability of the IC. (6) Because this product contains an internal driver, heat is generated due to the IOUT current and ON resistance of the N-ch MOS driver transistor. 17/28 XC9250/XC9251 Series ■NOTE ON USE (Continued) <Reference Pattern Layout> Front Back 13. Torex places an importance on improving our products and their reliability. We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems. 18/28 XC9250/XC9251 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (1) Efficiency vs. Output current XC9250x083/XC9251x083 (VIN=12V , VOUT=1.8V) XC9250x083/XC9251x083 (VIN=12V , VOUT=5V) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 80 70 60 50 40 30 XC9251 20 XC9250 10 Efficiency :EFFI[%] Efficiency :EFFI[%] 90 10 100 1000 XC9250 1 10 100 1000 10000 XC9250x083/XC9251x083 (VIN=24V , VOUT=5V) XC9250x083/XC9251x083 (VIN=24V , VOUT=12V) L=30μH(CLF12555-300M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 80 70 60 50 40 30 XC9251 20 XC9250 Efficiency :EFFI[%] Efficiency :EFFI[%] XC9251 20 Output Current :IOUT[mA] 10 10 100 1000 90 80 70 60 50 40 30 20 XC9251 XC9250 10 0 0 10000 1 10 100 1000 10000 Output Current :IOUT[mA] Output Current :IOUT[mA] XC9250x085/XC9251x085 (VIN=12V , VOUT=1.8V) XC9250x085/XC9251x085 (VIN=12V , VOUT=5V) 90 80 70 60 50 40 30 XC9251 20 10 XC9250 L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 Efficiency :EFFI[%] L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 Efficiency :EFFI[%] 30 10000 90 0 90 80 70 60 50 40 30 XC9251 20 10 XC9250 0 1 10 100 1000 10000 1 10 100 1000 10000 Output Current :IOUT[mA] Output Current :IOUT[mA] XC9250x085/XC9251x085 (VIN=24V , VOUT=5V) XC9250x085/XC9251x085 (VIN=24V , VOUT=12V) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 90 80 70 60 50 40 30 XC9251 20 XC9250 10 Efficiency :EFFI[%] 90 Efficiency :EFFI[%] 50 40 Output Current :IOUT[mA] L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 100 1 70 60 10 0 0 1 90 80 80 70 60 50 40 30 XC9251 20 XC9250 10 0 0 1 10 100 1000 Output Current :IOUT[mA] 10000 1 10 100 1000 10000 Output Current :IOUT[mA] 19/28 XC9250/XC9251 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2) Output Voltage vs. Output Currnt XC9250x083/XC9251x083 (VIN=12V , VOUT=1.8V) XC9250x083/XC9251x083 (VIN=12V , VOUT=5V) XC9251 2.10 XC9250 2.00 1.90 1.80 1.70 1.60 1.50 L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 5.60 Output Voltage : VOUT[V] Output Voltage : VOUT[V] L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 2.20 1.40 XC9251 5.40 XC9250 5.20 5.00 4.80 4.60 4.40 1 10 100 1000 10000 1 10 Output Current :IOUT[mA] XC9250x083/XC9251x083 (VIN=24V , VOUT=5V) XC9250 5.20 5.00 4.80 4.60 Output Voltage : VOUT[V] Output Voltage : VOUT[V] XC9251 12.80 XC9251 12.60 XC9250 12.40 12.20 12.00 11.80 11.60 11.40 11.20 11.00 1 10 100 1000 10000 1 Output Current :IOUT[mA] 100 1000 10000 XC9250x085/XC9251x085 (VIN=12V , VOUT=5V) 2.10 XC9251 2.00 XC9250 1.90 1.80 1.70 1.60 1.50 L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 5.60 Output Voltage : VOUT[V] L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 2.20 Output Voltage : VOUT[V] 10 Output Current :IOUT[mA] XC9250x085/XC9251x085 (VIN=12V , VOUT=1.8V) 1.40 XC9251 5.40 XC9250 5.20 5.00 4.80 4.60 4.40 1 10 100 1000 10000 1 Output Current :IOUT[mA] 10 100 1000 10000 Output Current :IOUT[mA] XC9250x085/XC9251x085 (VIN=24V , VOUT=5V) XC9250x085/XC9251x085 (VIN=24V , VOUT=12V) 5.80 XC9251 5.60 XC9250 5.40 5.20 5.00 4.80 4.60 4.40 4.20 4.00 L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 13.00 Output Voltage : VOUT[V] L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 6.00 Output Voltage : VOUT[V] 10000 L=30μH(CLF12555-300M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 13.00 4.40 12.80 XC9251 12.60 XC9250 12.40 12.20 12.00 11.80 11.60 11.40 11.20 11.00 1 10 100 1000 Output Current :IOUT[mA] 20/28 1000 XC9250x083/XC9251x083 (VIN=24V , VOUT=12V) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 5.60 5.40 100 Output Current :IOUT[mA] 10000 1 10 100 1000 Output Current :IOUT[mA] 10000 XC9250/XC9251 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (3) Ripple Voltage vs. Output Current XC9250x083/XC9251x083 (VIN=12V , VOUT=5V) XC9250x085/XC9251x085 (VIN=12V , VOUT=5V) XC9250 40 35 30 25 20 15 10 5 L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 50 XC9251 45 Ripple Voltage :Vr[mV] Ripple Voltage :Vr[mV] L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 50 XC9251 45 XC9250 40 35 30 25 20 15 10 5 0 0 0.1 1 10 100 1000 10000 0.1 1 Output Current :IOUT[mA] 10 (4) FB Voltage vs. Ambient Temperature 5.6 UVLO Voltage :VUVLO1,VUVLO2[V] FB Voltage :VFB[V] VIN=12V 0.802 0.800 0.798 0.796 0.794 0.792 0.790 0.788 0 25 50 10000 XC9250/XC9251 0.812 0.810 0.808 0.806 0.804 -25 1000 (5) UVLO Voltage vs. Ambient Temperature XC9250/XC9251 -50 100 Output Current :IOUT[mA] 75 100 125 Detection 5.4 Release 5.2 5.0 4.8 4.6 4.4 4.2 -50 Ambient Temperature :Ta[℃] -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] (6) Oscillation Frequency vs. Ambient Temperature XC9250x083/XC9251x083 XC9250x085/XC9251x085 VIN=12V 340 540 330 530 320 310 300 290 280 270 VIN=12V 550 Oscillation Frequency :fosc[kHz] Oscillation Frequency :fosc[kHz] 350 260 520 510 500 490 480 470 460 250 450 -50 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] 125 -50 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] 125 (7) Supply Current vs. Ambient Temperature XC9250x083/XC9251x083 XC9250x085/XC9251x085 VIN=30V 500 400 300 200 100 0 VIN=30V 600 Supply Current :Iq[μA] Supply Current :Iq[μA] 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] 125 -50 -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] 21/28 XC9250/XC9251 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (8) Stand-by Current vs. Ambient Temperature (9) Lx SW ON Resistance vs. Ambient Temperature XC9250/XC9251 XC9250/XC9251 VIN=30V 0.70 Lx SW ON Resistance :RLX[Ω] Stand-by Current :ISTB[μA] 5 4 3 2 1 0 -50 -25 0 25 50 75 100 0.60 0.50 0.40 0.30 0.20 0.10 0.00 -50 125 Ambient Temperature :Ta[℃] -25 (10) Max Duty vs. Ambient Temperature 25 50 75 100 XC9250/XC9251 92.0 VIN=12V PFM Switch Current :IPFM[mA] 350 90.0 88.0 86.0 84.0 82.0 80.0 300 250 200 150 100 50 0 78.0 -50 -25 0 25 50 75 100 -50 125 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] Ambient Temperature :Ta[℃] (12) CE "H" Voltage vs. Ambient Temperature (13) CE "L" Voltage vs. Ambient Temperature XC9250/XC9251 125 XC9250/XC9251 3.0 3.0 VIN=30V CE "L" Voltage :VCEL[V] VIN=30V CE "H" Voltage :VCEH[V] 125 (11) PFM Switch Current vs. Ambient Temperature XC9250/XC9251 Max Duty :DMAX [%] 0 Ambient Temperature :Ta[℃] VIN=12V 2.5 VIN=7V 2.0 1.5 1.0 0.5 VIN=12V 2.5 VIN=7V 2.0 1.5 1.0 0.5 -50 -25 0 25 50 75 100 125 -50 Ambient Temperature :Ta[℃] -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] (14) Internal Soft-Start Time vs. Ambient Temperature XC9250x083/XC9251x083 VIN=12V 2.5 2.0 1.5 1.0 0.5 0.0 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -50 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] 22/28 VIN=12V 1.6 Internal Soft-Start Time :tSS1[ms] 3.0 Internal Soft-Start Time :tSS1[ms] XC9250x085/XC9251x085 125 -50 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] 125 XC9250/XC9251 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) External Soft-Start Time vs. Ambient Temperature XC9250x083/XC9251x083 VIN=12V 35 30 25 20 15 10 5 0 VIN=12V 20 External Soft-Start Time :tSS2[ms] External Soft-Start Time :tSS2[ms] XC9250x085/XC9251x085 18 16 14 12 10 8 6 4 2 0 -50 -25 0 25 50 75 100 Ambient Temperature :Ta[℃] 125 -50 -25 0 25 50 75 100 125 Ambient Temperature :Ta[℃] 23/28 XC9250/XC9251 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (16) Load Transient Response XC9250x083/XC9251x083 XC9250x083/XC9251x083 VIN=12V, VOUT=5V, IOUT=300mA→1A VIN=12V, VOUT=5V, IOUT=1A→300mA L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div 1ms/div VOUT: 500mV/div VOUT: 500mV/div IOUT=300mA→1A IOUT=1A→300mA XC9250x083/XC9251x083 XC9250x083/XC9251x083 VIN=12V, VOUT=5V, IOUT=1A→2A VIN=12V, VOUT=5V, IOUT=2A→1A L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div 1ms/div VOUT: 500mV/div VOUT: 500mV/div IOUT=1A→2A IOUT=2A→1A XC9250x085/XC9251x085 XC9250x085/XC9251x085 VIN=12V, VOUT=5V, IOUT=300mA→1A VIN=12V, VOUT=5V, IOUT=1A→300mA L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div 1ms/div VOUT: 500mV/div VOUT: 500mV/div IOUT=300mA→1A IOUT=1A→300mA XC9250x085/XC9251x085 XC9250x085/XC9251x085 VIN=12V, VOUT=5V, IOUT=1A→2A VIN=12V, VOUT=5V, IOUT=2A→1A L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div VOUT: 500mV/div 1ms/div VOUT: 500mV/div IOUT=1A→2A IOUT=2A→1A 24/28 XC9250/XC9251 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (17) Rising Response Time XC9250x083/XC9251x083 XC9250x083/XC9251x083 VIN=0→12V, VOUT=5V, IOUT=1mA VIN=0→24V, VOUT=5V, IOUT=1mA L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div VIN: 0→12V 1ms/div VIN: 0→24V VOUT: 2V/div VOUT: 2V/div XC9250x085/XC9251x085 XC9250x085/XC9251x085 VIN=0→12V, VOUT=5V, IOUT=1mA VIN=0→24V, VOUT=5V, IOUT=1mA L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) VIN: 0→12V L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div 1ms/div VIN: 0→24V VOUT: 2V/div VOUT: 2V/div (18) Input Transient Response XC9250x083/XC9251x083 XC9250x083/XC9251x083 VIN=12V→30V, VOUT=5V, IOUT=1A VIN=30V→12V, VOUT=5V, IOUT=1A L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=22μH(CLF12555-220M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div 1ms/div VOUT: 200mV/div VOUT: 200mV/div VIN=12V→30V VIN=30V→12V XC9250x085/XC9251x085 XC9250x085/XC9251x085 VIN=12V→30V, VOUT=5V, IOUT=1A VIN=30V→12V, VOUT=5V, IOUT=1A L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) L=15μH(CLF12555-150M), CIN1=10μF(GRM32ER71H106KA12L), SBD=CMS15, CL=22μF×2(GRM32ER71E226KE15L) 1ms/div VOUT: 200mV/div 1ms/div VOUT: 200mV/div VIN=12V→30V VIN=30V→12V 25/28 XC9250/XC9251 Series ■PACKAGING INFORMATION ●SOP-8FD (unit: mm) 0.22±0.03 4.9±0.1 0.1 (1.27) 0.42±0.09 (3.3) BOTTOM VIEW ●SOP-8FD Reference Pattern Layout (unit: mm) ●SOP-8FD Reference Metal Mask Design (unit: mm) 0.6 1.52 1.27 26/28 4.88 2.3 3.3 XC9250/XC9251 Series ■MARKING RULE ① represents products series SOP-8FD 8 MARK 7 6 5 ① ② ③ MARK A 2 3 XC9250******-G F XC9251******-G ② represents products type ④ ⑤ 1 PRODUCT SERIES 4 B PRODUCT SERIES XC9250A*****-G XC9251A*****-G XC9250B*****-G XC9251B*****-G ③ represents FB voltage and oscillation frequency MARK 3 5 A B VOLTAGE (V) 0.8 0.8 OSCILLATION FREQUENCY PRODUCT SERIES 300kHz 500kHz 300kHz 500kHz XC9250*083**-G XC9250*085**-G XC9251*083**-G XC9251*085**-G ④⑤ represents production lot number 01~09, 0A~0Z, 11~9Z, A1~A9, AA~AZ, B1~ZZ in order. (G, I, J, O, Q, W excluded) * No character inversion used. 27/28 XC9250/XC9251 Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 28/28