XCM519 Series ETR2421-003 600mA Synchronous Step-Down DC/DC Converter + Low Voltage Input LDO ■GENERAL DESCRIPTION The XCM519 series is a multi combination module IC which comprises of a 600mA driver transistor built-in synchronous step–down DC/DC converter and a low voltage input LDO regulator. The device is housed in small USP-12B01 package which is ideally suited for space conscious applications. Battery operated portable products require high efficiency so that a dual DC/DC converter is often used. The XCM519 can replace this dual DC/DC to eliminate one inductor and reduce output noise. The DC/DC converter and the LDO regulator blocks are isolated in the package so that noise interference from the DC/DC to the LDO regulator is minimal. A low output voltage and low On-resistance LDO regulator is added in series to the DC/DC output so that one another low output voltage is created with a high efficiency and low noise. With comparison to the dual DC/DC solution, one inductor can be eliminated which results in parts reduction and board space saving. ■FEATURES ■APPLICATIONS ●Mobile phones, Smart phones ●Bluetooth equipment ●Portable communication modems ●Portable game consoles ■ TYPICAL APPLICATION CIRCUIT <DC/DC Convertor Block> Input Voltage Range : 2.7V ~ 6.0V Output Voltage Range : 0.8V ~ 4.0V High Efficiency : 92% (TYP.) Output Current : 600mA (MAX.) Oscillation Frequency : 1.2MHz, 3.0MHz (+15%) Maximum Duty Cycle : 100% Soft-Start Circuit Built-In Current Limiter Circuit (Constant Current & Latching) Built-In Control Methods : PWM (XCM519A) PWM/PFM Auto (XCM519B) *Performance depends on external components and wiring on PCB wiring. (TOP VIEW) * The dashed lines denote the connection through-holes at the backside of the PC board. using ■TYPICAL PERFORMANCE CHARACTERISTICS Dropout Voltage vs. Output Current Dropout Voltage: Vdif(mV) VR O UT= 1 .2 V Ta=25℃ 300 <Regulator Block> Maximum Output Current : 400mA (Limiter 550mA TYP.) Dropout Voltage : 35mV@IOUT=100mA (TYP.) (at VBIAS - VROUT(E)=2.4V) Bias Voltage Range : 2.5V ~ 6.0V (VBIAS - VROUT(E)=0.9V) Input Voltage Range : 1.0V ~ 3.0V (VIN2≦VBIAS) Output Voltage Range : 0.7V ~ 1.8V (0.05V increments) High Output Accuracy : ±20mV Supply Current : IBIAS=25μA , IIN2=1.0μA (TYP.) Stand-by Current : IBIAS=0.01μA , IIN2=0.01μA (TYP.) UVLO : VBIAS=2.0V , VIN2=0.4V (TYP) Thermal Shut Down : Detect 150℃, Release 125℃ (TYP.) Soft-start Time : 240μs@VROUT=1.2V(TYP.) CL High Speed Auto-Discharge Low ESR Capacitor Operating Temperature Range Package : Ceramic Capacitor Compatible : -40℃ ~ +85℃ : USP-12B01 VBIAS=3.0V 250 VBIAS=3.3V VBIAS=3.6V 200 VBIAS=4.2V VBIAS=5.0V 150 Standard Voltage Combinations : DC/DC XCM519xx01Dx 1.8V XCM519xx02Dx 1.8V XCM519xx03Dx 1.5V XCM519xx04Dx 1.8V XCM519xx05Dx 1.5V 100 50 0 0 100 200 300 400 VR 1.2V 1.5V 1.2V 1.0V 1.0V *Other combinations are available as semi-custom products. Output Current: IOUT(mA) 1/49 XCM519 Series ■PIN CONFIGURATIOIN (TOP VIEW) PIN No. XCM519 XC9235/XC9236 XC6601 1 DCOUT VOUT ― 2 AGND AGND ― 3 EN1 CE ― 4 VIN2 ― VIN 5 VSS2 ― VSS 6 VROUT ― VOUT 7 EN2 ― CE 8 NC ― ― 9 VBIAS ― VBIAS 10 VIN1 VIN ― 11 PGND PGND ― 12 Lx Lx ― (BOTTOM VIEW) NOTE: * A dissipation pad on the reverse side of the package should be electrically isolated. *1: Electrical potential of the XC9235/XC9236’s dissipation pad should be VSS level. *2: Electrical potential of the XC6601’s dissipation pad should be VSS level. Care must be taken for an electrical potential of each dissipation pad so as to enhance mounting strength and heat release when the pad needs to be connected to the circuit. ■PIN ASSIGNMENT 2/49 PIN No XCM519 1 DCOUT FUNCTIONS 2 AGND 3 EN1 DC/DC Block: Chip Enable 4 VIN2 Voltage Regulator Block: Power Input 5 VSS2 Voltage Regulator Block: Ground 6 VROUT Voltage Regulator Block: Output 7 EN2 Voltage Regulator Block: Enable DC/DC Block: Output Voltage DC/DC Block: Analog Ground 8 NC 9 VBIAS Voltage Regulator Block: Power Input No Connection 10 VIN1 DC/DC Block: Power Input 11 PGND 12 Lx DC/DC Block: Power Ground DC/DC Block: Switching XCM519 Series ■PRODUCT CLASSIFICATION ●Ordering Information XCM519A①②③④⑤ XCM519B①②③④⑤ DC/DC BLOCK:PWM fixed control DC/DC BLOCK:PWM/PFM automatic switching control DESIGNATOR DESCRIPTION SYMBOL DESCRIPTION ① Oscillation Frequency and Options − See the chart below ② ③ Output Voltage − Internally set sequential number relating to output voltage (See the chart below) ④ Package D USP-12B01 ⑤ Device Orientation R Embossed tape, standard feed ●DESIGNATOR① DC/DC BLOCK OSCILLATION CL AUTO FREQUENCY DISCHARGE A 1.2M B 3.0M C D ① Voltage Regulator BLOCK SOFT START Pull-down Not Available Standard Not Available Not Available Standard Not Available 1.2M Available High Speed Not Available 3.0M Available High Speed Not Available ●DESIGNATOR②③ ②③ DCOUT VROUT 01 1.8V 1.2V 02 1.8V 1.5V 03 1.5V 1.2V 04 1.8V 1.0V 05 1.5V 1.0V *When the DCOUT pin is connected to VIN2, DCOUT pin output voltage can be fixed in the range of 1.0V∼3.0V. *This series are semi-custom products. For other combinations of output voltages please consult with your Torex sales contact. 3/49 XCM519 Series ■BLOCK DIAGRAMS XC9235A/XC9236A XC9235B/XC9236B (CL放電機能有 、 高速ソフトスタート ) Available with CL Discharge, High Speed Soft-Start Phase Compensation VOUT R2 Current Feedback Current Limit Error Amp. R2 PWM Comparator Logic R1 VIN Lx Error Amp. Logic Vref with Soft Start, CE UVLO VSS CE/MODE Control Logic R4 CE Lx PWM/PFM Selector CE/ UVLO Cmp R3 Synch Buffer Drive VSHORT PWM/PFM Selector Ramp Wave Generator OSC Current Feedback Current Limit PWM Comparator R1 VIN UVLO Cmp VSS Synch Buffer Drive VSHORT Vref with Soft Start, CE Phase Compensation VOUT UVLO Ramp Wave Generator OSC R3 CE/MODE Control Logic R4 XC6601B (Without Pull-down) * XC9235 control scheme is a fixed PWM because that the “CE/MODE Control Logic” outputs a low level signal to the “PWM/PFM Selector”. * XC9236 control scheme is an auto PWM/PFM switching because the “CE/MODE Control Logic” outputs a high level signal to the “PWM/PFM Selector”. *Diodes inside the circuit are an ESD protection diode and a parasitic diode. ■MAXIMUM ABSOLUTE RATINGS PARAMETER SYMBOL RATINGS UNITS VIN1Voltage VIN1 - 0.3 ∼ 6.5 V Lx Voltage VLx - 0.3 ∼ VIN1 + 0.3 or 6.5 V DCOUT Voltage VDCOUT - 0.3 ∼ 6.5 V EN1 Voltage VEN1 - 0.3 ∼ 6.5 V Lx Current ILx ±1500 mA VBIAS Voltage VBIAS VSS - 0.3 ∼ 7.0 V VIN2 Voltage VIN2 VSS - 0.3 ∼ 7.0 VROUT Current IVROUT VROUT Voltage VROUT EN2 Voltage VEN2 VSS - 0.3 ∼ 6.5 V Pd 150 mW Junction Temperature Tj 125 ℃ Operating Temperature Range Topr -40∼+85 ℃ Storage Temperature Range Tstg -55∼+125 ℃ Power Dissipation (Ta=25℃) (*1) USP-12B01 IVROUT=Less than Pd / (VIN2-VROUT) 4/49 Ta=25℃ 700 (*1) VSS - 0.3∼VBIAS + 0.3 VSS - 0.3∼VIN2 + 0.3 V mA V XCM519 Series ■ELECTRICAL CHARACTERISTICS ●XCM519xA (DC/DC BLOCK) PARAMETER SYMBOL Output Voltage VDCOUT Operating Voltage Range VIN1 VDCOUT=1.8V, fOSC=1.2MHz, Ta=25℃ CONDITIONS When connected to external components, VIN1 = VEN1 =5.0V, IOUT1 =30mA MIN. TYP. MAX. UNITS CIRCUIT 1.764 1.800 1.836 V ① 2.7 - 6.0 V ① 600 - - mA ① 1.00 1.40 1.78 V ③ (XCM519AA) - 22 50 (XCM519BA) - 15 33 ② − - 0 1.0 μA ② Maximum Output Current IOUT1MAX When connected to external components, (*8) VIN1=DCOUT(E)+2.0V, VEN1=1.0V UVLO Voltage VUVLO VEN1=VIN1, DCOUT=0V, (*1, *10) Voltage which Lx pin holding “L” level Supply Current IDD VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×1.1V Stand-by Current ISTB VIN1=5.0V, VEN1=0V, DCOUT=DCOUT(E)×1.1V Oscillation Frequency fOSC When connected to external components, (*11) VIN1=DCOUT(E)+2.0V,VEN1=1.0V, IOUT1=100mA 1020 1200 1380 kHz ① PFM Switching Current IPFM When connected to external components, (*11) VIN1=VDCOUT(E)+2.0V, VEN1 =VIN1, IOUT1=1mA 120 160 200 mA ① - 200 - % ① VIN1= VEN1 =5.0V, DCOUT=DCOUT(E)×0.9V 100 - - % ② VIN1= VEN1 =5.0V, DCOUT=DCOUT(E)×1.1V - - 0 % ② - 92 - % ① - 0.35 0.55 Ω ④ - 0.42 0.67 Ω ④ - 0.45 0.66 Ω − - 0.52 0.77 Ω − PFM Duty Limit DLIMIT_PFM Maximum Duty Ratio DMAX Minimum Duty Ratio DMIN Efficiency (*2) EFFI Lx SW "H" ON Resistance 1 RLXH VEN1=VIN1=(C-1), IOUT1=1mA (*11) When connected to external components, (*7) VEN1=VIN1=DCOUT(E)+1.2V , IOUT1 =100mA (*3) VIN1= VEN1 =5.0V, DCOUT=0V,ILX=100mA Lx SW "H" ON Resistance 2 RLXH VIN1= VEN1 =3.6V, DCOUT=0V,ILX=100mA Lx SW "L" ON Resistance 1 RLXL VIN1= VEN1 =5.0V Lx SW "L" ON Resistance 2 RLXL VIN1= VEN1=3.6V (*3) (*4) (*4) Lx SW "H" Leak Current (*5) ILEAKH VIN1= DCOUT=5.0V, VEN1 =0V, VLX=0V - 0.01 1.0 μA ⑤ Lx SW "L" Leak Current (*5) ILEAKL VIN1= DCOUT=5.0V, VEN1 =0V, VLX=5.0V - 0.01 1.0 μA ⑤ 900 1050 1350 mA ⑥ - ±100 - ppm/ ℃ ① 0.65 - 6.0 V ③ VSS - 0.25 V ③ - 0.1 - 0.1 μA ⑤ (*9) Current Limit Output Voltage Temperature Characteristics ILIM (DCOUT・△topr) EN1 "H" Level Voltage VEN1H EN1 "L" Level Voltage VEN1L EN1 "H" Current IEN1H EN1 "L" Current IEN1L △DCOUT / VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×0.9V IOUT1 =30mA -40℃≦Topr≦85℃ DCOUT=0V, Applied voltage to VEN, (*10) Voltage changes Lx to “H” level DCOUT=0V, Applied voltage to VEN, (*10) Voltage changes Lx to “L” level VIN1=VEN1=5.0V, DCOUT=0V ⑤ VIN1=5.0V, VEN1 =0V, DCOUT=0V - 0.1 0.1 μA When connected to external components, ① 0.5 1.0 2.5 ms Soft Start Time tSS VEN1 =0V → VIN1, IOUT1=1mA VIN= VEN=5.0V, DCOUT=0.8× DCOUT(E) ⑦ Latch Time tLAT 1.0 20.0 ms (*6) Short Lx at 1Ω resistance Sweeping DCOUT, VIN1=VEN1= 5.0V, Short Lx at Short Protection ⑦ VSHORT 0.675 0.900 1.125 V 1Ω resistance, DCOUT voltage which Lx becomes Threshold Voltage “L” level within 1ms Test conditions: Unless otherwise stated, VIN = 5.0V, VDCOUT(E)= Setting voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN∼VIN - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM519A series exclude IPFM and MAXIPFM because those are only for the PFM control’s functions. * The electrical characteristics above are when the other channel is in stop mode. 5/49 XCM519 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM519xB 1ch (DC/DC BLOCK) PARAMETER SYMBOL Output Voltage VDCOUT Operating Voltage Range VIN1 VDCOUT=1.8V, fOSC=3.0MHz, Ta=25℃ CONDITIONS When connected to external components, VIN1 = VEN1 =5.0V, IOUT1 =30mA MIN. TYP. MAX. UNITS CIRCUIT 1.764 1.800 1.836 V ① 2.7 - 6.0 V ① When connected to external components, (*8) VIN1=VDCOUT(E)+2.0V, VEN1=1.0V 600 - - mA ① VEN1=VIN1, DCOUT=0V, (*1, *10) Voltage which Lx pin holding “L” level 1.00 1.40 1.78 V ③ (XCM519AB) - 46 65 (XCM519BB) - 21 35 ② − Maximum Output Current IOUT1MAX UVLO Voltage VUVLO Supply Current IDD Stand-by Current ISTB VIN1=5.0V, VEN1=0V, DCOUT=DCOUT(E)×1.1V - 0 1.0 μA ② Oscillation Frequency fOSC When connected to external components, VIN1=DCOUT(E)+2.0V,VEN1=1.0V, IOUT1=100mA 2550 3000 3450 kHz ① PFM Switching Current IPFM When connected to external components, (*11) VIN1=DCOUT(E)+2.0V, VEN1 =VIN1, IOUT1=1mA 170 220 270 mA ① - 200 300 % ① VIN1=VEN1 =5.0V, DCOUT=DCOUT(E)×0.9V 100 - - % ② VIN1=VEN1 =5.0V, DCOUT=DCOUT(E)×1.1V - - 0 % ② - 86 - % ① - 0.35 0.55 Ω ④ - 0.42 0.67 Ω ④ - 0.45 0.66 Ω − - 0.52 0.77 Ω − PFM Duty Limit DLIMIT_PFM Maximum Duty Ratio DMAX Minimum Duty Ratio DMIN Efficiency EFFI Lx SW "H" ON Resistance 1 RLXH VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×1.1V VEN1=VIN1=(C-1) IOUT1=1mA (*11) When connected to external components, VEN1=VIN1=DCOUT(E)+1.2V, IOUT1 =100mA (*3) VIN1= VEN1 =5.0V, DCOUT=0V,ILX=100mA Lx SW "H" ON Resistance 2 RLXH VIN1= VEN1 =3.6V, DCOUT=0V,ILX=100mA Lx SW "L" ON Resistance 1 RLXL VIN1= VEN1 =5.0V Lx SW "L" ON Resistance 2 RLXL VIN1= VEN1=3.6V (*4) (*4) (*3) Lx SW "H" Leak Current (*5) ILEAKH VIN1= DCOUT=5.0V, VEN1 =0V, VLX=0V - 0.01 1.0 μA ⑤ Lx SW "L" Leak Current (*5) ILEAKL VIN1= DCOUT=5.0V, VEN1 =0V, VLX=5.0V - 0.01 1.0 μA ⑤ ILIM VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×0.9V 900 1050 1350 mA ⑥ - ±100 - ppm/ ℃ ① 0.65 - 6.0 V ③ VSS - 0.25 V ③ - 0.1 - 0.1 μA ⑤ (*9) Current Limit Output Voltage Temperature Characteristics (DCOUT・△topr) EN1 "H" Level Voltage VEN1H EN1 "L" Level Voltage VEN1L EN1 "H" Current IEN1H EN1 "L" Current IEN1L △DCOUT / IOUT1 =30mA -40℃≦Topr≦85℃ DCOUT=0V, Applied voltage to VEN, (*10) Voltage changes Lx to “H” level DCOUT=0V, Applied voltage to VEN, (*10) Voltage changes Lx to “L” level VIN1=VEN1=5.0V, DCOUT=0V ⑤ VIN1=5.0V, VEN1 =0V, DCOUT=0V - 0.1 0.1 μA When connected to external components, ① 0.5 0.9 2.5 ms Soft Start Time tSS VEN1 =0V → VIN1, IOUT1=1mA VIN1=VEN1=5.0V, DCOUT=0.8×DCOUT(E) ⑦ Latch Time tLAT 1.0 20 ms (*6) Short Lx at 1Ω resistance Sweeping DCOUT, VIN1=VEN1=5.0V, Short Lx at Short Protection ⑦ VSHORT 1Ω resistance, DCOUT voltage which Lx becomes 0.675 0.900 1.125 V Threshold Voltage “L” level within 1ms Test conditions: Unless otherwise stated, VIN1=5.0V, VDCOUT(E)= Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN∼VIN - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM519A series exclude IPFM and DLIMIT_PFM because those are only for the PFM control’s functions. * The electrical characteristics above are when the other channel is in stop mode. 6/49 XCM519 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM519xC 1ch (DC/DC BLOCK) PARAMETER VDCOUT=1.8V, fOSC=1.2MHz, Ta=25℃ SYMBOL CONDITIONS MIN. TYP. MAX. 1.764 1.800 1.836 V ① 2.7 - 6.0 V ① When connected to external components, (*8) VIN1=DCOUT(E)V+2.0V,VEN1=1.0V 600 - - mA ① VEN1=VIN1,DCOUT=0V, (*1, *10) Voltage which Lx pin holding “L” level 1.00 1.40 1.78 V ② (XCM519AC) - 22 50 (XCM519BC) - 15 33 μA ③ When connected to external components, VIN1=VEN1=5.0V,IOUT1=30mA UNITS CIRCUIT Output Voltage VDCOUT Operating Voltage Range VIN1 Maximum Output Current IOUT1MAX UVLO Voltage VUVLO Supply Current IDD Stand-by Current ISTB VIN1=5.0V,VEN1=0V,DCOUT=DCOUT(E)×1.1V - 0 1.0 μA ③ Oscillation Frequency fOSC When connected to external components, VIN1=DCOUT(E)V+2.0V,VEN1=1.0V, IOUT1=100mA 1020 1200 1380 kHz ① PFM Switching Current IPFM When connected to external components, (*11) VIN1=DCOUT(E)V+2.0V,VEN1=VIN1, IOUT1=1mA 120 160 200 mA ① PFM Duty Limit DLIMIT_PFM - 200 % ② Maximum Duty Ratio DMAX VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×0.9V 100 - - % ② Minimum Duty Ratio DMIN VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×1.1V - - 0 % ② Efficiency EFFI - 92 - % ① Lx SW "H" ON Resistance 1 RLXH When connected to external components, (*7) VEN1=VIN1=DCOUT(E)+1.2V , IOUT1=100mA (*3) VIN1=VEN1=5.0V,DCOUT=0V,ILX=100mA - 0.35 0.55 Ω ④ Lx SW "H" ON Resistance 2 RLXH VIN1=VEN1=3.6V,DCOUT=0V,ILX=100mA - 0.42 0.67 Ω ④ − VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×1.1V VEN1=VIN1=(C-1)IOUT1=1mA (*11) (*3) Lx SW "L" ON Resistance 1 RLXL VIN1=VEN1=5.0V (*4) - 0.45 0.66 Ω Lx SW "L" ON Resistance 2 RLXL VIN1=VEN1=3.6V (*4) - 0.52 0.77 Ω − (*5) ILEAKH VIN1=DCOUT=5.0V,VEN1=0V,LX=0V - 0.01 1.0 μA ⑨ 900 1050 1350 mA ⑥ - ±100 - ppm/℃ ① 0.65 - 6.0 V ③ VSS - 0.25 V ③ - 0.1 - 0.1 μA ⑤ - 0.1 - 0.1 μA ⑤ - 0.25 0.40 ms ① 1.0 - 20 ms ⑦ 0.675 0.900 1.150 V ⑦ 200 300 450 Ω ⑧ Lx SW "H" Leak Current (*9) Current Limit Output Voltage Temperature Characteristics ILIM (DCOUT・△topr) EN1 "H" Level Voltage VEN1H EN1 "L" Level Voltage VEN1L △DCOUT / EN1 "H" Current IEN1H EN1 "L" Current IEN1L Soft Start Time tSS Latch Time TLAT Short Protection Threshold Voltage VSHORT CL Discharge RDCHG VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×0.9V IOUT1=30mA, -40℃≦Topr≦85℃ DCOUT=0V, Applied voltage to VEN1, (*10) Voltage changes Lx to “H” level DCOUT=0V, Applied voltage to VEN1, (*10) Voltage changes Lx to “L” level VIN1=VEN1=5.0V,DCOUT=0V VIN1=5.0V,VEN1=0V,DCOUT=0V When connected to external components, VEN1=0V→VIN1, IOUT1=1mA VIN1=VEN1=5.0V, DCOUT=0.8×DCOUT(E) (*6) Short Lx at 1Ω resistance Sweeping DCOUT, VIN1=VEN1=5.0V, Short Lx at 1Ω resistance, DCOUT voltage which Lx becomes “L” level within 1ms VIN1=5.0V, LX=5.0V,VEN1=0V, DCOUT=Open Test conditions: Unless otherwise stated, VIN1=5.0V, VDCOUT(E)= Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN∼VIN - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM519A series exclude IPFM and DLIMT_PFM because those are only for the PFM control’s functions. * The electrical characteristics above are when the other channel is in stop mode. 7/49 XCM519 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM519xD 1ch (DC/DC BLOCK) DCOUT=1.8V, fOSC=3.0MHz, Ta=25℃ PARAMETER SYMBOL Output Voltage VDCOUT Operating Voltage Range VIN1 Maximum Output Current IOUT1MAX UVLO Voltage VUVLO Supply Current IDD VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×1.1V Stand-by Current ISTB VIN1=5.0V,VEN1=0V, DCOUT=DCOUT(E)×1.1V Oscillation Frequency fOSC PFM Switching Current IPFM PFM Duty Limit DLIMIT_PFM Maximum Duty Ratio DMAX Minimum Duty Ratio DMIN Efficiency EFFI Lx SW "H" ON Resistance 1 RLXH CONDITIONS MIN. TYP. MAX. 1.764 1.800 1.836 V ① 2.7 - 6.0 V ① When connected to external components, (*8) VIN1=DCOUT(E)V+2.0V,VEN1=1.0V 600 - - mA ① VEN1=VIN1,DCOUT=0V, (*1, *10) Voltage which Lx pin holding “L” level 1.00 1.40 1.78 V ② (XCM519AD) - 46 65 (XCM519BD) - 21 35 μA ③ - 0 1.0 μA ③ When connected to external components, VIN1=DCOUT(E)V+2.0V, VEN1=1.0V, IOUT1=100mA 2550 3000 3450 kHz ① When connected to external components, (*11) VIN1=DCOUT(E)V+2.0V, VEN1=VIN1, IOUT1=1mA 170 220 270 mA ① - 200 300 % ② VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×0.9V 100 - - % ② VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×1.1V - - 0 % ② - 86 - % ① - 0.35 0.55 Ω ④ When connected to external components, VIN1=VEN1=5.0V, IOUT1=30mA VEN1=VIN1=(C-1)IOUT1=1mA (*11) When connected to external components, (*7) VEN1=VIN1=DCOUT(E)+1.2V ,IOUT1=100mA (*3) VIN1=VEN1=5.0V, DCOUT=0V, ILX=100mA (*3) UNITS CIRCUIT Lx SW "H" ON Resistance 2 RLXH VIN1=VEN1=3.6V, DCOUT=0V, ILX=100mA - 0.42 0.67 Ω ④ Lx SW "L" ON Resistance 1 RLXL VIN1=VEN1=5.0V (*4) - 0.45 0.66 Ω − Lx SW "L" ON Resistance 2 RLXL VIN1=VEN1=3.6V (*4) - 0.52 0.77 Ω − (*5) ILEAKH VIN1=DCOUT=5.0V,VEN1=0V, LX=0V Lx SW "H" Leak Current (*9) Current Limit Output Voltage Temperature Characteristics ILIM (DCOUT・△topr) EN1 "H" Level Voltage VEN1H EN1 "L" Level Voltage VEN1L △DCOUT / EN1 "H" Current IEN1H EN1 "L" Current IEN1L Soft Start Time tSS Latch Time tLAT Short Protection Threshold Voltage VSHORT CL Discharge RDCHG VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×0.9V IOUT1=30mA -40℃≦Topr≦85℃ DCOUT=0V, Applied voltage to VEN1, (*10) Voltage changes Lx to “H” level DCOUT=0V, Applied voltage to VEN1, (*10) Voltage changes Lx to “L” level VIN1=VEN1=5.0V, DCOUT=0V VIN1=5.0V,VEN1=0V, DCOUT=0V When connected to external components, VEN1=0V→VIN1, IOUT1=1mA VIN1=VEN1=5.0V, DCOUT=0.8×DCOUT(E) (*6) Short Lx at 1Ω resistance Sweeping DCOUT, VIN1=VEN1=5.0V, Short Lx at 1Ω resistance, DCOUT voltage which Lx becomes “L” level within 1ms VIN1=5.0V, LX=5.0V, VEN1=0V, DCOUT=Open - 0.01 1.0 μA ⑨ 900 1050 1350 mA ⑥ - ±100 - ppm/℃ ① 0.65 - 6.0 V ③ VSS - 0.25 V ③ - 0.1 - 0.1 μA ⑤ - 0.1 - 0.1 μA ⑤ - 0.32 0.50 ms ① 1.0 - 20 ms ⑦ 0.675 0.900 1.150 V ⑦ 200 300 450 Ω ⑧ Test conditions: Unless otherwise stated, VIN1=5.0V, VDCOUT(E)= Nominal voltage NOTE: *1: Including hysteresis width of operating voltage. *2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100 *3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA *4: Design value *5: When temperature is high, a current of approximately 10μA (maximum) may leak. *6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating. *7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V. *8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes. If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance. *9: Current limit denotes the level of detection at peak of coil current. *10: "H"=VIN∼VIN - 1.2V, "L"=+ 0.1V ∼ - 0.1V *11: XCM519A series exclude IPFM and DLIMT_PFM because those are only for the PFM control’s functions. * The electrical characteristics above are when the other channel is in stop mode. 8/49 XCM519 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage 1.2MHz (mA) SETTING VOLTAGE MIN. TYP. MAX. VDCOUT(E)≦1.2V 140 180 240 1.2V<VDCOUT(E)≦1.75V 130 170 220 1.8V≦VDCOUT(E) 120 160 200 3.0MHz (mA) SETTING VOLTAGE MIN. TYP. MAX. VDCOUT(E)≦1.2V 190 260 350 1.2V<VDCOUT(E)≦1.75V 180 240 300 1.8V≦VDCOUT(E) 170 220 270 ●Measuring Maximum IPFM Limit, VIN Voltage fOSC 1.2MHz 3.0MHz (C-1) VDCOUT(E)+0.5V VDCOUT(E)+1.0V Minimum operating voltage is 2.7V ex.) Although when VDCOUT(E)=1.2V, fOSC=1.2MHz, (C-1)=1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V. ●Soft-Start Time Chart (XCM519xC/ XCM519xD Series Only) PRODUCT SERIES XCM519AC XCM519BC XCM519xD fOSC OUTPUT VOLTAGE MIN. TYP. MAX. 1200kHz 0.8≦VDCOUT(E)<1.5 - 250 400μs 1200kHz 1.5≦VDCOUT(E)<1.8 - 320 500μs 1200kHz 1.8≦VDCOUT(E)<2.5 - 250 400μs 1200kHz 2.5≦VDCOUT(E)<4.0 - 320 500μs 1200kHz 0.8≦VDCOUT(E)<2.5 - 250 400μs 1200kHz 2.5≦VDCOUT(E)<4.0 - 320 500μs 3000kHz 0.8≦VDCOUT(E)<1.8 - 250 400μs 3000kHz 1.8≦VDCOUT(E)<4.0 - 320 500μs 9/49 XCM519 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM519xx 2ch (REGULATOR BLOCK) PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. Bias Voltage (*1) VBIAS VEN2 =VBIAS,VIN2=VROUT(T)+0.3V 2.5 - 6.0 V − Input Voltage (*2) VIN2 VBIAS=VEN2=3.6V 1.0 3.0 V − VBIAS=VEN2=3.6V,VIN2=VROUT(T)+0.3V, -0.02 V − Output Voltage VROUT(E) (*3) Maximum Output Current1 IOUTMAX1 Maximum Output Current2 IOUTMAX2 Maximum Output Current3 IOUTMAX3 Load Regulation △VROUT Dropout Voltage1 Vdif1 (*7) Dropout Voltage2 Vdif2 (*7) Dropout Voltage3 Vdif3 (*7) Vdif4 (*7) Dropout Voltage4 Supply Current 1 IBIAS Supply Current 2 IIN2 IROUT=1mA VEN2 =VBIAS ,VBIAS -VROUT(T)≧1.2V VIN2 =VROUT(T)+0.5V VEN2 =VBIAS ,VBIAS -VROUT(T)≧1.3V VIN2 =VROUT(T)+0.5V VEN2 =VBIAS ,VBIAS -VROUT(T)≧1.5V VIN2 =VROUT(T)+0.5V VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V, 1mA≦IVROUT≦100mA VOUT(T) E-0 (*4) +0.02 (*5) UNITS CIRCUIT 200 - - mA ⑩ 300 - - mA ⑩ 400 - - mA ⑩ - 8 17 mV − E-1 (*6) mV ⑩ VEN2 =VBIAS , IOUT=200mA E-2 (*6) mV ⑩ VEN2 =VBIAS , IOUT=300mA E-3 (*6) mV ⑩ E-4 (*6) mV ⑩ VEN2 =VBIAS , IOUT=100mA VEN2 =VBIAS , IOUT=400mA VBIAS=VEN2=3.6V,VIN2=VROUT(T)+0.3V VROUT(T)=OPEN VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V VROUT(T)=OPEN 8 25 45 μA ⑩ - 1.0 2.5 μA ⑩ - 1.0 2.5 mA ⑩ VROUT(T)≧0.95V,VBIAS=VEN2=3.6V, Bias Current (*10) IBIASMAX VIN2=VROUT(T)+0.05V, VROUT=VROUT(T) - 0.05V VROUT(T)<0.95V,VBIAS=VEN2=3.6V, VIN2=1.0V, VROUT=VROUT(T) - 0.05V Stand-by Current 1 IBIAS_STB VBIAS=6.0V,VIN2=3.0V, VEN2=VSS2 - 0.01 0.10 μA ⑩ Stand-by Current 2 IIN_STB VBIAS=6.0V,VIN2=3.0V, VEN2=VSS2 - 0.01 0.35 μA ⑩ - 0.01 0.3 %/V ⑩ - 0.01 0.1 %/V ⑩ VROUT(T)≧1.3V VROUT(T)+1.2V≦VBIAS≦6.0V, Bias Regulation △VROUT / VIN2=VROUT(T)+0.3V, VEN2 =VBIAS , IOUT=1mA (△VBIAS・VROUT) VROUT(T)<1.3V 2.5V≦VBIAS≦6.0V, VIN2=VROUT(T)+0.3V, VEN2 =VBIAS , IOUT=1mA VROUT(T)≧0.90V,VROUT(T)+0.1V≦VIN2≦3.0V, △VROUT / VBIAS=VEN2=3.6V,IOUT=1mA (△VIN2・VROUT) VROUT(T)<0.90V,1.0V≦VIN2≦3.0V Bias Voltage UVLO VBIAS_UVLO VEN2 =VBIAS,VIN2 =VROUT(T)+0.3V,IOUT=1mA 1.37 2.0 2.5 V ⑩ Input Voltage UVLO VIN_UVLO VBIAS=VEN2=3.6V, IVROUT=1mA 0.07 0.4 0.6 V ⑩ - 40 - dB ⑪ - 60 - dB ⑪ Input Regulation VBIAS=VEN2=3.6V,IOUT=1mA VBIAS Ripple Rejection VBIAS_PSRR VIN2 Ripple Rejection VIN_PSRR 10/49 VBIAS=3.6VDC+0.2Vp-pAC,VIN2=VROUT(T)+0.3V, IOUT=30mA,f=1kHz VIN2=VOUT(T)+0.3VDC+0.2Vp-pAC, VBIAS=3.6V, IOUT=30mA,f=1kHz XCM519 Series ■ELECTRICAL CHARACTERISTICS (Continued) ●XCM519xx 2ch (REGULATOR BLOCK) (Continued) PARAMETER Output Voltage Temperature Characteristics SYMBOL CONDITIONS VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V , IOUT=30mA, △VROUT/ - 40℃≦ Topr ≦85℃ (△Topr・VROUT) MIN. TYP. MAX. UNITS CIRCUIT - ±100 - ppm/℃ ⑩ Limit Current ILIM VROUT=VROUT(T)×0.95, VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V 400 - - mA ⑩ Short Current ISHORT VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V, VROUT=0V - 80 - mA ⑩ TTSD Junction Temperature - 150 - ℃ ⑩ TTSR Junction Temperature - 125 - ℃ ⑩ - 25 - ℃ ⑩ 290 430 610 Ω ⑩ Thermal Shutdown Detect Temperature Thermal Shutdown Release Temperature TSD Hysteresis Width TTSD−TTSR CL Auto-Discharge Resistance RDCHG EN2 "H" Level Voltage VEN2H VBIAS=3.6V,VIN2=VROUT(T)+0.3V 0.75 - 6.0 V ⑩ EN2 "L" Level Voltage VEN2L VBIAS=3.6V,VIN2=VROUT(T)+0.3V - - 0.16 V ⑩ -0.1 - 0.1 μA ⑩ -0.1 - 0.1 μA ⑩ 100 - 410 μs ⑫ EN2 "H" Level Current IEN2H EN2 "L" Level Current IEN2L Soft Start Time (*11) tSS VBIAS=3.6V, VIN2= VROUT(T)+0.3V, VEN2= VSS VROUT=VROUT(T) VBIAS=VEN2=6.0V, VIN2=VROUT(T)+0.3V VBIAS=6.0V, VEN2=VSS,VIN2=VROUT(T)+0.3V VBIAS=3.6V、VIN2=VROUT(T)+0.3V、IOUT=1mA VEN2=0V→3.6V NOTE: * 1: Please use Bias voltage VBIAS within the range VBIAS –VROUT(T)≧0.9V * 2: Please use Input voltage VIN within the range VIN≦VBIAS * 3: VROUT(E) : Effective output voltage * 4: VROUT(T) : Specified output voltage * 5: E-0 = Please refer to the table named OUTPUT VOLTAGE CHART * 6: E-1 = Please refer to the table named DROPOUT VOLTAGE CHART (*8) (*9) * 7: Vdif={VIN21 -VROUT1 } * 8: VIN21 : The input voltage when VOUT1 appears as input voltage is gradually decreased. * 9: VROUT1 : A voltage equal to 98% of the output voltage while maintaining an amply stabilized output voltage when VBIAS<3.0V at VIN2= VBIAS, VBIAS≧3.0V at VIN2=VBIAS input to the VBIAS pin. *10 : IBIASMAX : A supply current at the VBIAS pin providing for the output current (IVROUT) . *11: tSS : Time that VROUT becomes more than VROUT(E)×0.9V after the EN2 pin is input 0.75V as EN2 “H” level voltage. * The electrical characteristics above are when the other channel is in stop mode. ■OUTPUT VOLTAGE CHART NOMINAL OUTPUT VOLTAGE (V) E-0 OUTPUT VOLTAGE (V) VROUT NOMINAL OUTPUT VOLTAGE (V) E-0 OUTPUT VOLTAGE (V) VROUT VROUT(T) MIN. MAX. VROUT(T) MIN. MAX. 0.70 0.680 0.720 1.30 1.280 1.320 0.75 0.730 0.770 1.35 1.330 1.370 0.80 0.780 0.820 1.40 1.380 1.420 0.85 0.830 0.870 1.45 1.430 1.470 0.90 0.880 0.920 1.50 1.480 1.520 0.95 0.930 0.970 1.55 1.530 1.570 1.00 0.980 1.020 1.60 1.580 1.620 1.05 1.030 1.070 1.65 1.630 1.670 1.10 1.080 1.120 1.70 1.680 1.720 1.15 1.130 1.170 1.75 1.730 1.770 1.20 1.180 1.220 1.80 1.780 1.820 1.25 1.230 1.270 11/49 XCM519 Series ■DROPOUT VOLTAGE CHART E-1 DROPOUT VOLTAGE1 (mV) NOMINAL OUTPUT VOLTAGE (V) Vdif1 VBIAS =3.3(V) VBIAS =3.0(V) Vgs (*1) Vdif (mV) Vgs VBIAS =3.6(V) Vdif (mV) Vgs VBIAS =4.2(V) Vdif (mV) Vgs VBIAS =5.0(V) Vdif (mV) Vgs Vdif (mV) VROUT(T) (V) TYP. MAX. (V) TYP. MAX. (V) TYP. MAX. (V) TYP. MAX. (V) TYP. MAX. 0.70 2.30 40 300 2.60 35 300 2.90 33 300 3.50 30 300 4.30 27 300 0.75 2.25 250 2.55 250 2.85 250 3.45 250 4.25 0.80 2.20 200 4.20 0.85 2.15 150 4.15 0.90 2.10 100 4.10 0.95 2.05 50 4.05 1.00 2.00 1.05 1.95 1.10 1.90 1.15 1.85 1.20 1.80 1.25 1.75 1.30 1.70 1.35 1.65 1.40 1.60 1.45 1.55 1.50 1.50 1.55 41 42 43 200 2.50 150 2.45 100 2.40 68 2.35 2.30 2.25 46 72 48 75 51 81 54 87 57 92 1.45 61 94 1.75 1.60 1.40 63 97 1.70 1.65 1.35 67 104 1.65 1.70 1.30 70 113 1.60 1.75 1.25 74 131 1.55 1.20 79 154 1.50 1.80 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 36 38 40 200 2.80 150 2.75 100 2.70 61 41 63 42 65 43 68 46 72 48 75 51 81 54 87 57 92 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 34 34 35 200 3.40 150 3.35 100 3.30 56 36 58 38 59 40 61 41 63 42 65 43 68 46 72 48 75 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 *1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T). 12/49 31 31 32 49 32 50 32 51 33 52 34 53 34 54 35 56 36 58 38 59 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 28 28 28 250 200 150 100 50 44 29 45 29 46 29 47 30 47 30 48 31 48 31 49 32 49 XCM519 Series ■DROPOUT VOLTAGE CHART (Continued) E-2 DROPOUT VOLTAGE 2 (mV) NOMINAL OUTPUT VOLTAGE (V) Vdif2 VBIAS =3.3(V) VBIAS =3.0(V) Vgs (*1) Vdif (mV) Vgs Vdif (mV) VBIAS =3.6(V) Vgs VBIAS =4.2(V) Vdif (mV) Vgs VBIAS =5.0(V) Vdif (mV) Vgs Vdif (mV) VROUT(T) (V) TYP MAX (V) TYP MAX (V) TYP MAX (V) TYP MAX (V) TYP MAX 0.70 2.30 81 300 2.60 74 300 2.90 68 300 3.50 62 300 4.30 57 300 0.75 2.25 250 2.55 250 2.85 250 3.45 250 4.25 0.80 2.20 200 2.50 200 2.80 200 3.40 200 4.20 0.85 2.15 150 2.45 150 2.75 150 3.35 150 4.15 0.90 2.10 131 2.40 117 2.70 110 3.30 100 4.10 0.95 2.05 1.00 2.00 1.05 1.95 1.10 1.90 1.15 1.85 1.20 1.80 1.25 1.75 1.30 1.70 1.35 1.65 1.40 1.60 1.45 1.55 1.50 1.50 1.55 85 88 2.35 90 139 96 146 101 154 108 170 115 179 122 192 1.45 129 197 1.75 1.60 1.40 135 206 1.70 1.65 1.35 145 223 1.65 1.70 1.30 154 248 1.60 1.75 1.25 165 293 1.55 1.20 175 353 1.50 1.80 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 76 78 81 123 85 127 88 131 90 139 96 146 101 154 108 170 115 179 122 192 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 70 72 74 111 76 114 78 117 81 123 85 127 88 131 90 139 96 146 101 154 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 63 63 64 98 65 101 67 103 68 106 70 108 72 110 74 111 76 114 78 117 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 58 58 250 200 150 100 58 88 59 90 59 91 60 92 61 93 62 94 63 95 63 97 64 98 *1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T). 13/49 XCM519 Series ■DROPOUT VOLTAGE CHART (Continued) E-3 DROPOUT VOLTAGE 3 (mV) NOMINAL OUTPUT VOLTAGE (V) Vdif3 VBIAS =3.3(V) VBIAS =3.0(V) Vgs (*1) Vdif(mV) Vgs Vdif(mV) VBIAS =3.6(V) Vgs VBIAS =4.2(V) Vdif(mV) Vgs Vdif(mV) VBIAS =5.0(V) Vgs Vdif(mV) VVROUT(T) (V) TYP MAX (V) TYP MAX (V) TYP MAX (V) TYP MAX (V) TYP MAX 0.70 2.30 130 300 2.60 115 300 2.90 107 300 3.50 95 300 4.30 89 300 0.75 2.25 250 2.55 250 2.85 250 3.45 250 4.25 0.80 2.20 200 2.50 0.85 2.15 0.90 2.10 0.95 2.05 1.00 2.00 1.05 1.95 1.10 1.90 1.15 1.85 1.20 1.80 1.25 1.75 1.30 1.70 1.35 1.65 1.40 1.60 1.45 1.55 1.50 1.50 1.55 134 2.45 138 204 145 216 153 227 161 239 173 264 184 289 196 313 1.45 209 323 1.75 1.60 1.40 222 344 1.70 1.65 1.35 239 388 1.65 1.70 1.30 256 442 1.60 1.75 1.25 1.80 1.20 - - 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.55 1.50 117 200 119 181 130 190 134 197 138 204 145 216 153 227 161 239 173 264 184 289 196 313 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 109 200 111 167 115 170 117 176 119 181 130 190 134 197 138 204 145 216 153 227 161 239 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 *1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T). 14/49 96 97 200 4.20 150 4.15 148 4.10 98 151 101 153 105 155 107 159 109 163 111 167 115 170 117 176 119 181 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 90 90 250 200 150 132 91 134 92 137 93 139 93 140 94 141 95 142 96 145 97 148 98 151 XCM519 Series ■DROPOUT VOLTAGE CHART (Continued) E-4 DROPOUT VOLTAGE 4(mV) NOMINAL OUTPUT VOLTAGE (V) Vdif4 VBIAS =3.0(V) Vgs (*1) VBIAS =3.3(V) Vdif(mV) Vgs Vdif(mV) VBIAS =3.6(V) Vgs VBIAS =4.2(V) Vdif(mV) Vgs Vdif(mV) VBIAS =5.0(V) Vgs Vdif(mV) VVROUT(T) (V) TYP MAX (V) TYP MAX (V) TYP MAX (V) TYP MAX (V) TYP MAX 0.70 2.30 189 300 2.60 157 300 2.90 146 300 3.50 129 300 4.30 116 300 0.75 2.25 164 272 150 250 4.25 2.20 277 250 0.80 195 246 4.20 0.85 2.15 0.90 2.10 201 277 170 272 153 250 0.95 2.05 1.00 2.00 206 277 189 272 157 250 1.05 1.95 1.10 1.90 218 277 195 272 164 250 1.15 1.85 1.20 1.80 1.25 1.75 1.30 1.70 1.35 1.65 1.40 1.60 1.45 1.55 1.50 1.50 1.55 1.45 1.60 1.40 1.65 1.35 1.70 1.30 1.75 1.25 1.80 1.20 231 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 227 2.15 334 2.10 248 376 264 418 281 460 - - - - - - 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 201 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 272 2.45 277 2.40 206 296 218 315 231 334 248 376 264 418 281 460 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 170 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 250 3.05 248 3.00 189 255 195 266 201 277 206 296 218 315 231 334 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 131 134 246 136 246 139 246 142 4.15 4.10 4.05 4.00 3.95 3.90 246 3.85 215 3.80 146 219 150 224 153 228 157 234 164 241 170 248 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 118 250 231 119 231 121 231 125 231 128 231 189 128 191 129 193 129 195 131 198 134 202 136 205 *1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T). 15/49 XCM519 Series ■TYPICAL APPLICATION CIRCUIT L DCOUT C L1 1 DCOUT 2 AVSS 3 EN1 4 VIN2 5 VSS2 6 VROUT Lx 12 PVSS 11 CIN1 EN1 CIN2 VROUT ● DC/DC BLOCK L : CL2 VIN1 10 VBIAS CBIAS NC 8 EN2 EN2 7 fOSC=3.0MHz 1.5μH 9 VIN ● DC/DC BLOCK fOSC=1.2MHz (NR3015 TAIIYO YUDEN) L : 4.7μH : 10μF (NR4018 TAIIYO YUDEN) CIN1 : 10μF (Ceramic) CIN1 CL1 : 10μF (Ceramic) CL1 : 10μF (Ceramic) CBIAS : 1μF (Ceramic) CBIAS : 1μF (Ceramic) CIN2 : 1μF (Ceramic) CIN2 : 1μF (Ceramic) (Ceramic) CL2 : 4.7μF CL2 : 4.7μF (Ceramic) (Ceramic) ■OPERATIONAL EXPLANATION ●DC/DC BLOCK The DC/DC block of the XCM519 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram above.) The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the feedback voltage from the DCOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage. <Reference Voltage Source> The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter. <Ramp Wave Circuit> The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or 3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to synchronize all the internal circuits. <Error Amplifier> The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed internally to deliver an optimized signal to the mixer. 16/49 XCM519 Series ■OPERATIONAL EXPLANATION (Continued) <Current Limit> The current limiter circuit of the XCM519 series monitors the current flowing through the P-channel MOS driver transistor connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode. ① When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin at any given timing. ② When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state. ③ At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over current state. ④ When the over current state is eliminated, the IC resumes its normal operation. The IC waits for the over current state to end by repeating the steps ① through ③. If an over current state continues for a few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be resumed by either turning the IC off via the CE/MODE pin, or by restoring power to the VIN pin. The suspension mode does not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The current limit of the XCM519 series can be set at 1050mA at typical. Besides, care must be taken when laying out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible. Limit<#ms Limit>#ms <Short-Circuit Protection> The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the DCOUT pin. In case where output is accidentally shorted to the Ground and when the FB point voltage decreases less than half of the reference voltage (Vref) and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to turn off and to latch the driver transistor. In latch state, the operation can be resumed by either turning the IC off and on via the EN1 pin, or by restoring power supply to the VIN1 pin. When sharp load transient happens, a voltage drop at the DCOUT pin is propagated to FB point through CFB, as a result, short circuit protection may operate in the voltage higher than 1/2 VOUT voltage. <UVLO Circuit> When the VIN1 pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse output caused by unstable operation of the internal circuitry. When the VIN1 pin voltage becomes 1.8V or higher, switching operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage. The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the internal circuitry remains in operation. 17/49 XCM519 Series ■OPERATIONAL EXPLANATION (Continued) <PFM Switch Current> In the PFM control operation, until coil current reaches to a specified level (DLIMIT_PFM), the IC keeps the P-ch MOSFET on. In this case, on-time (tON) that the P-ch MOSFET is kept on can be given by the following formula. tON= L×IPFM (VIN1−VDCOUT) →IPFM① <PFM duty Limit> In the PFM control operation, the PFM duty limit (DLIMT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it’s possible for P-ch MOSFET to be turned off even when coil current doesn’t reach to IPFM. →IPFM② Ton FOSC 最大IPFM制限 PFM Duty Limit Lx Lx IPFM I Lx IPFM I Lx 0mA 0mA 図 IPFM ① 図 IPFM ② <CL High Speed Discharge> XCM519xC/ XCM519xD series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the CE pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the LX pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application malfunction. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL) as τ(τ=C x R), discharge time of the output voltage after discharge via the N channel transistor is calculated by the following formula. V = VDCOUT(T)×e -t /τ or t = τLn ( V / VDCOUT(T) ) V : Output voltage after discharge VDCOUT (T): Output voltage t: Discharge time τ: C×R C= Capacitance of Output capacitor (CL) R= CL auto-discharge resistance Output Voltage Dischage Characteristics Rdischg = 300Ω( TYP) 100 90 CL=10uF 80 CL=20uF 70 CL=50uF 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 Discharge Time t (ms) 18/49 80 90 100 XCM519 Series ■OPERATIONAL EXPLANATION (Continued) ●Voltage Regulator BLOCK The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The N-channel MOSFET which is connected to the VROUT pin is then driven by the subsequent output signal. The output voltage at the VROUT pin is controlled & stabilized by a system of negative feedback. VBIAS pin is power supply pin for output voltage control circuit, protection circuit and CE circuit. When output current increase, the VBIAS pin supplies output current also. VIN2 pin is connected to a driver transistor and provides output current. In order to obtain high efficient output current through low on-resistance, please take enough Vgs (=VBIAS – VROUT (T)) of the driver transistor. Output current triggers operation of constant current limiter and fold-back circuit, heat generation triggers operation of thermal shutdown circuit, the driver transistor circuit is forced OFF when VBIAS or VIN2 voltage goes lower than UVLO voltage. Further, the IC's internal circuitry can be shutdown via the EN2 pin's signal. Figure 1: XC6601B Series <Low ESR Capacitor> With the XCM519 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase compensation circuit is built-in. The output capacitor (CL2) should be connected as close to VROUT pin and VSS pin to obtain stable phase compensation. Values required for the phase compensation are as the table below. For a stable power input, please connect an bias capacitor (CBIAS ) of 1.0μF between the VBIAS pin and the VSS pin. Also, please connect an input capacitor (CIN2) of 1.0μF between the VIN2 pin and the VSS pin. In order to ensure the stable phase compensation while avoiding run-out of values, please use the capacitor (CBIAS, CIN2, CL2 ) which does not depend on bias or temperature too much. The table below shows recommended values of CBIAS, CIN, CL. NOMINAL VOLTAGE 0.7V~1.8V BIAS CAPACITOR CBIAS CBIAS=1.0μF INPUT CAPACITOR CIN2 CIN2=1.0μF OUTPUT CAPACITOR CL2 CL2=4.7μF Recommended Values of CBIAS, CIN2, CL2 19/49 XCM519 Series ■OPERATIONAL EXPLANATION (Continued) <Soft-start> EN2 Input Voltage VEN2(V) Inrush Current IRUSH (mA) With the XCM519, the inrush current from VIN2 to VROUT for charging CL at start-up can be reduced and makes the VIN2 stable. The soft-start time is optimized to 240μA (TYP.) at VROUT=1.2V internally. Soft-start time is defined as the VROUT reaches 90% of VROUT (E) from the time when CE H threshold 0.75V is input to the CE pin. Figure2: Example of the inrush current wave form at IC start-up. Figure3: Timing chart at IC start-up <CL High Speed Auto-Discharge> XCM519 series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the EN2 pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the VROUT pin and the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it could avoids malfunction. At that time, CL discharge resistance is depended on a bias voltage. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL) as τ(τ=C x R), the output voltage after discharge via the N channel transistor is calculated by the following formulas. V = VROUT(E)x e –t/τ, or t=τln(VROUT(E) / V) V : Output voltage after discharge, VROUT(E) : Output voltage, t: Discharge time, τ: CL auto-discharge resistance R×Output capacitor (CL) value C <Current Limit, Short-Circuit Protection> The XCM519 series’ fold-back circuit operates as an output current limiter and a short protection of the output pin. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the output pin is shorted to the VSS level, current flows about 50mA. <Thermal Shutdown Circuit (TSD) > When the junction temperature of the built-in driver transistor reaches the temperature limit level (150℃ TYP.), the thermal shutdown circuit operates and the driver transistor will be set to OFF. The IC resumes its operation when the thermal shutdown function is released and the IC’s operation is automatically restored because the junction temperature drops to the level of the thermal shutdown release temperature (135℃ TYP.). <Under Voltage Lock Out (UVLO) > When the VBIAS pin voltage drops below 2.0V (TYP.) or VIN2 pin voltage drops below 0.4V (TYP.), the output driver transistor is forced OFF by UVLO function to prevent false output caused by unstable operation of the internal circuitry. When the VBIAS pin voltage rise at 2.2V (TYP.) or the VIN2 pin voltage rises at 0.4V (TYP.), the UVLO function is released. The driver transistor is turned in the ON state and start to operate voltage regulation. 20/49 XCM519 Series ■OPERATIONAL EXPLANATION (Continued) <EN2 Pin> The IC internal circuitry can be shutdown via the signal from the EN2 pin with the XCM519 series. In shutdown mode, output at the VROUT pin will be pulled down to the VSS level via R1 & R2. However, as for the XCM519 series, the CL auto-discharge resistor is connected in parallel to R1 and R2 while the power supply is applied to the VIN2 pin. Therefore, time until the VROUT pin reaches the VSS level becomes short. The EN2 pin of XCM519 has pull-down circuitry so that EN2 input current increase during IC operation. The EN2 pin of XCM519 does not have pull-down circuitry so that logic is not fixed when the CE pin is open. If the EN2 pin voltage is taken from VBIAS pin or VSS pin then logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry when medium voltage is input. ■NOTE ON USE 1. When the DC/DC converter and the VR are connected as VIN1=VBIAS, VDCOUT=VIN2, the following points should be noted. When the DC/DC load is changed drastically during a light load of the VR, a fluctuation may happen in tenths of mV. This value can be reduced by increasing CL1 load capacitance at the DC/DC in order to reduce a voltage drop during load transient. 立ち上がり 立下り 1ch:DC/DC VOUT:50mV/div 2ch:VR VOUT:50mV/div 1ch:DC/DC VOUT:50mV/div 2ch:VR VOUT:50mV/div 4ch:VR IOUT:200mA/div 4ch:VR IOUT:200mA/div 20μs/div 50μs/div 2. It is recommended that both CIN1 and CBIAS are connected to each pin separately. When one capacitor is used instead of the two, this capacitor should be placed in 10μF or more as close as the VIN1 and the PGND (AGND) pins of the DC/DC circuit. Please ensure it by testing on the actual product design. 3. It is recommended that both CL1 and CIN2 are connected to each pin separately. When one capacitor is used instead of the two, this capacitor should be selected in 4.7μF or bigger. Please ensure it by testing on the actual product design. 4. CL2 of the VR is recommended 4.7μA. When larger value is used in CL2, the larger value is also used in CL1 as in proportional. Please be noted that when CL2 capacitance of the VR is getting large, an inrush current increases at VR start-up, DC/DC short circuit protection starts to operate, as a result, the IC may happen to stop. * VR inrush current IIN2 makes DC/DC short-circuit protection to DCOUT(1V/div) start, as a result, the IC may happen to stop. IIN2(500mA/div) The left waver forms are taken at CL1=10μ, CL2=10μF(in VROUT(1V/div) contrast to the recommended 4.7μF). EN2(5V/div) However, it improves when CL1=20μF. 50us/div 21/49 XCM519 Series ■NOTE ON USE (Continued) 5. 6. 7. When the input-output voltage differential is small in the DC/DC converter and heavy load condition, a duty cycle is getting large and keeps the 100% duty cycle in a several period cycles. At the time of duty cycle transition to 100% or from 100%, noise may appear on the voltage regulator output. Please evaluate this on the actual design board when the condition is in small input-output voltage differential and heavy load. When the load is changed at the DC/DC converter, ringing may happen in some load conditions of DC/DC and VR at the timing of turn on and turn off. The ringing can be reduced by increasing CIN1 capacitance or placing a resistor over 10kΩ between VIN1 and VBIAS pins. In order to turn off the input voltage, the EN2 pin should be turned off first. If the input voltage is turned off with keeping VR operation, the VROUT voltage goes up instantaneously as a result of the VR bias voltage transient. VIN(5V/div) DCOUT(500mV/div) VROUT(500mV/div) 200us/div 8. When the DCOUT pin is connected to the VIN2 pin and the bias voltage (VBIAS) is taken from the other power supply, EN1 and EN2 should be started up 10μs later than VBIAS. If EN1 and EN2 is turned on within 10μs, inrush current like 1A may happen which result in starting the DC/DC short-circuit protection. 9. It is recommended to test this in the actual product design board. <DC/DC BLOCK> 1. The XCM519 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic capacitor in parallel to compensate for insufficient capacitance. 2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. Once the design has been completed, verification with actual components should be done. 3. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple may increase. 4. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty cycle may continue in several periods. 5. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may continues100% duty cycle in several periods. 6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate the peak current according to the following formula: Ipk = (VIN1-VDCOUT)× OnDuty /(2×L×fOSC) + IOUT L: Coil Inductance Value fOSC: Oscillation Frequency 22/49 XCM519 Series ■NOTE ON USE (Continued) 7. When the peak current which exceeds limit current flows within the specified time, the built-in P-ch driver transistor turns off. During the time until it detects limit current and before the built-in transistor can be turned off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external components such as a coil. 8. Care must be taken when laying out the PC Board, in order to prevent misoperation of the current limit mode. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible. 9. Use of the IC at voltages below the recommended voltage range may lead to instability. 10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device. 11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the leak current of the driver transistor. 12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the current limit functions while the DCOUT pin is shorted to the GND pin, when P-ch MOSFET is ON, the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when N-ch MOSFET is ON, there is almost no potential difference at both ends of the coil since the DCOUT pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however, after the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent damage to the device. ①Current flows into P-ch MOSFET to reach the current limit (ILIM). ②The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to OFF of P-ch MOSFET. ③Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small. ④Lx oscillates very narrow pulses by the current limit for several ms. ⑤The circuit is latched, stopping its operation. ④ ② ① ③ Limit > # ms mS ⑤ Delay LX ILIM ILX 13. 14. 15. In order to stabilize VIN1’s voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be connected as close as possible to the VIN1 & VSS pins. High step-down ratio and very light load may lead an intermittent oscillation. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode. Please verify with actual parts. <External Components> 23/49 XCM519 Series ■NOTE ON USE (Continued) 16. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient temperature, setting voltage, oscillation frequency, and L value are not adequate. In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage operation even if using the L values listed below. ●The Range of L Value <External Components> fOSC VOUT 3.0MHz 0.8V<VOUT<4.0V 1.0μH∼2.2μH VOUT≦2.5V 3.3μH∼6.8μH 2.5V<VOUT 4.7μH∼6.8μH 1.2MHz L Value *When a coil less value of 4.7 μ H is used at fOSC=1.2MHz or when a coil less value of 1.5μH is used at fOSC=3.0MHz, peak coil current more easily reach the current limit ILMI. In this case, it may happen that the IC can not provide 600mA output current. <Regulator BLOCK> 1. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low between VBIAS, VIN2 and VSS wiring in particular. 2. Please wire the bias capacitor (CBIAS), input capacitor (CIN2) and the output capacitor (CL2) as close to the IC as possible. 3. Capacitance values of these capacitors (CBIAS, CIN2, CL2) are decreased by the influences of bias voltage and ambient temperature. Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence. 4. In case of the output capacitor more than CL=22μF is used, ringing of input current occurs when rising time. 5. VIN2 and EN2 should be applied at least 10μs after the bias voltage VBIAS reaches the requested voltage. If VIN2 and EN2 are applied within 10μs, inrush current like 1A may occurs. ●Instructions of pattern layouts 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. 2. In order to stabilize VIN1・VIN2・VBIAS・DCOUT・VROUT voltage level, we recommend that a by-pass capacitor (CIN1・CIN2・ CBIAS・CL1・CL2) be connected as close as possible to the VIN1・VIN2・VBIAS・DCOUT・VROUT and GND・VSS pins. 3. Please mount each external component as close to the IC as possible. 4. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit impedance. 5. VSS(AGND・PGND・VSS)ground wiring is recommended to get large area. The IC may goes into unstable operation as a result of VSS voltage level fluctuation during the switching. 6. This series’ internal driver transistors bring on heat because of the output current (IOUT) and ON resistance of driver transistors. DCOUT Lx L CL1 EN1 CL2 VSS VROUT Inductor EN2 Front 24/49 VIN1 CIN1 IC CIN3 CIN2 VIN2 Ceramic Capacitor VBIAS AGND PGND L Back XCM519 Series ■TEST CIRCUITS < Circuit No.1 > < Circuit No.2 > Wave Form Measure Point A Lx VIN1 A L DCOUT EN1 CIN CL V VIN1 EN1 Lx DCOUT 1uF AGND PGND AGND PGND VBIAS VROUT VBIAS VROUT VIN2 VIN2 EN2 EN2 ※ External Components L : 1.5μH(NR3015) 3.0MHz 4.7μH(NR4018) 1.2MHz CIN : 4.7μF(ceramic) CL :10μF(ceramic) < Circuit No.3 > < Circuit No.4 > Wave Form Measure Point VIN1 Lx EN1 VIN1 DCOUT Rpulldown 200Ω 1μF EN1 Lx DCOUT AGND PGND AGND PGND VBIAS VROUT VBIAS VROUT VIN2 VIN2 EN2 EN2 < Circuit No.5 > V 1μF < Circuit No.6 > ILeakH VIN1 Lx ICEH 1μF 100mA A EN1 A Wave Form Measure Point VIN1 Lx ILeakL DCOUT EN1 DCOUT V 1μF ILIM ICEL AGND PGND AGND PGND VBIAS VROUT VBIAS VROUT VIN2 VIN2 EN2 EN2 < Circuit No.7 > < Circuit No.8 > ILx Wave Form Measure Point VIN1 Lx VIN1 Lx Ilat EN1 DCOUT 1uF EN1 Rpulldown 1Ω A DCOUT 1uF AGND PGND AGND PGND VBIAS VROUT VBIAS VROUT VIN2 VIN2 EN2 EN2 < Circuit No.9 > A VIN1 EN1 Lx DCOUT CIN AGND PGND VBIAS VROUT VIN2 EN2 25/49 XCM519 Series ■TEST CIRCUITS (Continued) < Circuit No.10 > VIN1 Lx EN1 A A V V AGND PGND VBIAS VROUT CL2 EN2 1.0uF CBIAS SW2 V 1.0uF < Circuit No.11 > VIN1 Lx EN1 SW1 DCOUT AGND PGND VBIAS VROUT A VIN2 SW2 V CL2 EN2 CIN2 1.0uF CBIAS V SW4 VIN1 Lx EN1 DCOUT AGND PGND VBIAS VROUT A CL2 EN2 VSS V Waveform measure VIN2 Waveform measure CIN2 RL 1.0uF < Circuit No.12 > V 4.7uF VSS V SW3 1.0uF CBIAS 1.0uF * For the timing chart, please refer to <Soft-start> on page 20. 26/49 4.7uF VSS V CIN2 V A VIN2 A SW1 DCOUT 4.7uF V RL XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS ●1ch:DC/DC Block (1) Efficiency vs. Output Current DCOUT=1.8V,1.2MHz DCOUT=1.8V,3.0MHz L=4.7μH(NR4018), CIN1=10μF, CL1=10μF L=1.5μH(NR3015), CIN1=10μF, CL1=10μF PWM/PFM Automatic Sw itching Control 100 100 80 80 VIN= 4.2V 70 60 Efficency:EFFI(%) Efficency:EFFI(%) PWM/PFM Automatic Sw itching Control 90 90 PWM Control VIN= 4.2V 3.6V 3.6V 50 40 30 70 VIN= 4.2V 60 3.6V 50 PWM Control VIN= 4.2V 3.6V 40 30 20 20 10 10 0 0 0.1 1 10 100 0.1 1000 1 (2) Output Voltage vs. Output Current DCOUT=1.8V,1.2MHz 1000 L=1.5μH(NR3015), CIN1=10μF, CL1=10μF 2.1 2.1 2.0 Output Voltage:Vout(V) 2.0 Output Voltage:Vout(V) 100 DCOUT=1.8V,3.0MHz L=4.7μH(NR4018), CIN1=10μF, CL1=10μF PWM/PFM Automatic Sw itching Control VIN=4.2V,3.6V 1.9 1.8 1.7 PWM Control 1.6 PWM/PFM Automatic Sw itching Control VIN=4.2V,3.6V 1.9 1.8 1.7 PWM Control 1.6 1.5 1.5 0.1 1 10 100 1000 0.1 1 Output Current:IOUT(mA) 80 80 Ripple Voltage:Vr(mV) 100 PWM/PFM Automatic Sw itching Control VIN=4.2V 3.6V PWM Control VIN=4.2V,3.6V 1000 L=1.5μH(NR3015), CIN1=10μF, CL1=10μF 100 40 100 DCOUT=1.8V,3.0MHz L=4.7μH(NR4018), CIN1=10μF, CL1=10μF 60 10 Output Current:IOUT(mA) (3) Ripple Voltage vs. Output Current DCOUT=1.8V,1.2MHz Ripple Voltage:Vr(mV) 10 Output Current:IOUT(mA) Output Current:IOUT(mA) 20 60 PWM/PFM Automatic Sw itching Control VIN=4.2V 3.6V PWM Control VIN=4.2V,3.6V 40 20 0 0 0.1 1 10 100 Output Current:IOUT(mA) 1000 0.1 1 10 100 1000 Output Current:IOUT(mA) 27/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (4) Oscillation Frequency vs. Ambient Temperature DCOUT=1.8V,1.2MHz DCOUT=1.8V,3.0MHz L=4.7μH(NR4018), CIN1=10μF, CL1=10μF L=1.5μH(NR3015), CIN1=10μF, CL1=10μF 3.5 Oscillation Frequency : FOSC(MHz) Oscillation Frequency : FOSC(MHz) 1.5 1.4 1.3 VIN=3.6V 1.2 1.1 1.0 0.9 0.8 3.4 3.3 3.2 VIN=3.6V 3.1 3.0 2.9 2.8 2.7 2.6 2.5 -50 -25 0 25 50 75 100 -50 -25 Ambient Temperature: Ta (℃) 40 40 35 35 VIN=6.0V 25 VIN=4.0V 20 15 10 5 0 -50 -25 0 25 50 75 100 VIN=6.0V 30 25 20 15 10 0 -50 100 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) (7) UVLO Voltage vs. Ambient Temperature DCOUT=1.8V,3.0MHz 2.1 1.8 2.0 1.5 UVLO Voltage : UVLO (V) Output Voltage : VOUT (V) 75 5 (6) Output Voltage vs. Ambient Temperature DCOUT=1.8V,3.0MHz VIN=3.6V 1.8 1.7 1.6 1.5 EN=VIN EN=VIN CE=VIN 1.2 0.9 0.6 0.3 0.0 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 28/49 50 VIN=4.0V Ambient Temperature: Ta ( ℃) 1.9 25 DCOUT=1.8V,3.0MHz Supply Current : IDD (μA) Supply Current : IDD (μA) (5) Supply Current vs. Ambient Temperature DCOUT=1.8V,1.2MHz 30 0 Ambient Temperature: Ta (℃) 75 100 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 75 100 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (9)EN" L" Voltage vs. Ambient Temperature DCOUT=1.8V,3.0MHz 1.0 1.0 0.9 0.9 0.8 0.8 0.7 CE "L" Voltage : VCEL (V) CE "H" Voltage : VCEH (V) (8) EN "H" Voltage vs. Ambient Temperature DCOUT=1.8V,3.0MHz VIN=5.0V 0.6 0.5 0.4 0.3 VIN=3.6V 0.2 0.1 VIN=5.0V 0.7 0.6 0.5 0.4 VIN=3.6V 0.3 0.2 0.1 0.0 0.0 -50 -25 0 25 50 75 100 -50 -25 Ambient Temperature: Ta ( ℃) 0 25 50 75 100 Ambient Temperature: Ta (℃) (10) Soft Start Time vs. Ambient Temperature DCOUT=1.8V,3.0MHz DCOUT=1.8V,3.0MHz L=1.5μH(NR3015), CIN1=10μF, CL1=10μF 5 5 4 4 Soft Start Time : TSS (ms) Soft Start Time : TSS (ms) L=4.7μH(NR4018), CIN1=10μF, CL1=10μF 3 2 VIN=3.6V 1 0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) 3 2 VIN=3.6V 1 0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta (℃) (11) "Pch / Nch" Driver on Resistance vs. Input Voltage Lx SW ON Resistance:RLxH,RLxL (Ω) DCOUT=1.8V,3.0MHz 1.0 0.9 0.8 Nch on Resistance 0.7 0.6 0.5 0.4 0.3 Pch on Resistance 0.2 0.1 0.0 0 1 2 3 4 5 6 Input Voltage : VIN (V) 29/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (12) XCM519xC/ XCM519xD Rise Wave Form DCOUT=1.2V,1.2MHz DCOUT=3.3V,3.0MHz L=4.7μH (NR4018), CIN1=10μF, CL1=10μF L=1.5μH (NR3015), CIN1=10μF, CL1=10μF VIN1=5.0V VIN1=5.0V IOUT=1.0mA IOUT=1.0mA VOUT:1.0V/div VOUT:0.5V/div EN:0.0V⇒1.0V EN:0.0V⇒1.0V 100μs/div 100μs/div (13) XCM519xC/ XCM519xD Soft-Start Time vs. Ambient Temperature DCOUT=1.2V,1.2MHz 500 500 400 400 300 200 VIN=5.0V IOUT=1.0mA 100 DCOUT=3.3V,3.0MHz L=1.5μH(NR3015), CIN1=10μF, CL1=10μF Soft Start Time :TSS (μs) Soft Start Time :TSS (μs) L=4.7μH(NR4018), CIN1=10μF, CL1=10μF 300 200 VIN=5.0V IOUT=1.0mA 100 0 0 -50 -25 0 25 50 75 100 -50 -25 0 (14) XCM519xC/ XCM519xD CL Discharge Resistance vs. Ambient Temperature DCOUT=3.3V,3.0MHz CL Discharge Resistance: (Ω) 600 VIN=6.0V VIN=4.0V 400 300 200 100 -50 -25 0 25 50 Ambient Temperature: Ta (℃) 30/49 50 Ambient Temperature: Ta(℃) Ambient Temperature: Ta(℃) 500 25 75 100 75 100 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) Load Transient Response DCOUT=1.2V,1.2MHz(PWM/PFM Automatic Switching Control) L=4.7μH(NR4018), CIN1=10μF(ceramic), CL1=10μF(ceramic), Topr=25℃ VIN1=3.6V, EN1=VIN1 IOUT=1mA → 100mA IOUT =1mA → 300mA 1ch : IOUT 1ch : IOUT 2ch 2ch VOUT : 50mV/div VOUT : 50mV/div 50μs/div IOUT=100mA → 1mA 50μs/div IOUT=300mA → 1mA 1ch : IOUT 1ch : IOUT 2ch 2ch VOUT: 50mV/div VOUT: 50mV/div 200μs/div 200μs/div 31/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) Load Transient Response (Continued) DCOUT=1.2V,1.2MHz(PWM Control) L=4.7μH(NR4018), CIN1=10μF(ceramic), CL1=10μF(ceramic), Topr=25℃ VIN1=3.6V, EN1=VIN1 IOUT=1mA → 100mA IOUT=1mA → 300mA 1ch: IOUT 1ch: IOUT 2ch 2ch VOUT : 50mV/div VOUT: 50mV/div 50μs/div 50μs/div IOUT=100mA → 1mA IOUT=300mA → 1mA 1ch: IOUT 1ch: IOUT 2ch 2ch VOUT : 50mV/div VOUT : 50mV/div 200μs/div 32/49 200μs/div XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) Load Transient Response (Continued) DCOUTT=1.8V,3.0MHz(PWM/PFM Automatic Switching Control) L=1.5μH(NR3015), CIN1=10μF(ceramic), CL1=10μF(ceramic),Topr=25℃ VIN1=3.6V, EN=VIN1 IOUT=1mA → 100mA IOUT=1mA → 300mA 1ch : IOUT 1ch : IOUT 2ch 2ch VOUT : 50mV/div VOUT : 50mV/div 50μs/div IOUT=100mA → 1mA 50μs/div IOUT=300mA → 1mA 1ch : IOUT 1ch : IOUT 2ch 2ch VOUT : 50mV/div VOUT : 50mV/div 200μs/div 200μs/div 33/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (15) Load Transient Response (Continued) DCOUT=1.8V,3.0MHz(PWM Control) L=1.5μH(NR3015), CIN1=10μF(ceramic), CL1=10μF(ceramic), Topr=25℃ VIN1=3.6V, EN1=VIN1 IOUT=1mA → 100mA IOUT=1mA → 300mA 1ch : IOUT 1ch : IOUT 2ch 2ch VOUT : 50mV/div VOUT : 50mV/div 50μs/div IOUT=100mA → 1mA 50μs/div IOUT=300mA → 1mA 1ch : IOUT 1ch : IOUT 2ch 2ch VOUT : 50mV/div VOUT : 50mV/div 200μs/div 34/49 200μs/div XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ●2ch:Regulator Block (1) Output Voltage vs. Output Current VROUT=0.7V VROUT=0.7V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, VIN2 =1.0V VBIAS=3.6V, Ta=25℃ 0.8 Output Voltage: VROUT(V) Output Voltage: VROUT(V) 0.8 0.6 Ta=-40℃ Ta=25℃ Ta=85℃ 0.4 0.2 0.0 0.6 VIN2=1.0V VIN2=1.2V VIN2=1.5V 0.4 0.2 0.0 0 100 200 300 400 500 600 700 0 100 Output Current: IOUT(mA) VROUT=1.2V 200 300 400 500 600 Output Current: IOUT(mA) VROUT=1.2V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, VIN2 =1.5V VBIAS=3.6V, Ta=25℃ 1.4 1.2 Output Voltage: VROUT(V) Output Voltage: VROUT(V) 1.4 1.0 Ta=-40℃ 0.8 Ta=25℃ Ta=85℃ 0.6 0.4 0.2 1.2 1.0 VIN2=1.3V VIN2=1.5V 0.8 VIN2=1.8V 0.6 0.4 0.2 0.0 0.0 0 100 200 300 400 500 600 0 700 100 200 300 VROUT=1.8V VROUT=1.8V Ta=85℃ 100 200 300 400 500 600 Output Current: IOUT(mA) 700 600 700 CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, Ta=25℃ Output Voltage: VROUT(V) Ta=-40℃ Ta=25℃ 0 500 Output Current: IOUT(mA) VBIAS=3.6V, VIN2 =2.1V 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 400 Output Current: IOUT(mA) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) Output Voltage: VROUT(V) 700 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 VIN2=1.9V VIN2=2.1V VIN2=2.3V 0 100 200 300 400 500 600 Output Current: IOUT(mA) 700 35/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (2) Output Voltage vs. Bias Voltage VROUT=0.7V VROUT=0.7V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VIN2 =1.0V, Ta=25℃ CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VIN2 =1.0V, Ta=25℃ 0.9 IOUT=0mA Output Voltage: VROUT(V) Output Voltage: VROUT(V) 0.9 IOUT=30mA 0.8 IOUT=100mA 0.7 0.6 IOUT=0mA IOUT=30mA 0.8 IOUT=100mA 0.7 0.6 0.5 0.5 1.7 1.9 2.1 2.3 2.5 2.5 3 3.5 4 VROUT=1.2V 6 VROUT=1.2V VIN2 =1.5V, Ta=25℃ 1.4 Output Voltage: VROUT(V) 1.4 Output Voltage: VROUT(V) 5.5 CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VIN2 =1.5V, Ta=25℃ CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) IOUT=0mA IOUT=30mA 1.3 IOUT=100mA 1.2 1.1 1.0 IOUT=0mA IOUT=30mA 1.3 IOUT=100mA 1.2 1.1 1.0 1.7 1.9 2.1 2.3 2.5 2.5 3 Bias Voltage: VBIAS(V) 3.5 4 4.5 5 5.5 6 Bias Voltage: VBIAS(V) VROUT=1.8V VROUT=1.8V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VIN2 =2.1V, Ta=25℃ CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VIN2 =2.1V, Ta=25℃ 2.0 2.0 IOUT=0mA Output Voltage: VROUT(V) Output Voltage: VROUT(V) 5 Bias Voltage: VBIAS(V) Bias Voltage: VBIAS(V) IOUT=30mA 1.9 IOUT=100mA 1.8 1.7 1.6 IOUT=0mA IOUT=30mA 1.9 IOUT=100mA 1.8 1.7 1.6 1.8 2 2.2 2.4 2.6 Bias Voltage: VBIAS(V) 36/49 4.5 2.8 3 3 3.5 4 4.5 5 Bias Voltage: VBIAS(V) 5.5 6 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (3) Output Voltage vs. Input Voltage VROUT=0.7V VROUT=0.7V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, Ta=25℃ VBIAS=3.6V, Ta=25℃ 0.9 IOUT=0mA Output Voltage: VROUT(V) Output Voltage: VROUT(V) 0.9 IOUT=30mA 0.8 IOUT=100mA 0.7 0.6 IOUT=0mA IOUT=30mA 0.8 IOUT=100mA 0.7 0.6 0.5 0.5 0.5 0.6 0.7 0.8 1 0.9 1.2 1.4 1.6 1.8 VROUT=1.2V 3 VROUT=1.2V VBIAS=3.6V, Ta=25℃ 1.4 Output Voltage: VROUT(V) 1.4 Output Voltage: VROUT(V) 2.2 2.4 2.6 2.8 CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, Ta=25℃ IOUT=0mA IOUT=30mA 1.3 IOUT=100mA 1.2 1.1 IOUT=0mA IOUT=30mA 1.3 IOUT=100mA 1.2 1.1 1.0 1.0 1 1.1 1.2 1.3 1.4 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 Bias Voltage: VBIAS(V) Bias Voltage: VBIAS(V) VROUT=1.8V VROUT=1.8V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, Ta=25℃ CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, Ta=25℃ 2.0 2.0 IOUT=0mA Output Voltage: VROUT(V) Output Voltage: VROUT(V) 2 Bias Voltage: VBIAS(V) Bias Voltage: VBIAS(V) IOUT=30mA 1.9 IOUT=100mA 1.8 1.7 1.6 IOUT=0mA IOUT=30mA 1.9 IOUT=100mA 1.8 1.7 1.6 1.6 1.7 1.8 1.9 Bias Voltage: VBIAS(V) 2 2 2.2 2.4 2.6 2.8 3 Bias Voltage: VBIAS(V) 37/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (4)Dropout Voltage vs. Output Current (*1) VROUT=1.2V VROUT=1.2V (Vgs CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) Ta=25℃ VBIAS=3.6V 400 Dropout Voltage: Vdif(mV) Dropout Voltage: Vdif(mV) 300 VBIAS=3.0V VBIAS=3.3V 250 200 VBIAS=3.6V VBIAS=4.2V 150 VBIAS=5.0V 100 50 Ta=-40℃ 300 Ta=25℃ Ta=85℃ 200 100 0 0 0 100 200 300 Output Current: IOUT(mA) 0 400 VROUT=1.2V (Vgs(*1)=1.8V) 100 200 300 Output Current: IOUT(mA) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=4.2V 400 Dropout Voltage: Vdif(mV) 400 Ta=-40℃ 300 Ta=25℃ Ta=85℃ 200 100 0 Ta=-40℃ 300 Ta=25℃ Ta=85℃ 200 100 0 0 100 200 300 Output Current: IOUT(mA) 400 0 VROUT=1.2V (Vgs(*1)=2.1V) 100 200 300 Output Current: IOUT(mA) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=5.0V VBIAS=3.3V 400 Dropout Voltage: Vdif(mV) 400 Dropout Voltage: Vdif(mV) 400 VROUT=1.2V (Vgs(*1)=3.8V) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) Ta=-40℃ Ta=25℃ 300 Ta=85℃ 200 100 0 Ta=-40℃ 300 Ta=25℃ Ta=85℃ 200 100 0 0 100 200 300 Output Current: IOUT(mA) 400 0 100 200 300 Output Current: IOUT(mA) *1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VOUT(T). A value of the dropout voltage is determined by the value of the Vgs. 38/49 400 VROUT=1.2V (Vgs(*1)=3.0V) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.0V Dropout Voltage: Vdif(mV) =2.4V) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) 400 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (6) Supply Input Current vs. Input Voltage (5) Supply Bias Current vs. Bias Voltage VROUT=0.7V VROUT=0.7V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V Supply Input Current: IIN(μA) Supply Bias Current: IBIAS(μA) VIN2 =1.0V 40 30 20 Ta=-40℃ 10 Ta=25℃ Ta=85℃ 0 2.0 Ta=-40℃ Ta=25℃ 1.5 Ta=85℃ 1.0 0.5 0.0 0 1 2 3 4 5 6 0 0.5 Bias Voltage: VBIAS(V) 1 VROUT=1.2V VIN2 =1.5V VBIAS=3.6V Supply Input Current: IIN(μA) Supply Bias Current: IBIAS(μA) 3 CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) 30 20 Ta=-40℃ Ta=25℃ 10 Ta=85℃ 0 2 3 4 5 3.0 Ta=-40℃ 2.5 Ta=25℃ Ta=85℃ 2.0 1.5 1.0 0.5 0.0 0 6 0.5 Bias Voltage: VBIAS(V) 1 1.5 2 2.5 3 Input Voltage: VIN(V) VROUT=1.8V VROUT=1.8V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VIN2 =2.1V 40 30 20 Ta=-40℃ 10 4.0 Supply Input Current: IIN(μA) Supply Bias Current: IBIAS(μA) 2.5 CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) 40 1 2 Input Voltage: VIN(V) VROUT=1.2V 0 1.5 Ta=25℃ Ta=85℃ 0 3.5 3.0 2.5 2.0 1.5 Ta=-40℃ 1.0 Ta=25℃ 0.5 Ta=85℃ 0.0 0 1 2 3 4 Bias Voltage: VBIAS(V) 5 6 0 0.5 1 1.5 2 2.5 3 Input Voltage: VIN(V) 39/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (7) Output Voltage vs. Ambient Temperature (8) Supply Bias Current vs. Ambient Temperature VROUT=0.7V VROUT=0.7V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, VIN2 =1.0V VBIAS=3.6V, VIN2 =1.0V Supply Bias Current: IBIAS(μA) Output Voltage: VROUT(V) 0.73 0.72 0.71 0.70 0.69 IOUT=1mA IOUT=30mA 0.68 IOUT=100mA 0.67 -50 -25 0 25 50 75 40 35 30 25 20 15 -50 100 -25 0 Supply Bias Current: IBIAS(μA) Output Voltage: VROUT(V) 1.23 1.22 1.21 1.20 1.19 IOUT=1mA IOUT=30mA IOUT=100mA 1.18 1.17 25 50 75 40 35 30 25 20 15 -50 100 -25 0 VROUT=1.8V 1.81 1.80 1.79 IOUT=1mA IOUT=30mA IOUT=100mA 1.77 25 50 75 Ambient Temperature: Ta(℃) 40/49 100 VBIAS=3.6V, VIN2 =2.1V Supply Bias Current: IBIAS(μA) Output Voltage: VROUT(V) 1.82 0 75 CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) 1.83 -25 50 VROUT=1.8V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, VIN2 =2.1V 1.78 25 Ambient Temperature: Ta(℃) Ambient Temperature: Ta(℃) -50 100 CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, VIN2 =1.5V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, VIN2 =1.5V 0 75 VROUT=1.2V VROUT=1.2V -25 50 Ambient Temperature: Ta(℃) Ambient Temperature: Ta(℃) -50 25 100 40 35 30 25 20 15 -50 -25 0 25 50 75 Ambient Temperature: Ta(℃) 100 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (9) Supply Input Current vs. Ambient Temperature VROUT=0.7V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) Supply Input Current: IIN(μA) VBIAS=3.6V, VIN2 =1.0V 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta(℃) VROUT=1.2V CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) Supply Input Current: IIN(μA) VBIAS=3.6V, VIN2 =1.5V 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta(℃) VROUT=1.8V Supply Input Current: IIN(μA) CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6V, VIN2 =2.1V 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 Ambient Temperature: Ta(℃) 41/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (10) Bias Transient Response VROUT =0.7V VROUT =0.7V C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic) 1.1 0.9 3 0.8 2 0.7 1 Output Voltage 0.6 0.5 1.0 4 0.9 3 0.8 2 0.7 1 0 0.6 -1 0.5 Time (40usec/div) VROUT =1.2V 1.6 1.3 2 1.2 1 Output Voltage 1.0 1.5 4 1.4 3 1.3 2 1.2 1 0 1.1 -1 1.0 Time (40usec/div) VROUT =1.8V -1 VROUT =1.8V C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic) VIN2=2.1V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 5 2.1 VIN2=2.1V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 5 4 2.0 3 1.9 2 1.8 1 Output Voltage 1.6 Time (40usec/div) Output Voltage VR OUT(V) Bias Voltage 2.1 Bias Voltage V BIAS(V) Bias Voltage Output Voltage VR OUT(V) 0 Time (40usec/div) C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic) 42/49 Output Voltage Bias Voltage V BIAS(V) 3 Output Voltage VR OUT(V) 1.4 1.7 VIN2=1.5V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 5 Bias Voltage 4 Bias Voltage V BIAS(V) Output Voltage VR OUT(V) Bias Voltage 1.5 2.2 -1 C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic) C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic) VIN2=1.5V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 5 1.1 0 Time (40usec/div) VROUT =1.2V 1.6 Output Voltage Bias Voltage V BIAS(V) 4 Output Voltage VR OUT(V) Bias Voltage 1.0 Bias Voltage V BIAS(V) Output Voltage VR OUT(V) Bias Voltage VIN2=1.0V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 5 2.0 4 1.9 3 1.8 2 1.7 1 0 1.6 -1 1.5 Output Voltage 0 -1 Time (40usec/div) Bias Voltage V BIAS(V) 1.1 C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic) VIN2=1.0V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 5 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (11) Input Transient Response VROUT =0.7V VROUT =0.7V CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 1.1 1.0 2 1.0 2 0.9 1 0.9 1 0.8 0 0.8 0 0.7 -1 0.7 -1 Output Voltage Output Voltage 0.5 -2 0.6 -3 0.5 Time Time(20usec/div) (20μs / div) VROUT =1.2V CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 4 1.6 1.4 2 1.3 1 1.2 0 Output Voltage VR OUT(V) 3 1.5 3 1.4 2 1.3 1 1.2 0 Output Voltage 1.0 -1 1.1 -2 1.0 Time Time(20usec/div) (20μs / div) VROUT =1.8V 2.2 3 1.9 2 1.8 1 Time (20μs / div) Time (20usec/div) Output Voltage VR OUT(V) 2.0 Input Voltage V IN (V) 4 1.6 -2 5 Input Voltage 2.1 Output Voltage -1 CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 5 Input Voltage 1.7 Output Voltage Time (20 (20usec/div) Time μs / div) VROUT =1.8V 2.2 CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 4 Input Voltage 1.5 Input Voltage V IN2(V) Output Voltage VR OUT(V) Input Voltage 1.1 -3 Time (20 (20usec/div) Time μs / div) VROUT =1.2V 1.6 -2 Input Voltage V IN2(V) 0.6 Input Voltage V IN2(V) Output Voltage VR OUT(V) Input Voltage Input Voltage V IN2(V) Output Voltage VR OUT(V) Input Voltage Output Voltage VR OUT(V) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 3 3 2.1 4 2.0 3 1.9 2 1.8 1 0 1.7 -1 1.6 Output Voltage Time (20μs / div) Input Voltage V IN2(V) 1.1 CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) 0 -1 Time (20usec/div) 43/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (12) Load Transient Response VROUT =0.7V CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, VIN2=1.0V, tr=tf=5.0μsec, Ta=25℃ 0.9 500 0.5 300 0.3 200 Output Current 100mA 0.7 400 0.5 300 200mA 0.3 100 10mA 10mA -0.1 -0.1 0 TimeTime (45μ s / div) (45usec/div) VROUT =1.2V VROUT =1.2V 1.4 CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, VIN2=1.5V, tr=tf=5.0μsec, Ta=25℃ 1.4 500 500 Output Voltage 1.0 300 0.8 200 Output Current 100mA 1.2 400 1.0 300 200mA 0.8 Time (45μs / div) 0.6 0 0.4 100 10mA VROUT =1.8V VROUT =1.8V CIN2=CBIAS=1.0μF(ceramic), C L2=4.7μF(ceramic) VBIAS=3.6V, VIN2=2.1V, tr=tf=5.0μsec, Ta=25℃ 2.0 CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, VIN2=2.1V, tr=tf=5.0μsec, Ta=25℃ 500 2.0 500 1.8 400 1.6 300 1.4 200 Output Current 100mA Output Voltage VR OUT(V) Output Voltage Output Current IOUT(mA) Output Voltage VR OUT(V) Output Voltage 1.8 400 1.6 300 200mA 1.4 Time (45usec/div) 44/49 200 Output Current 100 1.2 0 1.0 100 10mA 1.0 0 Time (45μs / div) Time (45usec/div) Time (45usec/div) 1.2 200 Output Current 100 10mA 0.4 Output Current IOUT(mA) 400 Output Current IOUT(mA) 1.2 Output Voltage VR OUT(V) Output Voltage Output Voltage VR OUT(V) 0 Time (45 μs(45usec/div) / div) Time CIN2=CBIAS=1.0μF(ceramic), C L2=4.7μF(ceramic) VBIAS=3.6V, VIN2=1.5V, tr=tf=5.0μsec, Ta=25℃ 0.6 200 Output Current 0.1 100 Output Current IOUT(mA) 400 Output Voltage VR OUT(V) 0.7 0.1 500 Output Voltage Output Current IOUT(mA) Output Voltage VR OUT(V) Output Voltage Output Current IOUT(mA) 0.9 VROUT =0.7V CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, VIN2=1.0V, tr=tf=5.0μsec, Ta=25℃ 10mA 0 Time (45usec/div) XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (13) CE Rising Response Time VROUT =0.7V 3 2.5 1.5 1 Output Voltage 0.5 0.0 0 Output Voltage VR OUT(V) 2 EN2 Input Voltage V EN2(V) 2.0 2 1.5 1 1.0 -1 0.5 -2 0.0 Time (100usec/div) 3.0 VROUT =1.2V VROUT =1.2V CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VIN2=1.5V, VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 4 3.0 3 2 Output Voltage 1 1.0 0 0.5 0.0 2.0 1 0 -1 0.5 -1 -2 0.0 -2 Time (100usec/div) Time (100μs / div) VROUT =1.8V VROUT =1.8V CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VIN2=2.1V, VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 4 2.5 3.0 3 2.5 2 1.5 1 1.0 0 Output Voltage Output Voltage VR OUT(V) 2.0 EN2 Input Voltage V CE(V) EN2 Input Voltage Time μs / div) Time (100 (100usec/div) Output Voltage 1.0 Time (100μs / div) 0.0 2 1.5 Time (100usec/div) 0.5 3 EN2 Input Voltage Output Voltage VR OUT(V) 2.0 CIN2=C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VIN2=1.5V, VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 4 2.5 EN2 Input Voltage V EN2(V) Output Voltage VR OUT(V) -2 Time (100μs / div) EN2 Input Voltage Output Voltage VR OUT(V) -1 Time (100μs / div) 1.5 0 Time (100usec/div) 2.5 3.0 Output Voltage EN2 Input Voltage V EN2(V) Output Voltage VR OUT(V) 2.0 1.0 3 EN2 Input Voltage EN2 Input Voltage EN2 Input Voltage V EN2(V) 2.5 3.0 CIN2=C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VIN2=1.0V, VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 4 CIN2=C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VIN2=2.1V, VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 4 EN2 Input Voltage 3 2.0 2 1.5 1 1.0 0 -1 0.5 -2 0.0 Output Voltage EN2 Input Voltage V EN2 (V) 3.0 VROUT =0.7V CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VIN2=1.0V, VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 4 -1 -2 Time (100 μs / div) Time (100usec/div) 45/49 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (14) VIN Rising Response Time 2.0 2.5 2 2.0 Input Voltage 1 Output Voltage 0.5 0.0 0 1.5 0.5 -2 0.0 Time (100usec/div) Output Voltage VROUT =1.2V -1 -2 VROUT =1.2V CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 3 VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 3 2.5 Input Voltage 1.5 1 Output Voltage 1.0 0 0.5 0.0 1.5 0 -1 0.5 -1 -2 0.0 VR 2.5 2 1.5 1 1.0 0 46/49 Output Voltage VR OUT(V) 2.0 Output Voltage =1.8V OUT CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 3 Input Voltage Input Voltage V IN (V) Output Voltage VR OUT(V) Input Voltage Time (100usec/div) -2 Time (100usec/div) =1.8V 0.0 1 1.0 OUT CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 3 0.5 2 Output Voltage Time (100usec/div) 2.5 Input Voltage 2.0 Output Voltage VR OUT(V) 2 Input Voltage V IN (V) Output Voltage VR OUT(V) 2.0 VR 0 Time (100usec/div) CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) 2.5 1 1.0 -1 2 Input Voltage V IN (V) 1.0 Output Voltage VR OUT(V) 1.5 Input Voltage V IN (V) Output Voltage VR OUT(V) Input Voltage 2.0 2 1.5 1 1.0 0 -1 0.5 -2 0.0 Output Voltage -1 -2 Time (100usec/div) Input Voltage V IN (V) 2.5 VROUT =0.7V CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃ 3 Input Voltage V IN (V) VROUT =0.7V CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic) VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃ 3 XCM519 Series ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) (16) Input Voltage Ripple Rejection Rate (15) Bias Voltage Ripple Rejection Rate VROUT=0.7V VROUT=0.7V CBIAS=1.0μF(ceramic), CIN2 =0μF, CL2 =4.7μF(ceramic) VBIAS=3.6V, VIN2 =1.0VDC+0.2Vp-pAC, IOUT=30mA, Ta=25℃ 80 80 70 70 60 60 VIN_PSRR(dB) VBIAS_PSRR(dB) CBIAS=0μF, CIN2 =1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6VDC+0.2Vp-pAC, VIN2 =1.0V, IOUT=30mA, Ta=25℃ 50 40 30 50 40 30 20 20 10 10 0 0.01 0.1 1 10 100 0 0.01 1000 10000 0.1 Frequency (kHz) 1 CBIAS=1.0μF(ceramic), CIN2 =0μF, CL2 =4.7μF(ceramic) VBIAS=3.6V, VIN2 =1.5VDC+0.2Vp-pAC, IOUT=30mA, Ta=25℃ 80 80 70 70 60 VIN_PSRR(dB) VBIAS_PSRR(dB) 60 50 40 30 20 0.1 1 10 100 50 40 30 20 10 0 0.01 10 1000 10000 0.1 1 10 100 1000 10000 Frequency (kHz) Frequency (kHz) VROUT=1.8V VROUT=1.8V CBIAS=1.0μF(ceramic), CIN2 =0μF, CL2 =4.7μF(ceramic) CBIAS=0μF, CIN2 =1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6VDC+0.2Vp-pAC, VIN2 =2.1V, IOUT=30mA, Ta=25℃ VBIAS=3.6V, VIN2 =2.1VDC+0.2Vp-pAC, IOUT=30mA, Ta=25℃ 80 80 70 70 60 60 50 VIN_PSRR(dB) VBIAS_PSRR(dB) 1000 10000 VROUT=1.2V CBIAS=0μF, CIN2 =1.0μF(ceramic), CL2 =4.7μF(ceramic) VBIAS=3.6VDC+0.2Vp-pAC, VIN2 =1.5V, IOUT=30mA, Ta=25℃ 50 40 30 40 30 20 10 20 10 0 0.01 100 Frequency (kHz) VROUT=1.2V 0 0.01 10 0.1 1 10 100 Frequency (kHz) 1000 10000 0 0.01 0.1 1 10 100 1000 10000 Frequency (kHz) 47/49 XCM519 Series ■PACKAGING INFORMATION ●USP-12B01 2 .8±0 .08 2 .3±0 .08 1234 MAX 0 . 6 567 8 (0 .4 ) (0 .4 ) (0 .4 ) (0 .4 ) (0 .4 ) (0 .25 ) (0 .15 ) 0 .25±0 .05 0 .2±0 .05 0 .2±0 .05 0 .2±0 .05 0 .2±0 .05 0 .2±0 .05 2 3 4 5 6 0 .25±0 .1 0 .4±0 .1 1 .3±0 .1 0 .25±0 .1 1 12 11 10 9 1 .2±0 .1 0 .7±0 .05 8 7 1 .2±0 .1 * Au plate thickness: Minimum 0.3 μm ■外部 リー ド処理 :Au m in0 .3um *The side of pins is not plated, nickel is exposed. ※端子側面はニッケルで、Auめっきされておりま せん。 *Pin #1 is wider than other pins. ※端子1は他端子に比べ太 くなっています。 0 .7±0 .05 20/1 単位 :mm UNIT: mm ●USP-12B01 Reference Pattern Layout 1 .35 1 .35 0 .90 0 .90 0 .45 0 .65 0 .65 0 .25 0 .25 0 .50 0 .20 1 .30 1 .30 0 .95 0 .95 0 .55 0 .55 0 .25 0 .25 0 .35 0 .60 1 .10 1 .55 0 .60 1 .10 1 .55 1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .05 0 .15 0 .05 0 .05 0 .20 0 .05 0 .10 0 .10 1 .30 1 .60 0 .20 48/49 0 .35 1 .30 1 .60 1 .05 0 .95 0 .65 0 .55 0 .25 0 .15 0 .25 0 .30 0 .025 0 .025 0 .025 0 .025 0 .45 ●USP-12B01 Reference Metal Mask Design 0 .15 0 .40 0 .15 XCM519 Series 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date. 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) 5. Please use the products listed in this datasheet within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. We assume no responsibility for damage or loss due to abnormal use. 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD. 49/49