STMICROELECTRONICS XRAG2

XRAG2
432-bit UHF, EPCglobal Class1 Generation2 and ISO 18000-6C,
contactless memory chip with user memory
Features
■
EPCglobal class 1 generation 2 RFID UHF
specification (revision 1.0.9)
■
Passive operation (no battery required)
■
UHF carrier frequencies from 860 MHz to
960 MHz ISM band
■
To the XRAG2:
– Asynchronous 90% SSB-ASK, DSB-ASK
or PR-ASK modulation using pulse interval
encoding (Up to 128Kbit/s)
■
From the XRAG2:
– Backscattered reflective answers using
FM0 or Miller bit coding (up to 640 Kbits/s)
■
432-bit memory with two possible
configurations:
– 3 memory banks to store up to 256-bit EPC
code: 64-bit TID, 304-bit EPC and 64-bit
reserved banks
– 4 memory banks to store up to 128-EPC
code: 128-bit user, 64-bit TID, 176-bit EPC
and 64-bit reserved banks
■
Supports EPC and ISO TID
■
Multisession protocol
■
Anti-collision functionality
■
Inventory, Read, Write and Erase features
■
Kill command
■
100 ms programming time (max) for 288-bit
(EPC code, Protocol Control bits and CRC16)
programming
■
More than 10,000 Write/Erase cycles
■
More than 40 years’ data retention
■
Packages
– ECOPACK® (RoHS compliant)
April 2008
UFDFPN6(1)
1.8 × 2 mm (MA)
Unsawn unbumped wafers
or
sawn and bumped wafers
1. Preliminary data.
Rev 6
1/33
www.st.com
1
Contents
XRAG2
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
XRAG2 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Tag identification (TID) structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3
XRAG2 command list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
Operating frequency and temperature . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
Reader-to-tag protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6
5.1
Reader-to-tag Power-Up and Power-Down . . . . . . . . . . . . . . . . . . . . . . . 14
5.2
Reader-to-tag RF modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3
Reader-to-tag data encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4
Reader-to-tag communication start and calibration . . . . . . . . . . . . . . . . . 15
Tag-to-reader protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1
6.2
Tag-to-reader data encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1.1
Tag-to-reader FM0 encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1.2
Tag-to-reader FM0 preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1.3
Tag-to-reader FM0 end of signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.4
Tag-to-reader FM0 data rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.5
Tag-to-reader Miller-modulated subcarrier encoding . . . . . . . . . . . . . . . 18
6.1.6
Tag-to-reader Miller sub carrier modulation preamble . . . . . . . . . . . . . . 20
6.1.7
Tag-to-reader Miller subcarrier modulation end of signaling . . . . . . . . . 20
Tag-to-reader Miller signaling data rates . . . . . . . . . . . . . . . . . . . . . . . . . 21
7
Tag-to-reader communication timings . . . . . . . . . . . . . . . . . . . . . . . . . 22
8
XRAG2 command descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1
Select command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1.1
8.2
Inventory command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2.1
2/33
Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
XRAG2
Contents
8.3
8.2.2
QueryRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2.3
QueryAdjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2.4
ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2.5
NAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Access command set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3.1
Req_RN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3.2
Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3.3
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3.4
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3.5
BlockWrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.3.6
BlockErase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.3.7
Kill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.3.8
Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9
XRAG2 impedance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
12
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3/33
List of tables
XRAG2
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
4/33
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Structure of ISO TID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Structure of EPC TID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
XRAG2 operating temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
RF envelop parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
PIE parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Reader to tag frame-sync and preamble timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Tag-to-Reader link frequency and tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Tag-to-Reader data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Reader-to-tag and tag-to-Reader communication timings . . . . . . . . . . . . . . . . . . . . . . . . 25
XRAG2 Write, BlockWrite and BlockErase parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
XRAG2 parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
XRAG2 impedance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
UFDFPN6 (MLP6) - 8-lead ultra thin fine pitch dual flat package no lead
1.8 x 2 mm, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
XRAG2
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Pad connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Die floor plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
UFDFPN connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Four bank memory organization (EPC_length ≤ 9d), memory map . . . . . . . . . . . . . . . . . . . 9
Three memory bank organization (EPC_length > 9d), memory map: . . . . . . . . . . . . . . . . 10
Reader-to-tag RF envelop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
PIE encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Preamble timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Frame-sync sequence timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
FM0 symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
FM0 answer preamble without pilot tone (TRext=0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
FM0 answer preamble with pilot tone (TRext=1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Tag-to-reader FM0 end of signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Tag-to-reader Miller subcarrier sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Tag-to-reader Miller Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Tag-to-reader Miller end of signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Example of an inventory round . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Reader-to-tag and tag-to-reader communication timings . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Access command state diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
XRAG2 input impedance, equivalent serial circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
UFDFPN6 (MLP6) – 6-lead ultra thin fine pitch dual flat package no lead
1.8 x 2 mm, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5/33
Description
1
XRAG2
Description
The XRAG2 is a full-featured, low-cost integrated circuit for use in radio frequency
identification (RFID) transponders (XRAG2s) operating at UHF frequencies. It is a 432-bit
memory organized as 3 or 4 memory banks of 16-bit words as shown in Figure 4 and
Figure 5.
When connected to an antenna, the operating power is derived from the RF energy
produced by the RFID reader and incoming data are demodulated and decoded from the
received double-side band amplitude shift keying (DSB-ASK), single-side band amplitude
shift keying (SSB-ASK) or phase-reversal amplitude shift keying (PR-ASK) modulation
signal. Outgoing data are generated by antenna reflectivity variation using either FM0 or the
Miller bit coding principle (chosen by the reader).
Communications between the reader and the XRAG2 are Half-duplex, which means that the
XRAG2s does not decode reader commands while back scattering.
The data transfer rate is defined by the local UHF frequency regulation.
The XRAG2 complies with the EPC Global Class-1 Generation-2 UHF RFID specification,
revision 1.0.9, for the radio-frequency power and signal interface.
Figure 1.
Pad connections
Power
Supply
Regulator
432 bit
EEPROM
memory
AC1
ASK
Demodulator
AC0
Reflecting
Modulator
AI12306
Figure 2.
Die floor plan
(GND) AC0
AC1
ai12307
6/33
XRAG2
Description
Table 1.
Signal names
Signal name
Function
AC1
Antenna pad
AC0 (GND)
Antenna pad
The dialog between the reader and the XRAG2 is conducted through the following
consecutive operations:
●
activation of the XRAG2 by the UHF operating field of the reader
●
transmission of a command by the reader
●
transmission of a response by the XRAG2
This technique is called RTF (reader talk first).
The XRAG2 is specifically designed for extended-range applications that need automatic
item identification. The XRAG2 provides a fast and flexible anti-collision protocol that is
robust under noisy and unpredictable RF conditions typical of RFID applications. The
XRAG2 EEPROM memory can be read and written, which enables users to program the
EPC code and user memory on site, if desired.
The TID memory is written by STMicroelectronics during the manufacturing process.
Figure 3.
UFDFPN connections
AC1 NC NC
1
2
3
6 5 4
AC0 NC NC
AI15109
1. There is an exposed central pad on the underside of the UFDFPN package. This is pulled, internally, to
VSS, and must not be allowed to be connected to any other voltage or signal line on the PCB.
2. See Package mechanical data section for package dimensions, and how to identify pin-1.
7/33
XRAG2 memory mapping
2
XRAG2
XRAG2 memory mapping
The XRAG2 is a 432-bit memory organized in three memory banks (without the user
memory) or four memory bank (with the user memory) depending on the size of the EPC
code chosen by the user. Each bank is organized as 16-bit words. The reader can read part
or all of each memory bank by 16-bit words. Using the Write command, the device is written
a 16-bit word at a time. The BlockWrite command allows readers to write up to 4 words at a
time. The BlockErase command allows readers to erase several words at a time (from two
words to the entire memory bank).
The bank number and memory organization depend on the size of the EPC contents
programmed in the EPC_length field stored in the first five bits of the Protocol Control (PC)
word.
The sixteen Protocol Control bits are located at memory bit addresses 10h-1Fh of the EPC
bank, as defined in the EPCglobal Class 1 generation 2 RFID UHF specification, revision
1.0.9.
The XRAG2 memory organization is automatically adjusted under the following conditions:
●
for EPC_length values below or equal to 9d, the XRAG2 memory organization features
a:
–
64-bit Reserved bank,
–
176-bit EPC bank for 128-bit EPC code storage,
–
64-bit TID bank,
–
128-bit User bank,
The memory map corresponding to this configuration is shown in Figure 4.
●
for EPC_length values above 9d, the XRAG2 memory organization features a:
–
64-bit Reserved bank,
–
304-bit EPC bank for 256-bit EPC code storage,
–
64-bit TID bank.
The memory map corresponding to this configuration is shown in Figure 5.
8/33
XRAG2
XRAG2 memory mapping
Figure 4.
Bank 11
Four bank memory organization (EPC_length ≤ 9d), memory map
User bank
70h
...
10h
00h
User
...
30h
20h
10h
00h
TID[15:0]
TID[31:16]
7Fh
...
1Fh
0Fh
User
User
128 bits
Bank 10
TID bank(1)
64 bits
Bank 01
EPC bank
176 bits
Bank 00
Reserved bank
64 bits
3Fh
2Fh
1Fh
0Fh
TID[47:32]
TID[63:48]
RFU
A0h
EPC [15:0]
90h
... up to 128 EPC bits
...
EPC[N:N-15]
20h
AFI/NSI
10h (PC+EPC)length
CRC16[15:0]
00h
30h
20h
10h
00h
AFh
9Fh
...
2Fh
1Fh
0Fh
Access password [15:0]
Access password [31:16]
Kill password [15:0]
Kill password [31:16]
3Fh
2Fh
1Fh
0Fh
ai12309d
1. See Table 2 and Table 3 for description of EPC and ISO TID coding.
9/33
XRAG2 memory mapping
Figure 5.
XRAG2
Three memory bank organization (EPC_length > 9d), memory map:
Bank 10
TID bank(1)
64 bits
Bank 01
EPC bank
304 bits
Bank 00
Reserved bank
64 bits
30h
20h
10h
00h
TID[15:0]
TID[31:16]
120h
110h
RFU
EPC [15:0]
...
... up to 256 EPC bits
...
TID[47:32]
TID[63:48](1)
...
...
...
3Fh
2Fh
1Fh
0Fh
12Fh
11Fh
...
...
...
EPC[N:N-15]
20h
(PC+EPC)length
AFI/NSI
10h
CRC16[15:0]
00h
2Fh
1Fh
0Fh
Access password [15:0]
Access password [31:16]
Kill password [15:0]
Kill password [31:16]
3Fh
2Fh
1Fh
0Fh
30h
20h
10h
00h
ai12310b
1. See Table 2 and Table 3 for description of EPC and ISO TID coding.
2.1
Tag identification (TID) structure
The 64-bit TID memory content is written by STMicroelectronics according to the ISO 15963
Technical Report in order to follow the ISO 18000 standard recommendations. XRAG2 can
be delivered with either ISO TID or EPC TID. Table 2 and Table 3 show the TID structure in
each case.
Table 2.
Structure of ISO TID
b0 b1b2 b3
10/33
b4 b5
b6 b7
b8 b9b10b11 b12 b13 b14 b15
30h
42 bits
3Fh
20h
ST
2Fh
Reserved
1Fh
10h
09h
00h
E0h
02h
0Fh
XRAG2
XRAG2 memory mapping
Table 3.
Structure of EPC TID
b0 b1b2 b3
2.2
b4 b5b6 b7
b8 b9b10 b11
30h
32 bits
20h
ST reserved
10h
7240h
00h
E200h
●
Tag mask-identifier 007h for STMicroelectronics
●
Tag model number 240h for XRAG2
b12 b13 b14
b15
Initial delivery state
XRAG2 devices are delivered as follows:
●
Reserved bank, with Access and Kill passwords set to 00000000h
●
Protocol Control word programmed to 3000h (96 bits long EPC code)
●
EPC bank, all 00h except for PC word
●
TID bank programmed and locked as described in Section 2.1: Tag identification (TID)
structure
●
User bank, All 00h
11/33
XRAG2 command list
3
XRAG2
XRAG2 command list
The XRAG2 offers Select, Inventory, and Access commands sets as described in the
EPCglobal class 1 generation 2 UHF RFID specification, revision 1.0.9:
●
Select command set:
–
●
●
Select
Inventory command set:
–
Query
–
QueryAdjust
–
QueryRep
–
ACK
–
NAK
Access command set:
–
Req_RN
–
Read
–
Write
–
Kill
–
Lock
–
Access
–
BlockWrite
–
BlockErase
For a detailed description of the commands, see Section 8: XRAG2 command descriptions.
12/33
XRAG2
4
Operating frequency and temperature
Operating frequency and temperature
The XRAG2 RF interface and voltage multiplier convert RF energy provided by the reader
into the DC power required for the XRAG2 to operate.
The XRAG2 operates in the 860MHz to 960MHz frequency range, as specified in the
EPCglobal class-1 generation-2 UHF RFID specification, revision 1.0.9.
When connected to an antenna, the operating frequency is fixed by the antenna’s tuning
frequency and bandwidth.
Table 4.
XRAG2 operating temperature range
Parameter
Symbol
Min
Max
Units
Operating temperature
top
-20
55
°C
When connected to an antenna, the operating temperature range is determined by the
antenna material capabilities.
13/33
Reader-to-tag protocol
XRAG2
5
Reader-to-tag protocol
5.1
Reader-to-tag Power-Up and Power-Down
The reader power-up and power-down waveform, and timing requirements are specified in
the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9.
5.2
Reader-to-tag RF modulation
A reader can communicate with the tag by modulating the RF carrier using DSB-ASK, SSBASK or PR-ASK, as specified in EPCglobal Class 1 generation 2 RFID UHF specification,
revision 1.0.9.
Figure 6.
Table 5.
Reader-to-tag RF envelop
$6.0RGXODWLRQ
RF envelop parameters(1)
Parameter
Symbol
Min
Typical
Max
Units
Modulation depth
(A-B)/A
80
90
100
%
RF envelop ripple
Mh=MI
0
0.05(A-B)
V/m
RF envelop rise and fall time
tr,10-90% and tf, 90-10%
0
0.33 Tari
µs
1. Characterized only.
14/33
35$6.0RGXODWLRQ
XRAG2
5.3
Reader-to-tag protocol
Reader-to-tag data encoding
A reader communicates with the tag using Pulse Interval Encoding (PIE), as specified in
EPCglobal class-1 generation-2 UHF RFID specification.
Figure 7.
PIE encoding
1.5Tari ≤ data-1 ≤ 2.0Tari
0.5Tari ≤ x ≤ Tari
Tari
tPW
data-0
tPW
data-1
ai12311
Pulse modulation depth, rise time, fall time, Tari, RF Pulse Width (tPW) and RF envelope are
specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9.
Table 6.
PIE parameters(1)
Parameter
Symbol
Min
Max
Units
RF pulse width
tPW(2)
max (2.265 Tari)
0.525 Tari
µs
Tari
6.25
25
µs
(3)
Tari
1. Characterized only.
2. tPW is the pulse width duration and corresponds to a negative pulse width (RF interruption period).
3. Tari is the reference time for reader-to-tag signaling, and is the duration of a ‘0’.
5.4
Reader-to-tag communication start and calibration
As specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9,
a reader begins signaling to the tag with a preamble or frame-sync sequence.
A preamble sequence must precede a Query command to calibrate data rates during
communication from the reader to the tag and from the tag to the reader (see Figure 8). The
preamble denotes the start of an inventory round. The preamble is composed of the
delimiter, RTCal and TRCAL symbols:
●
RTcal corresponds to the duration of a ‘0’ and a ‘1’. When receiving the preamble, the
tag computes pivot = RTCAL/2 and decodes further coming data symbol shorter than
pivot as ‘0’, and data symbol longer than pivot as ‘1’.
●
TRcal in addition to the Divide ratio (DR) parameter transmitted in the Query command
is used by readers to specify the tag-to-reader backscatter link frequency
–
data rate for FM0 tag-to-reader base band modulation: LF=DR/TRcal
–
data rates for Miller tag-to-reader subcarrier modulation: LF/M (M specified during
Query command)
A frame-sync sequence must precede all other signaling (see Figure 9).
15/33
Reader-to-tag protocol
Figure 8.
XRAG2
Preamble timings
1 Tari
12.5µs ±5%
2.5Tari ≤ RTcal ≤ 3.0Tari
1.1RTcal ≤ TRcal ≤ 3RTcal
tPW
tPW
delimiter
data-0
R=>T calibration (RTcal)
tPW
T=>R calibration (TRcal)
ai12312
Figure 9.
Frame-sync sequence timings
2.5Tari ≤ RTcal ≤ 3.0Tari
1 Tari
12.5 µs ±5%
tPW
tPW
delimiter
data-0
R=>T calibration (RTcal)
ai12313b
Table 7.
Reader to tag frame-sync and preamble timings(1)
Parameter
Delimiter
Symbol
Min
Delimiter
Typ
Max
12.5
Tolerance Units
5%
µs
Reader-to-tag calibration timing
RTcal
2.5
3
1%
Tari
Tag-to-reader calibration timing
TRcal
1.1
3
1%
RTCAL
1. Characterized only.
Preamble and frame-sync format and timings follow the EPCglobal Class 1 generation 2
RFID UHF specification, revision 1.0.9.
16/33
XRAG2
6
Tag-to-reader protocol
Tag-to-reader protocol
During answer frames, the tag backscatters data in accordance to the encoding format and
data rate chosen by the reader during the Query command starting the inventory round. The
tag backscatters data to the reader by modulating its antenna reflection coefficient.
6.1
Tag-to-reader data encoding
As specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9,
the tag encodes the backscattered data as either FM0 base band (biphase space) or Miller
modulation of a subcarrier at the data rate requested by the reader.
High values represented on Figure 10, Figure 11, Figure 13, Figure 14, Figure 15, and
Figure 16 correspond to the tag antenna’s reflecting power.
6.1.1
Tag-to-reader FM0 encoding
As specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9,
Tag-to-reader FM0 modulation is chosen by the reader by setting the Subcarrier Number
parameter (M) to 1 in the query command starting the inventory round.
Figure 10. FM0 symbols
Tpri = 1/LF
Tpri = 1/LF
data
0
0
data
1
1
ai12314
Tag-to-reader link frequency is defined in Section 5.4: Reader-to-tag communication start
and calibration.
6.1.2
Tag-to-reader FM0 preamble
As defined in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9,
the tag can start FM0 backscattering using a 12 0's pilot tone, depending on the value of the
TRext parameter sent during the Query command that initiates the inventory round.
Figure 11 and Figure 12 show the two possible FM0 modulation answer preamble formats
according to the TRext parameter value.
Figure 11. FM0 answer preamble without pilot tone (TRext=0).
1
0
1
0
V(1)
1
ai12315
1. V = violation.
17/33
Tag-to-reader protocol
XRAG2
Figure 12. FM0 answer preamble with pilot tone (TRext=1).
12 leading zeroes (pilot tone)
0
0
0
0
1
0
1
0
V(1)
1
ai12316
1. V = violation.
6.1.3
Tag-to-reader FM0 end of signaling
As specified in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9,
the tag ends transmissions with a dummy ‘1’. Figure 13 shows the different possibilities
occurring during communications.
Figure 13. Tag-to-reader FM0 end of signaling
0
dummy 1
0
dummy 1
1
dummy 1
1
dummy 1
ai12317
6.1.4
Tag-to-reader FM0 data rate
The Tag provides all FM0 backscattering modulation data rate specified in the EPCglobal
Class 1 generation 2 RFID UHF specification, revision 1.0.9:
40 Kbps ≤ LF ≤ 640 Kbps
6.1.5
Tag-to-reader Miller-modulated subcarrier encoding
The tag provides tag-to-reader Miller subcarrier modulation as specified in EPCglobal Class
1 generation 2 RFID UHF specification, revision 1.0.9.
The tag-to-reader Miller subcarrier modulation is chosen by the reader by setting the
Subcarrier Number parameter (M) to 2, 4 or 8 during the Query command starting the
inventory round. Figure 14 shows Miller subcarrier modulation sequence examples for M=2,
M=4 and M=8.
18/33
XRAG2
Tag-to-reader protocol
Figure 14. Tag-to-reader Miller subcarrier sequences
M/LF
M=2
M/LF
M=4
000
000
001
001
010
010
011
011
100
100
101
101
110
110
111
111
M*1/L
M=4
000
001
010
011
100
101
110
111
ai12330b
19/33
Tag-to-reader protocol
6.1.6
XRAG2
Tag-to-reader Miller sub carrier modulation preamble
As for the FM0 base band modulation, the Tag supports the two Miller subcarrier
modulation preamble formats, according to the TRext parameter, as specified in the
EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9.
Figure 15 shows Miller preamble according to the value of the TRext parameter of the Query
command starting the inventory round.
Figure 15. Tag-to-reader Miller Preamble
Miller preamble (TRext = 0)
M=2
M=4
4M/LF
0
1
0
1
1
1
M=8
0
4M/LF
1
0
1
1
1
Miller preamble (TRext = 1)
M=2
0
16M/LF
1
0
1
1
1
M=4
0
16M/LF
1
0
1
1
1
M=8
16M/LF
0
1
0
1
1
1
ai12331
6.1.7
Tag-to-reader Miller subcarrier modulation end of signaling
In accordance with the EPCglobal Class 1 generation 2 RFID UHF specification, revision
1.0.9, the tag miller subcarrier modulation signaling ends with a dummy ‘1’. Figure 16 shows
the different possible Miller subcarrier modulation end of signaling sequences.
20/33
XRAG2
Tag-to-reader protocol
Figure 16. Tag-to-reader Miller end of signaling
Miller end of signaling
M=2
0
dummy 1
0
dummy 1
1
dummy 1
1
dummy 1
0
dummy 1
0
dummy 1
1
dummy 1
1
dummy 1
0
dummy 1
0
dummy 1
1
dummy 1
1
dummy 1
M=4
M=8
ai12332
6.2
Tag-to-reader Miller signaling data rates
The tag supports all Miller subcarrier modulation data rates specified in the EPCglobal
Class 1 generation 2 RFID UHF specification, revision 1.0.9:
320 Kbps ≥ Millerdatarate (M=2) ≥ 20 Kbps
160 Kbps ≥ Millerdatarate (M=4) ≥ 10 Kbps
80 Kbps ≥ Millerdatarate (M=8) ≥ 5 Kbps
21/33
Tag-to-reader communication timings
7
XRAG2
Tag-to-reader communication timings
The tag complies with the reader-to-tag and tag-to-reader link timing requirements of the
EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9.
Tag-to-Reader link frequency and tolerance(1)
Table 8.
Divide ratio DR
TRcal (µs ±1%)
Link frequency LF (kHz)
33.3
640
33.3 < TRcal < 66.7
320 < LF < 640
66.7
320
66.7 < TRcal < 83.3
256 < LF < 320
83.3
256
83.3 < TRcal ≤133.3
160 ≤LF < 256
133.3 < TRcal ≤200
107 ≤LF < 160
200 < TRcal ≤225
95 ≤LF < 107
17.2 ≤TRcal < 25
320 < LF ≤465
25
320
25 < TRcal < 31.25
256 < LF < 320
31.25
256
31.25 < TRcal < 50
160< LF < 256
50
160
50 < TRcal ≤75
107 ≤LF < 160
75 < TRcal ≤200
40 ≤LF < 160
64/3
8
1. Characterized only.
Table 9.
Tag-to-Reader data rates(1)
Number of subcarrier cycles
per symbol (M)
Modulation type
Data rate (kbps)
1
FM0 baseband
LF
2
Miller subcarrier
LF/2
4
Miller subcarrier
LF/4
8
Miller subcarrier
LF/8
1. Characterized only.
22/33
XRAG2
8
XRAG2 command descriptions
XRAG2 command descriptions
The XRAG2 offers Select, Inventory, and Access command sets as described in EPCglobal
Class 1 generation 2 RFID UHF specification, revision 1.0.9.
8.1
Select command set
8.1.1
Select
The XRAG2 supports the Select command as described in the EPCglobal Class 1
generation 2 RFID UHF specification, revision 1.0.9.
This command defines a tag population based on user-defined criteria for the next inventory
and access operations.
Readers can use one or more Select commands to select a particular tag population before
inventory.
8.2
Inventory command set
8.2.1
Query
The XRAG2 supports the Query command as described in the EPCglobal Class 1
generation 2 RFID UHF specification, revision 1.0.9.
This command initiates and specifies an inventory round. The Query command also
specifies the tag-to-reader data rate and coding scheme (FM0 or Miller).
8.2.2
QueryRep
The XRAG2 supports the QueryRep command as described in the EPCglobal Class 1
generation 2 RFID UHF specification, revision 1.0.9.
This command instructs tags participating in the inventory round to decrement their slot
counter. If slot=0 after decrementing, tag backscatters a 16-bit Random Number (RN16).
8.2.3
QueryAdjust
The XRAG2 supports the QueryAdjust command as described in the EPCglobal Class 1
generation 2 RFID UHF specification, revision 1.0.9.
This command increments, decrements or leaves unchanged the number of slots in the
inventory round without changing any other parameter of the round.
8.2.4
ACK
The XRAG2 supports the ACK command as described in the EPCglobal Class 1 generation
2 RFID UHF specification, revision 1.0.9.
This command acknowledges a single tag in the Reply state. The tag enters the
Acknowledged state and replies by backscattering its PC, EPC and CRC16.
23/33
XRAG2 command descriptions
8.2.5
XRAG2
NAK
The XRAG2 supports the NAK command as described in the EPCglobal Class 1 generation
2 RFID UHF specification, revision 1.0.9.
This command restores tags to the Arbitrate state. Tags in Reply or Killed state remain in
the same state.
The algorithm for a single tag or multiple tag inventory is shown in Figure 17.
Figure 17. Example of an inventory round
Power up and tag not killed
Ready
Select
Query(Q > 0)
start of inventory
Query (Q = 0)
Arbitrate
NAK if
EPC
not valid
QueryRep or QueryAdjust
and tag Slot_counter=0
Reply
QueryRep
or QueryAdjust
if EPC VALID,
Query (start a new round),
Select
QueryRep or QueryAdjust
and tag slot_counter ≠ 0
tag backscatters RN161
ACK (RN161 within t2)
Acknowledged
tag backscatters PC, EPC and CRC16
ai12333b
1. Please refer to EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9 for a complete
description of each command and all state transition cases.
24/33
XRAG2
XRAG2 command descriptions
Figure 18. Reader-to-tag and tag-to-reader communication timings
Reader
Select
Query
Carrier Wave
Carrier Wave
ACK
QueryRep
t4
t1
Collided Reply
Reader
Query
Carrier Wave
PC + EPC + CRC16
t2
t1
t2
No Reply
QueryRep
Collision
detected
Tag
QueryRep
Invalid ACK
Carrier Wave
ACK
QueryRep
No
Reply
No
Reply
t3
RN16
t2 t1
t1
NAK is EPC
is invalid
NAK
RN16
QueryRep or
QueryAdjust
if EPC is valid
t3
RN16
t1
t2
t1
ai12334b
Table 10.
Reader-to-tag and tag-to-Reader communication timings(1) (2) (3) (4)
Parameter
Description
T1(5)
Delay between
end of Reader
command and
beginning of tag
answer.
Measured between the
last rising edge of Reader max(RTcal, 10 T )
max(RTcal, 10 Tpri)
pri
max (RTcal, 10 Tpri)
command signaling and
× (1_FT) – 2µs
× (1_FT) + 2µs
the first rising edge of tag
reply
T2(6)
Delay between
tag reply and
next Reader
command.
Measured from the last
falling edge of the last bit
of tag reply to the first
falling edge of reader
command signaling.
Conditions
T3
Reader waits T1 before issuing new
command when the tag does not reply.
T4
Minimum time between reader command
Min
Nominal
3.0 Tpri
Max
20 Tpri
0 Tpri
2.0 RTcal
1. Tpri = 1/ LF, denotes either the period of an FM0 symbol or a single Miller subcarrier.
2. Characterized only.
3. If a Reader issues a new command during an tag reply, it does not demodulate the command.
4. See EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9 for more detailed information.
5. FT is the tag-to-reader link frequency tolerance.
6. maximum value of T2 only applies on tags in Reply or Acknowledged state. In this case, if T2 expires:
– without receiving a valid command, the tag returns to the Arbitrate state
– during the reception of a valid command, the tag executes the command
– during the reception of an invalid command, the tag returns to the Arbitrate state upon determining that the command is
invalid
– In all other states, the maximum value of T2 does not apply.
25/33
XRAG2 command descriptions
8.3
XRAG2
Access command set
The set of access commands comprises Req_RN, Access, Read, Write, BlockWrite,
BlockErase, Kill and Lock.
As described in the EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9,
the XRAG2 executes Req_RN from the Acknowledged, Open, or Secured states.
The XRAG2 executes Read, Write, BlockWrite and BlockErase instructions from the
Secured state. If allowed by the lock status of the addressed location, the Read, Write,
BlockWrite and BlockErase instructions can be executed from the Open state.
The XRAG2 executes the Kill and Access commands from the Open or Secured states.
The XRAG2 executes the Lock command only from the Secured state.
8.3.1
Req_RN
The XRAG2 supports the Req_RN command as described in the EPCglobal Class 1
generation 2 RFID UHF specification, revision 1.0.9.
The Req_RN command instructs the tag in Acknowledged, Open or Secured state to
backscatter a new RN16. If the tag is in the Acknowledged state, the new RN16 becomes
the handle of the tag for all subsequent access commands. The handle is a tag identification
number used for subsequent access commands. If the tag is in the Open or Secured state,
a new RN16 is backscattered without changing the tag handle.
8.3.2
Access
The XRAG2 supports the Access command as described in the EPCglobal Class 1
generation 2 RFID UHF specification, revision 1.0.9.
The Access command allows the reader to put tags with non-zero access passwords in the
Secured state.
8.3.3
Read
The XRAG2 supports the Read command as described in the EPCglobal Class 1
generation 2 RFID UHF specification, revision 1.0.9.
The Read command allows the reader to read a part or all of the tag Reserved, EPC, TID or
User memory banks.
8.3.4
Write
The XRAG2 supports the Write command as described in the EPCglobal Class 1 generation
2 RFID UHF specification, revision 1.0.9.
The Write command allows the reader to write a 16-bit word into the Reserved, EPC, or
User memory bank. The 16-bit data word is cover-coded by the reader during the Write
command using a new RN16 number generated using a Req_RN instruction before each
Write command. The Write cycle executes an auto-erase cycle before word programming.
After completion of the Write operation, the XRAG2 backscatters a single bit header (0b), its
handle and a CRC16 within tWRITE. The XRAG2 backscatters the non-specific error code
0Fh within tWRITE if an error is encountered during the transmission of the Write command.
The duration of the Write cycle tWRITE is specified in Table 11.
26/33
XRAG2
8.3.5
XRAG2 command descriptions
BlockWrite
The XRAG2 supports the BlockWrite command as described in the EPCglobal Class 1
generation 2 RFID UHF specification, revision 1.0.9.
The BlockWrite command allows the reader to program blocks of multiple 16-bit words (up
to 4 words) into the Reserved, EPC, and User memory banks in a single operation. Prior to
a BlockWrite operation, the block must be erased using a BlockErase command. If not, the
current data is ORed with new data sent during the BlockWrite command.
After completion of the BlockWrite operation, the XRAG2 backscatters a single bit header
(0b), its handle and a CRC16 within tBLOCKWRITE. The XRAG2 backscatters the non-specific
error code 0Fh within tBLOCKWRITE if an error is encountered during the transmission of the
BlockWrite command.
The duration of the BlockWrite cycle tBLOCKWRITE is specified in Table 11.
8.3.6
BlockErase
The XRAG2 supports the Block Erase command as described in the EPCglobal Class 1
generation 2 RFID UHF specification, revision 1.0.9.
The BlockErase command allows the reader to erase blocks of multiple 16-bit words (up to
the complete memory bank) into the Reserved, EPC, or User memory banks in a single
operation.
After completion of the BlockErase operation, XRAG2 backscatters a single bit header (0b),
its Handle and a CRC16 within tBLOCKERASE. XRAG2 backscatters the non specific error
code 0Fh within tBLOCKERASE if an error is encountered during the sending of the
BlockErase command.
The duration of the BlockErase cycle tBLOCKERASE is specified in Table 11.
8.3.7
Kill
The XRAG2 supports the KILL command as described in the EPCglobal Class 1 generation
2 RFID UHF specification, revision 1.0.9.
The Kill command allows readers to permanently disable a tag.
8.3.8
Lock
The XRAG2 supports the Lock command as described in the EPCglobal Class 1 generation
2 RFID UHF specification, revision 1.0.9.
The Lock command allows the reader to lock individual passwords and memory banks
thereby preventing or allowing subsequent writes and/or reads of these passwords and
memory banks. The status of the passwords and memory banks can be permanently locked
(permalocked).
Table 11.
XRAG2 Write, BlockWrite and BlockErase parameters(1)
Parameter
Max
Unit
Write cycle time
20
ms
tBLOCKWRITE
BlockWrite cycle time
20
ms
tBLOCKERASE
BlockErase cycle time
20
ms
tWRITE
Description
Min
1. Characterized only.
27/33
XRAG2 command descriptions
XRAG2
Figure 19. Access command state diagram
Acknowledged
ACK
Req_RN(RN161) and access_password=0
Req_RN(RN161) and
access_password ≠ 0
Tag backscatters
RN162 = Handle
Open
ACK, (handle), Req_RN, Read, Write,
Lock, BlockWrite, BlockErase,
invalid Kill(1)
Access (Handle,
access_password)
Tag backscatters
RN162 = Handle
Secured
ACK, (handle), Req_RN, Read, Write,
Lock, BlockWrite, BlockErase,
invalid Kill(1)
Kill (Handle, kill password ≠ 0)
Tag backscatters
Handle when done
Killed
All commands
Power up and Killed
ai12333b
1. Please refer to EPCglobal Class 1 generation 2 RFID UHF specification, revision 1.0.9 for a complete
description of each command, state transition cases, and tag reply.
28/33
XRAG2
9
XRAG2 impedance parameters
XRAG2 impedance parameters
The XRAG2 provides the parameters specified in tables 12 and 13. The equivalent
impedance model for measurement is based on a resistance and a capacitance connected
in series with the external antenna.
Table 12.
Symbol
XRAG2 parameters
Description
Conditions
TSTG
Storage temperature
VESD
Electrostatic discharge voltage(1)
Min
Max
Unit
15
25
°C
23
months
+100
+2000
V
V
Wafer
Machine model
Human body model
–100
–2000
1. Mil. Std. 883 - Method 3015.
Table 13.
XRAG2 impedance parameters
Equivalent serial Model (see Figure 20)
Measurement conditions
T= +25 °C, regulated internal VDD = 1.45 V
Typical value characterized only.
Fc = 915 MHz, Rs = 10 Ω, Xs = –245 Ω
Figure 20. XRAG2 input impedance, equivalent serial circuit
AC
RS
Zeq
XS
AC
Zeq = RS + j . XS
ai12338
29/33
Package mechanical data
10
XRAG2
Package mechanical data
Figure 21. UFDFPN6 (MLP6) – 6-lead ultra thin fine pitch dual flat package no lead
1.8 x 2 mm, package outline
D
D2
L
1
E E2
PIN 1
K
6
e
A
b
A1
ddd
J5-ME
1. Drawing is not to scale. Preliminary data.
Table 14.
UFDFPN6 (MLP6) - 8-lead ultra thin fine pitch dual flat package no lead
1.8 x 2 mm, package mechanical data(1)
inches(2)
millimeters
Symbol
Typ
Min
Max
Typ
Min
Max
A
0.55
0.45
0.6
0.022
0.018
0.024
A1
0.02
0
0.05
0.001
0
0.002
b
0.2
0.15
0.25
0.008
0.006
0.01
D
1.8
1.7
1.9
0.071
0.067
0.075
D2
1.3
1.2
1.4
0.051
0.047
0.055
ddd
0.08
0.003
E
2
1.9
2.1
0.079
0.075
0.083
E2
0.95
0.85
1.05
0.037
0.033
0.041
e
0.5
-
-
0.02
-
-
K
0.2
L
0.25
X
0.2
0.2
0.008
0.3
0.01
0.008
1. Preliminary data.
2. Values in inches are converted from mm and rounded to 4 decimal digits.
30/33
0.008
0.012
XRAG2
11
Part numbering
Part numbering
Table 15.
Ordering information scheme
Example:
XRAG2
-
W4I
/
1GE
Device type
XRAG2
Delivery form
MATG = UFDFPN6 (MLP6) 1.8 × 2 mm, tape & reel packing, ECOPACK®
and RoHS compliant, Sb2O3-free and TBBA-free((1)
W4I = 180 µm ± 15 µm unsawn inkless wafer
SBN18I = 180 µm ± 15 µm bumped and sawn inkless wafer on 8 inch frame
Customer code
1GE = EPC TID
1GI = ISO TID
1. Preliminary data.
For a list of the available options, please see the current memory shortform catalog.
For further information on any aspect of this device, please contact your nearest ST sales
office.
31/33
Revision history
12
XRAG2
Revision history
Table 16.
Document revision history
Date
Revision
14-Apr-2006
1
Initial release.
10-Oct-2006
2
End of design phase.
12-Oct-2006
3
XS value corrected in Table 13: XRAG2 impedance parameters.
11-Dec-2006
4
Document status promoted from Preliminary Data to full
Datasheet.
5
Figure 9: Frame-sync sequence timings modified.
Unit of tag-to-reader calibration timing corrected in Table 7:
Reader to tag frame-sync and preamble timings.
Figure 14: Tag-to-reader Miller subcarrier sequences modified.
Small text changes.
6
Small text changes.
Figure 4: Four bank memory organization (EPC_length ≤ 9d),
memory map corrected.
UFDFPN6 (MLP6) package added (seeSection 10: Package
mechanical data and Figure 3: UFDFPN connections).
15-Nov-2007
07-Apr-2008
32/33
Changes
XRAG2
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
33/33