TOREX XCM524BB04DR-G

XCM524 Series
ETR2428-003
600mA Synchronous Step-Down DC/DC Converter + 500mA LDO
with Delay Function Voltage Detector
■GENERAL DESCRIPTION
The XCM524 series is a multi combination module IC which comprises of a 600mA driver transistor built-in synchronous
step–down DC/DC converter and a high speed, high current LDO regulator with voltage detector function. The device is
housed in small USP-12B01 package which is ideally suited for space conscious applications. The DC/DC converter and the
LDO blocks are isolated in the package so that noise interference from the DC/DC to the LDO regulator is minimal.
The DC/DC converter block with a built-in 0.42ΩP-channel MOS driver transistor and 0.52ΩN-channel MOS switching
transistor, designed to allow the use of ceramic capacitors. The DC/DC enables a high efficiency, stable power supply with an
output current of 600mA to be configured using only a coil and two capacitors connected externally.
The LDO regulator block is precise, low noise, high ripple rejection, low dropout positive voltage regulators with built-in voltage
detector. The LDO is also compatible with low ESR ceramic output capacitors. Good output stability is maintained during
load fluctuations due to its excellent transient response. The current limiter's fold back circuit also operates as a short circuit
protection for the output current.
The voltage detector block of the contains delay circuit. The delay time can be controlled by an external capacitor.
The detector monitors the input voltage of the voltage regulator.
■APPLICATIONS
●BD, DVD drives
●HDD drives
●Cameras, Video recorders
●Mobile phones, Smart phones
●Various general-purpose power supplies
■FEATURES
<DC/DC Convertor Block>
Input Voltage Range
: 2.7V ~ 6.0V
Output Voltage Options
: 0.8V ~ 4.0V (±2%)
High Efficiency
: 92% (TYP.)
Output Current
: 600mA (MAX.)
Oscillation Frequency
: 1.2MHz, 3.0MHz (+15%)
Current Limiter Circuit Built-In : Constant Current & Latching
Control Methods
: PWM
PWM/PFM Auto
*Performance depends on external components and wiring on PCB wiring.
<Regulator Block>
Maximum Output Current
■ TYPICAL APPLICATION CIRCUIT
: 500mA (Limiter 600mA TYP.)
(2.5V≦VROUT≦4.9V)
Dropout Voltage
: 200mV@IROUT=100mA (TYP.)
Operating Voltage Range
: 2.0V ~ 6.0V
Output Voltage Options
: 0.9V ~ 5.1V (0.1V increments, ±2%)
Detect Voltage Options
: 2.0V ~ 5.5V (0.1V increments, ±2%)
VR.VD Temperature Stability :±100ppm/℃ (TYP.)
High Ripple Rejection
: 65dB (@10kHz)
Low ESR Capacitor
: Ceramic Capacitor
Operating Temperature Range
: -40℃ ~ +85℃
Package
: USP-12B01
Environmentally Friendly
: EU RoHS Compliant, Pb Free
(TOP VIEW)
1/52
XCM524 Series
■PIN CONFIGURATIOIN
PIN No
XCM524
VDR
DC/DC
1
VDOUT
VDOUT
-
2
VSS
VSS
-
3
Cd
Cd
-
4
VIN2
-
VIN
5
PGND
-
PGND
6
Lx
-
Lx
7
DCOUT
-
VOUT
8
AGND
-
AGND
9
EN2
-
CE
10
VIN1
VIN1
-
11
NC
-
-
12
VROUT
VROUT
-
(TOP VIEW)
(BOTTOM VIEW)
*DC/DC Ground pin (No.5 and 8) should be short before using the IC.
* A dissipation pad on the reverse side of the package should be electrically isolated.
*1: Voltage level of the VDR’s dissipation pad should be VSS level.
*2: Voltage level of the DC/DC’s dissipation pad should be VSS level.
Care must be taken for an electrical potential of each dissipation pad so as to enhance mounting strength and heat release
when the pad needs to be connected to the circuit.
■PIN ASSIGNMENT
PIN No
XCM524
FUNCTIONS
1
VDOUT
VDR Block: VD Output Voltage
2
VSS
VDR Block: Ground
3
Cd
VDR Block: Delay Capacitor connection
2/52
4
VIN2
DC/DC Block: Power Input
5
PGND
DC/DC Block: Power Ground
6
Lx
DC/DC Block: Switching Connection
7
DCOUT
DC/DC Block: Output Voltage
8
AGND
DC/DC Block: Analog Ground
9
EN2
DC/DC Block: ON/OFF Control
10
VIN1
VDR Block: Power Input
11
NC
No Connection
12
VROUT
VDR Block: LDO Output
XCM524
Series
■PRODUCT CLASSIFICATION
●Ordering Information
XCM524A①②③④⑤-⑥ (*1) DC/DC Block: PWM fixed control
XCM524B①②③④⑤-⑥ (*1) DC/DC Block: PWM/PFM automatic switching control
DESIGNATOR
DESCRIPTION
SYMBOL
①
Oscillation Frequency and Options
-
See the chart below
②③
Output Voltage
-
See the chart below
④⑤-⑥
Packages
Taping Type (*2)
DR-G
(*1)
(*2)
DESCRIPTION
USP-12B01
The XCM524 series is Halogen and Antimony free as well as being fully RoHS compliant.
The device orientation is fixed in its embossed tape pocket.
●DESIGNATOR①
DC/DC BLOCK
VDR BLOCK
①
OSCILLATION
FREQUENCY
CL
DISCHARGE
SOFT START
VD DELAY
FUNCTION
VD SENSE PIN
VD OUTPUT
LOGIC
A
B
C
D
1.2M
3.0M
1.2M
3.0M
Not Available
Not Available
Available
Available
Standard
Standard
High Speed
High Speed
Available
Available
Available
Available
VIN
VIN
VIN
VIN
Active Low Detect
Active Low Detect
Active Low Detect
Active Low Detect
●DESIGNATOR②③
VDCOUT
②③
01
02
03
04
05
06
1.0
1.2
1.5
1.8
3.3
1.8
VROUT
VDF
3.3
3.3
3.3
3.3
1.8
2.5
3.7
3.7
3.7
4.2
2.8
2.8
*This series are semi-custom products.
For other combinations of output voltages please consult with your Torex sales contact.
3/52
XCM524 Series
■BLOCK DIAGRAMS
Step-Down DC/DC
Step-Down DC/DC
Phase
Compensation
VOUT
R2
Error Amp.
Current Feedback
Current Limit
R1
R2
Lx
Error Amp.
UVLO
CE/MODE
Control
Logic
CE
Lx
PWM/PFM
Selector
CE/
UVLO Cmp
VSS
Synch
Buffer
Drive
VSHORT
Vref with
Soft Start,
CE
R3
R4
PWM
Comparator
Logic
PWM/PFM
Selector
Ramp Wave
Generator
OSC
Current Feedback
Current Limit
R1
VIN
UVLO Cmp
VSS
Synch
Buffer
Drive
VSHORT
Vref with
Soft Start,
CE
Phase
Compensation
VOUT
PWM
Comparator
Logic
VIN
Available with CL Discharge, High Speed Soft-Start
UVLO
Ramp Wave
Generator
OSC
R3
CE/MODE
Control
Logic
R4
CE
* A fixed PWM control scheme because that the “CE Control Logic” outputs a low level signal to the “PWM/PFM Selector”.
* An auto PWM/PFM switching control scheme because the “CE Control Logic” outputs a high level signal to the “PWM/PFM Selector”.
*Diodes inside the circuit are an ESD protection diode and a parasitic diode.
■ABSOLUTE MAXIMUM RATINGS
Ta=25℃
PARAMETER
SYMBOL
RATINGS
UNITS
VIN1Voltage
VROUT Current
VROUT Voltage
VDOUT Current
VDOUT Voltage
Cd Voltage
VIN2 Current
Lx Voltage
VIN1
IROUT
VROUT
IDOUT
VDOUT
VCd
VIN2
VLx
DCOUT Voltage
EN2 Voltage
Lx Current
USP-12B01
Power
USP-12B01
Dissipation
(*2)
(PCB mounted )
VDCOUT
VEN2
ILx
7.0
700(*1)
VSS - 0.3 ∼ VIN1 + 0.3
50
VSS -0.3 ∼ 7.0
VSS - 0.3 ∼ VIN1 + 0.3
-0.3 ∼ 6.5
-0.3 ∼ VIN2 + 0.3 ≦ 6.5
-0.3 ∼ 6.5
-0.3 ∼ 6.5
±1500
150
800 (Only 1ch operation)
V
mA
V
mA
V
V
V
V
V
V
mA
Junction Temperature
Tj
125
℃
Operating Temperature Range
Storage Temperature Range
Topr
Tstg
- 40 ∼ + 85
- 55 ∼ + 125
℃
℃
Pd
mW
600 (Both 2ch operation)
*1 IROUT= Less than Pd /(VIN1-VROUT)
*2 The power dissipation figure shown is PCB mounted.
for each channel.
4/52
Please refer to page 50 for details.
Please also note that the power dissipation is
XCM524
Series
■ELECTRICAL CHARACTERISTICS
●XCM524xx 1ch (VDR Block)
PARAMETER
(*2, 3)
VOLTAGE REGULATOR
Output Voltage
Maximum Output Current
(0.9 ~ 2.4V)
Maximum Output Current
(2.5 ~ 4.9V)
Load Regulation
SYMBOL
CONDITIONS
VROUT(E)
IROUT=30mA
IROUTMAX
VIN1=VROUT(T)+2.0V
MIN.
TYP.
MAX. UNITS CIRCUIT
×0.98 VROUT(T) ×1.02
V
①
400
-
-
mA
①
VIN1=VROUT(T)+2.0V
IROUTMAX
Higher than VROUT(T)= 4.0V, VIN1=6.0V 500
△VROUT
1mA≦IROUT≦100mA
Vdif1
(*4)
I
ROUT=30mA
Dropout Voltage
Vdif2
IROUT=100mA
Supply Current
VIN1=VROUT(T)+1.0V
I
DD
(FV / FX / FY / FZ series)
VROUT(T)≦0.9V, VIN1=2.0V
VROUT(T)+1.0V≦VIN1≦6.0V
△VROUT/
VROUT(T)≦0.9V, 2.0V≦VIN1≦6.0V
Line Regulation
(VIN1・VROUT)
IROUT=30mA
VROUT(T)≦1.75V, IROUT=10mA
Input Voltage
VIN1
2.0
Output Voltage
△VROUT/
IROUT=30mA
Temperature Characteristics (△Topr・VROUT)
-40℃≦Topr≦85℃
-
-
mA
①
15
E-1
E-2
50
mV
mV
mV
①
①
①
90
145
μA
②
0.01
0.20
%/V
①
-
6.0
V
-
±100
-
ppm /℃
①
Ripple Rejection Rate
PSRR
VIN1=[VROUT(T)+1.0]V+0.5Vp-pAC
When VROUT(T)≦1.25V,
VIN1=2.25V+0.5Vp-pAC
When VROUT(T)≧4.75V,
VIN1=5.75V+0.5Vp-pAC
IROUT=50mA, f=10kHz
Current Limiter
(2.4V or less)
Current Limiter
(2.5V or more)
IRLIMl
VIN1=VROUT(T)+2.0V
Short-Circuit Current
IRSHORT
Detect Voltage
VOLTAGE DETECTOR
Ta=25℃
Hysteresis Range
VDF(E)
(*8)
65
-
dB
③
-
600
-
mA
①
600
-
mA
①
50
-
mA
①
VDF(T)
VDF(T)
×0.05
6.0
8.0
10.0
12.0
15.0
×1.02
VDF(T)
×0.08
-
V
④
V
④
mA
⑤
VIN1=VROUT(T)+2.0V
Higher than VROUT(T)= 4.0V, VIN1=6.0V 500
VIN1=VROUT(T)+2.0V
Higher than VROUT(T)= 4.0V, VIN1=6.0V
×0.98
VDF(T)
×0.02
VIN1 = 2.0V
3.0
VIN1 = 3.0V
4.0
VDOUT = 0.5V
VIN1 = 4.0V
5.0
VIN1 = 5.0V
7.0
VIN1 = 6.0V
10.0
IRLIM
(*7, 8)
-
VHYS
Supply Current (*9)
IDOUT
Detect Voltage
Temperature Stability
△VDF/
(Topr・VDF)
-40℃≦Topr≦85℃
-
±100
-
ppm /℃
④
Delay Resistance
Rdelay
VIN1=6.0V, Cd=0V
Delay Resistance =6.0V/Delay Current
300
500
700
kΩ
⑥
NOTE:
*1 : Unless otherwise stated, (VIN1=VROUT(T)+1.0V)
*2 : VROUT(T):Specified VR output voltage
*3 : VROUT(E):Effective VR output voltage.
Refer to the E-0 chart for values less than VDF(T)≦1.5V.
(i.e. the VR output voltage when "VROUT(T)+1.0V" is provided at the VIN pin while maintaining a certain IROUT value).
*4 : Vdif={VIN1
(*6)
-VROUT1
(*5)
}
*5 : A voltage equal to 98% of the VR output voltage whenever a stabilized VROUT1=IROUT{VROUT(T)+1.0V} is input.
*6 : VIN1:The input voltage when VOUT1, which appears as input voltage is gradually decreased.
*7 : VDF(T):Specified detect voltage value
*8 : VDF(E):Effective detect voltage value.
*9 : VD output current is sink current at detect.
* The electrical characteristics above are when the other channel is in stop.
5/52
XCM524 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●Dropout Voltage
SYMBOL
PARAMETER
NOMINAL
DETECT VOLTAGE
OUTPUT VOLTAGE
E-0
E-1
E-1
OUTPUT VOLTAGE
DETECT VOLTAGE
DROPOUT VOLTAGE 1 (mV)
(IOUT=30mA)
DROPOUT VOLTAGE 2 (mV)
(IOUT=100mA)
(V)
Ta=25℃
Ta=25℃
VROUT(E) / VDF(E)
VROUT(T)
6/52
Vdif1
Vdif1
Vdif2
Vdif2
MAX.
VDF(T)
MIN.
MAX.
TYP.
MAX.
TYP.
0.90
0.870
0.930
1050
1100
1150
1200
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.60
3.70
3.80
3.90
4.00
4.10
4.20
4.30
4.40
4.50
4.60
4.70
4.80
4.90
5.00
5.10
5.20
5.30
5.40
5.50
0.970
1.070
1.170
1.270
1.370
1.470
1.568
1.666
1.764
1.862
1.960
2.058
2.156
2.254
2.352
2.450
2.548
2.646
2.744
2.842
2.940
3.038
3.136
3.234
3.332
3.430
3.528
3.626
3.724
3.822
3.920
4.018
4.116
4.214
4.312
4.410
4.508
4.606
4.704
4.802
4.900
4.998
5.096
5.194
5.292
5.390
1.030
1.130
1.230
1.330
1.430
1.530
1.632
1.734
1.836
1.938
2.040
2.142
2.244
2.346
2.448
2.550
2.652
2.754
2.856
2.958
3.060
3.162
3.264
3.366
3.468
3.570
3.672
3.774
3.876
3.978
4.080
4.182
4.284
4.386
4.488
4.590
4.692
4.794
4.896
4.998
5.100
5.202
5.304
5.406
5.508
5.610
1000
900
800
700
600
500
400
300
200
120
80
80
80
80
80
70
70
70
70
70
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
50
50
1100
1000
900
800
700
600
500
400
300
150
120
120
120
120
120
100
100
100
100
100
90
90
90
90
90
90
90
90
90
90
80
80
80
80
80
80
80
80
80
80
70
70
1050
950
850
750
650
550
500
400
300
280
240
240
240
240
240
220
220
220
220
220
200
200
200
200
200
200
200
200
200
200
180
180
180
180
180
180
180
180
180
180
160
160
1200
1100
1000
900
800
700
600
500
400
380
350
330
330
310
310
290
290
290
270
270
270
250
250
250
250
250
250
250
250
250
230
230
230
230
230
230
230
230
230
230
210
210
XCM524
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM524xA 2ch (DC/DC Block)
PARAMETER
VDCOUT=1.8V, fOSC=1.2MHz, Ta=25℃
SYMBOL
Output Voltage
VDCOUT
Operating Voltage Range
VIN2
CONDITIONS
When connected to external components,
VIN2=VEN2=5.0V,IOUT2=30mA
MIN.
TYP.
MAX. UNITS CIRCUIT
1.764
1.800
1.836
V
⑦
2.7
-
6.0
V
⑦
600
-
-
mA
⑦
1.00
1.40
1.78
V
⑨
(XCM524AA)
-
22
50
(XCM524BA)
-
15
33
μA
⑧
Maximum Output Current
IOUT2MAX
When connected to external components,
(*8)
VIN2=VDCOUT(T)+2.0V,VEN2=1.0V
UVLO Voltage
VUVLO
VEN2=VIN2,VDCOUT=0V,
(*1, *10)
Voltage which Lx pin holding “L” level
Supply Current
IDD
Stand-by Current
ISTB
VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)×1.1V
-
0
1.0
μA
⑧
Oscillation Frequency
fOSC
When connected to external components,
VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT1=100mA
1020
1200
1380
kHz
⑦
PFM Switching Current
IPFM
When connected to external components,
(*11)
VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA
120
160
200
mA
⑦
PFM Duty Limit
DTYLIMIT_PFM
Maximum Duty Cycle
DMAX
Minimum Duty Cycle
DMIN
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V
VEN2=VIN2=(C-1) IOUT2=1mA
(*11)
%
⑦
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V
100
200
-
-
%
⑨
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V
-
-
0
%
⑨
-
92
-
%
⑦
-
0.35
0.55
Ω
⑩
-
0.42
0.67
Ω
⑩
Lx SW "H" ON Resistance 1
RLXH1
When connected to external components,
(*7)
VEN2=VIN2=VDCOUT(T)+1.2V , IOUT2=100mA
(*3)
VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA
Lx SW "H" ON Resistance 2
RLXH2
VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA
Lx SW "L" ON Resistance 1
RLXL1
VIN2=VEN2=5.0V
(*4)
-
0.45
0.66
Ω
−
Lx SW "L" ON Resistance 2
RLXL2
VIN2=VEN2=3.6V
(*4)
-
0.52
0.77
Ω
−
Lx SW "H" Leak Current
(*5)
ILEAKH
VIN2=VDCOUT=5.0V,VEN2=0V,LX=0V
-
0.01
1.0
μA
⑪
Lx SW "L" Leak Current
(*5)
ILEAKL
VIN2=VDCOUT=5.0V,VEN2=0V,LX=5.0V
-
0.01
1.0
μA
⑪
900
1050
1350
mA
⑫
-
±100
-
ppm/℃
⑦
0.65
-
6.0
V
⑨
VSS
-
0.25
V
⑨
- 0.1
-
0.1
μA
⑪
Efficiency
(*2)
(*9)
Current Limit
Output Voltage
Temperature
Characteristics
EFFI
ILIM
△ VDCOUT/
(VDCOUT・△T opr)
EN "H" Voltage
VENH
EN "L" Voltage
VENL
EN "H" Current
IENH
EN "L" Current
IENL
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V
IOUT2=30mA
-40℃≦Topr≦85℃
VDCOUT=0V, Applied voltage to VEN2,
(*10)
Voltage changes Lx to “H” level
VDCOUT=0V, Applied voltage to VEN2
(*10)
Voltage changes Lx to “L” level
VIN2=VEN2=5.0V,VDCOUT=0V
(*3)
VIN2=5.0V,VEN2=0V,VDCOUT=0V
- 0.1
0.1
μA
When connected to external components,
0.5
1.0
2.5
ms
Soft Start Time
tSS
VEN2=0V→VIN2,IOUT1=1mA
VIN2=VEN2=5.0V, VDCOUT=0.8×VDCOUT(T)
Latch Time
tLAT
1.0
20.0
ms
(*6)
Short Lx at 1Ω resistance
Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at
Short Protection
VSHORT
1Ω resistance, DCOUT voltage which Lx becomes
0.675 0.900 1.125
V
Threshold Voltage
“ Lx=L ” within 1ms
Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.
*7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.
⑪
⑦
⑬
⑬
* The electrical characteristics above are when the other channel is in stop.
7/52
XCM524 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM524xB 2ch (DC/DC BLOCK)
PARAMETER
VDCOUT=1.8V, fOSC=3.0MHz, Ta=25℃
SYMBOL
CONDITIONS
When connected to external components,
VIN2=VEN2=5.0V,IOUT2=30mA
MIN.
TYP.
MAX.
UNITS CIRCUIT
1.764
1.800
1.836
V
⑦
2.7
-
6.0
V
⑦
Output Voltage
VDCOUT
Operating Voltage Range
VIN2
Maximum Output Current
IOUT2MAX
When connected to external components,
(*8)
VIN2= VDCOUT(T)+2.0V,VEN1=1.0V
600
-
-
mA
⑦
UVLO Voltage
VUVLO
VEN2=VIN2,VDCOUT=0V,
(*1, *10)
Voltage which Lx pin holding “L” level
1.00
1.40
1.78
V
⑨
Supply Current
IDD
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V
(XCM524AB)
-
46
65
(XCM524BB)
-
21
35
μA
⑧
Stand-by Current
ISTB
VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)×1.1V
-
0
1.0
μA
⑧
Oscillation Frequency
fOSC
When connected to external components,
VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT2=100mA
2550
3000
3450
kHz
⑦
PFM Switching Current
IPFM
When connected to external components,
(*11)
VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA
170
220
270
mA
⑦
PFM Duty Limit
DTYLIMIT_PFM
200
300
%
⑦
Maximum Duty Cycle
DMAX
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V
100
-
-
%
⑧
Minimum Duty Cycle
DMIN
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V
-
-
0
%
⑧
-
86
-
%
⑦
-
0.35
0.55
Ω
⑩
-
0.42
0.67
Ω
⑩
-
0.45
0.66
Ω
−
VEN2=VIN2=(C-1) IOUT2=1mA
(*11)
Lx SW "H" ON Resistance 1
RLXH1
When connected to external components,
(*7)
VEN2=VIN2=VDCOUT(T)+1.2V , IOUT2=100mA
(*3)
VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA
Lx SW "H" ON Resistance 2
RLXH2
VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA
Lx SW "L" ON Resistance 1
RLXL1
VIN2=VEN1=5.0V
(*4)
(*4)
Efficiency
(*2)
EFFI
(*3)
Lx SW "L" ON Resistance 2
RLXL2
VIN2=VEN1=3.6V
-
0.52
0.77
Ω
−
Lx SW "H" Leak Current
(*5)
ILEAKH
VIN2=VDCOUT=5.0V,VEN2=0V,LX=0V
-
0.01
1.0
μA
⑪
Lx SW "L" Leak Current
(*5)
ILEAKL
VIN2=VDCOUT=5.0V,VEN2=0V,LX=5.0V
-
0.01
1.0
μA
⑪
900
1050
1350
mA
⑫
-
±100
-
ppm/℃
⑦
0.65
-
6.0
V
⑨
VSS
-
0.25
V
⑨
- 0.1
-
0.1
μA
⑪
(*9)
Current Limit
Output Voltage
Temperature Characteristics
△VDCOUT/
(VDCOUT・△topr)
ILIM
EN "H" Voltage
VENH
EN "L" Voltage
VENL
EN "H" Current
IENH
EN "L" Current
IENL
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V
IOUT2=30mA
-40℃≦Topr≦85℃
VDCOUT=0V, Applied voltage to VEN2,
(*10)
Voltage changes Lx to “H” level
VDCOUT=0V, Applied voltage to VEN2,
(*10)
Voltage changes Lx to “L” level
VIN2=VEN2=5.0V, VDCOUT=0V
VIN2=5.0V, VEN2=0V, VDCOUT=0V
- 0.1
0.1
μA
When connected to external components,
0.5
0.9
2.5
ms
Soft Start Time
tSS
VEN2=0V→VIN2,IOUT2=1mA
VIN2=VEN2=5.0V,VDCOUT=0.8×VDCOUT(T)
Latch Time
tLAT
1.0
20.0
ms
(*6)
Short Lx at 1Ω resistance
Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at
Short Protection
VSHORT
1Ω resistance, DCOUT voltage which Lx becomes
0.675 0.900 1.125
V
Threshold Voltage
“ Lx=L ” within 1ms
Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.
*7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.
* The electrical characteristics above are when the other channel is in stop.
8/52
⑪
⑦
⑬
⑬
XCM524
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM524xC 2ch (DC/DC BLOCK)
PARAMETER
SYMBOL
Output Voltage
VDCOUT
Operating Voltage Range
VIN2
VDCOUT=1.8V, fOSC=1.2MHz, Ta=25℃
CONDITIONS
When connected to external components,
VIN2=VEN2=5.0V,IOUT1=30mA
MIN.
TYP.
MAX.
UNITS CIRCUIT
1.764
1.800
1.836
V
⑦
2.7
-
6.0
V
⑦
600
-
-
mA
⑦
1.00
1.40
1.78
V
⑨
(XCM524AC)
-
22
50
(XCM524BC)
-
15
33
μA
⑧
Maximum Output Current
IOUT2MAX
When connected to external components,
(*8)
VIN2=VDCOUT(T)+2.0V,VEN2=1.0V
UVLO Voltage
VUVLO
VEN2=VIN2,VDCOUT=0V,
(*1, *10)
Voltage which Lx pin holding “L” level
Supply Current
IDD
Stand-by Current
ISTB
VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)×1.1V
-
0
1.0
μA
⑧
Oscillation Frequency
fOSC
When connected to external components,
VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT2=100mA
1020
1200
1380
kHz
⑦
PFM Switching Current
IPFM
When connected to external components,
(*11)
VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA
120
160
200
mA
⑦
-
200
%
⑦
VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)×0.9V
100
-
-
%
⑨
VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)×1.1V
-
-
0
%
⑨
-
92
-
%
⑦
-
0.35
0.55
Ω
⑩
PFM Duty Limit
DTYLIMIT_PFM
Maximum Duty Cycle
DMAX
Minimum Duty Cycle
DMIN
Efficiency
EFFI
Lx SW "H" ON Resistance 1
RLXH1
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V
VEN2=VIN2=(C-1)IOUT2=1mA
(*11)
When connected to external components,
(*7)
VEN2=VIN2=VDCOUT(T)+1.2V , IOUT2=100mA
(*3)
VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA
(*3)
Lx SW "H" ON Resistance 2
RLXH2
VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA
-
0.42
0.67
Ω
⑩
Lx SW "L" ON Resistance 1
RLXL1
VIN2=VEN2=5.0V
(*4)
-
0.45
0.66
Ω
−
Lx SW "L" ON Resistance 2
RLXL2
VIN2=VEN2=3.6V
(*4)
-
0.52
0.77
Ω
−
(*5)
ILEAKH
VIN1=VDCOUT=5.0V,VEN1=0V,LX=0V
-
0.01
1.0
μA
⑮
900
1050
1350
mA
⑫
-
±100
-
ppm/℃
⑦
0.65
-
6.0
V
⑨
VSS
-
0.25
V
⑨
- 0.1
-
0.1
μA
⑪
- 0.1
-
0.1
μA
⑪
-
0.25
0.40
ms
⑦
1.0
-
20
ms
⑬
0.675
0.900
1.150
V
⑬
200
300
450
Ω
⑭
Lx SW "H" Leak Current
(*9)
Current Limit
Output Voltage
Temperature Characteristics
△ VDCOUT/
(VDCOUT・△topr)
ILIM
EN "H" Voltage
VENH
EN "L" Voltage
VENL
EN "H" Current
IENH
EN "L" Current
IENL
Soft Start Time
tSS
Latch Time
tLAT
Short Protection
Threshold Voltage
VSHORT
CL Discharge
RDCHG
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V
IOUT2=30mA
-40℃≦Topr≦85℃
VDCOUT=0V, Applied voltage to VEN2,
(*10)
Voltage changes Lx to “H” level
VDCOUT=0V, Applied voltage to VEN2,
(*10)
Voltage changes Lx to “L” level
VIN2=VEN2=5.0V,VDCOUT=0V
VIN2=5.0V,VEN2=0V,VDCOUT=0V
When connected to external components,
VEN2=0V→VIN2, IOUT2=1mA
VIN2=VEN2=5.0V,VDCOUT=0.8×VDCOUT(T)
(*6)
Short Lx at 1Ω resistance
Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at
1Ω resistance, DCOUT voltage which Lx becomes
“ Lx=L ” within 1ms
VIN2=5.0V,LX=5.0V,VEN2=0V,VDCOUT=open
Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.
*7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.
* The electrical characteristics above are when the other channel is in stop.
9/52
XCM524 Series
■ELECTRICAL CHARACTERISTICS (Continued)
●XCM524xD 2ch (DC/DC BLOCK)
VDCOUT=1.8V, fOSC=3.0MHz, Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
MIN.
TYP.
MAX.
Output Voltage
VDCOUT
1.764
1.800
1.836
V
⑦
Operating Voltage Range
VIN2
2.7
-
6.0
V
⑦
Maximum Output Current
IOUT2MAX
When connected to external components,
(*8)
VIN2=VDCOUT(T)+2.0V,VEN2=1.0V
600
-
-
mA
⑦
UVLO Voltage
VUVLO
VEN2=VIN2,VDCOUT=0V,
(*1, *10)
Voltage which Lx pin holding “L” level
1.00
1.40
1.78
V
⑨
Supply Current
IDD
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×1.1V
(XCM524AD)
-
46
65
(XCM524BD)
-
21
35
μA
⑧
Stand-by Current
ISTB
VIN2=5.0V,VEN2=0V,VDCOUT=VDCOUT(T)×1.1V
-
0
1.0
μA
⑧
Oscillation Frequency
fOSC
When connected to external components,
VIN2=VDCOUT(T)+2.0V,VEN2=1.0V, IOUT2=100mA
2550
3000
3450
kHz
⑦
PFM Switching Current
IPFM
When connected to external components,
(*11)
VIN2=VDCOUT(T)+2.0V,VEN2=VIN2, IOUT2=1mA
170
220
270
mA
⑦
PFM Duty Limit
DTYLIMIT_PFM
-
200
300
%
⑦
Maximum Duty Cycle
DMAX
Minimum Duty Cycle
DMIN
VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)×0.9V
100
-
-
%
⑨
VIN2=VEN2=5.0V, VDCOUT=VDCOUT(T)×1.1V
-
-
0
%
⑨
Efficiency
EFFI
Lx SW "H" ON Resistance 1
RLXH1
When connected to external components,
(*7)
VEN2=VIN2=VDCOUT(T)+1.2V , IOUT2=100mA
(*3)
VIN2=VEN2=5.0V,VDCOUT=0V,ILX=100mA
-
86
-
%
⑦
Lx SW "H" ON Resistance 2
RLXH2
VIN2=VEN2=3.6V,VDCOUT=0V,ILX=100mA
-
0.35
0.55
Ω
⑩
-
0.42
0.67
Ω
⑩
-
0.45
0.66
Ω
−
-
0.52
0.77
Ω
−
-
0.01
1.0
μA
⑮
900
1050
1350
mA
⑫
-
±100
-
ppm/℃
⑦
0.65
-
6.0
V
⑨
VSS
-
0.25
V
⑨
When connected to external components,
VIN2=VEN2=5.0V,IOUT2=30mA
VEN2=VIN2=(C-1)IOUT2=1mA
Lx SW "L" ON Resistance 1
RLXL1
VIN2=VEN2=5.0V
(*4)
Lx SW "L" ON Resistance 2
RLXL2
VIN2=VEN2=3.6V
(*4)
Lx SW "H" Leak Current
(*9)
(*5)
ILeakH
Current Limit
Output Voltage
Temperature Characteristics
△ VDCOUT/
(VDCOUT ・△topr)
ILIM
EN "H" Voltage
VENH
EN "L" Voltage
VENL
EN "H" Current
IENH
EN "L" Current
IENL
Soft Start Time
tSS
Latch Time
tLAT
Short Protection
Threshold Voltage
VSHORT
CL Discharge
RDCHG
(*11)
(*3)
VIN2=VDCOUT=5.0V,VEN2=0V,LX=0V
VIN2=VEN2=5.0V,VDCOUT=VDCOUT(T)×0.9V
IOUT2=30mA
-40℃≦Topr≦85℃
VDCOUT=0V, Applied voltage to VEN2,
(*10)
Voltage changes Lx to “H” level
VDCOUT=0V, Applied voltage to VEN2,
(*10)
Voltage changes Lx to “L” level
VIN2=VEN2=5.0V,VDCOUT=0V
VIN2=5.0V,VEN2=0V,VDCOUT=0V
When connected to external components,
VEN2=0V→VIN2, IOUT2=1mA
VIN2=VEN2=5.0V,VDCOUT=0.8×VDCOUT(T)
(*6)
Short Lx at 1Ω resistance
Sweeping VDCOUT, VIN2=VEN2=5.0V, Short Lx at
1Ω resistance, DCOUT voltage which Lx becomes
“ Lx=L ” within 1ms
VIN2=5.0V,LX=5.0V,VEN2=0V,VDCOUT=open
UNITS CIRCUIT
- 0.1
-
0.1
μA
⑪
- 0.1
-
0.1
μA
⑪
-
0.32
0.50
ms
⑦
1.0
-
20
ms
⑬
0.675
0.900
1.150
V
⑬
200
300
450
Ω
⑭
Test conditions: Unless otherwise stated, VIN2=5.0V VDCOUT(T)= Setting voltage
NOTE:
*1: Including hysteresis width of operating voltage.
*2: EFFI = { ( output voltage×output current ) / ( input voltage×input current) }×100
*3: ON resistance (Ω)= (VIN2 - Lx pin measurement voltage) / 100mA
*4: Design value
*5: When temperature is high, a current of approximately 10μA (maximum) may leak.
*6: Time until it short-circuits DCOUT with GND via 1Ωof resistor from an operational state and is set to Lx=0V from current limit pulse generating.
*7: VDCOUT(T)+1.2V<2.7V, VIN2=2.7V.
*8: When the difference between the input and the output is small, some cycles may be skipped completely before current maximizes.
If current is further pulled from this state, output voltage will decrease because of P-ch driver ON resistance.
*9: Current limit denotes the level of detection at peak of coil current.
*10: "H"=VIN2∼VIN2 - 1.2V, "L"=+ 0.1V ∼ - 0.1V
*11: XCM524A series exclude IPFM and DTYLIMIT_PFM because those are only for the PFM control’s functions.
* The electrical characteristics above are when the other channel is in stop.
10/52
XCM524
Series
■ELECTRICAL CHARACTERISTICS (Continued)
●PFM Switching Current (IPFM) by Oscillation Frequency and Output Voltage
1.2MHz
(mA)
SETTING VOLTAGE
MIN.
TYP.
MAX.
VDCOUT(T)≦1.2V
140
180
240
1.2V<VDCOUT(T)≦1.75V
130
170
220
1.8V≦VDCOUT(T)
120
160
200
SETTING VOLTAGE
MIN.
TYP.
MAX.
3.0MHz
(mA)
VDCOUT(T)≦1.2V
190
260
350
1.2V<VDCOUT(T)≦1.75V
180
240
300
1.8V≦VDCOUT(T)
170
220
270
●Measuring Maximum IPFM Limit, VIN2 Voltage
fOSC
1.2MHz
3.0MHz
(C-1)
VDCOUT(T)+0.5V
VDCOUT(T)+1.0V
Minimum operating voltage is 2.7V
Although when VDCOUT(T)=1.2V, fOSC=1.2MHz, (C-1)=1.7V the (C-1) becomes 2.7V because of the minimum operating voltage 2.7V.
●Soft-Start Time Chart (XCM524xC/ XCM524xD Series Only)
PRODUCT SERIES
XCM524AC
XCM524BC
XCM524xD
fOSC
OUTPUT VOLTAGE
MIN.
TYP.
MAX.
1.2MHz
0.8V≦VDCOUT(T)<1.5V
-
250μs
400μs
1.2MHz
1.5V≦VDCOUT(T)<1.8V
-
320μs
500μs
1.2MHz
1.8V≦VDCOUT(T)<2.5V
-
250μs
400μs
1.2MHz
2.5V≦VDCOUT(T)≦4.0V
-
320μs
500μs
1.2MHz
0.8V≦VDCOUT(T)<2.5V
-
250μs
400μs
1.2MHz
2.5V≦VDCOUT(T)≦4.0V
-
320μs
500μs
3.0MHz
0.8V≦VDCOUT(T)<1.8V
-
250μs
400μs
3.0MHz
1.8V≦VDCOUT(T)≦4.0V
-
320μs
500μs
■TYPICAL APPLICATION CIRCUIT
● DC/DC BLOCK
Rpull-up
VDOUT
VROUT
Cd
VIN
CIN2
1
VDOUT
2
VSS
VROUT 12
NC
11
3
Cd
VIN1 10
4
VIN2
EN2
9
5
PGND
AGND
8
DCOUT
7
6
Lx
CL1
CIN1
CL2
CIN1
:
1μF
(Ceramic)
CL1
:
1μF
(Ceramic)
L
:
1.5μH (NR3015 TAIIYO YUDEN)
CIN2
:
4.7μF
(Ceramic)
CL2
:
10μF
(Ceramic)
EN2
● DC/DC BLOCK
VDCOUT
L
fOSC=3.0MHz
fOSC =1.2MHz
CIN1
:
1μF
(Ceramic)
CL1
:
1μF
(Ceramic)
L
:
4.7μH (NR4018 TAIIYO YUDEN)
CIN2
:
4.7μF
(Ceramic)
CL2
:
10μF
(Ceramic)
11/52
XCM524 Series
■OPERATIONAL EXPLANATION
●Voltage Regulator BLOCK
The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The
P-channel MOSFET which is connected to the VROUT pin is then driven by the subsequent output signal. The output voltage
at the VROUT pin is controlled & stabilized by a system of negative feedback.
●Detector Function with the XC524 Series
The series' detector function monitors the voltage divided by resistors R3 & R4, which are connected to the VROUT pin or the
VIN1 pin or the VSEN pin, as well as monitoring the voltage of the internal reference voltage source via the comparator. The
VDSEN pin has options. A 'High' or 'Low' signal level can be output from the VDOUT pin when the VD pin voltage level goes
below the detect voltage. The VD output logic has options. As VDOUT is an open-drain N-channel output, a pull-up resistor
of about 220kΩis needed to achieve a voltage output.
Because of hysteresis at the detector function, output at the VDOUT pin will invert when the detect voltage level increases
above the release voltage (105% of the detect voltage).
By connecting the Cd pin to a capacitor, the XCM524 series can apply a delay time to VDOUT voltage when releasing voltage.
The delay time can be calculated from the internal resistance, Rdelay (500kΩ fixed) and the value of Cd as per the following
equation.
Delay Time = Cd x Rdelay x 0.7 …(1)
Delay Time
Rdelay standard : 300 ~ 700kΩ
TYP : 500kΩ
Cd
DELAY TIME (TYP.)
DELAY TIME (MIN.~MAX.)
0.01μF
3.5 ms
2.1 ~ 4.9 ms
0.022μF
7.7 ms
4.62 ~ 10.8 ms
0.047μF
16.5 ms
9.87 ~ 23.0 ms
0.1μF
35 ms
21.0 ~ 49.0 ms
0.22μF
77 ms
46.2 ~ 108.0 ms
0.47μF
165 ms
98.7 ~ 230.0 ms
1μF
350 ms
210.0 ~ 490.0 ms
* The release delay time values above are calculated by using the formula (1).
*1: The release delay time is influenced by the delay capacitance Cd.
<Low ESR Capacitor>
With the XCM524 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase
compensation circuit is built-in. The output capacitor (CL1) should be connected as close to VROUT pin and VSS pin to obtain
stable phase compensation. Also, please connect an input capacitor (CIN1) of 1.0μF between the VIN1 pin and the VSS pin.
Output Capacitor Chart
VROUT
0.9 ~1.2V
1.3 ~ 1.7V
1.8 ~ 5.1V
CL1
≧4.7μF
≧2.2μF
≧1.0μF
<Current Limit, Short-Circuit Protection>
The XCM524 series’ fold-back circuit operates as an output current limiter and a short protection of the output pin. When the
load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the
output pin is shorted to the VSS level, current flows about 50mA.
12/52
XCM524
Series
■OPERATIONAL EXPLANATION (Continued)
●DC/DC BLOCK
The DC/DC block of the XCM524 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM
comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel
MOSFET switch transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram
above.)
The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the feedback voltage
from the DCOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier
output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator
compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and
delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is
continuously performed to ensure stable output voltage.
The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates
the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low
ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage.
<Reference Voltage Source>
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.
<Ramp Wave Circuit>
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or
3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to
synchronize all the internal circuits.
<Error Amplifier>
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback
voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the
output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed
internally to deliver an optimized signal to the mixer.
<Current Limit>
The current limiter circuit of the XCM524series monitors the current flowing through the P-channel MOS driver transistor
connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode.
① When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin
at any given timing.
② When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.
③ At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over
current state.
④ When the over current state is eliminated, the IC resumes its normal operation.
The IC waits for the over current state to end by repeating the steps ① through ③. If an over current state continues for a
few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the
P-channel driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be
resumed by either turning the IC off via the CE/MODE pin, or by restoring power to the VIN2 pin. The suspension mode does
not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in
operation. The current limit of the XCM524 series can be set at 1050mA at typical. Besides, care must be taken when laying
out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch
time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out
so that input capacitors are placed as close to the IC as possible.
Limit<#ms
Limit<数ms
Limit>#ms
Limit>数ms
Current Limit LEVEL
ILx
0mA
VDCOUT
VSS
Lx
VEN2
Restart
VIN2
13/52
XCM524 Series
■OPERATIONAL EXPLANATION (Continued)
<Short-Circuit Protection>
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the DCOUT pin. In case where
output is accidentally shorted to the Ground and when the FB point voltage decreases less than half of the reference
voltage (Vref) and a current more than the ILIM flows to the driver transistor, the short-circuit protection quickly operates to
turn off and to latch the P-channel MOS driver transistor. In latch state, the operation can be resumed by either turning the
IC off and on via the EN2 pin, or by restoring power supply to the VIN2 pin.
When sharp load transient happens, a voltage drop at the DCOUT pin is propagated to FB point through CFB, as a result, short
circuit protection may operate in the voltage higher than 1/2 VOUT voltage.
<UVLO Circuit>
When the VIN2 pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse
output caused by unstable operation of the internal circuitry. When the VIN2 pin voltage becomes 1.8V or higher, switching
operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup
operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage.
The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the
internal circuitry remains in operation.
<PFM Switch Current>
In the PFM control operation, until coil current reaches to a specified level (IPFM) , the IC keeps the P-ch MOSFET on. In this
case, on-time (tON) that the P-ch MOSFET is kept on can be given by the following formula.
tON = L×IPFM/(VIN2-VDCOUT) →IPFM①
<PFM duty Limit>
In the PFM control operation, the PFM duty limit (DTYLIMIT_PFM) is set to 200% (TYP.). Therefore, under the condition that the
duty increases (e.g. the condition that the step-down ratio is small), it’s possible for P-ch MOSFET to be turned off even when
coil current doesn’t reach to IPFM.
→IPFM②
PFM Duty Limit
IPFM①
14/52
IPFM②
XCM524
Series
■OPERATIONAL EXPLANATION (Continued)
<CL High Speed Discharge>
XCM524 series can quickly discharge the electric charge at the output capacitor (CL2) when a low signal to the CE pin which
enables a whole IC circuit put into OFF state, is inputted via the N-channel MOS switch located between the LX pin and the VSS
pin. When the IC is disabled, electric charge at the output capacitor (CL) is quickly discharged so that it may avoid application
malfunction. Discharge time of the output capacitor (CL) is set by the CL auto-discharge resistance (R) and the output capacitor
(CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL2) as
τ(τ=C x R), discharge time of the output voltage after discharge via the N channel transistor is calculated by the following
formula.
V = VDCOUT(T)×e -t /τor t = τLn ( VDCOUT(T)/V)
V : Output voltage after discharge,
VDCOUT(T) : Output voltage after discharge
t: Discharge time
τ: C×R
C = Capacitance of Output capacitor(CL2)
R = CL auto-discharge resistance
Output Voltage ( Relative Value)
100 = Setting Voltage Value
100
90
CL=10uF
80
CL=20uF
70
CL=50uF
60
50
40
30
20
10
0
0
10
20
30
40
50
60
70
80
90
100
■NOTE ON USE
When the DC/DC converter and the VR are connected as VDCOUT=VIN1, the following points should be noted.
1. When larger value is used in DC/DC output capacitor CL2, the larger value is also used in CL1 as in proportional. Please be
noted that when CL2 capacitance of the VR is getting large, an inrush current increases at VR start-up, DC/DC short circuit
protection starts to operate, as a result, the IC may happen to stop.
* VR inrush current IIN1 makes DC/DC short-circuit protection to
DCOUT(1V/div)
start, as a result, the IC may happen to stop.
short-circuit
protection to start
短絡保護動作
IIN2(500mA/div)
The left waver forms are taken at CL1=10μ, CL2=10μF(in
VROUT(1V/div)
contrast to the recommended 1.0μF).
EN2(5V/div)
50us/div
15/52
XCM524 Series
■NOTE ON USE (Continued)
<VDR BLOCK>
1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be
exceeded.
2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output
current. Especially, VIN1 and VSS wiring should be taken into consideration for reinforcement.
3. Please wire the input capacitor (CIN1) and the output capacitor (CL1) as close to the IC as possible.
Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence.
<DC/DC BLOCK>
1. The XCM524 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large
between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching
energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic
capacitor in parallel to compensate for insufficient capacitance.
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by
external component selection, such as the coil inductance, capacitance values, and board layout of external components.
Once the design has been completed, verification with actual components should be done.
3. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple
may increase.
4. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty
cycle may continue in several periods.
5. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may
continues100% duty cycle in several periods.
6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when
dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate
the peak current according to the following formula:
Ipk =(VIN2-VDCOUT)×OnDuty/(2×L×fOSC) + IOUT2
L:Coil Inductance Value
fOSC:Oscillation Frequency
7.
When the peak current which exceeds limit current flows within the specified time, the built-in P-channel MOS driver
transistor turns off. During the time until it detects limit current and before the P-channel built-in transistor can be turned
off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external components
such as a coil.
8. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid
the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.
9. Use of the IC at voltages below the recommended voltage range may lead to instability.
10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.
11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the
leak current of the P-channel MOS driver transistor.
16/52
XCM524
Series
■NOTE ON USE (Continued)
12. The current limit is set to 1350mA (MAX.) at typical. However, the current of 1350mA or more may flow.
In case that the current limit functions while the DCOUT pin is shorted to the GND pin, when P-channel MOSFET is ON,
the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes
large. By contrast, when N- channel MOSFET switch is ON, there is almost no potential difference at both ends of the coil
since the DCOUT pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small.
According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain
current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however,
after the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated
absolute maximum rating in order to prevent damage to the device.
①Current flows into P-channel MOS driver transistor to reach the current limit (ILIM).
②The current of ILIM or more flows since the delay time of the circuit occurs during from the detection of the current limit to
OFF of P-channel MOS driver transistor.
③Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.
④Lx oscillates very narrow pulses by the current limit for several ms.
⑤The circuit is latched, stopping its operation.
# ms
13. In order to stabilize VIN1’s voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN2) be
connected as close as possible to the VIN2 & VSS pins.
14. High step-down ratio and very light load may lead an intermittent oscillation.
15. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode.
Please verify with actual parts.
<External Components>
17/52
XCM524 Series
■NOTE ON USE (Continued)
16.
Please note the L value of the coil. The IC may enter unstable operation if the combination of ambient temperature, setting
voltage, oscillation frequency, and L value are not adequate.
<External Components>
●The Range of L Value
fOSC
VDCOUT
L Value
3.0MHz
0.8V≦VDCOUT≦4.0V
1.0μH∼2.2μH
VDCOUT≦2.5V
3.3μH∼6.8μH
2.5V<VDCOUT
4.7μH∼6.8μH
1.2MHz
*When a coil less value of 4.7μH is used at when a coil
less value of 1.5μH is used at fOSC=3.0MHz, peak coil
current more easily reach the current limit ILMI. In this
case, it may happen that the IC can not provide 600mA
output current.
17. Under input-output voltage differential is large, operating may become unstable at transition to continuous mode.
Please verify with actual parts.
<External Components>
●Instructions of pattern layouts
1.
Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be
exceeded.
2. In order to stabilize VIN1・VIN2・DCOUT・VROUT voltage level, we recommend that a by-pass capacitor (CIN1・CIN2・CL1・
CL2) be connected as close as possible to the VIN1・VIN2・DCOUT・VROUT and GND・VSS pins.
3. Please mount each external component as close to the IC as possible.
4. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit
impedance.
5. VSS(AGND・PGND・VSS)ground wiring is recommended to get large area. The IC may goes into unstable operation as
a result of VSS voltage level fluctuation during the switching.
6. This series’ internal driver transistors bring on heat because of the output current (IOUT) and ON resistance of driver
transistors.
●Recommended Pattern Layout
Front
18/52
Back
XCM524
Series
■TEST CIRCUITS
Outpur Capacitor
VROUT
0.9 ~1.2V
1.3 ~ 1.7V
1.8V ~ 5.1V
CL
≧4.7μF
≧2.2μF
≧1.0μF
19/52
XCM524 Series
■TEST CIRCUITS (Continued)
20/52
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS
●1ch:VDR Block
(1)VR Output Voltage vs. VR Output Current
XC6405 Series
(VR:1.8V)
VROUT=1.8V
XC6405 Series
(VR:1.8V)
VROUT=1.8V
VVIN=3.8V,
IN1=3.8V
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
2.0
Topr= 25℃
Topr= - 40℃
Topr= 85℃
1.5
1.0
0.5
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
2.5
(V)
Output
OutputVoltage:
Voltage V
VROUT
ROUT (V)
Output
Voltage
VROUT
Output
Voltage:
VROUT
(V)(V)
2.5
0.0
2.0
1.5
1.0
VIN= 3.8V
VIN= 2.1V
VIN= 6.0V
0.5
0.0
0
100
200
300
400
500
600
700
0
100
OutputCurrent:
Current IIROUT(mA)
Output
ROUT (mA)
200
300
400
500
600
700
Output
Current IIROUT(mA)
Output
Current:
ROUT (mA)
XC6405VSeries
(VR:2.5V)
ROUT=2.5V
XC6405 V
Series
(VR:2.5V)
ROUT=2.5V
V
VIN=4.5V,
IN1=4.5V
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
2.5
Topr= 25℃
Topr= - 40℃
Topr= 85℃
2.0
1.5
1.0
0.5
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
3.0
Output
VROUT (V)
(V)
OutputVoltage:
Voltage VROUT
(V)
Output
Voltage VVROUT
Output
Voltage:
ROUT (V)
3.0
0.0
2.5
2.0
VIN= 4.5V
VIN= 2.8V
VIN= 6.0V
1.5
1.0
0.5
0.0
0
100
200
300
400
500
600
700
0
Output
Current:
ROUT (mA)
Output
Current IIROUT(mA)
100
200
300
400
500
600
700
Output
Current:
Output
Current IIROUT(mA)
ROUT (mA)
XC6405 V
Series
(VR:3.0V)
ROUT=3.0V
XC6405 V
Series
(VR:3.0V)
ROUT=3.0V
VIN=5.0V,
V
IN1=5.0V
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
4.0
3.5
3.5
Output
Voltage:
(V)
ROUT (V)
Output
VoltageVVROUT
(V)
Output
VoltageVVROUT
Output
Voltage:
ROUT (V)
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
4.0
3.0
Topr= 25℃
Topr= - 40℃
Topr= 85℃
2.5
2.0
1.5
1.0
0.5
0.0
3.0
2.5
2.0
1.5
VIN= 5.0V
VIN= 6.0V
1.0
0.5
0.0
0
100
200
300
400
500
Output
OutputCurrent:
Current IIROUT(mA)
ROUT (mA)
600
700
0
100
200
300
400
500
600
700
Output
Current IIROUT(mA)
Output
Current:
ROUT (mA)
21/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(1)VR Output Voltage vs. VR Output Current (Continued)
XC6405 V
Series
(VR:5.0V)
ROUT=5.0V
6.0
5.0
Topr= 25℃
Topr= - 40℃
Topr= 85℃
4.0
3.0
2.0
1.0
0.0
100
200
300
400
500
600
4.0
VIN= 6.0V
3.0
2.0
1.0
700
0
100
200
300
400
OutputCurrent:
Current IROUT
(mA)
Output
IROUT (mA)
XC6405
(VR:0.9V)
VSeries
ROUT=0.9V
XC6405
Series
(VR:0.9V)
VROUT
=0.9V
0.9
0.6
0.3
100
200
300
400
500
Output
CurrentIROUT
IROUT(mA)
Output
Current:
(mA)
600
700
700
1.2
0.9
0.6
VIN= 2.0V
VIN= 2.9V
VIN= 6.0V
0.3
0.0
0.0
600
CIN=1.0
μ F (ceramic), CL=4.7
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=4.7μF(ceramic)
1.5
(V)
Output
Voltage:
Output
Voltage V
VROUT
ROUT (V)
Topr= 25℃
Topr= - 40℃
Topr= 85℃
1.2
0
500
Output
Current IIROUT(mA)
Output
Current:
ROUT (mA)
VIN=2.9V,
VIN1=2.9V
CIN=1.0
μ F (ceramic), CL=4.7
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=4.7μF(ceramic)
1.5
Output
VROUT (V)
(V)
OutputVoltage:
Voltage VROUT
5.0
0.0
0
22/52
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
6.0
Output
VROUT (V)
(V)
OutputVoltage:
Voltage VROUT
(V)
Output
VoltageVVROUT
Output
Voltage:
ROUT (V)
ROUT=5.0V
XC6405 V
Series
(VR:5.0V)
VIN=6.0V,
V
IN1=6.0V
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
0
100
200
300
400
500
OutputCurrent:
Current IIROUT(mA)
Output
(mA)
ROUT
600
700
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2)VR Output Voltage vs. Input Voltage
VROUT
=0.9V
XC6405
Series
(VR:0.9V)
Topr=25
Ta=25℃
℃
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=4.7μF(ceramic)
μ F (ceramic), CL=4.7
μ F (ceramic)
IOUT=0mA
1mA
30mA
100mA
1.3
1.1
1.00
(V)
Output
VoltageVVROUT
Output
Voltage:
ROUT (V)
Output
VoltageVVROUT
Output
Voltage:
ROUT (V)(V)
1.5
0.9
0.7
0.5
0.5
1.0
1.5
2.0
InputVoltage:
Voltage VIN
Input
V (V)
(V)
ROUT=0.9V
XC6405VSeries
(VR:0.9V)
Topr=25Ta=25℃
℃
CIN=1.0Cμ
(ceramic), CL=4.7Cμ
F (ceramic)
=1.0μF(ceramic),
IN1F
L1=4.7μF(ceramic)
IOUT=0mA
1mA
30mA
100mA
0.80
0.60
2.0
2.5
3.0
IN1
Topr=25
℃
Ta=25℃
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
1.6
IOUT=0mA
1mA
30mA
100mA
1.2
1.0
1.85
1.80
1.75
IOUT=0mA
1mA
30mA
100mA
1.70
1.65
1.3
1.8
InputVoltage:
Voltage VIN
Input
VIN1(V)
(V)
2.3
3.0
2.3
IOUT=0mA
1mA
30mA
100mA
1.9
4.5
5.0
5.5
6.0
Topr=25
Ta=25℃
℃
CIN=1.0
F (ceramic), CL=1.0
CIN1μ
=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic)
2.60
Output
(V)
OutputVoltage:
Voltage V
VROUT
ROUT (V)
2.5
2.1
4.0
ROUT=2.5V
XC6405VSeries
(VR:2.5V)
Topr=25
Ta=25℃
℃
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
2.7
3.5
Input Voltage:
Voltage VIN
Input
VIN1(V)
(V)
XC6405VSeries
(VR:2.5V)
ROUT=2.5V
Output
(V)
ROUT (V)
OutputVoltage:
Voltage V
VROUT
6.0
Topr=25
Ta=25℃
℃
CIN=1.0
F (ceramic), CL=1.0
μ F (ceramic)
CIN1μ
=1.0μF(ceramic),
CL1=1.0μF(ceramic)
1.90
Output
Voltage
VROUT
Output
Voltage:
VROUT
(V) (V)
Output
Voltage:
(V)
Output
Voltage V
VROUT
ROUT (V)
1.8
1.4
5.0
VROUT=1.8V
XC6405 Series
(VR:1.8V)
XC6405VSeries
(VR:1.8V)
ROUT=1.8V
2.0
4.0
Input Voltage VIN (V)
Input
Voltage: VIN1 (V)
2.55
2.50
IOUT=0mA
1mA
30mA
100mA
2.45
2.40
1.7
2.0
2.5
Input Voltage:
Voltage VIN
Input
VIN1(V)
(V)
3.0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Input Voltage:
Voltage VIN
Input
VIN1(V)
(V)
23/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2)VR Output Voltage vs. Input Voltage (Continued)
VROUT
=3.0V
XC6405
Series
(VR:3.0V)
Topr=25
Ta=25℃
℃
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
3.0
2.8
IOUT=0mA
1mA
30mA
100mA
2.6
3.10
Output
VoltageVVROUT
Output
Voltage:
ROUT (V)(V)
OutputVoltage:
VoltageVVROUT
Output
ROUT (V) (V)
3.2
XC6405
Series
(VR:3.0V)
VROUT
=3.0V
2.4
2.2
2.5
3.0
Input Voltage:
Voltage VIN
Input
VIN1(V)
(V)
3.05
3.00
2.90
2.85
4.0
3.5
IOUT=0mA
1mA
30mA
100mA
4.6
4.4
4.2
4.5
24/52
5.0
Input
(V)
Input Voltage:
Voltage V
VIN
IN1 (V)
5.10
Output
VoltageVVROUT
Output
Voltage:
ROUT (V)(V)
Output
Voltage:
(V) (V)
Output
VoltageVROUT
VROUT
4.8
5.5
4.5
5.0
5.5
6.0
InputVoltage:
Voltage VIN
Input
VIN1(V)
(V)
VROUT
=5.0V
XC6405
Series
(VR:5.0V)
Topr=25
℃
Ta=25℃
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
5.0
IOUT=0mA
1mA
30mA
100mA
2.95
ROUT=5.0V
XC6405 V
Series
(VR:5.0V)
5.2
Topr=25
℃
Ta=25℃
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
Topr=25
Ta=25℃
℃
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
5.05
5.00
IOUT=0mA
1mA
30mA
100mA
4.95
4.90
4.85
5.2
5.3
5.4
5.5
5.6
5.7
5.8
Input
VIN1(V)
(V)
Input Voltage:
Voltage VIN
5.9
6.0
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3)Dropout Voltage vs. VR Output Current
XC6405 V
Series=1.8V
(VR:1.8V)
XC6405VSeries
(VR:0.9V)
ROUT=0.9V
1.4
Topr= 85℃
25℃
- 40℃
1.2
1
0.8
0.8
0.4
0.2
0
0
50
100
150
0
200
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
150
200
Topr= 85℃
25℃
- 40℃
0.4
0.2
0
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
1
Dropout voltage:
Voltage Vdif
Dropout
Vdif(V)
(V)
(V)
Dropout Voltage
Dropout
voltage:Vdif
Vdif
(V)
100
XC6405VSeries
(VR:3.0V)
ROUT=3.0V
XC6405
Series
(VR:2.5V)
VROUT
=2.5V
0.6
50
VR Output
CurrentIROUT
IROUT
(mA)
Output
Current:
(mA)
Output
Current:
(mA)
VR
Output
CurrentIROUT
IROUT
(mA)
0.8
Topr= 85℃
25℃
--40℃
40℃
0.6
0.6
1
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
1
Dropout voltage:
Voltage Vdif
Dropout
Vdif(V)
(V)
1.6
Dropout voltage:
Voltage Vdif
Dropout
Vdif(V)
(V)
ROUT
CIN=1.0
μ F (ceramic), CL=4.7
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=4.7μF(ceramic)
0.8
Topr= 85℃
25℃
- 40℃
0.6
0.4
0.2
0
0
50
100
150
200
Output
Current:
IROUT
(mA)
VR Output
Current
IROUT
(mA)
0
50
100
150
200
Output
Current:
IROUT
(mA)
VR Output
Current
IROUT
(mA)
XC6405VSeries
(VR:5.0V)
ROUT=5.0V
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
Dropout
Vdif(V)
(V)
Dropout voltage:
Voltage Vdif
1
0.8
0.6
Topr= 85℃
25℃
- 40℃
0.4
0.2
0
0
50
100
150
200
VR Output
Current
IROUT
(mA)
Output
Current:
IROUT
(mA)
25/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4)Supply Current vs. Input Voltage
VROUT
=0.9V
XC6405
Series
(VR:0.9)
120
VROUT=1.8V
XC6403 Series
(VR:1.8V)
CIN=1.0
μ F (ceramic), CL=4.7
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=4.7μF(ceramic)
80
60
Topr= 85℃
25℃
- 40℃
40
20
0
0.0
1.0
2.0
3.0
4.0
120
SupplyCurrent:
Current ISS
Supply
IDD (μA)
(μA)
SupplyCurrent:
Current ISS
Supply
IDD (μA)
(μA)
100
5.0
100
80
60
Topr= 85℃
25℃
- 40℃
40
20
0
0.0
6.0
Input
VIN1(V)
(V)
InputVoltage:
Voltage VIN
V
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
1.0
=2.5V
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
CIN=1.0
μ F (ceramic), CL=1.0
μ F (ceramic)
120
Supply
DD (μA)
SupplyCurrent:
Current IISS
(μA)
消費電流
Iss
(μA)
Supply
Current
ISS
Supply
Current:
I(μA)
DD (μA)
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
100
80
60
Topr= 85℃
25℃
- 40℃
40
20
0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
Input
VIN1(V)
(V)
Input Voltage:
Voltage VIN
120
CIN=1.0
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
μ F (ceramic), CL=1.0
μ F (ceramic)
100
80
60
Topr= 85℃
25℃
- 40℃
40
20
0
0.0
1.0
2.0
3.0
4.0
InputVoltage:
Voltage V
VIN
Input
IN1 (V)
80
60
Topr= 85℃
25℃
- 40℃
40
20
0
0.0
1.0
2.0
3.0
4.0
Input
VIN1 (V)
(V)
InputVoltage:
Voltage VIN
XC6405VSeries
(VR:5.0V)
ROUT=5.0V
Supply
IDD (μA)
SupplyCurrent:
Current ISS
(μA)
6.0
XC6405VSeries
(VR:3.0V)
ROUT=3.0V
100
26/52
5.0
IN1
ROUT
XC6405 Series
(VR:2.5V)
120
2.0
3.0
4.0
Input
Voltage
VIN
Input Voltage: V (V)
(V)
5.0
6.0
5.0
6.0
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5)VR Output Voltage vs. Ambient Temperature
VROUT=1.8V
XC6403 Series
(VR:1.8V)
VROUT=0.9V
XC6405 Series
(VR:0.9)
VIN=2.0V
V
IN1=2.0V
CIN1=1.0μF(ceramic),
CL1=4.7μF(ceramic)
CIN=1.0
μF (ceramic), CL=4.7
μF (ceramic)
2.00
1.95
1.00
(V)
OutputVoltage:
Voltage VROUT
Output
VROUT (V)
(V)
OutputVoltage:
Voltage VROUT
Output
VROUT (V)
1.10
0.90
0.80
IOUT=0mA
=30mA
=100mA
0.70
0.60
1.90
1.85
1.80
1.75
IOUT=0mA
=30mA
=100mA
1.70
1.65
1.60
-50
-25
0
25
50
75
100
Operating
TemperatureTa
Topr
(℃)
Ambient
Temperature:
(℃)
-50
-25
0
25
50
75
Operating
Temperature Topr
( ℃)
Ambient Temperature:
Ta (℃)
XC6405 Series
(VR:2.5V)
VROUT=2.5V
XC6405 V
Series
(VR:3.0V)
ROUT=3.0V
VIN=3.5V
VIN1=3.5V
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
CIN=1.0
μF (ceramic), CL=1.0
μF (ceramic)
2.70
100
VIN=4.0V
V
IN1=4.0V
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
CIN=1.0
μF (ceramic), CL=1.0
μF (ceramic)
3.20
2.65
3.15
IOUT=0mA
=30mA
=100mA
2.60
2.55
(V)
OutputVoltage:
Voltage VROUT
Output
VROUT (V)
(V)
OutputVoltage:
Voltage VROUT
Output
VROUT (V)
VVIN=2.8V
IN1=2.8V
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
CIN=1.0
μF(ceramic), CL=1.0
μF (ceramic)
2.50
2.45
2.40
2.35
IOUT=0mA
=30mA
=100mA
3.10
3.05
3.00
2.95
2.90
2.85
2.80
2.30
-50
-25
0
25
50
75
Operating
Temperature
Ambient
Temperature:
TaTopr
(℃)(℃)
100
-50
-25
0
25
50
75
100
Operating
Temperature Ta
Topr
(℃)
Ambient
Temperature:
(℃)
XC6405 Series
(VR:5.0V)
VROUT=5.0V
VIN=6.0V
VIN1=6.0V
CIN1=1.0μF(ceramic),
CL1=1.0μF(ceramic)
CIN=1.0
μF (ceramic), CL=1.0
μF (ceramic)
5.20
(V)
Output Voltage:
Voltage VROUT
Output
VROUT (V)
5.15
IOUT=0mA
=30mA
=100mA
5.10
5.05
5.00
4.95
4.90
4.85
4.80
-50
-25
0
25
50
75
100
Operating
TemperatureTa
Topr
( ℃)
Ambient
Temperature:
(℃)
27/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(6)Supply Current vs. Ambient Temperature
VROUT=0.9V
VROUT=1.8V
VIN1=2.8V
Supply Current: IDD (μA)
Supply Current: IDD (μA)
VIN1=2.0V
Ambient Temperature: Ta (℃)
Ambient Temperature: Ta (℃)
VROUT=2.5V
VROUT=3.0V
VIN1=4.0V
Supply Current: IDD (μA)
Supply Current: IDD (μA)
VIN1=3.5V
Ambient Temperature: Ta (℃)
VROUT=5.0V
Supply Current: IDD (μA)
VIN1=6.0V
Ambient Temperature: Ta (℃)
28/52
Ambient Temperature: Ta (℃)
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(7)Rdelay vs. Ambient Temperature
(8)Output Noise Density
Output Noise Density (μV/RootHz)
800
700
Rdelay (kΩ)
600
500
400
300
200
100
0
-50
-25
0
25
50
75
VIN1=4.0V
VIN=4.0V
CIN1=1.0μF(セラミック),
CL1=1.0μF(ceramic)
IOUT=10mA
CL=10uF(セラミック)
10
1
0.1
0.01
100
0.1
1
Ambient Temperature: Ta(℃)
10
100
Frequency: (kHz)
(9)Detect Voltage, Release Voltage vs. Ambient Temperature
XC6405 Series
(VD:2.7V)
VDF=2.7V
2.20
2.15
2.10
2.05
VDR
2.00
1.95
VDF
1.90
-50
-25
0
25
50
75
OperatingTemperature:
Temperature Topr
( O℃
C))
Ambient
Ta (℃)
100
Detect
Voltage,
VDF,VDR (V)
(V)
Detect
Voltage,Release
ReleaseVoltage:
Voltage VDF,VDR
Detect
Voltage,
Release
VDF,VDR (V)
Detect
Voltage,
ReleaseVoltage:
Voltage VDF,VDR
(V)
VDF=2.0V
XC6405 Series
(VD:2.0V)
2.90
2.85
2.80
VDR
2.75
2.70
VDF
2.65
2.60
-50
-25
3.75
VDR
3.70
3.65
3.60
VDF
3.50
-25
0
25
50
75
Ambient
Temperature:
Operating
Temperature Ta
Topr(℃)
( ℃)
100
Detect
Voltage,
VDF,VDR (V)
(V)
Detect
Voltage,Release
Release Voltage:
Voltage VDF,VDR
Detect
Voltage,
Release
VDF,VDR (V)
(V)
Detect
Voltage,
ReleaseVoltage:
Voltage VDF,VDR
3.80
-50
25
50
75
100
XC6405 V
Series
(VD:5.0V)
DF=5.0V
XC6405 Series
(VD:3.6V)
VDF=3.6V
3.55
0
Operating
TemperatureTa
Topr
( ℃)
Ambient
Temperature:
(℃)
5.40
5.30
5.20
VDR
5.10
5.00
VDF
4.90
-50
-25
0
25
50
75
100
Ambient
Temperature:
Operating
Temperature Ta
Topr(℃)
( ℃)
29/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10)VD N-channel Driver Transistor Output Current vs. VDS
VDF=2.0V
XC6405 Series
(VD:2.0V)
VDF=2.7V
XC6405 Series
(VD:2.7V)
Ta=25℃
Topr=25
℃
8
14
Output
IDOUT(mA)
(mA)
OutputCurrent:
Current IOUT
Output Current IOUT(mA)
Output Current: IDOUT (mA)
7
VIN=2.0V
6
5
4
3
2
1
0
0.5
1
VIN=2.5V
10
8
VIN=2.0V
6
4
VIN=1.5V
2
VIN=1.0V
1.5
2
2.5
0
0.5
1
1.5
2
2.5
VDS
VDS (V)
(V)
VDS
VDS (V)
XC6405VSeries
(VD:3.6V)
DF=3.6V
XC6405 Series
(VD:5.0V)
VDF=5.0V
Ta=25℃
Topr=25
℃
24
3
Ta=25℃
Topr=25
℃
32
28
18
Output
IDOUT(mA)
(mA)
Output Current:
Current IOUT
21
Output
IDOUT(mA)
(mA)
Output Current:
Current IOUT
12
0
0
VIN=3.0V
15
VIN=2.5V
12
9
VIN=2.0V
6
VIN=1.5V
3
VIN=4.5V
24
20
VIN=3.5V
16
VIN=2.5V
12
8
VIN=2.0V
4
VIN=1.5V
0
0
0
30/52
Ta=25℃
16
1
2
VDS
(V)
VDS (V)
3
4
0
1
2
VDS
VDS (V)
(V)
3
4
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(11)VD N-channel Driver Transistor Output Current vs. Input Voltage
XC6405 Series (VD:2.0V)
XC6405 Series
(VD:2.7V)
VDF=2.7V
VDF=2.0V
15
-40℃
VDS=0.5V
Output Voltage
Output
Current:IOUT
IDOUT(mA)
(mA)
Output
IDOUT(mA)
(mA)
OutputCurrent:
Current IOUT
8
6
25℃
4
2
85℃
VDS=0.5V
12
-40℃
25℃
9
6
3
85℃
0
0
0
0.5
1
1.5
2
0
2.5
1
3
4
Input Voltage:
Voltage VIN
Input
VIN1(V)
(V)
InputVoltage:
Voltage VIN
Input
VIN1(V)
(V)
XC6405 Series (VD:5.0V)
XC6405 Series
(VD:3.6V)
VDF=3.6V
VDF=5.0V
20
25
VDS=0.5V
16
OutputCurrent:
Current IOUT
Output
IDOUT(mA)
(mA)
Output Current:
Current IOUT
Output
IDOUT(mA)
(mA)
2
-40℃
12
25℃
8
4
85℃
0
VDS=0.5V
20
-40℃
25℃
15
10
5
85℃
0
0
1
2
3
Input Voltage:
Voltage VIN
Input
VIN1(V)
(V)
4
0
1
2
3
4
5
6
InputVoltage:
Voltage VIN
Input
VIN1(V)
(V)
31/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12)Input Transient Response
VROUT=0.9V
VROUT=0.9V
IROUT=30mA, tr=tf=5.0μs
CL1=4.7μF(ceramic), Ta=25℃
IROUT=1mA, tr=tf=5.0μs
CL1=4.7μF(ceramic), Ta=25℃
Output Voltage
Time (40μs /div)
Time (40μs/div)
VROUT=0.9V
VROUT=1.8V
Input Voltage: VIN1 (V)
Output Voltage: VROUT (V)
Output Voltage
Time (40μs /div)
Time (40μs /div)
VROUT=1.8V
VROUT=1.8V
出力電圧
Output
Voltage
Time (40μs /div)
32/52
Input Voltage: VIN1 (V)
IROUT=100mA, tr=tf=5.0μs
CL1=1.0μF(ceramic), Ta=25℃
Output 出力電圧
Voltage:VOUT(V)
VROUT (V)
Input Voltage: VIN1 (V)
IROUT=30mA, tr=tf=5.0μs
CL1=1.0μF(ceramic), Ta=25℃
Input入力電圧
Voltage
Input Voltage
入力電圧
Input
Voltage
Output Voltage
Time (40μs /div)
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
Input Voltage
Output Voltage: VROUT (V)
IROUT=1mA, tr=tf=5.0μs
CL1=1.0μF(ceramic), Ta=25℃
IROUT=100mA, tr=tf=5.0μs
CL1=4.7μF(ceramic), Ta=25℃
Output Voltage
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
Output Voltage
Input Voltage
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
Input Voltage
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12)Input Transient Response (Continued)
2.56
5
2.56
2.54
3
2.52
2
2.50
1
Output Voltage
Output Voltage
0
2.48
4
2.52
2
2.50
6
2.56
5
2.54
入力電圧
Voltage
InputInput
Voltage
3
2
2.52
Output
Voltage
Output
Voltage
2.50
1
2.48
0
2.46
Input
VIN1(V)
(V)
InputVoltage:
Voltage VIN
2.58
(V)
Output
VoltageVOUT(V)
VOUT
出力電圧
出力電圧
VOUT(V)
Output
Voltage:
V
ROUT (V)
Input
VIN1
(V)
(V)
Input Voltage:
Voltage VIN
4
4
Voltage
InputInput
Voltage
3.02
2
3.00
1
3.06
5
3.04
2
3.00
0
2.98
2.96
Time
(40
μ sec/div)
時間(40μsec/div)
Time
(40μs
/div)
3.04
3
6
3.02
OutputVoltage
Voltage
Output
3.06
Voltage
InputInput
Voltage
3.08
3
1
3.08
Output
Voltage
Output
Voltage
2.98
2.96
Time
μ sec/div)
Time(40
(40μs
/div)
InputVoltage:
Voltage VIN
Input
VIN1(V)
(V)
Input
Voltage:
VIN1(V)
(V)
Input
Voltage VIN
5
VROUT
=3.0V
XC6405
Series
(VR:3.0V)
IOUT=1mA,
tr=tf=5.0
IROUT=1mA,
tr=tf=5.0μs
μ sec,
CL=1.0
μ F (ceramic), Topr=25
℃
Ta=25℃
CL1=1.0μF(ceramic),
0
(V)
Output
Voltage V
VOUT
Output
Voltage:
ROUT (V)
6
2.46
4
Time
μ sec/div)
Time(40
(40μs
/div)
VROUT
=3.0V
XC6405
Series
(VR:3.0V)
IOUT=30mA,
tr=tf=5.0
IROUT=30mA,
tr=tf=5.0μs
μ sec,
CL=1.0
μ F (ceramic), Topr=25
℃
CL1=1.0μF(ceramic),
Ta=25℃
2.48
Time (40
μsec/div)
Time
(40μs
/div)
VROUT
=2.5V
XC6405
Series
(VR:2.5V)
5
Output
Voltage
Output
Voltage
0
Time(40μsec/div)
(40μs /div)
Time
6
2.54
3
1
2.46
IOUT=100mA,
tr=tf=5.0
μ sec,
IROUT=100mA,
tr=tf=5.0μs
CL=1.0
μ F (ceramic), Topr=25
℃
CL1=1.0μF(ceramic),
Ta=25℃
Voltage
InputInput
Voltage
Output
Voltage VOUT
Output
Voltage:
VROUT(V)
(V)
Input Voltage
Input Voltage
6
VSeries
ROUT=3.0V
XC6405
(VR:3.0V)
IROUT=100mA,
tr=tf=5.0μs
IOUT=100mA,
tr=tf=5.0
μ sec,
Ta=25℃
CL1=1.0μF(ceramic),
CL=1.0
μ F (ceramic), Topr=25
℃
3.08
3.06
4
3.04
Voltage
InputInput
Voltage
3
2
3.02
Output
Voltage
Output
Voltage
1
3.00
2.98
0
Output
Voltage V
VOUT (V)
Output
Voltage:
ROUT (V)
4
2.58
IOUT=30mA,
tr=tf=5.0
IROUT=30mA,
tr=tf=5.0μs
μ sec,
CL=1.0
μ F (ceramic), Topr=25
℃ 2.58
Ta=25℃
CL1=1.0μF(ceramic),
Input
VIN1
(V(V)
)
Input Voltage:
Voltage VIN
5
VROUTSeries
=2.5V (VR:2.5V)
XC6405
OutputVoltage:
Voltage VVOUT
(V)
Output
ROUT (V)
Input
(V)
IN1 (V)
InputVoltage:
Voltage V
VIN
6
IOUT=1mA,
tr=tf=5.0
IROUT=1mA,
tr=tf=5.0μs
μ sec,
CL=1.0
μ F (ceramic), Topr=25
℃
Ta=25℃
CL1=1.0μF(ceramic),
(V )
Output
Voltage V
VOUT
Output
Voltage:
ROUT (V)
VROUT
=2.5V
XC6405
Series
(VR:2.5V)
2.96
Time (40
μ sec/div)
Time
(40μs
/div)
33/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12)Input Transient Response (Continued)
ROUT=5.0V
XC6405VSeries
(VR:5.0V)
5.06
6
5.04
5
5.02
4
3
5.00
OutputVoltage
Voltage
Output
2
4.98
8
4.96
InputInput
Voltage
Voltage
5.06
6
5.04
5
5.02
4
OutputVoltage
Voltage
Output
3
5.00
4.98
2
4.96
Time(40
(40μs
/div)
Time
μsec/div)
34/52
5.08
(V)
Output
Voltage
VOUT
出力電圧
出力電圧
VOUT(V)
VOUT(V)
Output
Voltage:
V
ROUT (V)
Input
VIN1(V)
(V)
InputVoltage:
Voltage VIN
7
6
5
4
5.08
5.06
5.04
5.02
Output Voltage
Voltage
Output
3
5.00
4.98
4.96
時間(40μsec/div)
Time
(40μs
/div)
Time
(40
μsec/div)
VROUT
=5.0V
XC6405
Series
(VR:5.0V)
8
Input
Voltage
Input
Voltage
2
時間(40μsec/div)
Time
(40
μsec/div)
Time
(40μs
/div)
IOUT=100mA,
tr=tf=5.0
IROUT=100mA,
tr=tf=5.0μs
μsec,
CL=1.0
CL1=1.0μF(ceramic),
Ta=25℃
μF (ceramic), Topr=25
℃
7
IOUT=30mA,
tr=tf=5.0
IROUT=30mA,
tr=tf=5.0μs
μsec,
CL=1.0
Ta=25℃
CL1=1.0μF(ceramic),
μF (ceramic), Topr=25
℃
Output Voltage VOUT (V)
Output
Voltage: VROUT (V)
Input
Voltage
Input
Voltage
5.08
Input
Voltage:
VIN1(V)
(V)
入力電圧
VIN(V)
Input
Voltage
VIN
7
XC6405
(VR:5.0V)
VSeries
ROUT=5.0V
Output
Voltage
VOUT
Output
Voltage:
VROUT(V)
(V)
出力電圧
VOUT(V)
Input
VIN1
(V)
(V)
Input Voltage:
Voltage VIN
8
IOUT=1mA,
tr=tf=5.0
IROUT=1mA,
tr=tf=5.0μs
μsec,
CL=1.0
Ta=25℃
CL1=1.0μF(ceramic),
μF (ceramic), Topr=25
℃
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13)Load Transient Response
VROUT=0.9V
VROUT=0.9V
VIN1=2.0V, tr=tf=5.0μs, Ta=25℃
CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic)
Time (20μs /div)
VROUT=0.9V
VROUT=1.8V
Output Current
時間(20μsec/div)
時間(40μsec/div)
Time (20μs /div)
Time (20μs /div)
VROUT=1.8V
VROUT=1.8V
VIN1=2.8V, tr=tf=5.0μs
CIN1=CL1=1.0μF(ceramic), Ta=25℃
Output Voltage
Output Voltage
Output Current
Time (20μs /div)
Output Voltage: VROUT (V)
VIN1=2.8V, tr=tf=5.0μs
CIN1=CL1=1.0μF(ceramic), Ta=25℃
Output Current
Output Current: IROUT (mA)
Output Voltage
Output Voltage: VROUT (V)
Output Current
出力電圧
VOUT
(V)(mA)
Output
Current:
IROUT
入力電圧
Output
Voltage
Output Current: IROUT (mA)
VIN1=2.8V, tr=tf=5.0μs
CIN1=CL1=1.0μF(ceramic), Ta=25℃
Output Current: IROUT (mA)
VIN(V)
Output入力電圧
Voltage:
VROUT (V)
Output Current
Time (20μs /div)
VIN1=2.0V, tr=tf=5.0μsec, Ta=25℃
CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic)
Output Voltage: VROUT (V)
Output Voltage
Output Current: IROUT (mA)
Output
Voltage:
VROUT (V)
入力電圧
VIN(V)
Output Current
Output Current: IROUT (mA)
Output Voltage: VROUT (V)
Output Voltage
VIN1=2.0V, tr=tf=5.0μs, Ta=25℃
CIN1=1.0μF(ceramic), CL1=4.7μF(ceramic)
Time (20μs /div)
35/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13)Load Transient Response (Continued)
2.45
150
100
Output Current
Output Current
2.35
50
2.30
250
2.50
200
2.45
150
2.40
100
2.35
OutputCurrent
Current
Output
50
OutputCurrent:
Current IOUT
Output
IROUT(mA)
(mA)
200
VROUT(VR:2.5V)
=2.5V
XC6405 Series
VIN1=3.5V,
tr=tf=5.0μs
VIN=2.5V,
tr=tf=5.0
μ sec
Ta=25℃
CIN1=CL1=1.0μF(ceramic),
CIN=CL=1.0
μ F (ceramic), Topr=25
℃
Output
Voltage
Output
Voltage
Output
VROUT(V)
(V)
Output Voltage:
Voltage VOUT
Output
Voltage
Output
Voltage
2.50
2.40
2.55
250
(mA)
Output
Current IIOUT
Output
Current:
ROUT (mA)
Output
VROUT(V)
(V)
OutputVoltage:
Voltage VOUT
2.55
VROUT
=2.5V
XC6405
Series
(VR:2.5V)
VIN1=3.5V,
tr=tf=5.0μs
VIN=2.5V,
tr=tf=5.0
μ sec
Ta=25℃
CIN1=CL1=1.0μF(ceramic),
CIN=CL=1.0
μ F (ceramic), Topr=25
℃
0
Time(20
(20μs
/div)
Time
μ sec/div)
2.30
0
Time (20μ sec/div)
Time (20μs /div)
XC6405VSeries
(VR:2.5V)
ROUT=2.5V
250
3.05
2.50
200
3.00
200
2.45
150
2.95
150
2.40
100
OutputCurrent
Current
Output
2.30
50
Output
VROUT(V)
(V)
OutputVoltage:
Voltage VOUT
2.35
Output
OutputVoltage
Voltage
Output
CurrentIIOUT
(mA)
Output
Current:
ROUT (mA)
Output
Voltage:
ROUT (V)
Output
VoltageVVOUT
(V)
Output
Voltage
Output
Voltage
2.90
2.85
XC6405VSeries
(VR:3.0V)
ROUT=3.0V
2.95
150
2.90
100
2.80
50
0
Time
(20μs /div)
Time (20μsec/div)
Output
VROUT(V)
(V)
OutputVoltage:
Voltage VOUT
200
Output
IROUT (mA)
(mA)
OutputCurrent:
Current IOUT
Output
Voltage:
ROUT (V)
Output
VoltageVVOUT
(V)
Output
Voltage
Output
Voltage
OutputCurrent
Current
Output
3.05
250
3.00
2.85
100
50
0
Time (20
μ sec/div)
Time
(20μs
/div)
Time (20μsec/div)
Time
(20μs /div)
3.05
Output Current
Current
Output
2.80
0
VIN=4.0V,
tr=tf=5.0
VIN1=4.0V,
tr=tf=5.0μs
μ sec
Ta=25℃
CIN1=CL1=1.0μF(ceramic),
CIN=CL=1.0
μ F (ceramic), Topr=25
℃
250
(mA)
Output Current
IOUT
Output
Current:
IROUT
(mA)
2.55
36/52
XC6405VSeries
(VR:3.0V)
ROUT=3.0V
VIN=4.0V,
tr=tf=5.0
VIN1=4.0V,
tr=tf=5.0μs
μ sec
Ta=25℃
CIN1=CL1=1.0μF(ceramic),
CIN=CL=1.0
μ F (ceramic), Topr=25
℃
3.00
VROUT(VR:3.0V)
=3.0V
XC6405 Series
VIN1=4.0V,
tr=tf=5.0μs
VIN=4.0V,
tr=tf=5.0
μ sec
Ta=25℃
CIN1=CL1=1.0μF(ceramic),
CIN=CL=1.0
μ F (ceramic), Topr=25
℃
OutputVoltage
Voltage
Output
250
200
2.95
150
2.90
100
2.85
OutputCurrent
Current
Output
2.80
50
0
Time(20
(20μs
/div)
Time
μ sec/div)
Output
Current:
(mA)
Output
Current IIOUT
ROUT (mA)
VIN1=3.5V,
tr=tf=5.0μs
VIN=2.5V,
tr=tf=5.0
μ sec
Ta=25℃
CIN1=CL1=1.0μF(ceramic),
CIN=CL=1.0
μ F (ceramic), Topr=25
℃
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13)Load Transient Response (Continued)
Output Voltage
Output Voltage
Output Current
Time (20μs /div)
Output Voltage: VROUT (V)
VIN1=6.0V, tr=tf=5.0μs
CIN1=CL1=1.0μF(ceramic), Ta=25℃
Output Current
Output Current: IROUT (mA)
VROUT=5.0V
VIN1=6.0V, tr=tf=5.0μs
CIN1=CL1=1.0μF(ceramic), Ta=25℃
Output Current: IROUT (mA)
Output Voltage: VROUT (V)
VROUT=5.0V
Time (20μs /div)
VROUT=5.0V
Output Voltage: VROUT (V)
Output Voltage
Output Current
Output Current: IROUT (mA)
VIN1=6.0V, tr=tf=5.0μs
CIN1=CL1=1.0μF(ceramic), Ta=25℃
Time (20μs /div)
37/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(14)Ripple Rejection Rate
VROUT=0.9V
VROUT=1.8V
VIN1VIN=2.5V
=2.25VDC+0.5Vp-pAC
DC+0.5Vp-PAC
IROUT=50mA,
CL1=1.0μF(ceramic)
IOUT=50mA
CL=4.7μF(セラミック)
90
ripple rejection
ratio:
リップル除
去率RR
RR(dB)
(
80
リップル除去
率RR
RR(dB)
(
ripple rejection
ratio:
VIN1=2.8VDC+1.0Vp-pAC
VIN=2.8V
DC+0.5Vp-PAC
CL1
=1.0μF(ceramic)
IROUT=50mA,
IOUT=50mA
CL=1.0μF(セラミック)
90
70
60
50
40
30
20
10
0
0.01
0.1
1
10
リップル周波数 f (kHz)
リップル周
波数 ff (kHz)
Ripple
Frequency:
(kHz)
100
80
70
60
50
40
30
20
10
0
0.01
VROUT=2.5V
IOUT=50mA CL=1.0μF(セラミック)
90
ripple リップル除
rejection ratio:
去率RR
RR ((dB)
ripple rejection
ratio:
リップル除
去率RR
RR(dB)
(
80
70
60
50
40
30
20
10
0
0.01
リップル周波数 f (kHz)
0.1
1
10
リップル
周
波数
f
(kHz)
Ripple Frequency: f (kHz)
100
VIN1=5.75VDC+0.5Vp-pAC
VIN=5.75V
DC+0.5Vp-PAC
=50mA, C
IROUT
L1=1.0μF(ceramic)
IOUT=50mA
CL=1.0μF(セラミック)
ripple rejection
RRRR
(dB)
リップルratio:
除去率
(
80
70
60
50
40
30
20
10
0
0.01
38/52
リップル周波数 f (kHz)
0.1
1
10
リップル周波数 f (kHz)
Ripple Frequency: f (kHz)
V
IN1=4.0VDC+1.0Vp-pAC
VIN=4.0V
DC+0.5Vp-PAC
CL1CL=1.0μF(セラミック)
=1.0μF(ceramic)
IROUT=50mA,
IOUT=50mA
80
70
60
50
40
30
20
10
0
0.01
リップル周波数 f (kHz)
0.1
1
10
リップル周
波数 ff (kHz)
Ripple
Frequency:
(kHz)
VROUT=5.0V
90
100
VROUT=3.0V
VIN1=3.5VDC+1.0Vp-pAC
VIN=3.5V DC+0.5Vp-PAC
IROUT=50mA, CL1=1.0μF(ceramic)
90
0.1
1
10
リップル周波数 f (kHz)
リップル周
波数 f (kHz)
Ripple
Frequency:
f (kHz)
100
100
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15)Input Voltage Rising Response Time
VROUT=0.9V
5
4
Inpit Voltage
0
3
-2
2
1
-6
0
2
-2
-4
-4
-6
4
5
3
2
Output Voltage
1
0
3
-2
2
-4
Output Voltage
VROUT=1.8V
VROUT=1.8V
IROUT=100mA, tr= 5.0μs
VIN1=0→2.8V, CL1=1.0μF(ceramic)
5
4
0
3
-2
2
Output Voltage
1
0
-6
Time (20μs/div)
4
Input Voltage: VIN1 (V)
Inpit Voltage
1
0
Time (20μs/div)
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
4
-6
0
5
Inpit Voltage
Time (20μs/div)
4
-4
IROUT=1mA, tr= 5.0μs
VIN1=0→2.8V, CL1=1.0μF(ceramic)
2
IROUT=30mA, tr= 5.0μs
VIN1=0→2.8V, CL1=1.0μF(ceramic)
2
0
Output Voltage: VROUT (V)
-2
1
VROUT=1.8V
Input Voltage: VIN1 (V)
0
2
Output Voltage
Time (20μs/div)
4
Inpit Voltage
3
-6
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
2
4
0
VROUT=0.9V
4
5
Inpit Voltage
Time (20μs/div)
IROUT=100mA, tr= 5.0μs
VIN1=0→2.0V, CL1=4.7μF(ceramic)
IROUT=30mA, tr= 5.0μs
VIN1=0→2.0V, CL1=4.7μF(ceramic)
5
2
4
Inpit Voltage
0
3
-2
2
-4
Output Voltage
-6
1
Output Voltage: VROUT (V)
-4
Output Voltage
Input Voltage: VIN1 (V)
2
4
Output Voltage: VROUT (V)
Input Voltage: VIN1 (V)
4
IROUT=1mA, tr= 5.0μs
VIN1=0→2.0V, CL1=4.7μF(ceramic)
Output Voltage: VROUT (V)
VROUT=0.9V
0
Time (20μs/div)
39/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15)Input Voltage Rising Response Time (Continued)
XC6405 Series (VR:2.5V)
XC6405 Series
(VR:2.5V)
VROUT=2.5V
4
Input
Voltage
Inpit
Voltage
3
-3
2
Output
Voltage
Output
Voltage
-5
1
0
3
1
-3
-5
1
-5
3
3
InputVoltage
Voltage
Inpit
1
-1
OutputVoltage
Voltage
Output
-3
Input
Voltage
Inpit
Voltage
2
-5
0
ROUT
5
5
4
3
OutputVoltage
Voltage
Output
4
1
XC6405VSeries=3.0V
(VR:3.0V)
IOUT=30mA,
μ sec
IROUT=30mA,tr=5.0
tr= 5.0μs
→ 4.0V, CL=1.0μ F (ceramic)
VVIN=0
IN1=0→4.0V, CL1=1.0μF(ceramic)
5
3
XC6405 V
Series
(VR:3.0V)
ROUT=3.0V
2
-3
1
-5
0
Time
(20(20μs/div)
μ sec/div)
Time
40/52
IROUT=1mA,
tr= μ
5.0μs
IOUT=1mA,
tr=5.0
sec
VIN=0
VIN1=0→4.0V,
CL1=1.0μF(ceramic)
→ 4.0V, CL=1.0
μ F (ceramic)
Time
(20(20μs/div)
μ sec/div)
Time
1
-1
0
Time
(20(20μs/div)
μ sec/div)
Time
InputVoltage:
Voltage VIN
Input
VIN1(V)
(V)
Input
Voltage VIN
Input
Voltage:
VIN1(V)
(V)
5
0
Input
Voltage VIN
Input
Voltage:
VIN1(V)
(V)
2
Output
Voltage
Output
Voltage
Output
Voltage:
VROUT(V)
(V)
Output
Voltage VOUT
3
-3
5
5
4
-1
1
XC6405
Series
(VR:3.0V)
VROUT
=3.0V
Input Voltage
Inpit Voltage
1
2
OutputVoltage
Voltage
Output
Time
(20(20μs/div)
μ sec/div)
Time
Output
Voltage:
(V)
ROUT (V)
Output
VoltageV
VOUT
VoltageVVIN(V)
(V)
InputInput
Voltage:
IN1
3
3
-1
XC6405
Series
(VR:2.5V)
VROUT
=2.5V
5
4
InputVoltage
Voltage
Inpit
Time
μ sec/div)
Time(20
(20μs/div)
IOUT=100mA,
μ sec
IROUT=100mA,tr=5.0
tr= 5.0μs
→ 3.5V, CL=4.7μ F (ceramic)
VVIN=0
IN1=0→3.5V, CL1=1.0μF(ceramic)
5
Output
Voltage:
(V)
ROUT (V)
Output
Voltage V
VOUT
-1
IOUT=30mA,
μ sec
IROUT=30mA,tr=5.0
tr= 5.0μs
→ 3.5V,CCL=4.7
μ F (ceramic)
VVIN=0
IN1=0→3.5V,
L1=1.0μF(ceramic)
3
IOUT=100mA,
μ sec
IROUT=100mA,tr=5.0
tr= 5.0μs
→ 4.0V,CCL=1.0
μ F (ceramic)
VVIN=0
IN1=0→4.0V,
L1=1.0μF(ceramic)
Input Voltage
Inpit Voltage
1
5
4
3
-1
2
OutputVoltage
Voltage
Output
-3
1
-5
0
Time
(20(20μs/div)
Time
μ sec/div)
Output
Voltage:
ROUT (V)
(V)
Output
VoltageVVOUT
1
Input
VoltageVVIN
(V)
Input
Voltage:
IN1 (V)
3
5
5
(V)
Output
VoltageV
VOUT (V)
Output
Voltage:
ROUT
Input
VIN1(V)
(V)
InputVoltage:
Voltage VIN
5
IOUT=1mA,
tr=5.0
IROUT=1mA,
tr= 5.0μs
μ sec
CL=4.7
ceramic)
VVIN=0
→ 3.5V, C
μ F ((ceramic)
IN1=0→3.5V,
L1=1.0μF
OutputVoltage:
Voltage VOUT
Output
VROUT(V)
(V)
VROUT=2.5V
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15)Input Voltage Rising Response Time (Continued)
XC6405 Series
(VR:5.0V)
VROUT
=5.0V
8
3
6
1
4
-1
Output Voltage
-3
2
7
0
5
IOUT=30mA,
tr=5.0
IROUT=30mA,
tr= 5.0μs
μ sec
CL=1.0
VVIN=0
→ 6.0V, C
μ F (ceramic)
IN1=0→6.0V,
L1=1.0μF(ceramic)
Input
Inpit Voltage
8
3
6
1
4
-1
2
Output Voltage
Output Voltage
-3
Time
(20(20μs/div)
Time
μ sec/div)
10
Output
VROUT(V)
(V)
OutputVoltage:
Voltage VOUT
InputVoltage
Voltage
Inpit
10
Input
Voltage VIN
Input
Voltage:
VIN1(V)
(V)
5
XC6405 Series
(VR:5.0V)
VROUT
=5.0V
OutputVoltage:
Voltage VOUT
Output
VROUT(V)
(V)
Input
VIN1(V)
(V)
InputVoltage:
Voltage VIN
7
IOUT=1mA,
tr=5.0
sec
IROUT=1mA,
tr= μ
5.0μs
VIN=0
CL1=1.0μF(ceramic)
VIN1=0→6.0V,
→ 6.0V, CL=1.0
μ F (ceramic)
0
Time
(20(20μs/div)
μ sec/div)
Time
XC6405 Series
VROUT(VR:5.0V)
=5.0V
5
Input
Inpit Voltage
Voltage
3
1
10
8
6
Output Voltage
Voltage
Output
-1
4
2
-3
OutputVoltage:
Voltage VOUT
Output
VROUT(V)
(V)
Input
VIN1(V)
(V)
InputVoltage:
Voltage VIN
7
IOUT=100mA,
tr=5.0
sec
IROUT=100mA,
tr= μ
5.0μs
VIN=0
VIN1=0→6.0V,
CL1=1.0μF(ceramic)
→ 6.0V, CL=1.0
μ F (ceramic)
0
Time
(20(20μs/div)
μ sec/div)
Time
41/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●2ch:DC/DC Convertor Block
(1) Efficiency vs. Output Current
VDCOUT=1.8V, fOSC=1.2MHz
VDCOUT=1.8V, fOSC=3.0MHz
L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF
80
70
60
100
90
Efficency: EFFI (%)
Efficency:EFFI (%)
100 PWM/PFM Automatic Sw itching Control
90
V IN2= 4.2V
3.6V
50
40
30
20
PWM Control
V IN2= 4.2V
3.6V
10
0
L=1.5μH(NR3015) CIN2=4.7μF CL2 =10μF
PWM/PFM Automatic Sw itching Control
80
70
60
V IN2= 4.2V
3.6V
50
40
30
20
PWM Control
V IN2= 4.2V
3.6V
10
0
0.1
1
10
100
1000
0.1
Output Current: IOUT2 (mA)
1
10
100
1000
Output Current: IOUT 2 (mA)
(2) Output Voltage vs. Output Current
VDCOUT=1.8V, fOSC=1.2MHz
2.0
PWM/PFM Automatic Sw itching Control
V IN2=4.2V,3.6V
1.9
1.8
1.7
PWM Control
1.6
L=1.5μH(NR3015) CIN2 =4.7μF CL2=10μF
2.1
Output Voltage: V DCOUT (V)
2.1
Output Voltage: V DCOUT (V)
VDCOUT=1.8V, fOSC=3.0MHz
L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF
1.5
2.0
PWM/PFM Automatic Sw itching Control
V IN2=4.2V,3.6V
1.9
1.8
1.7
PWM Control
1.6
1.5
0.1
1
10
100
1000
0.1
Output Current: IOUT2 (mA)
1
10
100
1000
Output Current: IOUT2 (mA)
(3) Ripple Voltage vs. Output Current
VDCOUT=1.8V, fOSC=1.2MHz
80
60
PWM Control
V IN2=4.2V,3.6V
40
PWM/PFM Automatic
Sw itching Control
V IN2=4.2V
3.6V
20
0
80
PWM/PFM Automatic
PWM Control
V IN2=4.2V,3.6V Sw itching Control
V IN2=4.2V
3.6V
60
40
20
0
0.1
1
10
100
Output Current: IOUT2 (mA)
42/52
L=1.5μH(NR3015) CIN2 =4.7μF CL2=10μF
100
Ripple Voltage: Vr (mV)
100
Ripple Voltage: Vr (mV)
VDCOUT=1.8V, fOSC=3.0MHz
L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF
1000
0.1
1
10
100
Output Current: IOUT 2 (mA)
1000
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Oscillation Frequency vs. Ambient Temperature
VDCOUT=1.8V, fOSC=3.0MHz
L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF
1.5
1.4
1.3
V IN2=3.6V
1.2
1.1
1.0
0.9
0.8
-50
-25
0
25
50
75
Oscillation Frequency: fOSC (MHz)
Oscillation Frequency: fOSC (MHz)
VDCOUT=1.8V, fOSC=1.2MHz
L=1.5μH(NR3015) CIN2 =4.7μF CL2=10μF
3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.8
V IN2=3.6V
2.7
2.6
2.5
-50
100
-25
0
25
50
75
100
Ambient Temperature: Ta ( ℃)
Ambient Temperature: Ta ( ℃)
(5) Supply Current vs. Ambient Temperature
VDCOUT=1.8V, fOSC=1.2MHz
VDCOUT=1.8V, fOSC=3.0MHz
40
40
35
V IN2=6.0V
Supply Current: IDD (μA)
Supply Current: IDD (μA)
35
30
V IN2=4.0V
25
20
15
10
5
0
-50
-25
0
25
50
75
V IN2=4.0V
30
25
20
15
10
5
0
-50
100
Ambient Temperature: Ta (℃)
0
25
50
75
100
(7) UVLO Voltage vs. Ambient Temperature
VDCOUT=1.8V, fOSC=3.0MHz
VDCOUT=1.8V, fOSC=3.0MHz
2.1
1.8
2.0
1.5
UVLO Voltage: UVLO (V)
Output Voltage: V DCOUT (V)
-25
Ambient Temperature: Ta (℃)
(6) Output Voltage vs. Ambient Temperature
1.9
V IN2=6.0V
V IN2=3.6V
1.8
1.7
1.6
1.5
EN2=V IN2
1.2
0.9
0.6
0.3
0.0
-50
-25
0
25
50
75
Ambient Temperature: Ta ( ℃)
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
43/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(8) EN "H" Voltage vs. Ambient Temperature
(9) EN" L" Voltage vs. Ambient Temperature
VDCOUT=1.8V, fOSC=3.0MHz
1.0
0.9
1.0
0.9
0.8
0.7
0.6
EN "L" Voltage: VENL (V)
EN "H" Voltage: VENH (V)
VDCOUT=1.8V, fOSC=3.0MHz
V IN2=5.0V
0.5
0.4
0.3
0.2
V IN2=3.6V
0.1
0.0
0.8
0.7
V IN2=5.0V
0.6
0.5
0.4
0.3
0.2
V IN2=3.6V
0.1
0.0
-50
-25
0
25
50
75
100
-50
Ambient Temperature: Ta (℃)
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
(10) Soft Start Time vs. Ambient Temperature
VDCOUT=1.8V, fOSC=3.0MHz
VDCOUT=1.8V, fOSC=1.2MHz
L=4.7μH(NR4018) CIN2 =4.7μF CL2=10μF
4
3
2
V IN2=3.6V
1
0
-50
-25
0
25
50
75
100
(11) "P-channel/N-channel" Driver on Resistance vs. Input Voltage
Lx SW ON Resistance: RLxH,RLxL (Ω)
VDCOUT=1.8V, fOSC=3.0MHz
1.0
Nch on Resistance
0.7
0.6
0.5
0.4
0.3
0.2
Pch on Resistance
0.1
0.0
0
1
2
3
4
Input Voltage: V IN2 (V)
44/52
5
4
3
2
V IN2=3.6V
1
0
-50
-25
0
25
50
75
Ambient Temperature: Ta (℃)
Ambient Temperature: Ta (℃)
0.9
0.8
L=1.5μH(NR3015) CIN2 =4.7μF CL2=10μF
5
Soft Start Time: tSS (ms)
Soft Start Time: tSS (ms)
5
6
100
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12) XCM524xC/ XCM524xD Series
Rise Wave Form
VDCOUT=1.2V, fOSC=1.2MHz
VDCOUT=3.3V, fOSC=3.0MHz
L=4.7μH(NR4018) CIN2=4.7μF CL2=10μF
L=1.5μH(NR3015) CIN2=4.7μF CL2=10μF
VIN2=5.0V
IOUT2=1.0mA
VIN2=5.0V
IOUT2=1.0mA
VDCOUT:1.0V/div
VDCOUT:0.5V/div
EN2:0.0V⇒1.0V
EN2:0.0V⇒1.0V
100μs/div
100μs/div
(13) XCM524xC/ XCM524xD Series
Soft-Start Time vs. Ambient Temperature
VDCOUT=1.2V, fOSC=1.2MHz
500
400
300
200
100
0
-50
V IN2=5.0V
IOUT 2=1.0mA
-25
0
25
50
75
100
400
300
200
100
0
-50
V IN2=5.0V
IOUT2=1.0mA
-25
0
25
50
75
100
Ambient Temperature: Ta (℃)
Ambient Temperature: Ta (℃)
(14) XCM524xC/ XCM524xD Series
L=1.5μH(NR3015) CIN2=4.7μF CL2 =10μF
500
Soft Start Time: tSS (μs)
Soft Start Time: tSS (μs)
VDCOUT=3.3V, fOSC=3.0MHz
L=4.7μH(NR4018) CIN2=4.7μF CL2 =10μF
CL Discharge Resistance vs. Ambient Temperature
CL Discharge Resistance: Rdischg(Ω)
VDCOUT=3.3V, fOSC=3.0MHz
600
VIN2=6.0V
500
VIN2=4.0V
400
300
200
100
-50
-25
0
25
50
75
100
Ambient Temperature: Ta ( ℃)
45/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response
VDCOUT=1.2V, fOSC=1.2MHz(PWM/PFM Automatic Switching Control)
L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL2=10μF(ceramic), Ta=25℃
VIN2=3.6V, EN2=VIN2
IOUT2=1mA → 100mA
IOUT2=1mA → 300mA
1ch : IOUT2
1ch : IOUT2
2ch:
2ch:
VDCOUT (50mV/div)
VDCOUT (50mV/div)
50μs/div
50μs/div
IOUT2=100mA → 1mA
IOUT2=300mA → 1mA
1ch : IOUT2
1ch : IOUT2
2ch:
2ch:
VDCOUT (50mV/div)
VDCOUT (50mV/div)
200μs/div
46/52
200μs/div
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued)
VDCOUT=1.2V, fOSC=1.2MHz (PWM Control)
L=4.7μH(NR4018), CIN2=4.7μF(ceramic), CL2=10μF(ceramic), Ta=25℃
VIN2=3.6V, EN2=VIN2
IOUT2=1mA → 100mA
IOUT2=1mA → 300mA
1ch : IOUT2
1ch : IOUT2
2ch:
2ch:
VDCOUT (50mV/div)
VDCOUT (50mV/div)
50μs/div
50μs/div
IOUT2=100mA → 1mA
IOUT2=300mA → 1mA
1ch : IOUT2
1ch : IOUT2
2ch:
2ch:
VDCOUT (50mV/div)
VDCOUT (50mV/div)
200μs/div
200μs/div
47/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued)
VDCOUT=1.8V, fOSC=3.0MHz (PWM/PFM Automatic Switching Control)
L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL2=10μF(ceramic),Ta=25℃
VIN2=3.6V, EN=VIN2
IOUT2=1mA → 100mA
IOUT2=1mA → 300mA
1ch : IOUT2
1ch : IOUT2
2ch:
2ch:
VDCOUT (50mV/div)
VDCOUT (50mV/div)
50μs/div
50μs/div
IOUT2=100mA → 1mA
IOUT2=300mA → 1mA
1ch : IOUT2
1ch : IOUT2
2ch:
2ch:
VDCOUT (50mV/div)
VDCOUT (50mV/div)
200μs/div
48/52
200μs/div
XCM524
Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued)
VDCOUT=1.8V, fOSC=3.0MHz (PWM Control)
L=1.5μH(NR3015), CIN2=4.7μF(ceramic), CL2=10μF(ceramic), Ta=25℃
VIN2=3.6V, EN2=VIN2
IOUT2=1mA → 100mA
IOUT2=1mA → 300mA
1ch : IOUT2
1ch : IOUT2
2ch:
2ch:
VDCOUT (50mV/div)
VDCOUT (50mV/div)
50μs/div
50μs/div
IOUT2=100mA → 1mA
IOUT2=300mA → 1mA
1ch : IOUT2
1ch : IOUT2
2ch:
2ch:
VDCOUT (50mV/div)
VDCOUT (50mV/div)
200μs/div
200μs/div
49/52
XCM524 Series
■PACKAGING INFORMATION
●USP-12B01
MAX0.6
2.3±0.08
2.8±0.08
(0.4) (0.4) (0.4) (0.4) (0.4)
(0.15) (0.25)
2
3
4
5
6
8
7
0.4±0.1
1
0.25±0.1
1.3±0.1
0.25±0.1
0.25± 0.2± 0.2± 0.2± 0.2± 0.2±
0.05
0.05 0.05 0.05 0.05 0.05
12 11 10 9
1.2±0.1
1.2±0.1
0.7±0.05 0.7±0.05
●USP-12B01 Reference Pattern Layout
1 .35
1 .35
0 .90
0 .90
0 .45
0 .65
0 .65
0 .25 0 .25
0 .50
0 .20
1 .30
1 .30
0 .95
0 .95
0 .55
0 .55
0 .25 0 .25
0 .35
0 .60
1 .10
1 .55
0 .60
1 .10
1 .55
1 .05
0 .95
0 .65
0 .55
0 .25 0 .15
0 .05 0 .15 0 .05 0 .05 0 .20 0 .05
0 .10 0 .10
1 .30
1 .60
0 .20
50/52
0 .35
1 .30
1 .60
1 .05
0 .95
0 .65
0 .55
0 .25 0 .15
0 .25
0 .30
0 .025
0 .025 0 .025
0 .025
0 .45
●USP-12B01 Reference Metal Mask Design
0 .15
0 .40
0 .15
XCM524
Series
■PACKAGING INFORMATION (Continued)
●
USP-12B01 Power Dissipation
Power dissipation data for the USP-12B01 is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1.
Measurement Condition (Reference data)
Condition:
Mount on a board
Ambient:
Natural convection
Soldering:
Lead (Pb) free
Board:
Dimensions 40 x 40 mm (1600 mm in one side)
2
st
1 Layer: Land and a wiring pattern
nd
st
rd
nd
2 Layer: Connecting to approximate 50% of the 1 heat sink
3 Layer: Connecting to approximate 50% of the 2
heat sink
th
4 Layer: Noting
Material:
Glass Epoxy (FR-4)
Thickness:
1.6 mm
Through-hole: 2 x 0.8 Diameter (each TAB needs one through-hole)
2.
Evaluation Board (Unit: mm)
Power Dissipation vs. Ambient Temperature
●Only 1ch heating, Board Mount (Tj max = 125℃)
Ambient Temperature(℃)
Power Dissipation Pd(mW)
25
800
85
320
Thermal Resistance (℃/W)
125.00
Power Dissipation:
Pd (mW)
許容損失Pd(mW)
Pd-Ta特性グラフ
Pd vs. Ta
1000
800
600
400
200
0
25
45
65
85
105
125
周囲温度Ta(℃)
Ambient Temperature:
Ta (℃)
●Both 2ch heating same time, Board Mount (Tj max = 125℃)
Ambient Temperature(℃)
Power Dissipation Pd(mW)
25
600
85
240
Thermal Resistance (℃/W)
166.67
Power許容損失Pd(mW)
Dissipation: Pd (mW)
Pd-Ta特性グラフ
Pd
vs. Ta
1000
800
600
400
200
0
25
45
65
85
周囲温度Ta(℃)
Ambient Temperature: Ta (℃)
105
125
51/52
XCM524 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics.
Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
52/52