TOREX XCM519AD01DR

XCM519 Series
ETR2421-003
600mA Synchronous Step-Down DC/DC Converter + Low Voltage Input LDO
■GENERAL DESCRIPTION
The XCM519 series is a multi combination module IC which comprises of a 600mA driver transistor built-in synchronous
step–down DC/DC converter and a low voltage input LDO regulator. The device is housed in small USP-12B01 package which
is ideally suited for space conscious applications. Battery operated portable products require high efficiency so that a dual
DC/DC converter is often used. The XCM519 can replace this dual DC/DC to eliminate one inductor and reduce output noise.
The DC/DC converter and the LDO regulator blocks are isolated in the package so that noise interference from the DC/DC to
the LDO regulator is minimal.
A low output voltage and low On-resistance LDO regulator is added in series to the DC/DC output so that one another low output
voltage is created with a high efficiency and low noise. With comparison to the dual DC/DC solution, one inductor can be
eliminated which results in parts reduction and board space saving.
■FEATURES
■APPLICATIONS
●Mobile phones, Smart phones
●Bluetooth equipment
●Portable communication modems
●Portable game consoles
■ TYPICAL APPLICATION CIRCUIT
<DC/DC Convertor Block>
Input Voltage Range
: 2.7V ~ 6.0V
Output Voltage Range : 0.8V ~ 4.0V
High Efficiency
: 92% (TYP.)
Output Current
: 600mA (MAX.)
Oscillation Frequency : 1.2MHz, 3.0MHz (+15%)
Maximum Duty Cycle : 100%
Soft-Start Circuit Built-In
Current Limiter Circuit (Constant Current & Latching)
Built-In
Control Methods
: PWM (XCM519A)
PWM/PFM Auto (XCM519B)
*Performance depends on external components and wiring on PCB wiring.
(TOP VIEW)
* The dashed lines denote the connection
through-holes at the backside of the PC board.
using
■TYPICAL PERFORMANCE
CHARACTERISTICS
Dropout Voltage vs. Output Current
Dropout Voltage: Vdif(mV)
VR O UT= 1 .2 V
Ta=25℃
300
<Regulator Block>
Maximum Output Current : 400mA (Limiter 550mA TYP.)
Dropout Voltage
: 35mV@IOUT=100mA (TYP.)
(at VBIAS - VROUT(E)=2.4V)
Bias Voltage Range
: 2.5V ~ 6.0V (VBIAS - VROUT(E)=0.9V)
Input Voltage Range
: 1.0V ~ 3.0V (VIN2≦VBIAS)
Output Voltage Range : 0.7V ~ 1.8V (0.05V increments)
High Output Accuracy : ±20mV
Supply Current
: IBIAS=25μA , IIN2=1.0μA (TYP.)
Stand-by Current
: IBIAS=0.01μA , IIN2=0.01μA (TYP.)
UVLO
: VBIAS=2.0V , VIN2=0.4V (TYP)
Thermal Shut Down
: Detect 150℃, Release 125℃ (TYP.)
Soft-start Time
: 240μs@VROUT=1.2V(TYP.)
CL High Speed Auto-Discharge
Low ESR Capacitor
Operating Temperature Range
Package
: Ceramic Capacitor Compatible
: -40℃ ~ +85℃
: USP-12B01
VBIAS=3.0V
250
VBIAS=3.3V
VBIAS=3.6V
200
VBIAS=4.2V
VBIAS=5.0V
150
Standard Voltage Combinations : DC/DC
XCM519xx01Dx
1.8V
XCM519xx02Dx
1.8V
XCM519xx03Dx
1.5V
XCM519xx04Dx
1.8V
XCM519xx05Dx
1.5V
100
50
0
0
100
200
300
400
VR
1.2V
1.5V
1.2V
1.0V
1.0V
*Other combinations are available as semi-custom products.
Output Current: IOUT(mA)
1/49
XCM519 Series
■PIN CONFIGURATIOIN
(TOP VIEW)
PIN No.
XCM519
XC9235/XC9236
XC6601
1
DCOUT
VOUT
―
2
AGND
AGND
―
3
EN1
CE
―
4
VIN2
―
VIN
5
VSS2
―
VSS
6
VROUT
―
VOUT
7
EN2
―
CE
8
NC
―
―
9
VBIAS
―
VBIAS
10
VIN1
VIN
―
11
PGND
PGND
―
12
Lx
Lx
―
(BOTTOM VIEW)
NOTE:
* A dissipation pad on the reverse side of the package should be electrically isolated.
*1: Electrical potential of the XC9235/XC9236’s dissipation pad should be VSS level.
*2: Electrical potential of the XC6601’s dissipation pad should be VSS level.
Care must be taken for an electrical potential of each dissipation pad so as to enhance mounting strength and heat release
when the pad needs to be connected to the circuit.
■PIN ASSIGNMENT
2/49
PIN No
XCM519
1
DCOUT
FUNCTIONS
2
AGND
3
EN1
DC/DC Block: Chip Enable
4
VIN2
Voltage Regulator Block: Power Input
5
VSS2
Voltage Regulator Block: Ground
6
VROUT
Voltage Regulator Block: Output
7
EN2
Voltage Regulator Block: Enable
DC/DC Block: Output Voltage
DC/DC Block: Analog Ground
8
NC
9
VBIAS
Voltage Regulator Block: Power Input
No Connection
10
VIN1
DC/DC Block: Power Input
11
PGND
12
Lx
DC/DC Block: Power Ground
DC/DC Block: Switching
XCM519
Series
■PRODUCT CLASSIFICATION
●Ordering Information
XCM519A①②③④⑤
XCM519B①②③④⑤
DC/DC BLOCK:PWM fixed control
DC/DC BLOCK:PWM/PFM automatic switching control
DESIGNATOR
DESCRIPTION
SYMBOL
DESCRIPTION
①
Oscillation Frequency and Options
−
See the chart below
② ③
Output Voltage
−
Internally set sequential number relating to output voltage
(See the chart below)
④
Package
D
USP-12B01
⑤
Device Orientation
R
Embossed tape, standard feed
●DESIGNATOR①
DC/DC BLOCK
OSCILLATION
CL AUTO
FREQUENCY
DISCHARGE
A
1.2M
B
3.0M
C
D
①
Voltage Regulator BLOCK
SOFT START
Pull-down
Not Available
Standard
Not Available
Not Available
Standard
Not Available
1.2M
Available
High Speed
Not Available
3.0M
Available
High Speed
Not Available
●DESIGNATOR②③
②③
DCOUT
VROUT
01
1.8V
1.2V
02
1.8V
1.5V
03
1.5V
1.2V
04
1.8V
1.0V
05
1.5V
1.0V
*When the DCOUT pin is connected to VIN2, DCOUT pin output voltage can be fixed in the range of 1.0V∼3.0V.
*This series are semi-custom products.
For other combinations of output voltages please consult with your Torex sales contact.
3/49
XCM519 Series
■BLOCK DIAGRAMS
XC9235A/XC9236A
XC9235B/XC9236B
(CL放電機能有
、 高速ソフトスタート
)
Available
with CL Discharge,
High Speed Soft-Start
Phase
Compensation
VOUT
R2
Current Feedback
Current Limit
Error Amp.
R2
PWM
Comparator
Logic
R1
VIN
Lx
Error Amp.
Logic
Vref with
Soft Start,
CE
UVLO
VSS
CE/MODE
Control
Logic
R4
CE
Lx
PWM/PFM
Selector
CE/
UVLO Cmp
R3
Synch
Buffer
Drive
VSHORT
PWM/PFM
Selector
Ramp Wave
Generator
OSC
Current Feedback
Current Limit
PWM
Comparator
R1
VIN
UVLO Cmp
VSS
Synch
Buffer
Drive
VSHORT
Vref with
Soft Start,
CE
Phase
Compensation
VOUT
UVLO
Ramp Wave
Generator
OSC
R3
CE/MODE
Control
Logic
R4
XC6601B (Without Pull-down)
* XC9235 control scheme is a fixed PWM because that the “CE/MODE Control Logic” outputs a low level signal to the “PWM/PFM Selector”.
* XC9236 control scheme is an auto PWM/PFM switching because the “CE/MODE Control Logic” outputs a high level signal to the “PWM/PFM Selector”.
*Diodes inside the circuit are an ESD protection diode and a parasitic diode.
■MAXIMUM ABSOLUTE RATINGS
PARAMETER
SYMBOL
RATINGS
UNITS
VIN1Voltage
VIN1
- 0.3 ∼ 6.5
V
Lx Voltage
VLx
- 0.3 ∼ VIN1 + 0.3 or 6.5
V
DCOUT Voltage
VDCOUT
- 0.3 ∼ 6.5
V
EN1 Voltage
VEN1
- 0.3 ∼ 6.5
V
Lx Current
ILx
±1500
mA
VBIAS Voltage
VBIAS
VSS - 0.3 ∼ 7.0
V
VIN2 Voltage
VIN2
VSS - 0.3 ∼ 7.0
VROUT Current
IVROUT
VROUT Voltage
VROUT
EN2 Voltage
VEN2
VSS - 0.3 ∼ 6.5
V
Pd
150
mW
Junction Temperature
Tj
125
℃
Operating Temperature Range
Topr
-40∼+85
℃
Storage Temperature Range
Tstg
-55∼+125
℃
Power Dissipation
(Ta=25℃)
(*1)
USP-12B01
IVROUT=Less than Pd / (VIN2-VROUT)
4/49
Ta=25℃
700
(*1)
VSS - 0.3∼VBIAS + 0.3
VSS - 0.3∼VIN2 + 0.3
V
mA
V
XCM519
Series
■ELECTRICAL CHARACTERISTICS
●XCM519xA (DC/DC BLOCK)
PARAMETER
SYMBOL
Output Voltage
VDCOUT
Operating Voltage Range
VIN1
VDCOUT=1.8V, fOSC=1.2MHz, Ta=25℃
CONDITIONS
When connected to external components,
VIN1 = VEN1 =5.0V, IOUT1 =30mA
MIN.
TYP.
MAX.
UNITS CIRCUIT
1.764
1.800
1.836
V
①
2.7
-
6.0
V
①
600
-
-
mA
①
1.00
1.40
1.78
V
③
(XCM519AA)
-
22
50
(XCM519BA)
-
15
33
②
−
-
0
1.0
μA
②
Maximum Output Current
IOUT1MAX
When connected to external components,
(*8)
VIN1=DCOUT(E)+2.0V, VEN1=1.0V
UVLO Voltage
VUVLO
VEN1=VIN1, DCOUT=0V,
(*1, *10)
Voltage which Lx pin holding “L” level
Supply Current
IDD
VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×1.1V
Stand-by Current
ISTB
VIN1=5.0V, VEN1=0V, DCOUT=DCOUT(E)×1.1V
Oscillation Frequency
fOSC
When connected to external components,
(*11)
VIN1=DCOUT(E)+2.0V,VEN1=1.0V, IOUT1=100mA
1020
1200
1380
kHz
①
PFM Switching Current
IPFM
When connected to external components,
(*11)
VIN1=VDCOUT(E)+2.0V, VEN1 =VIN1, IOUT1=1mA
120
160
200
mA
①
-
200
-
%
①
VIN1= VEN1 =5.0V, DCOUT=DCOUT(E)×0.9V
100
-
-
%
②
VIN1= VEN1 =5.0V, DCOUT=DCOUT(E)×1.1V
-
-
0
%
②
-
92
-
%
①
-
0.35
0.55
Ω
④
-
0.42
0.67
Ω
④
-
0.45
0.66
Ω
−
-
0.52
0.77
Ω
−
PFM Duty Limit
DLIMIT_PFM
Maximum Duty Ratio
DMAX
Minimum Duty Ratio
DMIN
Efficiency
(*2)
EFFI
Lx SW "H" ON Resistance 1
RLXH
VEN1=VIN1=(C-1), IOUT1=1mA
(*11)
When connected to external components,
(*7)
VEN1=VIN1=DCOUT(E)+1.2V , IOUT1 =100mA
(*3)
VIN1= VEN1 =5.0V, DCOUT=0V,ILX=100mA
Lx SW "H" ON Resistance 2
RLXH
VIN1= VEN1 =3.6V, DCOUT=0V,ILX=100mA
Lx SW "L" ON Resistance 1
RLXL
VIN1= VEN1 =5.0V
Lx SW "L" ON Resistance 2
RLXL
VIN1= VEN1=3.6V
(*3)
(*4)
(*4)
Lx SW "H" Leak Current
(*5)
ILEAKH
VIN1= DCOUT=5.0V, VEN1 =0V, VLX=0V
-
0.01
1.0
μA
⑤
Lx SW "L" Leak Current
(*5)
ILEAKL
VIN1= DCOUT=5.0V, VEN1 =0V, VLX=5.0V
-
0.01
1.0
μA
⑤
900
1050
1350
mA
⑥
-
±100
-
ppm/ ℃
①
0.65
-
6.0
V
③
VSS
-
0.25
V
③
- 0.1
-
0.1
μA
⑤
(*9)
Current Limit
Output Voltage
Temperature
Characteristics
ILIM
(DCOUT・△topr)
EN1 "H" Level Voltage
VEN1H
EN1 "L" Level Voltage
VEN1L
EN1 "H" Current
IEN1H
EN1 "L" Current
IEN1L
△DCOUT /
VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×0.9V
IOUT1 =30mA
-40℃≦Topr≦85℃
DCOUT=0V, Applied voltage to VEN,
(*10)
Voltage changes Lx to “H” level
DCOUT=0V, Applied voltage to VEN,
(*10)
Voltage changes Lx to “L” level
VIN1=VEN1=5.0V, DCOUT=0V
⑤
VIN1=5.0V, VEN1 =0V, DCOUT=0V
- 0.1
0.1
μA
When connected to external components,
①
0.5
1.0
2.5
ms
Soft Start Time
tSS
VEN1 =0V → VIN1, IOUT1=1mA
VIN= VEN=5.0V, DCOUT=0.8× DCOUT(E)
⑦
Latch Time
tLAT
1.0
20.0
ms
(*6)
Short Lx at 1Ω resistance
Sweeping DCOUT, VIN1=VEN1= 5.0V, Short Lx at
Short Protection
⑦
VSHORT
0.675
0.900
1.125
V
1Ω resistance, DCOUT voltage which Lx becomes
Threshold Voltage
“L” level within 1ms
Test conditions: Unless otherwise stated, VIN = 5.0V, VDCOUT(E)= Setting voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse
generating.
*7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN∼VIN - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM519A series exclude IPFM and MAXIPFM because those are only for the PFM control’s functions.
* The electrical characteristics above are when the other channel is in stop mode.
5/49
XCM519 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM519xB 1ch (DC/DC BLOCK)
PARAMETER
SYMBOL
Output Voltage
VDCOUT
Operating Voltage Range
VIN1
VDCOUT=1.8V, fOSC=3.0MHz, Ta=25℃
CONDITIONS
When connected to external components,
VIN1 = VEN1 =5.0V, IOUT1 =30mA
MIN.
TYP.
MAX.
UNITS CIRCUIT
1.764
1.800
1.836
V
①
2.7
-
6.0
V
①
When connected to external components,
(*8)
VIN1=VDCOUT(E)+2.0V, VEN1=1.0V
600
-
-
mA
①
VEN1=VIN1, DCOUT=0V,
(*1, *10)
Voltage which Lx pin holding “L” level
1.00
1.40
1.78
V
③
(XCM519AB)
-
46
65
(XCM519BB)
-
21
35
②
−
Maximum Output Current
IOUT1MAX
UVLO Voltage
VUVLO
Supply Current
IDD
Stand-by Current
ISTB
VIN1=5.0V, VEN1=0V, DCOUT=DCOUT(E)×1.1V
-
0
1.0
μA
②
Oscillation Frequency
fOSC
When connected to external components,
VIN1=DCOUT(E)+2.0V,VEN1=1.0V, IOUT1=100mA
2550
3000
3450
kHz
①
PFM Switching Current
IPFM
When connected to external components,
(*11)
VIN1=DCOUT(E)+2.0V, VEN1 =VIN1, IOUT1=1mA
170
220
270
mA
①
-
200
300
%
①
VIN1=VEN1 =5.0V, DCOUT=DCOUT(E)×0.9V
100
-
-
%
②
VIN1=VEN1 =5.0V, DCOUT=DCOUT(E)×1.1V
-
-
0
%
②
-
86
-
%
①
-
0.35
0.55
Ω
④
-
0.42
0.67
Ω
④
-
0.45
0.66
Ω
−
-
0.52
0.77
Ω
−
PFM Duty Limit
DLIMIT_PFM
Maximum Duty Ratio
DMAX
Minimum Duty Ratio
DMIN
Efficiency
EFFI
Lx SW "H" ON Resistance 1
RLXH
VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×1.1V
VEN1=VIN1=(C-1) IOUT1=1mA
(*11)
When connected to external components,
VEN1=VIN1=DCOUT(E)+1.2V, IOUT1 =100mA
(*3)
VIN1= VEN1 =5.0V, DCOUT=0V,ILX=100mA
Lx SW "H" ON Resistance 2
RLXH
VIN1= VEN1 =3.6V, DCOUT=0V,ILX=100mA
Lx SW "L" ON Resistance 1
RLXL
VIN1= VEN1 =5.0V
Lx SW "L" ON Resistance 2
RLXL
VIN1= VEN1=3.6V
(*4)
(*4)
(*3)
Lx SW "H" Leak Current
(*5)
ILEAKH
VIN1= DCOUT=5.0V, VEN1 =0V, VLX=0V
-
0.01
1.0
μA
⑤
Lx SW "L" Leak Current
(*5)
ILEAKL
VIN1= DCOUT=5.0V, VEN1 =0V, VLX=5.0V
-
0.01
1.0
μA
⑤
ILIM
VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×0.9V
900
1050
1350
mA
⑥
-
±100
-
ppm/ ℃
①
0.65
-
6.0
V
③
VSS
-
0.25
V
③
- 0.1
-
0.1
μA
⑤
(*9)
Current Limit
Output Voltage
Temperature
Characteristics
(DCOUT・△topr)
EN1 "H" Level Voltage
VEN1H
EN1 "L" Level Voltage
VEN1L
EN1 "H" Current
IEN1H
EN1 "L" Current
IEN1L
△DCOUT /
IOUT1 =30mA
-40℃≦Topr≦85℃
DCOUT=0V, Applied voltage to VEN,
(*10)
Voltage changes Lx to “H” level
DCOUT=0V, Applied voltage to VEN,
(*10)
Voltage changes Lx to “L” level
VIN1=VEN1=5.0V, DCOUT=0V
⑤
VIN1=5.0V, VEN1 =0V, DCOUT=0V
- 0.1
0.1
μA
When connected to external components,
①
0.5
0.9
2.5
ms
Soft Start Time
tSS
VEN1 =0V → VIN1, IOUT1=1mA
VIN1=VEN1=5.0V, DCOUT=0.8×DCOUT(E)
⑦
Latch Time
tLAT
1.0
20
ms
(*6)
Short Lx at 1Ω resistance
Sweeping DCOUT, VIN1=VEN1=5.0V, Short Lx at
Short Protection
⑦
VSHORT
1Ω resistance, DCOUT voltage which Lx becomes
0.675
0.900
1.125
V
Threshold Voltage
“L” level within 1ms
Test conditions: Unless otherwise stated, VIN1=5.0V, VDCOUT(E)= Nominal voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse
generating.
*7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN∼VIN - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM519A series exclude IPFM and DLIMIT_PFM because those are only for the PFM control’s functions.
* The electrical characteristics above are when the other channel is in stop mode.
6/49
XCM519
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM519xC 1ch (DC/DC BLOCK)
PARAMETER
VDCOUT=1.8V, fOSC=1.2MHz, Ta=25℃
SYMBOL
CONDITIONS
MIN.
TYP.
MAX.
1.764
1.800
1.836
V
①
2.7
-
6.0
V
①
When connected to external components,
(*8)
VIN1=DCOUT(E)V+2.0V,VEN1=1.0V
600
-
-
mA
①
VEN1=VIN1,DCOUT=0V,
(*1, *10)
Voltage which Lx pin holding “L” level
1.00
1.40
1.78
V
②
(XCM519AC)
-
22
50
(XCM519BC)
-
15
33
μA
③
When connected to external components,
VIN1=VEN1=5.0V,IOUT1=30mA
UNITS CIRCUIT
Output Voltage
VDCOUT
Operating Voltage Range
VIN1
Maximum Output Current
IOUT1MAX
UVLO Voltage
VUVLO
Supply Current
IDD
Stand-by Current
ISTB
VIN1=5.0V,VEN1=0V,DCOUT=DCOUT(E)×1.1V
-
0
1.0
μA
③
Oscillation Frequency
fOSC
When connected to external components,
VIN1=DCOUT(E)V+2.0V,VEN1=1.0V, IOUT1=100mA
1020
1200
1380
kHz
①
PFM Switching Current
IPFM
When connected to external components,
(*11)
VIN1=DCOUT(E)V+2.0V,VEN1=VIN1, IOUT1=1mA
120
160
200
mA
①
PFM Duty Limit
DLIMIT_PFM
-
200
%
②
Maximum Duty Ratio
DMAX
VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×0.9V
100
-
-
%
②
Minimum Duty Ratio
DMIN
VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×1.1V
-
-
0
%
②
Efficiency
EFFI
-
92
-
%
①
Lx SW "H" ON Resistance 1
RLXH
When connected to external components,
(*7)
VEN1=VIN1=DCOUT(E)+1.2V , IOUT1=100mA
(*3)
VIN1=VEN1=5.0V,DCOUT=0V,ILX=100mA
-
0.35
0.55
Ω
④
Lx SW "H" ON Resistance 2
RLXH
VIN1=VEN1=3.6V,DCOUT=0V,ILX=100mA
-
0.42
0.67
Ω
④
−
VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×1.1V
VEN1=VIN1=(C-1)IOUT1=1mA
(*11)
(*3)
Lx SW "L" ON Resistance 1
RLXL
VIN1=VEN1=5.0V
(*4)
-
0.45
0.66
Ω
Lx SW "L" ON Resistance 2
RLXL
VIN1=VEN1=3.6V
(*4)
-
0.52
0.77
Ω
−
(*5)
ILEAKH
VIN1=DCOUT=5.0V,VEN1=0V,LX=0V
-
0.01
1.0
μA
⑨
900
1050
1350
mA
⑥
-
±100
-
ppm/℃
①
0.65
-
6.0
V
③
VSS
-
0.25
V
③
- 0.1
-
0.1
μA
⑤
- 0.1
-
0.1
μA
⑤
-
0.25
0.40
ms
①
1.0
-
20
ms
⑦
0.675
0.900
1.150
V
⑦
200
300
450
Ω
⑧
Lx SW "H" Leak Current
(*9)
Current Limit
Output Voltage
Temperature
Characteristics
ILIM
(DCOUT・△topr)
EN1 "H" Level Voltage
VEN1H
EN1 "L" Level Voltage
VEN1L
△DCOUT /
EN1 "H" Current
IEN1H
EN1 "L" Current
IEN1L
Soft Start Time
tSS
Latch Time
TLAT
Short Protection
Threshold Voltage
VSHORT
CL Discharge
RDCHG
VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×0.9V
IOUT1=30mA, -40℃≦Topr≦85℃
DCOUT=0V, Applied voltage to VEN1,
(*10)
Voltage changes Lx to “H” level
DCOUT=0V, Applied voltage to VEN1,
(*10)
Voltage changes Lx to “L” level
VIN1=VEN1=5.0V,DCOUT=0V
VIN1=5.0V,VEN1=0V,DCOUT=0V
When connected to external components,
VEN1=0V→VIN1, IOUT1=1mA
VIN1=VEN1=5.0V, DCOUT=0.8×DCOUT(E)
(*6)
Short Lx at 1Ω resistance
Sweeping DCOUT, VIN1=VEN1=5.0V, Short Lx at
1Ω resistance, DCOUT voltage which Lx becomes
“L” level within 1ms
VIN1=5.0V, LX=5.0V,VEN1=0V, DCOUT=Open
Test conditions: Unless otherwise stated, VIN1=5.0V, VDCOUT(E)= Nominal voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse
generating.
*7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN∼VIN - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM519A series exclude IPFM and DLIMT_PFM because those are only for the PFM control’s functions.
* The electrical characteristics above are when the other channel is in stop mode.
7/49
XCM519 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM519xD 1ch (DC/DC BLOCK)
DCOUT=1.8V, fOSC=3.0MHz, Ta=25℃
PARAMETER
SYMBOL
Output Voltage
VDCOUT
Operating Voltage Range
VIN1
Maximum Output Current
IOUT1MAX
UVLO Voltage
VUVLO
Supply Current
IDD
VIN1=VEN1=5.0V,DCOUT=DCOUT(E)×1.1V
Stand-by Current
ISTB
VIN1=5.0V,VEN1=0V, DCOUT=DCOUT(E)×1.1V
Oscillation Frequency
fOSC
PFM Switching Current
IPFM
PFM Duty Limit
DLIMIT_PFM
Maximum Duty Ratio
DMAX
Minimum Duty Ratio
DMIN
Efficiency
EFFI
Lx SW "H" ON Resistance 1
RLXH
CONDITIONS
MIN.
TYP.
MAX.
1.764
1.800
1.836
V
①
2.7
-
6.0
V
①
When connected to external components,
(*8)
VIN1=DCOUT(E)V+2.0V,VEN1=1.0V
600
-
-
mA
①
VEN1=VIN1,DCOUT=0V,
(*1, *10)
Voltage which Lx pin holding “L” level
1.00
1.40
1.78
V
②
(XCM519AD)
-
46
65
(XCM519BD)
-
21
35
μA
③
-
0
1.0
μA
③
When connected to external components,
VIN1=DCOUT(E)V+2.0V, VEN1=1.0V, IOUT1=100mA
2550
3000
3450
kHz
①
When connected to external components,
(*11)
VIN1=DCOUT(E)V+2.0V, VEN1=VIN1, IOUT1=1mA
170
220
270
mA
①
-
200
300
%
②
VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×0.9V
100
-
-
%
②
VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×1.1V
-
-
0
%
②
-
86
-
%
①
-
0.35
0.55
Ω
④
When connected to external components,
VIN1=VEN1=5.0V, IOUT1=30mA
VEN1=VIN1=(C-1)IOUT1=1mA
(*11)
When connected to external components,
(*7)
VEN1=VIN1=DCOUT(E)+1.2V ,IOUT1=100mA
(*3)
VIN1=VEN1=5.0V, DCOUT=0V, ILX=100mA
(*3)
UNITS CIRCUIT
Lx SW "H" ON Resistance 2
RLXH
VIN1=VEN1=3.6V, DCOUT=0V, ILX=100mA
-
0.42
0.67
Ω
④
Lx SW "L" ON Resistance 1
RLXL
VIN1=VEN1=5.0V
(*4)
-
0.45
0.66
Ω
−
Lx SW "L" ON Resistance 2
RLXL
VIN1=VEN1=3.6V
(*4)
-
0.52
0.77
Ω
−
(*5)
ILEAKH
VIN1=DCOUT=5.0V,VEN1=0V, LX=0V
Lx SW "H" Leak Current
(*9)
Current Limit
Output Voltage
Temperature
Characteristics
ILIM
(DCOUT・△topr)
EN1 "H" Level Voltage
VEN1H
EN1 "L" Level Voltage
VEN1L
△DCOUT /
EN1 "H" Current
IEN1H
EN1 "L" Current
IEN1L
Soft Start Time
tSS
Latch Time
tLAT
Short Protection
Threshold Voltage
VSHORT
CL Discharge
RDCHG
VIN1=VEN1=5.0V, DCOUT=DCOUT(E)×0.9V
IOUT1=30mA
-40℃≦Topr≦85℃
DCOUT=0V, Applied voltage to VEN1,
(*10)
Voltage changes Lx to “H” level
DCOUT=0V, Applied voltage to VEN1,
(*10)
Voltage changes Lx to “L” level
VIN1=VEN1=5.0V, DCOUT=0V
VIN1=5.0V,VEN1=0V, DCOUT=0V
When connected to external components,
VEN1=0V→VIN1, IOUT1=1mA
VIN1=VEN1=5.0V, DCOUT=0.8×DCOUT(E)
(*6)
Short Lx at 1Ω resistance
Sweeping DCOUT, VIN1=VEN1=5.0V, Short Lx at
1Ω resistance, DCOUT voltage which Lx becomes
“L” level within 1ms
VIN1=5.0V, LX=5.0V, VEN1=0V, DCOUT=Open
-
0.01
1.0
μA
⑨
900
1050
1350
mA
⑥
-
±100
-
ppm/℃
①
0.65
-
6.0
V
③
VSS
-
0.25
V
③
- 0.1
-
0.1
μA
⑤
- 0.1
-
0.1
μA
⑤
-
0.32
0.50
ms
①
1.0
-
20
ms
⑦
0.675
0.900
1.150
V
⑦
200
300
450
Ω
⑧
Test conditions: Unless otherwise stated, VIN1=5.0V, VDCOUT(E)= Nominal voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse
generating.
*7: VDCOUT (E)+1.2V<2.7V, VIN=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN∼VIN - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM519A series exclude IPFM and DLIMT_PFM because those are only for the PFM control’s functions.
* The electrical characteristics above are when the other channel is in stop mode.
8/49
XCM519
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage
1.2MHz
(mA)
SETTING VOLTAGE
MIN.
TYP.
MAX.
VDCOUT(E)≦1.2V
140
180
240
1.2V<VDCOUT(E)≦1.75V
130
170
220
1.8V≦VDCOUT(E)
120
160
200
3.0MHz
(mA)
SETTING VOLTAGE
MIN.
TYP.
MAX.
VDCOUT(E)≦1.2V
190
260
350
1.2V<VDCOUT(E)≦1.75V
180
240
300
1.8V≦VDCOUT(E)
170
220
270
●Measuring Maximum IPFM Limit, VIN Voltage
fOSC
1.2MHz
3.0MHz
(C-1)
VDCOUT(E)+0.5V
VDCOUT(E)+1.0V
Minimum operating voltage is 2.7V
ex.) Although when VDCOUT(E)=1.2V, fOSC=1.2MHz, (C-1)=1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V.
●Soft-Start Time Chart (XCM519xC/ XCM519xD Series Only)
PRODUCT SERIES
XCM519AC
XCM519BC
XCM519xD
fOSC
OUTPUT VOLTAGE
MIN.
TYP.
MAX.
1200kHz
0.8≦VDCOUT(E)<1.5
-
250
400μs
1200kHz
1.5≦VDCOUT(E)<1.8
-
320
500μs
1200kHz
1.8≦VDCOUT(E)<2.5
-
250
400μs
1200kHz
2.5≦VDCOUT(E)<4.0
-
320
500μs
1200kHz
0.8≦VDCOUT(E)<2.5
-
250
400μs
1200kHz
2.5≦VDCOUT(E)<4.0
-
320
500μs
3000kHz
0.8≦VDCOUT(E)<1.8
-
250
400μs
3000kHz
1.8≦VDCOUT(E)<4.0
-
320
500μs
9/49
XCM519 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM519xx 2ch (REGULATOR BLOCK)
PARAMETER
SYMBOL
CONDITIONS
MIN.
TYP.
MAX.
Bias Voltage
(*1)
VBIAS
VEN2 =VBIAS,VIN2=VROUT(T)+0.3V
2.5
-
6.0
V
−
Input Voltage
(*2)
VIN2
VBIAS=VEN2=3.6V
1.0
3.0
V
−
VBIAS=VEN2=3.6V,VIN2=VROUT(T)+0.3V,
-0.02
V
−
Output Voltage
VROUT(E)
(*3)
Maximum Output Current1
IOUTMAX1
Maximum Output Current2
IOUTMAX2
Maximum Output Current3
IOUTMAX3
Load Regulation
△VROUT
Dropout Voltage1
Vdif1
(*7)
Dropout Voltage2
Vdif2
(*7)
Dropout Voltage3
Vdif3
(*7)
Vdif4
(*7)
Dropout Voltage4
Supply Current 1
IBIAS
Supply Current 2
IIN2
IROUT=1mA
VEN2 =VBIAS ,VBIAS -VROUT(T)≧1.2V
VIN2 =VROUT(T)+0.5V
VEN2 =VBIAS ,VBIAS -VROUT(T)≧1.3V
VIN2 =VROUT(T)+0.5V
VEN2 =VBIAS ,VBIAS -VROUT(T)≧1.5V
VIN2 =VROUT(T)+0.5V
VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V,
1mA≦IVROUT≦100mA
VOUT(T)
E-0
(*4)
+0.02
(*5)
UNITS CIRCUIT
200
-
-
mA
⑩
300
-
-
mA
⑩
400
-
-
mA
⑩
-
8
17
mV
−
E-1
(*6)
mV
⑩
VEN2 =VBIAS , IOUT=200mA
E-2
(*6)
mV
⑩
VEN2 =VBIAS , IOUT=300mA
E-3
(*6)
mV
⑩
E-4
(*6)
mV
⑩
VEN2 =VBIAS , IOUT=100mA
VEN2 =VBIAS , IOUT=400mA
VBIAS=VEN2=3.6V,VIN2=VROUT(T)+0.3V
VROUT(T)=OPEN
VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V
VROUT(T)=OPEN
8
25
45
μA
⑩
-
1.0
2.5
μA
⑩
-
1.0
2.5
mA
⑩
VROUT(T)≧0.95V,VBIAS=VEN2=3.6V,
Bias Current
(*10)
IBIASMAX
VIN2=VROUT(T)+0.05V, VROUT=VROUT(T) - 0.05V
VROUT(T)<0.95V,VBIAS=VEN2=3.6V,
VIN2=1.0V, VROUT=VROUT(T) - 0.05V
Stand-by Current 1
IBIAS_STB
VBIAS=6.0V,VIN2=3.0V, VEN2=VSS2
-
0.01
0.10
μA
⑩
Stand-by Current 2
IIN_STB
VBIAS=6.0V,VIN2=3.0V, VEN2=VSS2
-
0.01
0.35
μA
⑩
-
0.01
0.3
%/V
⑩
-
0.01
0.1
%/V
⑩
VROUT(T)≧1.3V
VROUT(T)+1.2V≦VBIAS≦6.0V,
Bias Regulation
△VROUT /
VIN2=VROUT(T)+0.3V, VEN2 =VBIAS , IOUT=1mA
(△VBIAS・VROUT)
VROUT(T)<1.3V
2.5V≦VBIAS≦6.0V,
VIN2=VROUT(T)+0.3V, VEN2 =VBIAS , IOUT=1mA
VROUT(T)≧0.90V,VROUT(T)+0.1V≦VIN2≦3.0V,
△VROUT /
VBIAS=VEN2=3.6V,IOUT=1mA
(△VIN2・VROUT)
VROUT(T)<0.90V,1.0V≦VIN2≦3.0V
Bias Voltage UVLO
VBIAS_UVLO
VEN2 =VBIAS,VIN2 =VROUT(T)+0.3V,IOUT=1mA
1.37
2.0
2.5
V
⑩
Input Voltage UVLO
VIN_UVLO
VBIAS=VEN2=3.6V, IVROUT=1mA
0.07
0.4
0.6
V
⑩
-
40
-
dB
⑪
-
60
-
dB
⑪
Input Regulation
VBIAS=VEN2=3.6V,IOUT=1mA
VBIAS Ripple Rejection
VBIAS_PSRR
VIN2 Ripple Rejection
VIN_PSRR
10/49
VBIAS=3.6VDC+0.2Vp-pAC,VIN2=VROUT(T)+0.3V,
IOUT=30mA,f=1kHz
VIN2=VOUT(T)+0.3VDC+0.2Vp-pAC,
VBIAS=3.6V, IOUT=30mA,f=1kHz
XCM519
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM519xx 2ch (REGULATOR BLOCK) (Continued)
PARAMETER
Output Voltage
Temperature
Characteristics
SYMBOL
CONDITIONS
VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V , IOUT=30mA,
△VROUT/
- 40℃≦ Topr ≦85℃
(△Topr・VROUT)
MIN.
TYP.
MAX.
UNITS CIRCUIT
-
±100
-
ppm/℃
⑩
Limit Current
ILIM
VROUT=VROUT(T)×0.95,
VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V
400
-
-
mA
⑩
Short Current
ISHORT
VBIAS=VEN2=3.6V, VIN2=VROUT(T)+0.3V,
VROUT=0V
-
80
-
mA
⑩
TTSD
Junction Temperature
-
150
-
℃
⑩
TTSR
Junction Temperature
-
125
-
℃
⑩
-
25
-
℃
⑩
290
430
610
Ω
⑩
Thermal Shutdown
Detect Temperature
Thermal Shutdown
Release Temperature
TSD Hysteresis Width
TTSD−TTSR
CL Auto-Discharge
Resistance
RDCHG
EN2 "H" Level Voltage
VEN2H
VBIAS=3.6V,VIN2=VROUT(T)+0.3V
0.75
-
6.0
V
⑩
EN2 "L" Level Voltage
VEN2L
VBIAS=3.6V,VIN2=VROUT(T)+0.3V
-
-
0.16
V
⑩
-0.1
-
0.1
μA
⑩
-0.1
-
0.1
μA
⑩
100
-
410
μs
⑫
EN2 "H" Level Current
IEN2H
EN2 "L" Level Current
IEN2L
Soft Start Time
(*11)
tSS
VBIAS=3.6V, VIN2= VROUT(T)+0.3V, VEN2= VSS
VROUT=VROUT(T)
VBIAS=VEN2=6.0V,
VIN2=VROUT(T)+0.3V
VBIAS=6.0V, VEN2=VSS,VIN2=VROUT(T)+0.3V
VBIAS=3.6V、VIN2=VROUT(T)+0.3V、IOUT=1mA
VEN2=0V→3.6V
NOTE:
* 1: Please use Bias voltage VBIAS within the range VBIAS –VROUT(T)≧0.9V
* 2: Please use Input voltage VIN within the range VIN≦VBIAS
* 3: VROUT(E) : Effective output voltage
* 4: VROUT(T) : Specified output voltage
* 5: E-0 = Please refer to the table named OUTPUT VOLTAGE CHART
* 6: E-1 = Please refer to the table named DROPOUT VOLTAGE CHART
(*8)
(*9)
* 7: Vdif={VIN21 -VROUT1 }
* 8: VIN21 : The input voltage when VOUT1 appears as input voltage is gradually decreased.
* 9: VROUT1 : A voltage equal to 98% of the output voltage while maintaining an amply stabilized output voltage when VBIAS<3.0V at VIN2= VBIAS,
VBIAS≧3.0V at VIN2=VBIAS input to the VBIAS pin.
*10 : IBIASMAX : A supply current at the VBIAS pin providing for the output current (IVROUT) .
*11: tSS : Time that VROUT becomes more than VROUT(E)×0.9V after the EN2 pin is input 0.75V as EN2 “H” level voltage.
* The electrical characteristics above are when the other channel is in stop mode.
■OUTPUT VOLTAGE CHART
NOMINAL OUTPUT
VOLTAGE (V)
E-0
OUTPUT VOLTAGE (V)
VROUT
NOMINAL OUTPUT
VOLTAGE (V)
E-0
OUTPUT VOLTAGE (V)
VROUT
VROUT(T)
MIN.
MAX.
VROUT(T)
MIN.
MAX.
0.70
0.680
0.720
1.30
1.280
1.320
0.75
0.730
0.770
1.35
1.330
1.370
0.80
0.780
0.820
1.40
1.380
1.420
0.85
0.830
0.870
1.45
1.430
1.470
0.90
0.880
0.920
1.50
1.480
1.520
0.95
0.930
0.970
1.55
1.530
1.570
1.00
0.980
1.020
1.60
1.580
1.620
1.05
1.030
1.070
1.65
1.630
1.670
1.10
1.080
1.120
1.70
1.680
1.720
1.15
1.130
1.170
1.75
1.730
1.770
1.20
1.180
1.220
1.80
1.780
1.820
1.25
1.230
1.270
11/49
XCM519 Series
■DROPOUT VOLTAGE CHART
E-1
DROPOUT VOLTAGE1 (mV)
NOMINAL OUTPUT
VOLTAGE (V)
Vdif1
VBIAS =3.3(V)
VBIAS =3.0(V)
Vgs
(*1)
Vdif (mV)
Vgs
VBIAS =3.6(V)
Vdif (mV)
Vgs
VBIAS =4.2(V)
Vdif (mV)
Vgs
VBIAS =5.0(V)
Vdif (mV)
Vgs
Vdif (mV)
VROUT(T)
(V)
TYP.
MAX.
(V)
TYP.
MAX.
(V)
TYP.
MAX.
(V)
TYP.
MAX.
(V)
TYP.
MAX.
0.70
2.30
40
300
2.60
35
300
2.90
33
300
3.50
30
300
4.30
27
300
0.75
2.25
250
2.55
250
2.85
250
3.45
250
4.25
0.80
2.20
200
4.20
0.85
2.15
150
4.15
0.90
2.10
100
4.10
0.95
2.05
50
4.05
1.00
2.00
1.05
1.95
1.10
1.90
1.15
1.85
1.20
1.80
1.25
1.75
1.30
1.70
1.35
1.65
1.40
1.60
1.45
1.55
1.50
1.50
1.55
41
42
43
200
2.50
150
2.45
100
2.40
68
2.35
2.30
2.25
46
72
48
75
51
81
54
87
57
92
1.45
61
94
1.75
1.60
1.40
63
97
1.70
1.65
1.35
67
104
1.65
1.70
1.30
70
113
1.60
1.75
1.25
74
131
1.55
1.20
79
154
1.50
1.80
2.20
2.15
2.10
2.05
2.00
1.95
1.90
1.85
1.80
36
38
40
200
2.80
150
2.75
100
2.70
61
41
63
42
65
43
68
46
72
48
75
51
81
54
87
57
92
2.65
2.60
2.55
2.50
2.45
2.40
2.35
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
1.90
1.85
1.80
34
34
35
200
3.40
150
3.35
100
3.30
56
36
58
38
59
40
61
41
63
42
65
43
68
46
72
48
75
3.25
3.20
3.15
3.10
3.05
3.00
2.95
2.90
2.85
2.80
2.75
2.70
2.65
2.60
2.55
2.50
2.45
2.40
*1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T).
12/49
31
31
32
49
32
50
32
51
33
52
34
53
34
54
35
56
36
58
38
59
4.00
3.95
3.90
3.85
3.80
3.75
3.70
3.65
3.60
3.55
3.50
3.45
3.40
3.35
3.30
3.25
3.20
28
28
28
250
200
150
100
50
44
29
45
29
46
29
47
30
47
30
48
31
48
31
49
32
49
XCM519
Series
■DROPOUT VOLTAGE CHART (Continued)
E-2
DROPOUT VOLTAGE 2 (mV)
NOMINAL OUTPUT
VOLTAGE (V)
Vdif2
VBIAS =3.3(V)
VBIAS =3.0(V)
Vgs
(*1)
Vdif (mV)
Vgs
Vdif (mV)
VBIAS =3.6(V)
Vgs
VBIAS =4.2(V)
Vdif (mV)
Vgs
VBIAS =5.0(V)
Vdif (mV)
Vgs
Vdif (mV)
VROUT(T)
(V)
TYP
MAX
(V)
TYP
MAX
(V)
TYP
MAX
(V)
TYP
MAX
(V)
TYP
MAX
0.70
2.30
81
300
2.60
74
300
2.90
68
300
3.50
62
300
4.30
57
300
0.75
2.25
250
2.55
250
2.85
250
3.45
250
4.25
0.80
2.20
200
2.50
200
2.80
200
3.40
200
4.20
0.85
2.15
150
2.45
150
2.75
150
3.35
150
4.15
0.90
2.10
131
2.40
117
2.70
110
3.30
100
4.10
0.95
2.05
1.00
2.00
1.05
1.95
1.10
1.90
1.15
1.85
1.20
1.80
1.25
1.75
1.30
1.70
1.35
1.65
1.40
1.60
1.45
1.55
1.50
1.50
1.55
85
88
2.35
90
139
96
146
101
154
108
170
115
179
122
192
1.45
129
197
1.75
1.60
1.40
135
206
1.70
1.65
1.35
145
223
1.65
1.70
1.30
154
248
1.60
1.75
1.25
165
293
1.55
1.20
175
353
1.50
1.80
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
1.90
1.85
1.80
76
78
81
123
85
127
88
131
90
139
96
146
101
154
108
170
115
179
122
192
2.65
2.60
2.55
2.50
2.45
2.40
2.35
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
1.90
1.85
1.80
70
72
74
111
76
114
78
117
81
123
85
127
88
131
90
139
96
146
101
154
3.25
3.20
3.15
3.10
3.05
3.00
2.95
2.90
2.85
2.80
2.75
2.70
2.65
2.60
2.55
2.50
2.45
2.40
63
63
64
98
65
101
67
103
68
106
70
108
72
110
74
111
76
114
78
117
4.05
4.00
3.95
3.90
3.85
3.80
3.75
3.70
3.65
3.60
3.55
3.50
3.45
3.40
3.35
3.30
3.25
3.20
58
58
250
200
150
100
58
88
59
90
59
91
60
92
61
93
62
94
63
95
63
97
64
98
*1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T).
13/49
XCM519 Series
■DROPOUT VOLTAGE CHART (Continued)
E-3
DROPOUT VOLTAGE 3 (mV)
NOMINAL OUTPUT
VOLTAGE (V)
Vdif3
VBIAS =3.3(V)
VBIAS =3.0(V)
Vgs
(*1)
Vdif(mV)
Vgs
Vdif(mV)
VBIAS =3.6(V)
Vgs
VBIAS =4.2(V)
Vdif(mV)
Vgs
Vdif(mV)
VBIAS =5.0(V)
Vgs
Vdif(mV)
VVROUT(T)
(V)
TYP
MAX
(V)
TYP
MAX
(V)
TYP
MAX
(V)
TYP
MAX
(V)
TYP
MAX
0.70
2.30
130
300
2.60
115
300
2.90
107
300
3.50
95
300
4.30
89
300
0.75
2.25
250
2.55
250
2.85
250
3.45
250
4.25
0.80
2.20
200
2.50
0.85
2.15
0.90
2.10
0.95
2.05
1.00
2.00
1.05
1.95
1.10
1.90
1.15
1.85
1.20
1.80
1.25
1.75
1.30
1.70
1.35
1.65
1.40
1.60
1.45
1.55
1.50
1.50
1.55
134
2.45
138
204
145
216
153
227
161
239
173
264
184
289
196
313
1.45
209
323
1.75
1.60
1.40
222
344
1.70
1.65
1.35
239
388
1.65
1.70
1.30
256
442
1.60
1.75
1.25
1.80
1.20
-
-
2.40
2.35
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
1.90
1.85
1.80
1.55
1.50
117
200
119
181
130
190
134
197
138
204
145
216
153
227
161
239
173
264
184
289
196
313
2.80
2.75
2.70
2.65
2.60
2.55
2.50
2.45
2.40
2.35
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
1.90
1.85
1.80
109
200
111
167
115
170
117
176
119
181
130
190
134
197
138
204
145
216
153
227
161
239
3.40
3.35
3.30
3.25
3.20
3.15
3.10
3.05
3.00
2.95
2.90
2.85
2.80
2.75
2.70
2.65
2.60
2.55
2.50
2.45
2.40
*1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T).
14/49
96
97
200
4.20
150
4.15
148
4.10
98
151
101
153
105
155
107
159
109
163
111
167
115
170
117
176
119
181
4.05
4.00
3.95
3.90
3.85
3.80
3.75
3.70
3.65
3.60
3.55
3.50
3.45
3.40
3.35
3.30
3.25
3.20
90
90
250
200
150
132
91
134
92
137
93
139
93
140
94
141
95
142
96
145
97
148
98
151
XCM519
Series
■DROPOUT VOLTAGE CHART (Continued)
E-4
DROPOUT VOLTAGE 4(mV)
NOMINAL OUTPUT
VOLTAGE (V)
Vdif4
VBIAS =3.0(V)
Vgs
(*1)
VBIAS =3.3(V)
Vdif(mV)
Vgs
Vdif(mV)
VBIAS =3.6(V)
Vgs
VBIAS =4.2(V)
Vdif(mV)
Vgs
Vdif(mV)
VBIAS =5.0(V)
Vgs
Vdif(mV)
VVROUT(T)
(V)
TYP
MAX
(V)
TYP
MAX
(V)
TYP
MAX
(V)
TYP
MAX
(V)
TYP
MAX
0.70
2.30
189
300
2.60
157
300
2.90
146
300
3.50
129
300
4.30
116
300
0.75
2.25
164
272
150
250
4.25
2.20
277
250
0.80
195
246
4.20
0.85
2.15
0.90
2.10
201
277
170
272
153
250
0.95
2.05
1.00
2.00
206
277
189
272
157
250
1.05
1.95
1.10
1.90
218
277
195
272
164
250
1.15
1.85
1.20
1.80
1.25
1.75
1.30
1.70
1.35
1.65
1.40
1.60
1.45
1.55
1.50
1.50
1.55
1.45
1.60
1.40
1.65
1.35
1.70
1.30
1.75
1.25
1.80
1.20
231
2.55
2.50
2.45
2.40
2.35
2.30
2.25
2.20
227
2.15
334
2.10
248
376
264
418
281
460
-
-
-
-
-
-
2.05
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
1.55
1.50
201
2.85
2.80
2.75
2.70
2.65
2.60
2.55
2.50
272
2.45
277
2.40
206
296
218
315
231
334
248
376
264
418
281
460
2.35
2.30
2.25
2.20
2.15
2.10
2.05
2.00
1.95
1.90
1.85
1.80
170
3.45
3.40
3.35
3.30
3.25
3.20
3.15
3.10
250
3.05
248
3.00
189
255
195
266
201
277
206
296
218
315
231
334
2.95
2.90
2.85
2.80
2.75
2.70
2.65
2.60
2.55
2.50
2.45
2.40
131
134
246
136
246
139
246
142
4.15
4.10
4.05
4.00
3.95
3.90
246
3.85
215
3.80
146
219
150
224
153
228
157
234
164
241
170
248
3.75
3.70
3.65
3.60
3.55
3.50
3.45
3.40
3.35
3.30
3.25
3.20
118
250
231
119
231
121
231
125
231
128
231
189
128
191
129
193
129
195
131
198
134
202
136
205
*1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VROUT (T).
15/49
XCM519 Series
■TYPICAL APPLICATION CIRCUIT
L
DCOUT C
L1
1
DCOUT
2
AVSS
3
EN1
4
VIN2
5
VSS2
6
VROUT
Lx
12
PVSS 11
CIN1
EN1
CIN2
VROUT
● DC/DC BLOCK
L
:
CL2
VIN1 10
VBIAS
CBIAS
NC 8
EN2
EN2 7
fOSC=3.0MHz
1.5μH
9
VIN
● DC/DC BLOCK
fOSC=1.2MHz
(NR3015 TAIIYO YUDEN)
L
:
4.7μH
:
10μF
(NR4018 TAIIYO YUDEN)
CIN1
:
10μF
(Ceramic)
CIN1
CL1
:
10μF
(Ceramic)
CL1
:
10μF
(Ceramic)
CBIAS
:
1μF
(Ceramic)
CBIAS
:
1μF
(Ceramic)
CIN2
:
1μF
(Ceramic)
CIN2
:
1μF
(Ceramic)
(Ceramic)
CL2
:
4.7μF
CL2
:
4.7μF
(Ceramic)
(Ceramic)
■OPERATIONAL EXPLANATION
●DC/DC BLOCK
The DC/DC block of the XCM519 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM
comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel
MOSFET switching transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block
diagram above.)
The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the feedback voltage
from the DCOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier
output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator
compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and
delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is
continuously performed to ensure stable output voltage. The current feedback circuit monitors the P-channel MOS driver
transistor current for each switching operation, and modulates the error amplifier output signal to provide multiple feedback
signals. This enables a stable feedback loop even when a low ESR capacitor such as a ceramic capacitor is used ensuring
stable output voltage.
<Reference Voltage Source>
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.
<Ramp Wave Circuit>
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or
3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to
synchronize all the internal circuits.
<Error Amplifier>
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback
voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the
output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed
internally to deliver an optimized signal to the mixer.
16/49
XCM519
Series
■OPERATIONAL EXPLANATION (Continued)
<Current Limit>
The current limiter circuit of the XCM519 series monitors the current flowing through the P-channel MOS driver transistor
connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode.
① When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin
at any given timing.
② When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.
③ At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over
current state.
④ When the over current state is eliminated, the IC resumes its normal operation.
The IC waits for the over current state to end by repeating the steps ① through ③. If an over current state continues for a
few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the driver
transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be resumed by
either turning the IC off via the CE/MODE pin, or by restoring power to the VIN pin. The suspension mode does not mean a
complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in operation. The
current limit of the XCM519 series can be set at 1050mA at typical. Besides, care must be taken when laying out the PC
Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch time may
become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out so that
input capacitors are placed as close to the IC as possible.
Limit<#ms
Limit>#ms
<Short-Circuit Protection>
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the DCOUT pin. In case where
output is accidentally shorted to the Ground and when the FB point voltage decreases less than half of the reference
voltage (Vref) and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to
turn off and to latch the driver transistor. In latch state, the operation can be resumed by either turning the IC off and on via
the EN1 pin, or by restoring power supply to the VIN1 pin.
When sharp load transient happens, a voltage drop at the DCOUT pin is propagated to FB point through CFB, as a result,
short circuit protection may operate in the voltage higher than 1/2 VOUT voltage.
<UVLO Circuit>
When the VIN1 pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse
output caused by unstable operation of the internal circuitry. When the VIN1 pin voltage becomes 1.8V or higher, switching
operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup
operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage.
The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the
internal circuitry remains in operation.
17/49
XCM519 Series
■OPERATIONAL EXPLANATION (Continued)
<PFM Switch Current>
In the PFM control operation, until coil current reaches to a specified level (DLIMIT_PFM), the IC keeps the P-ch MOSFET on. In
this case, on-time (tON) that the P-ch MOSFET is kept on can be given by the following formula.
tON= L×IPFM (VIN1−VDCOUT)
→IPFM①
<PFM duty Limit>
In the PFM control operation, the PFM duty limit (DLIMT_PFM) is set to 200% (TYP.). Therefore, under the condition that the duty
increases (e.g. the condition that the step-down ratio is small), it’s possible for P-ch MOSFET to be turned off even when coil
current doesn’t reach to IPFM.
→IPFM②
Ton
FOSC
最大IPFM制限
PFM
Duty Limit
Lx
Lx
IPFM
I Lx
IPFM
I Lx
0mA
0mA
図 IPFM ①
図 IPFM ②
<CL High Speed Discharge>
XCM519xC/ XCM519xD series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the CE
pin which enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the LX pin and
the VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid
application malfunction. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output
capacitor (CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL) as
τ(τ=C x R), discharge time of the output voltage after discharge via the N channel transistor is calculated by the following
formula.
V = VDCOUT(T)×e -t /τ or t = τLn ( V / VDCOUT(T) )
V : Output voltage after discharge
VDCOUT (T): Output voltage
t: Discharge time
τ: C×R
C= Capacitance of Output capacitor (CL)
R= CL auto-discharge resistance
Output Voltage Dischage Characteristics
Rdischg = 300Ω( TYP)
100
90
CL=10uF
80
CL=20uF
70
CL=50uF
60
50
40
30
20
10
0
0
10
20
30
40
50
60
70
Discharge Time t (ms)
18/49
80
90
100
XCM519
Series
■OPERATIONAL EXPLANATION (Continued)
●Voltage Regulator BLOCK
The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The N-channel
MOSFET which is connected to the VROUT pin is then driven by the subsequent output signal. The output voltage at the VROUT pin
is controlled & stabilized by a system of negative feedback.
VBIAS pin is power supply pin for output voltage control circuit, protection circuit and CE circuit. When output current increase,
the VBIAS pin supplies output current also. VIN2 pin is connected to a driver transistor and provides output current.
In order to obtain high efficient output current through low on-resistance, please take enough Vgs (=VBIAS – VROUT (T)) of the driver
transistor. Output current triggers operation of constant current limiter and fold-back circuit, heat generation triggers operation of
thermal shutdown circuit, the driver transistor circuit is forced OFF when VBIAS or VIN2 voltage goes lower than UVLO voltage.
Further, the IC's internal circuitry can be shutdown via the EN2 pin's signal.
Figure 1: XC6601B Series
<Low ESR Capacitor>
With the XCM519 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase compensation
circuit is built-in. The output capacitor (CL2) should be connected as close to VROUT pin and VSS pin to obtain stable phase
compensation. Values required for the phase compensation are as the table below.
For a stable power input, please connect an bias capacitor (CBIAS ) of 1.0μF between the VBIAS pin and the VSS pin. Also, please
connect an input capacitor (CIN2) of 1.0μF between the VIN2 pin and the VSS pin. In order to ensure the stable phase
compensation while avoiding run-out of values, please use the capacitor (CBIAS, CIN2, CL2 ) which does not depend on bias or
temperature too much. The table below shows recommended values of CBIAS, CIN, CL.
NOMINAL
VOLTAGE
0.7V~1.8V
BIAS CAPACITOR
CBIAS
CBIAS=1.0μF
INPUT CAPACITOR
CIN2
CIN2=1.0μF
OUTPUT CAPACITOR
CL2
CL2=4.7μF
Recommended Values of CBIAS, CIN2, CL2
19/49
XCM519 Series
■OPERATIONAL EXPLANATION (Continued)
<Soft-start>
EN2 Input Voltage VEN2(V)
Inrush Current IRUSH (mA)
With the XCM519, the inrush current from VIN2 to VROUT for charging CL at start-up can be reduced and makes the VIN2 stable.
The soft-start time is optimized to 240μA (TYP.) at VROUT=1.2V internally. Soft-start time is defined as the VROUT reaches 90% of
VROUT (E) from the time when CE H threshold 0.75V is input to the CE pin.
Figure2: Example of the inrush current wave form at IC start-up.
Figure3: Timing chart at IC start-up
<CL High Speed Auto-Discharge>
XCM519 series can quickly discharge the electric charge at the output capacitor (CL) when a low signal to the EN2 pin which
enables a whole IC circuit put into OFF state, is inputted via the N-channel transistor located between the VROUT pin and the
VSS pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it could avoids
malfunction. At that time, CL discharge resistance is depended on a bias voltage. Discharge time of the output capacitor (CL)
is set by the CL auto-discharge resistance (R) and the output capacitor (CL). By setting time constant of a CL auto-discharge
resistance value [R] and an output capacitor value (CL) as τ(τ=C x R), the output voltage after discharge via the N channel
transistor is calculated by the following formulas.
V = VROUT(E)x e –t/τ, or t=τln(VROUT(E) / V)
V : Output voltage after discharge, VROUT(E) : Output voltage, t: Discharge time,
τ: CL auto-discharge resistance R×Output capacitor (CL) value C
<Current Limit, Short-Circuit Protection>
The XCM519 series’ fold-back circuit operates as an output current limiter and a short protection of the output pin. When the
load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the output
pin is shorted to the VSS level, current flows about 50mA.
<Thermal Shutdown Circuit (TSD) >
When the junction temperature of the built-in driver transistor reaches the temperature limit level (150℃ TYP.), the thermal
shutdown circuit operates and the driver transistor will be set to OFF. The IC resumes its operation when the thermal shutdown
function is released and the IC’s operation is automatically restored because the junction temperature drops to the level of the
thermal shutdown release temperature (135℃ TYP.).
<Under Voltage Lock Out (UVLO) >
When the VBIAS pin voltage drops below 2.0V (TYP.) or VIN2 pin voltage drops below 0.4V (TYP.), the output driver transistor is
forced OFF by UVLO function to prevent false output caused by unstable operation of the internal circuitry. When the VBIAS pin
voltage rise at 2.2V (TYP.) or the VIN2 pin voltage rises at 0.4V (TYP.), the UVLO function is released. The driver transistor is
turned in the ON state and start to operate voltage regulation.
20/49
XCM519
Series
■OPERATIONAL EXPLANATION (Continued)
<EN2 Pin>
The IC internal circuitry can be shutdown via the signal from the EN2 pin with the XCM519 series. In shutdown mode, output at
the VROUT pin will be pulled down to the VSS level via R1 & R2. However, as for the XCM519 series, the CL auto-discharge
resistor is connected in parallel to R1 and R2 while the power supply is applied to the VIN2 pin. Therefore, time until the VROUT
pin reaches the VSS level becomes short.
The EN2 pin of XCM519 has pull-down circuitry so that EN2 input current increase during IC operation. The EN2 pin of XCM519
does not have pull-down circuitry so that logic is not fixed when the CE pin is open. If the EN2 pin voltage is taken from VBIAS
pin or VSS pin then logic is fixed and the IC will operate normally. However, supply current may increase as a result of through
current in the IC's internal circuitry when medium voltage is input.
■NOTE ON USE
1.
When the DC/DC converter and the VR are connected as VIN1=VBIAS, VDCOUT=VIN2, the following points should be noted.
When the DC/DC load is changed drastically during a light load of the VR, a fluctuation may happen in tenths of mV. This
value can be reduced by increasing CL1 load capacitance at the DC/DC in order to reduce a voltage drop during load
transient.
立ち上がり
立下り
1ch:DC/DC VOUT:50mV/div
2ch:VR VOUT:50mV/div
1ch:DC/DC VOUT:50mV/div
2ch:VR VOUT:50mV/div
4ch:VR IOUT:200mA/div
4ch:VR IOUT:200mA/div
20μs/div
50μs/div
2.
It is recommended that both CIN1 and CBIAS are connected to each pin separately. When one capacitor is used instead of
the two, this capacitor should be placed in 10μF or more as close as the VIN1 and the PGND (AGND) pins of the DC/DC
circuit. Please ensure it by testing on the actual product design.
3. It is recommended that both CL1 and CIN2 are connected to each pin separately. When one capacitor is used instead of the
two, this capacitor should be selected in 4.7μF or bigger. Please ensure it by testing on the actual product design.
4. CL2 of the VR is recommended 4.7μA. When larger value is used in CL2, the larger value is also used in CL1 as in
proportional. Please be noted that when CL2 capacitance of the VR is getting large, an inrush current increases at VR
start-up, DC/DC short circuit protection starts to operate, as a result, the IC may happen to stop.
* VR inrush current IIN2 makes DC/DC short-circuit protection to
DCOUT(1V/div)
start, as a result, the IC may happen to stop.
IIN2(500mA/div)
The left waver forms are taken at CL1=10μ, CL2=10μF(in
VROUT(1V/div)
contrast to the recommended 4.7μF).
EN2(5V/div)
However, it improves when CL1=20μF.
50us/div
21/49
XCM519 Series
■NOTE ON USE (Continued)
5.
6.
7.
When the input-output voltage differential is small in the DC/DC converter and heavy load condition, a duty cycle is getting
large and keeps the 100% duty cycle in a several period cycles. At the time of duty cycle transition to 100% or from 100%,
noise may appear on the voltage regulator output. Please evaluate this on the actual design board when the condition is
in small input-output voltage differential and heavy load.
When the load is changed at the DC/DC converter, ringing may happen in some load conditions of DC/DC and VR at the
timing of turn on and turn off. The ringing can be reduced by increasing CIN1 capacitance or placing a resistor over 10kΩ
between VIN1 and VBIAS pins.
In order to turn off the input voltage, the EN2 pin should be turned off first. If the input voltage is turned off with keeping VR
operation, the VROUT voltage goes up instantaneously as a result of the VR bias voltage transient.
VIN(5V/div)
DCOUT(500mV/div)
VROUT(500mV/div)
200us/div
8.
When the DCOUT pin is connected to the VIN2 pin and the bias voltage (VBIAS) is taken from the other power supply, EN1
and EN2 should be started up 10μs later than VBIAS. If EN1 and EN2 is turned on within 10μs, inrush current like 1A may
happen which result in starting the DC/DC short-circuit protection.
9.
It is recommended to test this in the actual product design board.
<DC/DC BLOCK>
1. The XCM519 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large
between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching
energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic
capacitor in parallel to compensate for insufficient capacitance.
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by
external component selection, such as the coil inductance, capacitance values, and board layout of external components.
Once the design has been completed, verification with actual components should be done.
3. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple
may increase.
4. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty
cycle may continue in several periods.
5. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may
continues100% duty cycle in several periods.
6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when
dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate
the peak current according to the following formula:
Ipk = (VIN1-VDCOUT)× OnDuty /(2×L×fOSC) + IOUT
L: Coil Inductance Value
fOSC: Oscillation Frequency
22/49
XCM519
Series
■NOTE ON USE (Continued)
7. When the peak current which exceeds limit current flows within the specified time, the built-in P-ch driver transistor turns off.
During the time until it detects limit current and before the built-in transistor can be turned off, the current for limit current
flows; therefore, care must be taken when selecting the rating for the external components such as a coil.
8. Care must be taken when laying out the PC Board, in order to prevent misoperation of the current limit mode. Depending
on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid the effect
of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.
9. Use of the IC at voltages below the recommended voltage range may lead to instability.
10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.
11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the
leak current of the driver transistor.
12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow. In case that the
current limit functions while the DCOUT pin is shorted to the GND pin, when P-ch MOSFET is ON, the potential difference
for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes large. By contrast, when
N-ch MOSFET is ON, there is almost no potential difference at both ends of the coil since the DCOUT pin is shorted to the
GND pin. Consequently, the time rate of coil current becomes quite small. According to the repetition of this operation,
and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current,
which is supposed to be limited originally. Even in this case, however, after the over current state continues for several ms,
the circuit will be latched. A coil should be used within the stated absolute maximum rating in order to prevent damage to
the device.
①Current flows into P-ch MOSFET to reach the current limit (ILIM).
②The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to
OFF of P-ch MOSFET.
③Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.
④Lx oscillates very narrow pulses by the current limit for several ms.
⑤The circuit is latched, stopping its operation.
④
②
①
③
Limit >
# ms
mS
⑤
Delay
LX
ILIM
ILX
13.
14.
15.
In order to stabilize VIN1’s voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN) be
connected as close as possible to the VIN1 & VSS pins.
High step-down ratio and very light load may lead an intermittent oscillation.
During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode.
Please verify with actual parts.
<External Components>
23/49
XCM519 Series
■NOTE ON USE (Continued)
16. Please note the inductance value of the coil. The IC may enter unstable operation if the combination of ambient temperature,
setting voltage, oscillation frequency, and L value are not adequate.
In the operation range close to the maximum duty cycle, The IC may happen to enter unstable output voltage operation even
if using the L values listed below.
●The Range of L Value
<External Components>
fOSC
VOUT
3.0MHz
0.8V<VOUT<4.0V
1.0μH∼2.2μH
VOUT≦2.5V
3.3μH∼6.8μH
2.5V<VOUT
4.7μH∼6.8μH
1.2MHz
L Value
*When a coil less value of 4.7 μ H is used at
fOSC=1.2MHz or when a coil less value of 1.5μH is
used at fOSC=3.0MHz, peak coil current more easily
reach the current limit ILMI. In this case, it may
happen that the IC can not provide 600mA output
current.
<Regulator BLOCK>
1. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output
current. Please keep the resistance low between VBIAS, VIN2 and VSS wiring in particular.
2. Please wire the bias capacitor (CBIAS), input capacitor (CIN2) and the output capacitor (CL2) as close to the IC as possible.
3. Capacitance values of these capacitors (CBIAS, CIN2, CL2) are decreased by the influences of bias voltage and ambient
temperature. Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR
influence.
4. In case of the output capacitor more than CL=22μF is used, ringing of input current occurs when rising time.
5. VIN2 and EN2 should be applied at least 10μs after the bias voltage VBIAS reaches the requested voltage.
If VIN2 and EN2 are applied within 10μs, inrush current like 1A may occurs.
●Instructions of pattern layouts
1.
Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be
exceeded.
2. In order to stabilize VIN1・VIN2・VBIAS・DCOUT・VROUT voltage level, we recommend that a by-pass capacitor (CIN1・CIN2・
CBIAS・CL1・CL2) be connected as close as possible to the VIN1・VIN2・VBIAS・DCOUT・VROUT and GND・VSS pins.
3. Please mount each external component as close to the IC as possible.
4.
Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit
impedance.
5. VSS(AGND・PGND・VSS)ground wiring is recommended to get large area. The IC may goes into unstable operation as a
result of VSS voltage level fluctuation during the switching.
6. This series’ internal driver transistors bring on heat because of the output current (IOUT) and ON resistance of driver
transistors.
DCOUT
Lx
L
CL1
EN1
CL2
VSS
VROUT
Inductor
EN2
Front
24/49
VIN1
CIN1
IC
CIN3
CIN2
VIN2
Ceramic Capacitor
VBIAS
AGND
PGND
L
Back
XCM519
Series
■TEST CIRCUITS
< Circuit No.1 >
< Circuit No.2 >
Wave Form Measure Point
A
Lx
VIN1
A
L
DCOUT
EN1
CIN
CL
V
VIN1
EN1
Lx
DCOUT
1uF
AGND
PGND
AGND
PGND
VBIAS
VROUT
VBIAS
VROUT
VIN2
VIN2
EN2
EN2
※ External Components
L
: 1.5μH(NR3015) 3.0MHz
4.7μH(NR4018) 1.2MHz
CIN : 4.7μF(ceramic)
CL :10μF(ceramic)
< Circuit No.3 >
< Circuit No.4 >
Wave Form Measure Point
VIN1
Lx
EN1
VIN1
DCOUT
Rpulldown
200Ω
1μF
EN1
Lx
DCOUT
AGND
PGND
AGND
PGND
VBIAS
VROUT
VBIAS
VROUT
VIN2
VIN2
EN2
EN2
< Circuit No.5 >
V
1μF
< Circuit No.6 >
ILeakH
VIN1
Lx
ICEH
1μF
100mA
A
EN1
A
Wave Form Measure Point
VIN1
Lx
ILeakL
DCOUT
EN1
DCOUT
V
1μF
ILIM
ICEL
AGND
PGND
AGND
PGND
VBIAS
VROUT
VBIAS
VROUT
VIN2
VIN2
EN2
EN2
< Circuit No.7 >
< Circuit No.8 >
ILx
Wave Form Measure Point
VIN1
Lx
VIN1
Lx
Ilat
EN1
DCOUT
1uF
EN1
Rpulldown
1Ω
A
DCOUT
1uF
AGND
PGND
AGND
PGND
VBIAS
VROUT
VBIAS
VROUT
VIN2
VIN2
EN2
EN2
< Circuit No.9 >
A
VIN1
EN1
Lx
DCOUT
CIN
AGND
PGND
VBIAS
VROUT
VIN2
EN2
25/49
XCM519 Series
■TEST CIRCUITS (Continued)
< Circuit No.10 >
VIN1
Lx
EN1
A
A
V
V
AGND
PGND
VBIAS
VROUT
CL2
EN2
1.0uF
CBIAS
SW2
V
1.0uF
< Circuit No.11 >
VIN1
Lx
EN1
SW1
DCOUT
AGND
PGND
VBIAS
VROUT
A
VIN2
SW2
V
CL2
EN2
CIN2
1.0uF
CBIAS
V
SW4
VIN1
Lx
EN1
DCOUT
AGND
PGND
VBIAS
VROUT
A
CL2
EN2
VSS
V
Waveform
measure
VIN2
Waveform
measure
CIN2
RL
1.0uF
< Circuit No.12 >
V
4.7uF
VSS
V
SW3
1.0uF
CBIAS
1.0uF
* For the timing chart, please refer to <Soft-start> on page 20.
26/49
4.7uF
VSS
V
CIN2
V
A
VIN2
A
SW1
DCOUT
4.7uF
V
RL
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS
●1ch:DC/DC Block
(1) Efficiency vs. Output Current
DCOUT=1.8V,1.2MHz
DCOUT=1.8V,3.0MHz
L=4.7μH(NR4018), CIN1=10μF, CL1=10μF
L=1.5μH(NR3015), CIN1=10μF, CL1=10μF
PWM/PFM Automatic Sw itching Control
100
100
80
80
VIN= 4.2V
70
60
Efficency:EFFI(%)
Efficency:EFFI(%)
PWM/PFM Automatic Sw itching Control
90
90
PWM Control
VIN= 4.2V
3.6V
3.6V
50
40
30
70
VIN= 4.2V
60
3.6V
50
PWM Control
VIN= 4.2V
3.6V
40
30
20
20
10
10
0
0
0.1
1
10
100
0.1
1000
1
(2) Output Voltage vs. Output Current
DCOUT=1.8V,1.2MHz
1000
L=1.5μH(NR3015), CIN1=10μF, CL1=10μF
2.1
2.1
2.0
Output Voltage:Vout(V)
2.0
Output Voltage:Vout(V)
100
DCOUT=1.8V,3.0MHz
L=4.7μH(NR4018), CIN1=10μF, CL1=10μF
PWM/PFM Automatic Sw itching Control
VIN=4.2V,3.6V
1.9
1.8
1.7
PWM Control
1.6
PWM/PFM Automatic Sw itching Control
VIN=4.2V,3.6V
1.9
1.8
1.7
PWM Control
1.6
1.5
1.5
0.1
1
10
100
1000
0.1
1
Output Current:IOUT(mA)
80
80
Ripple Voltage:Vr(mV)
100
PWM/PFM Automatic
Sw itching Control
VIN=4.2V
3.6V
PWM Control
VIN=4.2V,3.6V
1000
L=1.5μH(NR3015), CIN1=10μF, CL1=10μF
100
40
100
DCOUT=1.8V,3.0MHz
L=4.7μH(NR4018), CIN1=10μF, CL1=10μF
60
10
Output Current:IOUT(mA)
(3) Ripple Voltage vs. Output Current
DCOUT=1.8V,1.2MHz
Ripple Voltage:Vr(mV)
10
Output Current:IOUT(mA)
Output Current:IOUT(mA)
20
60
PWM/PFM Automatic
Sw itching Control
VIN=4.2V
3.6V
PWM Control
VIN=4.2V,3.6V
40
20
0
0
0.1
1
10
100
Output Current:IOUT(mA)
1000
0.1
1
10
100
1000
Output Current:IOUT(mA)
27/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Oscillation Frequency vs. Ambient Temperature
DCOUT=1.8V,1.2MHz
DCOUT=1.8V,3.0MHz
L=4.7μH(NR4018), CIN1=10μF, CL1=10μF
L=1.5μH(NR3015), CIN1=10μF, CL1=10μF
3.5
Oscillation Frequency : FOSC(MHz)
Oscillation Frequency : FOSC(MHz)
1.5
1.4
1.3
VIN=3.6V
1.2
1.1
1.0
0.9
0.8
3.4
3.3
3.2
VIN=3.6V
3.1
3.0
2.9
2.8
2.7
2.6
2.5
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature: Ta (℃)
40
40
35
35
VIN=6.0V
25
VIN=4.0V
20
15
10
5
0
-50
-25
0
25
50
75
100
VIN=6.0V
30
25
20
15
10
0
-50
100
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
(7) UVLO Voltage vs. Ambient Temperature
DCOUT=1.8V,3.0MHz
2.1
1.8
2.0
1.5
UVLO Voltage : UVLO (V)
Output Voltage : VOUT (V)
75
5
(6) Output Voltage vs. Ambient Temperature
DCOUT=1.8V,3.0MHz
VIN=3.6V
1.8
1.7
1.6
1.5
EN=VIN
EN=VIN
CE=VIN
1.2
0.9
0.6
0.3
0.0
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
28/49
50
VIN=4.0V
Ambient Temperature: Ta ( ℃)
1.9
25
DCOUT=1.8V,3.0MHz
Supply Current : IDD (μA)
Supply Current : IDD (μA)
(5) Supply Current vs. Ambient Temperature
DCOUT=1.8V,1.2MHz
30
0
Ambient Temperature: Ta (℃)
75
100
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
75
100
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(9)EN" L" Voltage vs. Ambient Temperature
DCOUT=1.8V,3.0MHz
1.0
1.0
0.9
0.9
0.8
0.8
0.7
CE "L" Voltage : VCEL (V)
CE "H" Voltage : VCEH (V)
(8) EN "H" Voltage vs. Ambient Temperature
DCOUT=1.8V,3.0MHz
VIN=5.0V
0.6
0.5
0.4
0.3
VIN=3.6V
0.2
0.1
VIN=5.0V
0.7
0.6
0.5
0.4
VIN=3.6V
0.3
0.2
0.1
0.0
0.0
-50
-25
0
25
50
75
100
-50
-25
Ambient Temperature: Ta ( ℃)
0
25
50
75
100
Ambient Temperature: Ta (℃)
(10) Soft Start Time vs. Ambient Temperature
DCOUT=1.8V,3.0MHz
DCOUT=1.8V,3.0MHz
L=1.5μH(NR3015), CIN1=10μF, CL1=10μF
5
5
4
4
Soft Start Time : TSS (ms)
Soft Start Time : TSS (ms)
L=4.7μH(NR4018), CIN1=10μF, CL1=10μF
3
2
VIN=3.6V
1
0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
3
2
VIN=3.6V
1
0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
(11) "Pch / Nch" Driver on Resistance vs. Input Voltage
Lx SW ON Resistance:RLxH,RLxL (Ω)
DCOUT=1.8V,3.0MHz
1.0
0.9
0.8
Nch on Resistance
0.7
0.6
0.5
0.4
0.3
Pch on Resistance
0.2
0.1
0.0
0
1
2
3
4
5
6
Input Voltage : VIN (V)
29/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12) XCM519xC/ XCM519xD Rise Wave Form
DCOUT=1.2V,1.2MHz
DCOUT=3.3V,3.0MHz
L=4.7μH (NR4018), CIN1=10μF, CL1=10μF
L=1.5μH (NR3015), CIN1=10μF, CL1=10μF
VIN1=5.0V
VIN1=5.0V
IOUT=1.0mA
IOUT=1.0mA
VOUT:1.0V/div
VOUT:0.5V/div
EN:0.0V⇒1.0V
EN:0.0V⇒1.0V
100μs/div
100μs/div
(13) XCM519xC/ XCM519xD Soft-Start Time vs. Ambient Temperature
DCOUT=1.2V,1.2MHz
500
500
400
400
300
200
VIN=5.0V
IOUT=1.0mA
100
DCOUT=3.3V,3.0MHz
L=1.5μH(NR3015), CIN1=10μF, CL1=10μF
Soft Start Time :TSS (μs)
Soft Start Time :TSS (μs)
L=4.7μH(NR4018), CIN1=10μF, CL1=10μF
300
200
VIN=5.0V
IOUT=1.0mA
100
0
0
-50
-25
0
25
50
75
100
-50
-25
0
(14) XCM519xC/ XCM519xD CL Discharge Resistance vs. Ambient Temperature
DCOUT=3.3V,3.0MHz
CL Discharge Resistance: (Ω)
600
VIN=6.0V
VIN=4.0V
400
300
200
100
-50
-25
0
25
50
Ambient Temperature: Ta (℃)
30/49
50
Ambient Temperature: Ta(℃)
Ambient Temperature: Ta(℃)
500
25
75
100
75
100
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response
DCOUT=1.2V,1.2MHz(PWM/PFM Automatic Switching Control)
L=4.7μH(NR4018), CIN1=10μF(ceramic), CL1=10μF(ceramic), Topr=25℃
VIN1=3.6V, EN1=VIN1
IOUT=1mA → 100mA
IOUT =1mA → 300mA
1ch : IOUT
1ch : IOUT
2ch
2ch
VOUT : 50mV/div
VOUT : 50mV/div
50μs/div
IOUT=100mA → 1mA
50μs/div
IOUT=300mA → 1mA
1ch : IOUT
1ch : IOUT
2ch
2ch
VOUT: 50mV/div
VOUT: 50mV/div
200μs/div
200μs/div
31/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued)
DCOUT=1.2V,1.2MHz(PWM Control)
L=4.7μH(NR4018), CIN1=10μF(ceramic), CL1=10μF(ceramic), Topr=25℃
VIN1=3.6V, EN1=VIN1
IOUT=1mA → 100mA
IOUT=1mA → 300mA
1ch: IOUT
1ch: IOUT
2ch
2ch
VOUT : 50mV/div
VOUT: 50mV/div
50μs/div
50μs/div
IOUT=100mA → 1mA
IOUT=300mA → 1mA
1ch: IOUT
1ch: IOUT
2ch
2ch
VOUT : 50mV/div
VOUT : 50mV/div
200μs/div
32/49
200μs/div
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued)
DCOUTT=1.8V,3.0MHz(PWM/PFM Automatic Switching Control)
L=1.5μH(NR3015), CIN1=10μF(ceramic), CL1=10μF(ceramic),Topr=25℃
VIN1=3.6V, EN=VIN1
IOUT=1mA → 100mA
IOUT=1mA → 300mA
1ch : IOUT
1ch : IOUT
2ch
2ch
VOUT : 50mV/div
VOUT : 50mV/div
50μs/div
IOUT=100mA → 1mA
50μs/div
IOUT=300mA → 1mA
1ch : IOUT
1ch : IOUT
2ch
2ch
VOUT : 50mV/div
VOUT : 50mV/div
200μs/div
200μs/div
33/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued)
DCOUT=1.8V,3.0MHz(PWM Control)
L=1.5μH(NR3015), CIN1=10μF(ceramic), CL1=10μF(ceramic), Topr=25℃
VIN1=3.6V, EN1=VIN1
IOUT=1mA → 100mA
IOUT=1mA → 300mA
1ch : IOUT
1ch : IOUT
2ch
2ch
VOUT : 50mV/div
VOUT : 50mV/div
50μs/div
IOUT=100mA → 1mA
50μs/div
IOUT=300mA → 1mA
1ch : IOUT
1ch : IOUT
2ch
2ch
VOUT : 50mV/div
VOUT : 50mV/div
200μs/div
34/49
200μs/div
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●2ch:Regulator Block
(1) Output Voltage vs. Output Current
VROUT=0.7V
VROUT=0.7V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, VIN2 =1.0V
VBIAS=3.6V, Ta=25℃
0.8
Output Voltage: VROUT(V)
Output Voltage: VROUT(V)
0.8
0.6
Ta=-40℃
Ta=25℃
Ta=85℃
0.4
0.2
0.0
0.6
VIN2=1.0V
VIN2=1.2V
VIN2=1.5V
0.4
0.2
0.0
0
100
200
300
400
500
600
700
0
100
Output Current: IOUT(mA)
VROUT=1.2V
200 300 400 500 600
Output Current: IOUT(mA)
VROUT=1.2V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, VIN2 =1.5V
VBIAS=3.6V, Ta=25℃
1.4
1.2
Output Voltage: VROUT(V)
Output Voltage: VROUT(V)
1.4
1.0
Ta=-40℃
0.8
Ta=25℃
Ta=85℃
0.6
0.4
0.2
1.2
1.0
VIN2=1.3V
VIN2=1.5V
0.8
VIN2=1.8V
0.6
0.4
0.2
0.0
0.0
0
100
200
300
400
500
600
0
700
100
200
300
VROUT=1.8V
VROUT=1.8V
Ta=85℃
100
200 300 400 500 600
Output Current: IOUT(mA)
700
600
700
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, Ta=25℃
Output Voltage: VROUT(V)
Ta=-40℃
Ta=25℃
0
500
Output Current: IOUT(mA)
VBIAS=3.6V, VIN2 =2.1V
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
400
Output Current: IOUT(mA)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
Output Voltage: VROUT(V)
700
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
VIN2=1.9V
VIN2=2.1V
VIN2=2.3V
0
100
200 300 400 500 600
Output Current: IOUT(mA)
700
35/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2) Output Voltage vs. Bias Voltage
VROUT=0.7V
VROUT=0.7V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VIN2 =1.0V, Ta=25℃
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VIN2 =1.0V, Ta=25℃
0.9
IOUT=0mA
Output Voltage: VROUT(V)
Output Voltage: VROUT(V)
0.9
IOUT=30mA
0.8
IOUT=100mA
0.7
0.6
IOUT=0mA
IOUT=30mA
0.8
IOUT=100mA
0.7
0.6
0.5
0.5
1.7
1.9
2.1
2.3
2.5
2.5
3
3.5
4
VROUT=1.2V
6
VROUT=1.2V
VIN2 =1.5V, Ta=25℃
1.4
Output Voltage: VROUT(V)
1.4
Output Voltage: VROUT(V)
5.5
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VIN2 =1.5V, Ta=25℃
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
IOUT=0mA
IOUT=30mA
1.3
IOUT=100mA
1.2
1.1
1.0
IOUT=0mA
IOUT=30mA
1.3
IOUT=100mA
1.2
1.1
1.0
1.7
1.9
2.1
2.3
2.5
2.5
3
Bias Voltage: VBIAS(V)
3.5
4
4.5
5
5.5
6
Bias Voltage: VBIAS(V)
VROUT=1.8V
VROUT=1.8V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VIN2 =2.1V, Ta=25℃
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VIN2 =2.1V, Ta=25℃
2.0
2.0
IOUT=0mA
Output Voltage: VROUT(V)
Output Voltage: VROUT(V)
5
Bias Voltage: VBIAS(V)
Bias Voltage: VBIAS(V)
IOUT=30mA
1.9
IOUT=100mA
1.8
1.7
1.6
IOUT=0mA
IOUT=30mA
1.9
IOUT=100mA
1.8
1.7
1.6
1.8
2
2.2
2.4
2.6
Bias Voltage: VBIAS(V)
36/49
4.5
2.8
3
3
3.5
4
4.5
5
Bias Voltage: VBIAS(V)
5.5
6
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3) Output Voltage vs. Input Voltage
VROUT=0.7V
VROUT=0.7V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, Ta=25℃
VBIAS=3.6V, Ta=25℃
0.9
IOUT=0mA
Output Voltage: VROUT(V)
Output Voltage: VROUT(V)
0.9
IOUT=30mA
0.8
IOUT=100mA
0.7
0.6
IOUT=0mA
IOUT=30mA
0.8
IOUT=100mA
0.7
0.6
0.5
0.5
0.5
0.6
0.7
0.8
1
0.9
1.2 1.4 1.6 1.8
VROUT=1.2V
3
VROUT=1.2V
VBIAS=3.6V, Ta=25℃
1.4
Output Voltage: VROUT(V)
1.4
Output Voltage: VROUT(V)
2.2 2.4 2.6 2.8
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, Ta=25℃
IOUT=0mA
IOUT=30mA
1.3
IOUT=100mA
1.2
1.1
IOUT=0mA
IOUT=30mA
1.3
IOUT=100mA
1.2
1.1
1.0
1.0
1
1.1
1.2
1.3
1.4
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
Bias Voltage: VBIAS(V)
Bias Voltage: VBIAS(V)
VROUT=1.8V
VROUT=1.8V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, Ta=25℃
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, Ta=25℃
2.0
2.0
IOUT=0mA
Output Voltage: VROUT(V)
Output Voltage: VROUT(V)
2
Bias Voltage: VBIAS(V)
Bias Voltage: VBIAS(V)
IOUT=30mA
1.9
IOUT=100mA
1.8
1.7
1.6
IOUT=0mA
IOUT=30mA
1.9
IOUT=100mA
1.8
1.7
1.6
1.6
1.7
1.8
1.9
Bias Voltage: VBIAS(V)
2
2
2.2
2.4
2.6
2.8
3
Bias Voltage: VBIAS(V)
37/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4)Dropout Voltage vs. Output Current
(*1)
VROUT=1.2V
VROUT=1.2V (Vgs
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
Ta=25℃
VBIAS=3.6V
400
Dropout Voltage: Vdif(mV)
Dropout Voltage: Vdif(mV)
300
VBIAS=3.0V
VBIAS=3.3V
250
200
VBIAS=3.6V
VBIAS=4.2V
150
VBIAS=5.0V
100
50
Ta=-40℃
300
Ta=25℃
Ta=85℃
200
100
0
0
0
100
200
300
Output Current: IOUT(mA)
0
400
VROUT=1.2V (Vgs(*1)=1.8V)
100
200
300
Output Current: IOUT(mA)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=4.2V
400
Dropout Voltage: Vdif(mV)
400
Ta=-40℃
300
Ta=25℃
Ta=85℃
200
100
0
Ta=-40℃
300
Ta=25℃
Ta=85℃
200
100
0
0
100
200
300
Output Current: IOUT(mA)
400
0
VROUT=1.2V (Vgs(*1)=2.1V)
100
200
300
Output Current: IOUT(mA)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=5.0V
VBIAS=3.3V
400
Dropout Voltage: Vdif(mV)
400
Dropout Voltage: Vdif(mV)
400
VROUT=1.2V (Vgs(*1)=3.8V)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
Ta=-40℃
Ta=25℃
300
Ta=85℃
200
100
0
Ta=-40℃
300
Ta=25℃
Ta=85℃
200
100
0
0
100
200
300
Output Current: IOUT(mA)
400
0
100
200
300
Output Current: IOUT(mA)
*1): Vgs is a Gate –Source voltage of the driver transistor that is defined as the value of VBIAS - VOUT(T).
A value of the dropout voltage is determined by the value of the Vgs.
38/49
400
VROUT=1.2V (Vgs(*1)=3.0V)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.0V
Dropout Voltage: Vdif(mV)
=2.4V)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
400
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(6) Supply Input Current vs. Input Voltage
(5) Supply Bias Current vs. Bias Voltage
VROUT=0.7V
VROUT=0.7V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V
Supply Input Current: IIN(μA)
Supply Bias Current: IBIAS(μA)
VIN2 =1.0V
40
30
20
Ta=-40℃
10
Ta=25℃
Ta=85℃
0
2.0
Ta=-40℃
Ta=25℃
1.5
Ta=85℃
1.0
0.5
0.0
0
1
2
3
4
5
6
0
0.5
Bias Voltage: VBIAS(V)
1
VROUT=1.2V
VIN2 =1.5V
VBIAS=3.6V
Supply Input Current: IIN(μA)
Supply Bias Current: IBIAS(μA)
3
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
30
20
Ta=-40℃
Ta=25℃
10
Ta=85℃
0
2
3
4
5
3.0
Ta=-40℃
2.5
Ta=25℃
Ta=85℃
2.0
1.5
1.0
0.5
0.0
0
6
0.5
Bias Voltage: VBIAS(V)
1
1.5
2
2.5
3
Input Voltage: VIN(V)
VROUT=1.8V
VROUT=1.8V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VIN2 =2.1V
40
30
20
Ta=-40℃
10
4.0
Supply Input Current: IIN(μA)
Supply Bias Current: IBIAS(μA)
2.5
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
40
1
2
Input Voltage: VIN(V)
VROUT=1.2V
0
1.5
Ta=25℃
Ta=85℃
0
3.5
3.0
2.5
2.0
1.5
Ta=-40℃
1.0
Ta=25℃
0.5
Ta=85℃
0.0
0
1
2
3
4
Bias Voltage: VBIAS(V)
5
6
0
0.5
1
1.5
2
2.5
3
Input Voltage: VIN(V)
39/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(7) Output Voltage vs. Ambient Temperature
(8) Supply Bias Current vs. Ambient Temperature
VROUT=0.7V
VROUT=0.7V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, VIN2 =1.0V
VBIAS=3.6V, VIN2 =1.0V
Supply Bias Current: IBIAS(μA)
Output Voltage: VROUT(V)
0.73
0.72
0.71
0.70
0.69
IOUT=1mA
IOUT=30mA
0.68
IOUT=100mA
0.67
-50
-25
0
25
50
75
40
35
30
25
20
15
-50
100
-25
0
Supply Bias Current: IBIAS(μA)
Output Voltage: VROUT(V)
1.23
1.22
1.21
1.20
1.19
IOUT=1mA
IOUT=30mA
IOUT=100mA
1.18
1.17
25
50
75
40
35
30
25
20
15
-50
100
-25
0
VROUT=1.8V
1.81
1.80
1.79
IOUT=1mA
IOUT=30mA
IOUT=100mA
1.77
25
50
75
Ambient Temperature: Ta(℃)
40/49
100
VBIAS=3.6V, VIN2 =2.1V
Supply Bias Current: IBIAS(μA)
Output Voltage: VROUT(V)
1.82
0
75
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
1.83
-25
50
VROUT=1.8V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, VIN2 =2.1V
1.78
25
Ambient Temperature: Ta(℃)
Ambient Temperature: Ta(℃)
-50
100
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, VIN2 =1.5V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, VIN2 =1.5V
0
75
VROUT=1.2V
VROUT=1.2V
-25
50
Ambient Temperature: Ta(℃)
Ambient Temperature: Ta(℃)
-50
25
100
40
35
30
25
20
15
-50
-25
0
25
50
75
Ambient Temperature: Ta(℃)
100
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(9) Supply Input Current vs. Ambient Temperature
VROUT=0.7V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
Supply Input Current: IIN(μA)
VBIAS=3.6V, VIN2 =1.0V
2.0
1.5
1.0
0.5
0.0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta(℃)
VROUT=1.2V
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
Supply Input Current: IIN(μA)
VBIAS=3.6V, VIN2 =1.5V
2.0
1.5
1.0
0.5
0.0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta(℃)
VROUT=1.8V
Supply Input Current: IIN(μA)
CIN2 =CBIAS=1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6V, VIN2 =2.1V
2.0
1.5
1.0
0.5
0.0
-50
-25
0
25
50
75
100
Ambient Temperature: Ta(℃)
41/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Bias Transient Response
VROUT =0.7V
VROUT =0.7V
C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic)
1.1
0.9
3
0.8
2
0.7
1
Output Voltage
0.6
0.5
1.0
4
0.9
3
0.8
2
0.7
1
0
0.6
-1
0.5
Time (40usec/div)
VROUT =1.2V
1.6
1.3
2
1.2
1
Output Voltage
1.0
1.5
4
1.4
3
1.3
2
1.2
1
0
1.1
-1
1.0
Time (40usec/div)
VROUT =1.8V
-1
VROUT =1.8V
C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic)
VIN2=2.1V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
5
2.1
VIN2=2.1V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
5
4
2.0
3
1.9
2
1.8
1
Output Voltage
1.6
Time (40usec/div)
Output Voltage VR OUT(V)
Bias Voltage
2.1
Bias Voltage V BIAS(V)
Bias Voltage
Output Voltage VR OUT(V)
0
Time (40usec/div)
C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic)
42/49
Output Voltage
Bias Voltage V BIAS(V)
3
Output Voltage VR OUT(V)
1.4
1.7
VIN2=1.5V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
5
Bias Voltage
4
Bias Voltage V BIAS(V)
Output Voltage VR OUT(V)
Bias Voltage
1.5
2.2
-1
C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic)
C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic)
VIN2=1.5V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
5
1.1
0
Time (40usec/div)
VROUT =1.2V
1.6
Output Voltage
Bias Voltage V BIAS(V)
4
Output Voltage VR OUT(V)
Bias Voltage
1.0
Bias Voltage V BIAS(V)
Output Voltage VR OUT(V)
Bias Voltage
VIN2=1.0V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
5
2.0
4
1.9
3
1.8
2
1.7
1
0
1.6
-1
1.5
Output Voltage
0
-1
Time (40usec/div)
Bias Voltage V BIAS(V)
1.1
C IN2=1.0μF(ceramic), C BIAS=0μF(ceramic), CL2=4.7μF(ceramic)
VIN2=1.0V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
5
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(11) Input Transient Response
VROUT =0.7V
VROUT =0.7V
CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
1.1
1.0
2
1.0
2
0.9
1
0.9
1
0.8
0
0.8
0
0.7
-1
0.7
-1
Output Voltage
Output Voltage
0.5
-2
0.6
-3
0.5
Time
Time(20usec/div)
(20μs / div)
VROUT =1.2V
CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
4
1.6
1.4
2
1.3
1
1.2
0
Output Voltage VR OUT(V)
3
1.5
3
1.4
2
1.3
1
1.2
0
Output Voltage
1.0
-1
1.1
-2
1.0
Time
Time(20usec/div)
(20μs / div)
VROUT =1.8V
2.2
3
1.9
2
1.8
1
Time (20μs / div)
Time (20usec/div)
Output Voltage VR OUT(V)
2.0
Input Voltage V IN (V)
4
1.6
-2
5
Input Voltage
2.1
Output Voltage
-1
CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
5
Input Voltage
1.7
Output Voltage
Time (20
(20usec/div)
Time
μs / div)
VROUT =1.8V
2.2
CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
4
Input Voltage
1.5
Input Voltage V IN2(V)
Output Voltage VR OUT(V)
Input Voltage
1.1
-3
Time (20
(20usec/div)
Time
μs / div)
VROUT =1.2V
1.6
-2
Input Voltage V IN2(V)
0.6
Input Voltage V IN2(V)
Output Voltage VR OUT(V)
Input Voltage
Input Voltage V IN2(V)
Output Voltage VR OUT(V)
Input Voltage
Output Voltage VR OUT(V)
VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
3
3
2.1
4
2.0
3
1.9
2
1.8
1
0
1.7
-1
1.6
Output Voltage
Time (20μs / div)
Input Voltage V IN2(V)
1.1
CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
0
-1
Time (20usec/div)
43/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12) Load Transient Response
VROUT =0.7V
CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, VIN2=1.0V, tr=tf=5.0μsec, Ta=25℃
0.9
500
0.5
300
0.3
200
Output Current
100mA
0.7
400
0.5
300
200mA
0.3
100
10mA
10mA
-0.1
-0.1
0
TimeTime
(45μ
s / div)
(45usec/div)
VROUT =1.2V
VROUT =1.2V
1.4
CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, VIN2=1.5V, tr=tf=5.0μsec, Ta=25℃
1.4
500
500
Output Voltage
1.0
300
0.8
200
Output Current
100mA
1.2
400
1.0
300
200mA
0.8
Time (45μs / div)
0.6
0
0.4
100
10mA
VROUT =1.8V
VROUT =1.8V
CIN2=CBIAS=1.0μF(ceramic), C L2=4.7μF(ceramic)
VBIAS=3.6V, VIN2=2.1V, tr=tf=5.0μsec, Ta=25℃
2.0
CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, VIN2=2.1V, tr=tf=5.0μsec, Ta=25℃
500
2.0
500
1.8
400
1.6
300
1.4
200
Output Current
100mA
Output Voltage VR OUT(V)
Output Voltage
Output Current IOUT(mA)
Output Voltage VR OUT(V)
Output Voltage
1.8
400
1.6
300
200mA
1.4
Time (45usec/div)
44/49
200
Output Current
100
1.2
0
1.0
100
10mA
1.0
0
Time (45μs / div)
Time (45usec/div)
Time (45usec/div)
1.2
200
Output Current
100
10mA
0.4
Output Current IOUT(mA)
400
Output Current IOUT(mA)
1.2
Output Voltage VR OUT(V)
Output Voltage
Output Voltage VR OUT(V)
0
Time (45
μs(45usec/div)
/ div)
Time
CIN2=CBIAS=1.0μF(ceramic), C L2=4.7μF(ceramic)
VBIAS=3.6V, VIN2=1.5V, tr=tf=5.0μsec, Ta=25℃
0.6
200
Output Current
0.1
100
Output Current IOUT(mA)
400
Output Voltage VR OUT(V)
0.7
0.1
500
Output Voltage
Output Current IOUT(mA)
Output Voltage VR OUT(V)
Output Voltage
Output Current IOUT(mA)
0.9
VROUT =0.7V
CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, VIN2=1.0V, tr=tf=5.0μsec, Ta=25℃
10mA
0
Time (45usec/div)
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13) CE Rising Response Time
VROUT =0.7V
3
2.5
1.5
1
Output Voltage
0.5
0.0
0
Output Voltage VR OUT(V)
2
EN2 Input Voltage V EN2(V)
2.0
2
1.5
1
1.0
-1
0.5
-2
0.0
Time (100usec/div)
3.0
VROUT =1.2V
VROUT =1.2V
CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VIN2=1.5V, VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
4
3.0
3
2
Output Voltage
1
1.0
0
0.5
0.0
2.0
1
0
-1
0.5
-1
-2
0.0
-2
Time (100usec/div)
Time (100μs / div)
VROUT =1.8V
VROUT =1.8V
CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VIN2=2.1V, VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
4
2.5
3.0
3
2.5
2
1.5
1
1.0
0
Output Voltage
Output Voltage VR OUT(V)
2.0
EN2 Input Voltage V CE(V)
EN2 Input Voltage
Time
μs / div)
Time (100
(100usec/div)
Output Voltage
1.0
Time (100μs / div)
0.0
2
1.5
Time (100usec/div)
0.5
3
EN2 Input Voltage
Output Voltage VR OUT(V)
2.0
CIN2=C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VIN2=1.5V, VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
4
2.5
EN2 Input Voltage V EN2(V)
Output Voltage VR OUT(V)
-2
Time (100μs / div)
EN2 Input Voltage
Output Voltage VR OUT(V)
-1
Time (100μs / div)
1.5
0
Time (100usec/div)
2.5
3.0
Output Voltage
EN2 Input Voltage V EN2(V)
Output Voltage VR OUT(V)
2.0
1.0
3
EN2 Input Voltage
EN2 Input Voltage
EN2 Input Voltage V EN2(V)
2.5
3.0
CIN2=C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VIN2=1.0V, VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
4
CIN2=C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VIN2=2.1V, VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
4
EN2 Input Voltage
3
2.0
2
1.5
1
1.0
0
-1
0.5
-2
0.0
Output Voltage
EN2 Input Voltage V EN2 (V)
3.0
VROUT =0.7V
CIN2=CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VIN2=1.0V, VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
4
-1
-2
Time
(100
μs / div)
Time
(100usec/div)
45/49
XCM519 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(14) VIN Rising Response Time
2.0
2.5
2
2.0
Input Voltage
1
Output Voltage
0.5
0.0
0
1.5
0.5
-2
0.0
Time (100usec/div)
Output Voltage
VROUT =1.2V
-1
-2
VROUT =1.2V
CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
3
VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
3
2.5
Input Voltage
1.5
1
Output Voltage
1.0
0
0.5
0.0
1.5
0
-1
0.5
-1
-2
0.0
VR
2.5
2
1.5
1
1.0
0
46/49
Output Voltage VR OUT(V)
2.0
Output Voltage
=1.8V
OUT
CIN2 =0.1μF(ceramic),
C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
3
Input Voltage
Input Voltage V IN (V)
Output Voltage VR OUT(V)
Input Voltage
Time (100usec/div)
-2
Time (100usec/div)
=1.8V
0.0
1
1.0
OUT
CIN2=0.1μF(ceramic),
CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
3
0.5
2
Output Voltage
Time (100usec/div)
2.5
Input Voltage
2.0
Output Voltage VR OUT(V)
2
Input Voltage V IN (V)
Output Voltage VR OUT(V)
2.0
VR
0
Time (100usec/div)
CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
2.5
1
1.0
-1
2
Input Voltage V IN (V)
1.0
Output Voltage VR OUT(V)
1.5
Input Voltage V IN (V)
Output Voltage VR OUT(V)
Input Voltage
2.0
2
1.5
1
1.0
0
-1
0.5
-2
0.0
Output Voltage
-1
-2
Time (100usec/div)
Input Voltage V IN (V)
2.5
VROUT =0.7V
CIN2 =0.1μF(ceramic), C BIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=200mA, tr=tf=5.0μsec, Ta=25℃
3
Input Voltage V IN (V)
VROUT =0.7V
CIN2=0.1μF(ceramic), CBIAS=1.0μF(ceramic), CL2=4.7μF(ceramic)
VBIAS=3.6V, IOUT=30mA, tr=tf=5.0μsec, Ta=25℃
3
XCM519
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(16) Input Voltage Ripple Rejection Rate
(15) Bias Voltage Ripple Rejection Rate
VROUT=0.7V
VROUT=0.7V
CBIAS=1.0μF(ceramic), CIN2 =0μF, CL2 =4.7μF(ceramic)
VBIAS=3.6V, VIN2 =1.0VDC+0.2Vp-pAC, IOUT=30mA, Ta=25℃
80
80
70
70
60
60
VIN_PSRR(dB)
VBIAS_PSRR(dB)
CBIAS=0μF, CIN2 =1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6VDC+0.2Vp-pAC, VIN2 =1.0V, IOUT=30mA, Ta=25℃
50
40
30
50
40
30
20
20
10
10
0
0.01
0.1
1
10
100
0
0.01
1000 10000
0.1
Frequency (kHz)
1
CBIAS=1.0μF(ceramic), CIN2 =0μF, CL2 =4.7μF(ceramic)
VBIAS=3.6V, VIN2 =1.5VDC+0.2Vp-pAC, IOUT=30mA, Ta=25℃
80
80
70
70
60
VIN_PSRR(dB)
VBIAS_PSRR(dB)
60
50
40
30
20
0.1
1
10
100
50
40
30
20
10
0
0.01
10
1000 10000
0.1
1
10
100
1000 10000
Frequency (kHz)
Frequency (kHz)
VROUT=1.8V
VROUT=1.8V
CBIAS=1.0μF(ceramic), CIN2 =0μF, CL2 =4.7μF(ceramic)
CBIAS=0μF, CIN2 =1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6VDC+0.2Vp-pAC, VIN2 =2.1V, IOUT=30mA, Ta=25℃
VBIAS=3.6V, VIN2 =2.1VDC+0.2Vp-pAC, IOUT=30mA, Ta=25℃
80
80
70
70
60
60
50
VIN_PSRR(dB)
VBIAS_PSRR(dB)
1000 10000
VROUT=1.2V
CBIAS=0μF, CIN2 =1.0μF(ceramic), CL2 =4.7μF(ceramic)
VBIAS=3.6VDC+0.2Vp-pAC, VIN2 =1.5V, IOUT=30mA, Ta=25℃
50
40
30
40
30
20
10
20
10
0
0.01
100
Frequency (kHz)
VROUT=1.2V
0
0.01
10
0.1
1
10
100
Frequency (kHz)
1000 10000
0
0.01
0.1
1
10
100
1000 10000
Frequency (kHz)
47/49
XCM519 Series
■PACKAGING INFORMATION
●USP-12B01
2 .8±0 .08
2 .3±0 .08
1234
MAX 0 . 6
567 8
(0 .4 ) (0 .4 ) (0 .4 ) (0 .4 ) (0 .4 )
(0 .25 )
(0 .15 )
0 .25±0 .05
0 .2±0 .05
0 .2±0 .05
0 .2±0 .05
0 .2±0 .05
0 .2±0 .05
2
3
4
5
6
0 .25±0 .1
0 .4±0 .1
1 .3±0 .1
0 .25±0 .1
1
12 11 10 9
1 .2±0 .1
0 .7±0 .05
8
7
1 .2±0 .1
* Au plate thickness: Minimum 0.3 μm
■外部 リー ド処理 :Au m in0 .3um
*The side of pins is not plated, nickel is exposed.
※端子側面はニッケルで、Auめっきされておりま
せん。
*Pin
#1 is wider than other pins.
※端子1は他端子に比べ太 くなっています。
0 .7±0 .05
20/1
単位
:mm
UNIT: mm
●USP-12B01 Reference Pattern Layout
1 .35
1 .35
0 .90
0 .90
0 .45
0 .65
0 .65
0 .25 0 .25
0 .50
0 .20
1 .30
1 .30
0 .95
0 .95
0 .55
0 .55
0 .25 0 .25
0 .35
0 .60
1 .10
1 .55
0 .60
1 .10
1 .55
1 .05
0 .95
0 .65
0 .55
0 .25 0 .15
0 .05 0 .15 0 .05 0 .05 0 .20 0 .05
0 .10 0 .10
1 .30
1 .60
0 .20
48/49
0 .35
1 .30
1 .60
1 .05
0 .95
0 .65
0 .55
0 .25 0 .15
0 .25
0 .30
0 .025
0 .025 0 .025
0 .025
0 .45
●USP-12B01 Reference Metal Mask Design
0 .15
0 .40
0 .15
XCM519
Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
49/49