XRAG2 432-bit UHF, EPCglobal Class1 Generation2 and ISO 18000-6C, contactless memory chip with user memory Features ■ EPCglobal class 1 generation 2 RFID UHF specification (revision 1.0.9) ■ Passive operation (no battery required) ■ UHF carrier frequencies from 860 MHz to 960 MHz ISM band ■ To the XRAG2: – Asynchronous 90% SSB-ASK, DSB-ASK or PR-ASK modulation using pulse interval encoding (Up to 128Kbit/s) ■ From the XRAG2: – Backscattered reflective answers using FM0 or Miller bit coding (up to 640 Kbits/s) ■ 432-bit memory with two possible configurations: – 3 memory banks to store up to 256-bit EPC code: 64-bit TID, 304-bit EPC and 64-bit reserved banks – 4 memory banks to store up to 128-EPC code: 128-bit user, 64-bit TID, 176-bit EPC and 64-bit reserved banks ■ Supports EPC and ISO TID ■ Multisession protocol ■ Anti-collision functionality ■ Inventory, Read, Write and Erase features ■ Kill command ■ 100 ms programming time (max) for 288-bit (EPC code, Protocol Control bits and CRC16) programming ■ More than 10,000 Write/Erase cycles ■ More than 40 years’ data retention ■ Packages – ECOPACK® (RoHS compliant) April 2008 UFDFPN6(1) 1.8 × 2 mm (MA) Unsawn unbumped wafers or sawn and bumped wafers 1. Preliminary data. Rev 6 1/33 www.st.com 1 Contents XRAG2 Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 XRAG2 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Tag identification (TID) structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 XRAG2 command list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Operating frequency and temperature . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 Reader-to-tag protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6 5.1 Reader-to-tag Power-Up and Power-Down . . . . . . . . . . . . . . . . . . . . . . . 14 5.2 Reader-to-tag RF modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.3 Reader-to-tag data encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.4 Reader-to-tag communication start and calibration . . . . . . . . . . . . . . . . . 15 Tag-to-reader protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1 6.2 Tag-to-reader data encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1.1 Tag-to-reader FM0 encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1.2 Tag-to-reader FM0 preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1.3 Tag-to-reader FM0 end of signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1.4 Tag-to-reader FM0 data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1.5 Tag-to-reader Miller-modulated subcarrier encoding . . . . . . . . . . . . . . . 18 6.1.6 Tag-to-reader Miller sub carrier modulation preamble . . . . . . . . . . . . . . 20 6.1.7 Tag-to-reader Miller subcarrier modulation end of signaling . . . . . . . . . 20 Tag-to-reader Miller signaling data rates . . . . . . . . . . . . . . . . . . . . . . . . . 21 7 Tag-to-reader communication timings . . . . . . . . . . . . . . . . . . . . . . . . . 22 8 XRAG2 command descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.1 Select command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.1.1 8.2 Inventory command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.2.1 2/33 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 XRAG2 Contents 8.3 8.2.2 QueryRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.2.3 QueryAdjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.2.4 ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.2.5 NAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Access command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.3.1 Req_RN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.3.2 Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.3.3 Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.3.4 Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8.3.5 BlockWrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.3.6 BlockErase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.3.7 Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.3.8 Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9 XRAG2 impedance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 11 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3/33 List of tables XRAG2 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. 4/33 Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Structure of ISO TID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Structure of EPC TID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 XRAG2 operating temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 RF envelop parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PIE parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reader to tag frame-sync and preamble timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Tag-to-Reader link frequency and tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Tag-to-Reader data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Reader-to-tag and tag-to-Reader communication timings . . . . . . . . . . . . . . . . . . . . . . . . 25 XRAG2 Write, BlockWrite and BlockErase parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 XRAG2 parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 XRAG2 impedance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 UFDFPN6 (MLP6) - 8-lead ultra thin fine pitch dual flat package no lead 1.8 x 2 mm, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 XRAG2 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Pad connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Die floor plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 UFDFPN connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Four bank memory organization (EPC_length ≤ 9d), memory map . . . . . . . . . . . . . . . . . . . 9 Three memory bank organization (EPC_length > 9d), memory map: . . . . . . . . . . . . . . . . 10 Reader-to-tag RF envelop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PIE encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Preamble timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Frame-sync sequence timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 FM0 symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FM0 answer preamble without pilot tone (TRext=0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 FM0 answer preamble with pilot tone (TRext=1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Tag-to-reader FM0 end of signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Tag-to-reader Miller subcarrier sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Tag-to-reader Miller Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Tag-to-reader Miller end of signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Example of an inventory round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Reader-to-tag and tag-to-reader communication timings . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Access command state diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 XRAG2 input impedance, equivalent serial circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 UFDFPN6 (MLP6) – 6-lead ultra thin fine pitch dual flat package no lead 1.8 x 2 mm, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5/33 Description 1 XRAG2 Description The XRAG2 is a full-featured, low-cost integrated circuit for use in radio frequency identification (RFID) transponders (XRAG2s) operating at UHF frequencies. It is a 432-bit memory organized as 3 or 4 memory banks of 16-bit words as shown in Figure 4 and Figure 5. When connected to an antenna, the operating power is derived from the RF energy produced by the RFID reader and incoming data are demodulated and decoded from the received double-side band amplitude shift keying (DSB-ASK), single-side band amplitude shift keying (SSB-ASK) or phase-reversal amplitude shift keying (PR-ASK) modulation signal. Outgoing data are generated by antenna reflectivity variation using either FM0 or the Miller bit coding principle (chosen by the reader). Communications between the reader and the XRAG2 are Half-duplex, which means that the XRAG2s does not decode reader commands while back scattering. The data transfer rate is defined by the local UHF frequency regulation. The XRAG2 complies with the EPC Global Class-1 Generation-2 UHF RFID specification, revision 1.0.9, for the radio-frequency power and signal interface. Figure 1. Pad connections Power Supply Regulator 432 bit EEPROM memory AC1 ASK Demodulator AC0 Reflecting Modulator AI12306 Figure 2. Die floor plan (GND) AC0 AC1 ai12307 6/33 XRAG2 Description Table 1. Signal names Signal name Function AC1 Antenna pad AC0 (GND) Antenna pad The dialog between the reader and the XRAG2 is conducted through the following consecutive operations: ● activation of the XRAG2 by the UHF operating field of the reader ● transmission of a command by the reader ● transmission of a response by the XRAG2 This technique is called RTF (reader talk first). The XRAG2 is specifically designed for extended-range applications that need automatic item identification. The XRAG2 provides a fast and flexible anti-collision protocol that is robust under noisy and unpredictable RF conditions typical of RFID applications. The XRAG2 EEPROM memory can be read and written, which enables users to program the EPC code and user memory on site, if desired. The TID memory is written by STMicroelectronics during the manufacturing process. Figure 3. UFDFPN connections AC1 NC NC 1 2 3 6 5 4 AC0 NC NC AI15109 1. There is an exposed central pad on the underside of the UFDFPN package. This is pulled, internally, to VSS, and must not be allowed to be connected to any other voltage or signal line on the PCB. 2. See Package mechanical data section for package dimensions, and how to identify pin-1. 7/33 XRAG2 memory mapping 2 XRAG2 XRAG2 memory mapping The XRAG2 is a 432-bit memory organized in three memory banks (without the user memory) or four memory bank (with the user memory) depending on the size of the EPC code chosen by the user. Each bank is organized as 16-bit words. The reader can read part or all of each memory bank by 16-bit words. Using the Write command, the device is written a 16-bit word at a time. The BlockWrite command allows readers to write up to 4 words at a time. The BlockErase command allows readers to erase several words at a time (from two words to the entire memory bank). The bank number and memory organization depend on the size of the EPC contents programmed in the EPC_length field stored in the first five bits of the Protocol Control (PC) word. The sixteen Protocol Control bits are located at memory bit addresses 10h-1Fh of the EPC bank, as defined in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The XRAG2 memory organization is automatically adjusted under the following conditions: ● for EPC_length values below or equal to 9d, the XRAG2 memory organization features a: – 64-bit Reserved bank, – 176-bit EPC bank for 128-bit EPC code storage, – 64-bit TID bank, – 128-bit User bank, The memory map corresponding to this configuration is shown in Figure 4. ● for EPC_length values above 9d, the XRAG2 memory organization features a: – 64-bit Reserved bank, – 304-bit EPC bank for 256-bit EPC code storage, – 64-bit TID bank. The memory map corresponding to this configuration is shown in Figure 5. 8/33 XRAG2 XRAG2 memory mapping Figure 4. Bank 11 Four bank memory organization (EPC_length ≤ 9d), memory map User bank 70h ... 10h 00h User ... 30h 20h 10h 00h TID[15:0] TID[31:16] 7Fh ... 1Fh 0Fh User User 128 bits Bank 10 TID bank(1) 64 bits Bank 01 EPC bank 176 bits Bank 00 Reserved bank 64 bits 3Fh 2Fh 1Fh 0Fh TID[47:32] TID[63:48] RFU A0h EPC [15:0] 90h ... up to 128 EPC bits ... EPC[N:N-15] 20h AFI/NSI 10h (PC+EPC)length CRC16[15:0] 00h 30h 20h 10h 00h AFh 9Fh ... 2Fh 1Fh 0Fh Access password [15:0] Access password [31:16] Kill password [15:0] Kill password [31:16] 3Fh 2Fh 1Fh 0Fh ai12309d 1. See Table 2 and Table 3 for description of EPC and ISO TID coding. 9/33 XRAG2 memory mapping Figure 5. XRAG2 Three memory bank organization (EPC_length > 9d), memory map: Bank 10 TID bank(1) 64 bits Bank 01 EPC bank 304 bits Bank 00 Reserved bank 64 bits 30h 20h 10h 00h TID[15:0] TID[31:16] 120h 110h RFU EPC [15:0] ... ... up to 256 EPC bits ... TID[47:32] TID[63:48](1) ... ... ... 3Fh 2Fh 1Fh 0Fh 12Fh 11Fh ... ... ... EPC[N:N-15] 20h (PC+EPC)length AFI/NSI 10h CRC16[15:0] 00h 2Fh 1Fh 0Fh Access password [15:0] Access password [31:16] Kill password [15:0] Kill password [31:16] 3Fh 2Fh 1Fh 0Fh 30h 20h 10h 00h ai12310b 1. See Table 2 and Table 3 for description of EPC and ISO TID coding. 2.1 Tag identification (TID) structure The 64-bit TID memory content is written by STMicroelectronics according to the ISO 15963 Technical Report in order to follow the ISO 18000 standard recommendations. XRAG2 can be delivered with either ISO TID or EPC TID. Table 2 and Table 3 show the TID structure in each case. Table 2. Structure of ISO TID b0 b1b2 b3 10/33 b4 b5 b6 b7 b8 b9b10b11 b12 b13 b14 b15 30h 42 bits 3Fh 20h ST 2Fh Reserved 1Fh 10h 09h 00h E0h 02h 0Fh XRAG2 XRAG2 memory mapping Table 3. Structure of EPC TID b0 b1b2 b3 2.2 b4 b5b6 b7 b8 b9b10 b11 30h 32 bits 20h ST reserved 10h 7240h 00h E200h ● Tag mask-identifier 007h for STMicroelectronics ● Tag model number 240h for XRAG2 b12 b13 b14 b15 Initial delivery state XRAG2 devices are delivered as follows: ● Reserved bank, with Access and Kill passwords set to 00000000h ● Protocol Control word programmed to 3000h (96 bits long EPC code) ● EPC bank, all 00h except for PC word ● TID bank programmed and locked as described in Section 2.1: Tag identification (TID) structure ● User bank, All 00h 11/33 XRAG2 command list 3 XRAG2 XRAG2 command list The XRAG2 offers Select, Inventory, and Access commands sets as described in the EPCglobal class 1 generation 2 UHF RFID specification, revision 1.0.9: ● Select command set: – ● ● Select Inventory command set: – Query – QueryAdjust – QueryRep – ACK – NAK Access command set: – Req_RN – Read – Write – Kill – Lock – Access – BlockWrite – BlockErase For a detailed description of the commands, see Section 8: XRAG2 command descriptions. 12/33 XRAG2 4 Operating frequency and temperature Operating frequency and temperature The XRAG2 RF interface and voltage multiplier convert RF energy provided by the reader into the DC power required for the XRAG2 to operate. The XRAG2 operates in the 860MHz to 960MHz frequency range, as specified in the EPCglobal class-1 generation-2 UHF RFID specification, revision 1.0.9. When connected to an antenna, the operating frequency is fixed by the antenna’s tuning frequency and bandwidth. Table 4. XRAG2 operating temperature range Parameter Symbol Min Max Units Operating temperature top -20 55 °C When connected to an antenna, the operating temperature range is determined by the antenna material capabilities. 13/33 Reader-to-tag protocol XRAG2 5 Reader-to-tag protocol 5.1 Reader-to-tag Power-Up and Power-Down The reader power-up and power-down waveform, and timing requirements are specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. 5.2 Reader-to-tag RF modulation A reader can communicate with the tag by modulating the RF carrier using DSB-ASK, SSBASK or PR-ASK, as specified in EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. Figure 6. Table 5. Reader-to-tag RF envelop $6.0RGXODWLRQ RF envelop parameters(1) Parameter Symbol Min Typical Max Units Modulation depth (A-B)/A 80 90 100 % RF envelop ripple Mh=MI 0 0.05(A-B) V/m RF envelop rise and fall time tr,10-90% and tf, 90-10% 0 0.33 Tari µs 1. Characterized only. 14/33 35$6.0RGXODWLRQ XRAG2 5.3 Reader-to-tag protocol Reader-to-tag data encoding A reader communicates with the tag using Pulse Interval Encoding (PIE), as specified in EPCglobal class-1 generation-2 UHF RFID specification. Figure 7. PIE encoding 1.5Tari ≤ data-1 ≤ 2.0Tari 0.5Tari ≤ x ≤ Tari Tari tPW data-0 tPW data-1 ai12311 Pulse modulation depth, rise time, fall time, Tari, RF Pulse Width (tPW) and RF envelope are specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. Table 6. PIE parameters(1) Parameter Symbol Min Max Units RF pulse width tPW(2) max (2.265 Tari) 0.525 Tari µs Tari 6.25 25 µs (3) Tari 1. Characterized only. 2. tPW is the pulse width duration and corresponds to a negative pulse width (RF interruption period). 3. Tari is the reference time for reader-to-tag signaling, and is the duration of a ‘0’. 5.4 Reader-to-tag communication start and calibration As specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9, a reader begins signaling to the tag with a preamble or frame-sync sequence. A preamble sequence must precede a Query command to calibrate data rates during communication from the reader to the tag and from the tag to the reader (see Figure 8). The preamble denotes the start of an inventory round. The preamble is composed of the delimiter, RTCal and TRCAL symbols: ● RTcal corresponds to the duration of a ‘0’ and a ‘1’. When receiving the preamble, the tag computes pivot = RTCAL/2 and decodes further coming data symbol shorter than pivot as ‘0’, and data symbol longer than pivot as ‘1’. ● TRcal in addition to the Divide ratio (DR) parameter transmitted in the Query command is used by readers to specify the tag-to-reader backscatter link frequency – data rate for FM0 tag-to-reader base band modulation: LF=DR/TRcal – data rates for Miller tag-to-reader subcarrier modulation: LF/M (M specified during Query command) A frame-sync sequence must precede all other signaling (see Figure 9). 15/33 Reader-to-tag protocol Figure 8. XRAG2 Preamble timings 1 Tari 12.5µs ±5% 2.5Tari ≤ RTcal ≤ 3.0Tari 1.1RTcal ≤ TRcal ≤ 3RTcal tPW tPW delimiter data-0 R=>T calibration (RTcal) tPW T=>R calibration (TRcal) ai12312 Figure 9. Frame-sync sequence timings 2.5Tari ≤ RTcal ≤ 3.0Tari 1 Tari 12.5 µs ±5% tPW tPW delimiter data-0 R=>T calibration (RTcal) ai12313b Table 7. Reader to tag frame-sync and preamble timings(1) Parameter Delimiter Symbol Min Delimiter Typ Max 12.5 Tolerance Units 5% µs Reader-to-tag calibration timing RTcal 2.5 3 1% Tari Tag-to-reader calibration timing TRcal 1.1 3 1% RTCAL 1. Characterized only. Preamble and frame-sync format and timings follow the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. 16/33 XRAG2 6 Tag-to-reader protocol Tag-to-reader protocol During answer frames, the tag backscatters data in accordance to the encoding format and data rate chosen by the reader during the Query command starting the inventory round. The tag backscatters data to the reader by modulating its antenna reflection coefficient. 6.1 Tag-to-reader data encoding As specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9, the tag encodes the backscattered data as either FM0 base band (biphase space) or Miller modulation of a subcarrier at the data rate requested by the reader. High values represented on Figure 10, Figure 11, Figure 13, Figure 14, Figure 15, and Figure 16 correspond to the tag antenna’s reflecting power. 6.1.1 Tag-to-reader FM0 encoding As specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9, Tag-to-reader FM0 modulation is chosen by the reader by setting the Subcarrier Number parameter (M) to 1 in the query command starting the inventory round. Figure 10. FM0 symbols Tpri = 1/LF Tpri = 1/LF data 0 0 data 1 1 ai12314 Tag-to-reader link frequency is defined in Section 5.4: Reader-to-tag communication start and calibration. 6.1.2 Tag-to-reader FM0 preamble As defined in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9, the tag can start FM0 backscattering using a 12 0's pilot tone, depending on the value of the TRext parameter sent during the Query command that initiates the inventory round. Figure 11 and Figure 12 show the two possible FM0 modulation answer preamble formats according to the TRext parameter value. Figure 11. FM0 answer preamble without pilot tone (TRext=0). 1 0 1 0 V(1) 1 ai12315 1. V = violation. 17/33 Tag-to-reader protocol XRAG2 Figure 12. FM0 answer preamble with pilot tone (TRext=1). 12 leading zeroes (pilot tone) 0 0 0 0 1 0 1 0 V(1) 1 ai12316 1. V = violation. 6.1.3 Tag-to-reader FM0 end of signaling As specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9, the tag ends transmissions with a dummy ‘1’. Figure 13 shows the different possibilities occurring during communications. Figure 13. Tag-to-reader FM0 end of signaling 0 dummy 1 0 dummy 1 1 dummy 1 1 dummy 1 ai12317 6.1.4 Tag-to-reader FM0 data rate The Tag provides all FM0 backscattering modulation data rate specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9: 40 Kbps ≤ LF ≤ 640 Kbps 6.1.5 Tag-to-reader Miller-modulated subcarrier encoding The tag provides tag-to-reader Miller subcarrier modulation as specified in EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The tag-to-reader Miller subcarrier modulation is chosen by the reader by setting the Subcarrier Number parameter (M) to 2, 4 or 8 during the Query command starting the inventory round. Figure 14 shows Miller subcarrier modulation sequence examples for M=2, M=4 and M=8. 18/33 XRAG2 Tag-to-reader protocol Figure 14. Tag-to-reader Miller subcarrier sequences M/LF M=2 M/LF M=4 000 000 001 001 010 010 011 011 100 100 101 101 110 110 111 111 M*1/L M=4 000 001 010 011 100 101 110 111 ai12330b 19/33 Tag-to-reader protocol 6.1.6 XRAG2 Tag-to-reader Miller sub carrier modulation preamble As for the FM0 base band modulation, the Tag supports the two Miller subcarrier modulation preamble formats, according to the TRext parameter, as specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. Figure 15 shows Miller preamble according to the value of the TRext parameter of the Query command starting the inventory round. Figure 15. Tag-to-reader Miller Preamble Miller preamble (TRext = 0) M=2 M=4 4M/LF 0 1 0 1 1 1 M=8 0 4M/LF 1 0 1 1 1 Miller preamble (TRext = 1) M=2 0 16M/LF 1 0 1 1 1 M=4 0 16M/LF 1 0 1 1 1 M=8 16M/LF 0 1 0 1 1 1 ai12331 6.1.7 Tag-to-reader Miller subcarrier modulation end of signaling In accordance with the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9, the tag miller subcarrier modulation signaling ends with a dummy ‘1’. Figure 16 shows the different possible Miller subcarrier modulation end of signaling sequences. 20/33 XRAG2 Tag-to-reader protocol Figure 16. Tag-to-reader Miller end of signaling Miller end of signaling M=2 0 dummy 1 0 dummy 1 1 dummy 1 1 dummy 1 0 dummy 1 0 dummy 1 1 dummy 1 1 dummy 1 0 dummy 1 0 dummy 1 1 dummy 1 1 dummy 1 M=4 M=8 ai12332 6.2 Tag-to-reader Miller signaling data rates The tag supports all Miller subcarrier modulation data rates specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9: 320 Kbps ≥ Millerdatarate (M=2) ≥ 20 Kbps 160 Kbps ≥ Millerdatarate (M=4) ≥ 10 Kbps 80 Kbps ≥ Millerdatarate (M=8) ≥ 5 Kbps 21/33 Tag-to-reader communication timings 7 XRAG2 Tag-to-reader communication timings The tag complies with the reader-to-tag and tag-to-reader link timing requirements of the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. Tag-to-Reader link frequency and tolerance(1) Table 8. Divide ratio DR TRcal (µs ±1%) Link frequency LF (kHz) 33.3 640 33.3 < TRcal < 66.7 320 < LF < 640 66.7 320 66.7 < TRcal < 83.3 256 < LF < 320 83.3 256 83.3 < TRcal ≤133.3 160 ≤LF < 256 133.3 < TRcal ≤200 107 ≤LF < 160 200 < TRcal ≤225 95 ≤LF < 107 17.2 ≤TRcal < 25 320 < LF ≤465 25 320 25 < TRcal < 31.25 256 < LF < 320 31.25 256 31.25 < TRcal < 50 160< LF < 256 50 160 50 < TRcal ≤75 107 ≤LF < 160 75 < TRcal ≤200 40 ≤LF < 160 64/3 8 1. Characterized only. Table 9. Tag-to-Reader data rates(1) Number of subcarrier cycles per symbol (M) Modulation type Data rate (kbps) 1 FM0 baseband LF 2 Miller subcarrier LF/2 4 Miller subcarrier LF/4 8 Miller subcarrier LF/8 1. Characterized only. 22/33 XRAG2 8 XRAG2 command descriptions XRAG2 command descriptions The XRAG2 offers Select, Inventory, and Access command sets as described in EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. 8.1 Select command set 8.1.1 Select The XRAG2 supports the Select command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. This command defines a tag population based on user-defined criteria for the next inventory and access operations. Readers can use one or more Select commands to select a particular tag population before inventory. 8.2 Inventory command set 8.2.1 Query The XRAG2 supports the Query command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. This command initiates and specifies an inventory round. The Query command also specifies the tag-to-reader data rate and coding scheme (FM0 or Miller). 8.2.2 QueryRep The XRAG2 supports the QueryRep command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. This command instructs tags participating in the inventory round to decrement their slot counter. If slot=0 after decrementing, tag backscatters a 16-bit Random Number (RN16). 8.2.3 QueryAdjust The XRAG2 supports the QueryAdjust command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. This command increments, decrements or leaves unchanged the number of slots in the inventory round without changing any other parameter of the round. 8.2.4 ACK The XRAG2 supports the ACK command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. This command acknowledges a single tag in the Reply state. The tag enters the Acknowledged state and replies by backscattering its PC, EPC and CRC16. 23/33 XRAG2 command descriptions 8.2.5 XRAG2 NAK The XRAG2 supports the NAK command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. This command restores tags to the Arbitrate state. Tags in Reply or Killed state remain in the same state. The algorithm for a single tag or multiple tag inventory is shown in Figure 17. Figure 17. Example of an inventory round Power up and tag not killed Ready Select Query(Q > 0) start of inventory Query (Q = 0) Arbitrate NAK if EPC not valid QueryRep or QueryAdjust and tag Slot_counter=0 Reply QueryRep or QueryAdjust if EPC VALID, Query (start a new round), Select QueryRep or QueryAdjust and tag slot_counter ≠ 0 tag backscatters RN161 ACK (RN161 within t2) Acknowledged tag backscatters PC, EPC and CRC16 ai12333b 1. Please refer to EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9 for a complete description of each command and all state transition cases. 24/33 XRAG2 XRAG2 command descriptions Figure 18. Reader-to-tag and tag-to-reader communication timings Reader Select Query Carrier Wave Carrier Wave ACK QueryRep t4 t1 Collided Reply Reader Query Carrier Wave PC + EPC + CRC16 t2 t1 t2 No Reply QueryRep Collision detected Tag QueryRep Invalid ACK Carrier Wave ACK QueryRep No Reply No Reply t3 RN16 t2 t1 t1 NAK is EPC is invalid NAK RN16 QueryRep or QueryAdjust if EPC is valid t3 RN16 t1 t2 t1 ai12334b Table 10. Reader-to-tag and tag-to-Reader communication timings(1) (2) (3) (4) Parameter Description T1(5) Delay between end of Reader command and beginning of tag answer. Measured between the last rising edge of Reader max(RTcal, 10 T ) max(RTcal, 10 Tpri) pri max (RTcal, 10 Tpri) command signaling and × (1_FT) – 2µs × (1_FT) + 2µs the first rising edge of tag reply T2(6) Delay between tag reply and next Reader command. Measured from the last falling edge of the last bit of tag reply to the first falling edge of reader command signaling. Conditions T3 Reader waits T1 before issuing new command when the tag does not reply. T4 Minimum time between reader command Min Nominal 3.0 Tpri Max 20 Tpri 0 Tpri 2.0 RTcal 1. Tpri = 1/ LF, denotes either the period of an FM0 symbol or a single Miller subcarrier. 2. Characterized only. 3. If a Reader issues a new command during an tag reply, it does not demodulate the command. 4. See EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9 for more detailed information. 5. FT is the tag-to-reader link frequency tolerance. 6. maximum value of T2 only applies on tags in Reply or Acknowledged state. In this case, if T2 expires: – without receiving a valid command, the tag returns to the Arbitrate state – during the reception of a valid command, the tag executes the command – during the reception of an invalid command, the tag returns to the Arbitrate state upon determining that the command is invalid – In all other states, the maximum value of T2 does not apply. 25/33 XRAG2 command descriptions 8.3 XRAG2 Access command set The set of access commands comprises Req_RN, Access, Read, Write, BlockWrite, BlockErase, Kill and Lock. As described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9, the XRAG2 executes Req_RN from the Acknowledged, Open, or Secured states. The XRAG2 executes Read, Write, BlockWrite and BlockErase instructions from the Secured state. If allowed by the lock status of the addressed location, the Read, Write, BlockWrite and BlockErase instructions can be executed from the Open state. The XRAG2 executes the Kill and Access commands from the Open or Secured states. The XRAG2 executes the Lock command only from the Secured state. 8.3.1 Req_RN The XRAG2 supports the Req_RN command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The Req_RN command instructs the tag in Acknowledged, Open or Secured state to backscatter a new RN16. If the tag is in the Acknowledged state, the new RN16 becomes the handle of the tag for all subsequent access commands. The handle is a tag identification number used for subsequent access commands. If the tag is in the Open or Secured state, a new RN16 is backscattered without changing the tag handle. 8.3.2 Access The XRAG2 supports the Access command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The Access command allows the reader to put tags with non-zero access passwords in the Secured state. 8.3.3 Read The XRAG2 supports the Read command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The Read command allows the reader to read a part or all of the tag Reserved, EPC, TID or User memory banks. 8.3.4 Write The XRAG2 supports the Write command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The Write command allows the reader to write a 16-bit word into the Reserved, EPC, or User memory bank. The 16-bit data word is cover-coded by the reader during the Write command using a new RN16 number generated using a Req_RN instruction before each Write command. The Write cycle executes an auto-erase cycle before word programming. After completion of the Write operation, the XRAG2 backscatters a single bit header (0b), its handle and a CRC16 within tWRITE. The XRAG2 backscatters the non-specific error code 0Fh within tWRITE if an error is encountered during the transmission of the Write command. The duration of the Write cycle tWRITE is specified in Table 11. 26/33 XRAG2 8.3.5 XRAG2 command descriptions BlockWrite The XRAG2 supports the BlockWrite command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The BlockWrite command allows the reader to program blocks of multiple 16-bit words (up to 4 words) into the Reserved, EPC, and User memory banks in a single operation. Prior to a BlockWrite operation, the block must be erased using a BlockErase command. If not, the current data is ORed with new data sent during the BlockWrite command. After completion of the BlockWrite operation, the XRAG2 backscatters a single bit header (0b), its handle and a CRC16 within tBLOCKWRITE. The XRAG2 backscatters the non-specific error code 0Fh within tBLOCKWRITE if an error is encountered during the transmission of the BlockWrite command. The duration of the BlockWrite cycle tBLOCKWRITE is specified in Table 11. 8.3.6 BlockErase The XRAG2 supports the Block Erase command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The BlockErase command allows the reader to erase blocks of multiple 16-bit words (up to the complete memory bank) into the Reserved, EPC, or User memory banks in a single operation. After completion of the BlockErase operation, XRAG2 backscatters a single bit header (0b), its Handle and a CRC16 within tBLOCKERASE. XRAG2 backscatters the non specific error code 0Fh within tBLOCKERASE if an error is encountered during the sending of the BlockErase command. The duration of the BlockErase cycle tBLOCKERASE is specified in Table 11. 8.3.7 Kill The XRAG2 supports the KILL command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The Kill command allows readers to permanently disable a tag. 8.3.8 Lock The XRAG2 supports the Lock command as described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9. The Lock command allows the reader to lock individual passwords and memory banks thereby preventing or allowing subsequent writes and/or reads of these passwords and memory banks. The status of the passwords and memory banks can be permanently locked (permalocked). Table 11. XRAG2 Write, BlockWrite and BlockErase parameters(1) Parameter Max Unit Write cycle time 20 ms tBLOCKWRITE BlockWrite cycle time 20 ms tBLOCKERASE BlockErase cycle time 20 ms tWRITE Description Min 1. Characterized only. 27/33 XRAG2 command descriptions XRAG2 Figure 19. Access command state diagram Acknowledged ACK Req_RN(RN161) and access_password=0 Req_RN(RN161) and access_password ≠ 0 Tag backscatters RN162 = Handle Open ACK, (handle), Req_RN, Read, Write, Lock, BlockWrite, BlockErase, invalid Kill(1) Access (Handle, access_password) Tag backscatters RN162 = Handle Secured ACK, (handle), Req_RN, Read, Write, Lock, BlockWrite, BlockErase, invalid Kill(1) Kill (Handle, kill password ≠ 0) Tag backscatters Handle when done Killed All commands Power up and Killed ai12333b 1. Please refer to EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9 for a complete description of each command, state transition cases, and tag reply. 28/33 XRAG2 9 XRAG2 impedance parameters XRAG2 impedance parameters The XRAG2 provides the parameters specified in tables 12 and 13. The equivalent impedance model for measurement is based on a resistance and a capacitance connected in series with the external antenna. Table 12. Symbol XRAG2 parameters Description Conditions TSTG Storage temperature VESD Electrostatic discharge voltage(1) Min Max Unit 15 25 °C 23 months +100 +2000 V V Wafer Machine model Human body model –100 –2000 1. Mil. Std. 883 - Method 3015. Table 13. XRAG2 impedance parameters Equivalent serial Model (see Figure 20) Measurement conditions T= +25 °C, regulated internal VDD = 1.45 V Typical value characterized only. Fc = 915 MHz, Rs = 10 Ω, Xs = –245 Ω Figure 20. XRAG2 input impedance, equivalent serial circuit AC RS Zeq XS AC Zeq = RS + j . XS ai12338 29/33 Package mechanical data 10 XRAG2 Package mechanical data Figure 21. UFDFPN6 (MLP6) – 6-lead ultra thin fine pitch dual flat package no lead 1.8 x 2 mm, package outline D D2 L 1 E E2 PIN 1 K 6 e A b A1 ddd J5-ME 1. Drawing is not to scale. Preliminary data. Table 14. UFDFPN6 (MLP6) - 8-lead ultra thin fine pitch dual flat package no lead 1.8 x 2 mm, package mechanical data(1) inches(2) millimeters Symbol Typ Min Max Typ Min Max A 0.55 0.45 0.6 0.022 0.018 0.024 A1 0.02 0 0.05 0.001 0 0.002 b 0.2 0.15 0.25 0.008 0.006 0.01 D 1.8 1.7 1.9 0.071 0.067 0.075 D2 1.3 1.2 1.4 0.051 0.047 0.055 ddd 0.08 0.003 E 2 1.9 2.1 0.079 0.075 0.083 E2 0.95 0.85 1.05 0.037 0.033 0.041 e 0.5 - - 0.02 - - K 0.2 L 0.25 X 0.2 0.2 0.008 0.3 0.01 0.008 1. Preliminary data. 2. Values in inches are converted from mm and rounded to 4 decimal digits. 30/33 0.008 0.012 XRAG2 11 Part numbering Part numbering Table 15. Ordering information scheme Example: XRAG2 - W4I / 1GE Device type XRAG2 Delivery form MATG = UFDFPN6 (MLP6) 1.8 × 2 mm, tape & reel packing, ECOPACK® and RoHS compliant, Sb2O3-free and TBBA-free((1) W4I = 180 µm ± 15 µm unsawn inkless wafer SBN18I = 180 µm ± 15 µm bumped and sawn inkless wafer on 8 inch frame Customer code 1GE = EPC TID 1GI = ISO TID 1. Preliminary data. For a list of the available options, please see the current memory shortform catalog. For further information on any aspect of this device, please contact your nearest ST sales office. 31/33 Revision history 12 XRAG2 Revision history Table 16. Document revision history Date Revision 14-Apr-2006 1 Initial release. 10-Oct-2006 2 End of design phase. 12-Oct-2006 3 XS value corrected in Table 13: XRAG2 impedance parameters. 11-Dec-2006 4 Document status promoted from Preliminary Data to full Datasheet. 5 Figure 9: Frame-sync sequence timings modified. Unit of tag-to-reader calibration timing corrected in Table 7: Reader to tag frame-sync and preamble timings. Figure 14: Tag-to-reader Miller subcarrier sequences modified. Small text changes. 6 Small text changes. Figure 4: Four bank memory organization (EPC_length ≤ 9d), memory map corrected. UFDFPN6 (MLP6) package added (seeSection 10: Package mechanical data and Figure 3: UFDFPN connections). 15-Nov-2007 07-Apr-2008 32/33 Changes XRAG2 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 33/33