MOTOROLA MC13109FTA

Order this document by MC13109/D
UNIVERSAL CT–1
SUBSYSTEM
INTEGRATED CIRCUIT
The MC13109 integrates several of the functions required for a cordless
telephone into a single integrated circuit. This significantly reduces
component count, board space requirements, and external adjustments. It is
designed for use in both the handset and the base.
• Dual Conversion FM Receiver
– Complete Dual Conversion Receiver – Antenna Input to Audio Output
80 MHz Maximum Carrier Frequency
– RSSI Output
– Carrier Detect Output with Programmable Threshold
– Comparator for Data Recovery
– Operates with Either a Quad Coil or Ceramic Discriminator
•
•
•
•
•
52
1
FB SUFFIX
PLASTIC PACKAGE
CASE 848B
(QFP–52)
Compander
– Expandor Includes Mute, Digital Volume Control and Speaker Driver
– Compressor Includes Mute, ALC and Limiter
Dual Universal Programmable PLL
– Supports New 25 Channel U.S. Standard with No External Switches
– Universal Design for Domestic and Foreign CT–1 Standards
– Digitally Controlled Via a Serial Interface Port
– Receive Side Includes 1st LO VCO, Phase Detector, and 14–Bit
Programmable Counter and 2nd LO with 12–Bit Counter
– Transmit Section Contains Phase Detector and 14–Bit Counter
– MPU Clock Output Eliminates Need for MPU Crystal
48
1
FTA SUFFIX
PLASTIC PACKAGE
CASE 932
(Thin QFP)
Supply Voltage Monitor
– Externally Adjustable Trip Point
ORDERING INFORMATION
2.0 to 5.5 V Operation with One–Third the Power Consumption of
Competing Devices
AN1575: Refer to Application Note for a List of “Worldwide Cordless
Telephone Frequencies” (Chapter 8 Addendum of DL128 Data Book)
Device
Tested Operating
Temperature Range
Package
MC13109FB
MC13109FTA
QFP–52
TA = –20° to +85°C
TQFP–48
Simplified Block Diagram
Rx In
1st
Mixer
2nd
Mixer
1st LO
PLL
2nd LO
PLL
Limiting IF
Amplifier
RSSI
Detector
Mute
Expander
Rx
Out
Carrier
Detect
Tx In
Data
Out
Mute
Compressor
µP Serial
Interface
Tx Phase
Detector
Low Battery
Detect
SPI
Tx Out
Tx VCO
Low
Battery
Indicator
This device contains 6,609 active transistors.
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
Rev 1
1
MC13109
Figure 1. MC13109FB Test Circuit
RX_Audio
Ext_C_In
R30
49.9k
R29
49.9k
VCC/2
R31
100k
C41
C42 0.47
5.0nF µF
C43 0.1µF
C6 0.022µF
C7
15pF
7
8
EN
Clk
11
Clk
Out
12
N/A
13
C8 18pF
L3 0.22µH
C9
33pF
C10
68pF
R5 22.1k
14
Q1
MPS5179
VCC
R6
1.0k
15
C15
10pF
C13
0.01
µF
1st LO
VCO
Half Supply
Reference
2nd LO
1st LO
RSSI
Expander
VB
E
+ – Spkr Cap
Mute
Spkr
Amp
Rx
Mute
Data
Amp
Pre–
Amp
+
Vol
Ctrl
Mix2 Out
29
28
LS09
EN_5.0V
7
Open
DA_In
Data_5.0V 10
9
14
EN_5.0V
DA
U1
Out
DB
8
R16
49.9k
R9
1.0k
VCC Gnd
7
LS09
Clk_5.0V
VCCE
4
5
14
L2
Q Coil
C28
0.1µF
R22
12k
TOKO
A7MES–12597Z
R20
49.9k
R21 8.2k
Det_Out
R19
49.9k
C26
0.01µF
C25
1.0µF
Audio_In_In
C21
0.033µF
C22
0.1µF
R17
5.62k
C18
1.0µF
C23
0.001µF
R18
20k
E_Out
R11 1.0k
DA
R10 1.0k
Clk_5.0V
R23
10.2
VCC
C29
10µF
C30
0.1µF
Open
U1
Out
6
DB
VCC Gnd
7
LS09
VCCA
C33 0.1µF 455k
In
C31 0.1µF
VCC RF
C20
0.1µF
C19
10µF
Ext_IF
R23
1.5k
C32 0.1µF
DA_Fil
Gnd
VCC
14
R24
10
C27 0.1µF
Pre_Amp
DB
12
CF2
N/A
Open
13
C34
27
VB
17
18
19
20
21
22
23
24
25
26
BD
DA
SA SA
E VCC DA Pre–
Rx Det RSSI
Out Out Out
In Out Audio
In Amp Audio Out
Out
In
C16
R13
510
R12 3.9k
pF
100k
R15
C24
49.9k
510pF
VCCD
Out 11
Out
1.0µF
Lim In
16
U1
Gnd
3
Gnd RF
31 Lim C1
Lim C2
30
–
C12 33pF
DA
VB
34
32
Carrier
Detect
In
2
Mix1 Out
Mix2 In
33
330
1
Mix1
In1
35
2nd Mix
Ref
Low
Battery
Detect
Status
CD
Out Out/
Hardware
Interrupt
R7
22.1k
C11 47pF
36
PLL Vref
9
10
Compressor
37
1st LO
Limiter
Data
C14
1.0µF
R8
100k
R4
100k
1N5140
Tx
VCO
C48
1.0µF
Ext
Tx_VCO
R3
32.4k
Ecap
VCCA
1st
Mix
÷1 ÷4 ÷25
Out
Mix1 In2
38
IF Amp/
Limiter
R2
32.4k
3
39
In
2
C36
0.01µF
Detector
C5
0.1µF
+ –
ALC
1
50
R27
49.9k
Tx
Mute
Bandgap
Reference
R1
1.5k
Mix1_In
VCC
C40
1.0µF
12b Prog
Ref Ctr
14b Prog
Rx Ctr
C3 0.047µF
Spl
Amp
2.2V
Voltage
Regulator
C4
0.01µF
C35 0.01µF
Open LO1
VB
+ –
2nd
LO
R x Phase
Detect
LO2
Out
2
PLL
Vref
3
Rx
PD
4
Gnd
PLL
5
Tx
PD
6
C44 10µF
VCCA
VB
µ P Serial
Interface
C2
4.3pF
C45
0.1µF
R33
3.0k
1
T x Phase
Detect
R34
1.5k
10.24
MHz
14b Prog
Tx Ctr
LO2
In
XL1
R35
32.4k
2nd LO
10.240
C1
9–35pF
C46
Open
C38
5.0nF
Spl
Amp
Tx Gnd Vcap LO1 LO1
C
Tx Amp Lim
In Out Cap C In Out
In
In Audio Ctrl Out
N/A Ref Out
52
51
50 49
48
47
46
45
44
43
42
41
40
Prog
Clk Ctr
0.0047
µF
C30
1.0µF
CF2 455 MHz
Ext_Ref
L1
C47
MIC_ 1.0µF
Amp
R28
Out
49.9k
CF1 10.7 MHz
R32
100k
R36
22.1k
TX_In
Open
VCCE
Ext_SA_In
1
2
DA
DB
U1
Out
3
Gnd
V
7
14 CC LS09
R14
130
C17
47µF
Exp_IF
SA_Out
5.0V
2
MOTOROLA ANALOG IC DEVICE DATA
MC13109
Figure 2. MC13109FTA Test Circuit
RX_Audio
TX_In
Ext_C_In
Open
VCCE
C47
1.0µF
R2
32.4k
R1
1.5k
3
5
Spl
Amp
÷1
C7
15pF
C14
1.0
µF
C8 18pF
R6
1.0k
C12
33pF
µ P Serial
Interface
9
10
R8
100k
Clk
Out
11
13
C10
68pF
CD Out/
Hardware
Interrupt
C13
0.01
µF
Q1
MPS5179
14
13 DA
12 DB
BD
Out
DA
Out
R12
100k
Data_
5.0 V
EN_5.0V
Data_5.0V
10
DA
RSSI
1 In
Gnd RF
2 Gnd
SA
Out
17
SA In
18
19
E VCC
Out Audio
Pre–
Amp
+
C16
510pF
DA
In
21
Pre–
Amp
Out
25
22
23
24
Rx
Det RSSI
Audio Out
In
C24
510pF
R15
49.9k
R19
49.9k
C17
47µF
26
–
VB
20
C32 0.1µF
Lim C2
C31 0.1µF
27
Data
Amp
Vol
Ctrl
Lim C1
28
Rx
Mute
3
Out
C33
Ext_IF
0.1µF
R23
1.5k
R24
10
455k
In
R23
10.2
VCC RF
C30
0.1µF
Q Coil
C27
0.1µF
C29
10µF
VCC
Det_Out
R21
8.2k
C26
0.01µF
R20
49.9k
R22
12k
L2
TOKO
A7MES–12597Z
C25
1.0µF
Pre_Amp
C28
0.1µF
Audio_In_In
SA_Out
DA_Fil
C22
0.1µF
R18
20k
R17
Clk_5.0 V
Out 8
9 DB
14
Gnd 7
VCC
LS09
Mix2 Out
Lim In
VCCE
Open
U1
3 Out
Mix2 In
29
R14
130
Open
14 V
Gnd 7
CC
LS09
16
VCCD
U1
Out 11
31
In
2
CF2
E
+ – Spkr Cap
Mute
Spkr
Amp
15
VCC
5.0V
2nd Mix
Carrier
Detect
Expander
R13
3.9k
C15
10pF
32
2nd LO
VB
12
R7
22.1k
Half
Supply
Reference
Ref
Low
Battery
Detect
Clk
VCC
L3 0.22µH
C9
33pF
Data
EN
1
VCC
330
1st LO
2.2V
Voltage
Regulator
Ext
33
Mix1 Out
C34
1.0µF
VB
30
14b Prog
Tx Ctr
R4
100k
1st LO
Compressor
÷4 ÷25
Mix1 In1
50
C36 0.01µF
Mix1 In2
C35 0.01µF
34
PLL Vref
Prog
Clk Ctr
1N5140
C11 47pF
7
8
C6 0.022µF
R5
22.1k
E Cap
C48
Tx
1.0µF VCO
35
1st
Mix
Limiter
T x Phase
Detect
VCCA
Tx_VCO
Tx
Mute
ALC
6
R3
32.4k
+ –
+ –
12b Prog
Ref Ctr
4
Tx
PD
VB
2nd
LO
36
VB
Open
R9
1.0k
R11
1.0k
R10
1.0k
VCCA
R16
49.9k
C18
1.0µF
C19
10µF
DA_In
C21 5.62k
0.033µF
C23
0.001µF
C20
0.1µF
EN_5.0V
4 DA U1
Out 6
5 DB
14
Gnd
VCC
LS09
7
Clk_5.0V
1
2
U1
DA
E_Out
Out 3
DB
14 V
Gnd 7
CC
LS09
MOTOROLA ANALOG IC DEVICE DATA
CF1 10.7 MHz
2
Gnd
PLL
C5
0.1µF
Tx Gnd Vcap LO1 LO1
In Audio
In
Ctrl Out
41
40
39
38
37
Amp
Out
C In
43
42
1
Rx
PD
C4 0.01µF
44
IF Amp/
Limiter
C44 10µF
PLL
Vref
C
Cap
45
Mix1_In
Detector
LO2
Out
Lim
Out
46
Bandgap
Reference
C2
4.3pF
10.24
MHz
Spl
Amp
In
C41
0.47
µF
LO1
R27
49.9k
C40
1.0µF
14b Prog
R x Ctr
R33
3.0k
C3 0.047µF
LO2
In
XL1
2nd LO
10.240
C1
9–35pF
Tx
Ref Out
48
47
R x Phase
Detect
C45
0.1µF
Open
R30
49.9k
Open
L1
CF2 455 MHz
C43
0.1µF
R28
49.9k
C38
5.0nF
VCCA
C42
5.0nF
R35
32.4k
R34
1.5k
C30
1.0µF
R29
49.9k
R31
100k
C46
0.0047
µF
R36
22.1k
MIC_
Amp
Out
VCC/2 Ext_Ref
1st LO
VCO
R32
100k
Ext_SA_In
Exp_IF
3
MC13109
MAXIMUM RATINGS
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Symbol
Value
Unit
Power Supply Voltage
Rating
VCC
– 0.5 to + 5.5
Vdc
Junction Temperature
TJ
– 65 to +150
°C
NOTE: 1. Devices should not be operated at these limits. The “Recommended Operating Conditions”
provide for actual device operation.
2. ESD data available upon request.
RECOMMENDED OPERATING CONDITIONS
Characteristic
Min
Typ
Max
Unit
VCC
2.0
–
5.5
Vdc
Operating Ambient Temperature
–20
–
85
°C
NOTE: All limits are not necessarily functional concurrently.
ELECTRICAL CHARACTERISTICS (VCC = 2.6 V, TA = 25°C, RF In = 46.61 MHz, fDEV = ± 3.0 kHz,
fmod = 1.0 kHz; Test Circuit Figure 1.)
Characteristic
POWER SUPPLY
Static Current
Active Mode (VCC = 2.6 V)
Active Mode (VCC = 3.6 V)
Receive Mode (VCC = 2.6 V)
Receive Mode (VCC = 3.6 V)
Standby Mode (VCC = 2.6 V)
Standby Mode (VCC = 3.6 V)
Inactive Mode (VCC = 2.6 V)
Inactive Mode (VCC = 3.6 V)
4
Min
Typ
Max
Unit
–
–
–
–
–
–
–
–
6.7
7.1
4.3
4.5
300
600
40
56
12
–
7.0
–
600
–
80
–
mA
mA
mA
mA
µA
µA
µA
µA
MOTOROLA ANALOG IC DEVICE DATA
MC13109
ELECTRICAL CHARACTERISTICS (continued)
FM Receiver
The FM receivers can be used with either a quad coil or a
ceramic resonator. The FM receiver and 1st LO have been
designed to work for all country channels, including 25
channel U.S., without the need for any external switching
circuitry (see Figure 29).
(Test Conditions: VCC = 2.6 V, TA = 25°C, fO = 46.61 MHz, fDEV = ± 3.0 kHz, fmod = 1.0 kHz.)
Characteristic
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Sensitivity (Input for 12
dB SINAD)
Matched Impedance
Differential Input
Mix1
In1/2
Det Out
VSIN
–
0.7
–
µVrms
1st Mixer Conversion
Gain
Vin = 1.0 mVrms, with
CF1 Load
Mix1
In1/2
CF1
MXgain1
–
10
–
dB
2nd Mixer Conversion
Gain
Vin = 3.0 mVrms, with
CF2 Load
Mix2 In
CF2
MXgain2
–
20
–
dB
1st and 2nd Mixer Gain
Total
Vin = 1.0 mVrms, with
CF1 and CF2 Load
Mix1
In1/2
CF2
MXgainT
24
30
–
dB
1st Mixer Input
Impedance
–
–
Mix1 In1
Mix1 In2
Zin1
–
1.0
–
kΩ
2nd Mixer Input
Impedance
–
–
Mix2 In
Zin2
–
3.0
–
kΩ
1st Mixer Output
Impedance
–
–
Mix1 Out
Zout1
–
330
–
Ω
2nd Mixer Output
Impedance
–
–
Mix2 Out
Zout2
–
1.5
–
kΩ
IF – 3.0 dB Limiting
Sensitivity
fin = 455 kHz
Lim In
Det Out
IF Sens
–
55
–
µVrms
Total Harmonic Distortion
(CCITT Filter)
With RC = 8.2 kΩ/
0.01 µF Filter at Det
Out
Mix1
In1/2
Det Out
THD
–
0.7
–
%
Recovered Audio
With RC = 8.2 kΩ/
0.01 µF Filter at Det
Out
Mix1
In1/2
Det Out
AFO
80
100
154
mVrms
–
Lim In
Det Out
BW
–
20
–
kHz
Signal to Noise Ratio
Vin = 10 mVrms,
RC = 8.2 kΩ/0.01 µF
Mix1
In1/2
Det Out
SN
–
49
–
dB
AM Rejection Ratio
30% AM, Vin =
10 mVrms,
RC = 8.2 kΩ/0.001 µF
Mix1
In1/2
Det Out
AMR
–
37
–
dB
First Mixer 3rd Order
Intercept (Input
Referred)
Matched Impedance
Input
Mix1
In1/2
Mix1 Out
TOImix1
–
–10
–
dBm
Second Mixer 3rd
Order Intercept (Input
Referred)
Matched Impedance
Input
Mix2 In
Mix2 Out
TOImix2
–
– 27
–
dBm
–
Det Out
ZO
–
870
–
Ω
ā
Demodulator Bandwidth
Detector Output
Impedance
–
MOTOROLA ANALOG IC DEVICE DATA
5
MC13109
ELECTRICAL CHARACTERISTICS (continued)
RSSI/Carrier Detect
Connect 0.01 µF to Gnd from “RSSI” output pin to form the
carrier detect filter. “CD Out” is an open collector output
which requires an external 100 kΩ pull–up resistor to VCC.
The carrier detect threshold is programmable through the
MPU interface.
(RL = 100 kΩ, VCC = 2.6 V, TA = 25°C.)
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
–
Mix1 In
RSSI
RSSI
–
65
–
dB
CD Threshold Adjust =
(10100)
Mix1 In
CD Out
VT
–
22.5
–
µVrms
–
Mix1 In
CD Out
Hys
–
2.0
–
dB
Output High Voltage
Vin = 0 µVrms, RL =
100 kΩ, CD = (10100)
Mix1 In
CD Out
VOH
VCC – 0.1
2.6
–
V
Output Low Voltage
Vin = 100 µVrms, RL =
100 kΩ, CD = (10100)
Mix1 In
CD Out
VOL
–
0.01
0.4
V
Carrier Sense Threshold
Adjustment Range
Programmable through
MPU Interface
–
–
VTrange
– 20
–
11
dB
Carrier Sense Threshold
– Number of Steps
Programmable through
MPU Interface
–
–
VTn
–
32
–
–
Characteristic
RSSI Output Current
Dynamic Range
Carrier Sense Threshold
Hysteresis
Data Amp Comparator (see Figure 4)
Inverting hysteresis comparator. Open collector output
with internal 100 kΩ pull–up resistor. A band pass filter is
connected between the “Det Out” pin and the “DA In” pin with
component values as shown in the attached block diagram.
The “DA In” input signal is ac coupled.
(VCC = 2.6 V, TA = 25°C)
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Hysteresis
–
DA In
DA Out
Hys
30
40
50
mV
Threshold Voltage
–
DA In
DA Out
VT
VCC – 0.9
VCC – 0.7
VCC – 0.5
V
Input Impedance
–
–
DA In
ZI
–
11
–
kΩ
Output Impedance
–
–
DA Out
ZO
–
100
–
kΩ
Characteristic
Output High Voltage
Vin = VCC – 1.0 V,
IOH = 0 mA
DA In
DA Out
VOH
VCC – 0.1
2.6
–
V
Output Low Voltage
Vin = VCC – 0.4 V,
IOL = 0 mA
DA In
DA Out
VOL
–
0.03
0.4
V
6
MOTOROLA ANALOG IC DEVICE DATA
MC13109
ELECTRICAL CHARACTERISTICS (continued)
Pre–Amplifier/Expander/Rx Mute/Volume Control (See Figure 4)
the half supply reference so the input and output swing
The Pre–Amplifier is an inverting rail–to–rail output swing
capability will increase as the supply voltage increases. The
operational amplifier with the non–inverting input terminal
volume control can be adjusted through the MPU interface.
connected to the internal VB half supply reference. External
The “Rx Audio In” input signal is ac coupled.
resistors and capacitors can be connected to set the gain and
frequency response. The expander analog ground is set to
(Test Conditions: VCC = 2.6 V, TA = 25°C, fin = 1.0 kHz, Set External Pre–Amplifier R’s for Gain of 1, Volume Control = (0111).)
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Pre–Amp Open Loop
Gain
–
Rx Audio
In
Pre–Amp
AVOL
–
60
–
dB
Pre–Amp Gain
Bandwidth
–
Rx Audio
In
Pre–Amp
GBW
–
100
–
kHz
Pre–Amp Maximum
Output Swing
RL = 10 kΩ
Rx Audio
In
Pre–Amp
VOmax
–
VCC – 0.3
–
Vpp
Expander 0 dB Gain
Level
Vin = –10 dBV
Rx Audio
In
E Out
G
–3.0
–0.11
3.0
dB
Expander Gain
Tracking
g
Vin = –20 dBV, Output
Relative to G
Vin = –30
30 dBV
dBV, O
Output
Relative to G
Rx Audio
In
E Out
Gt
–21
–19.65
–19
dB
–42
42
–39.42
39 42
–37
3
Total Harmonic
Distortion
Vin = –10 dBV
Rx Audio
In
E Out
THD
–
0.5
–
%
Maximum Output
Voltage
Increase input voltage
until output voltage
THD = 5%, then
measure output
voltage. RL = 10 kΩ
Rx Audio
In
E Out
VOmax
–
–5.0
–
dBV
Attack Time
Ecap = 1.0 µF,
Rfilt = 20 kΩ
(See Appendix B)
Rx Audio
In
E Out
ta
–
3.0
–
ms
Release Time
Ecap = 1.0 µF,
Rfilt = 20 kΩ
(See Appendix B)
Rx Audio
In
E Out
tr
–
13.5
–
ms
Compressor to
Expander Crosstalk
V (Rx Audio In)
= 0 Vrms,
Vin = –10 dBV
C In
E Out
CT
–
–
–70
dB
Rx Mute
Vin = –10 dBV
No popping
detectable during Rx
Mute transitions
Rx Audio
In
E Out
Me
–
–70
–
dB
Volume Control Range
Programmable through
MPU Interface
–
–
VCrange
–14
–
16
dB
Volume Control Steps
Programmable through
MPU Interface
–
–
VCn
–
16
–
–
Characteristic
MOTOROLA ANALOG IC DEVICE DATA
7
MC13109
ELECTRICAL CHARACTERISTICS (continued)
Speaker Amplifier/SP Mute
The Speaker Amplifier is an inverting rail–to–rail
operational amplifier. The non–inverting input terminal is
connected to the internal VB half supply reference. External
resistors and capacitors are used to set the gain and
frequency response. The “SA In” input is ac coupled.
(Test Conditions: VCC = 2.6 V, TA = 25°C, fin = 1.0 kHz, External Resistors Set for Gain of 1.)
Characteristic
Maximum Output
Swing
g
SP Mute
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
VCC = 2.3 V,
RL = 130 Ω
VCC = 2.3 V,
RL = 600 Ω
VCC = 3.4
3 4 V,
V
RL = 600 Ω
SA In
SA Out
VOmax
–
0.8
–
Vpp
–
2.0
–
–
3.0
30
–
Vin = –20 dBV
RL = 130 Ω
No popping detectable
during SP Mute
transitions
SA In
–
–70
–
Condition
SA Out
Mic Amplifier (See Figure 6)
The Mic Amplifier is an inverting rail–to–rail output
operational amplifier with the non–inverting input terminal
connected to the internal VB half supply reference. External
Msp
dB
resistors and capacitors are connected to set the gain and
frequency response. The “Tx In” input is ac coupled.
(Test Conditions: VCC = 2.6 V, TA = 25°C, fin = 1.0 kHz, External Resistors Set for Gain of 1.)
Characteristic
Open Loop Gain
Gain Bandwidth
Maximum Output
Swing
8
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
–
Tx In
Amp Out
AVOL
–
60
–
dB
–
Tx In
Amp Out
GBW
–
100
–
kHz
RL = 10 kΩ
Tx In
Amp Out
VOmax
–
VCC – 0.3
–
Vpp
MOTOROLA ANALOG IC DEVICE DATA
MC13109
ELECTRICAL CHARACTERISTICS (continued)
Compressor/ALC/Tx Mute/Limiter (See Figure 5)
The compressor analog gound is set to the half supply
reference so the input and output swing capability will
increase as the supply voltage increases. The “C In” input is
ac coupled. The ALC (Automatic Level Control) provides a
soft limit to the output signal swing as the input voltage
increases slowly (i.e., a sine wave is maintained). The Limiter
circuit limits rapidly changing signal levels by clipping the
signal peaks. The ALC and/or Limiter can be disabled
through the MPU serial interface.
(Test Conditions: VCC = 2.6 V, fin = 1.0 kHz, TA = 25°C.)
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Compressor 0 dB Gain
Level
Vin = –10 dBV, ALC
disabled, Limiter
disabled
C In
Lim Out
G
–3.0
–0.17
3.0
dB
Compressor Gain
Tracking
Vin = –30 dBV, Output
Relative to G
C In
Lim Out
Gt
–11
–10.23
–9.0
dB
–23
–20.23
–17
Characteristic
Vin = –50 dBV, Output
Relative to G
Maximum Compressor
Gain
Vin –70 dBV
C In
Lim Out
AVmax
–
30
–
dB
Total Harmonic
Distortion
Vin –10 dBV, ALC
disabled, Limiter
disabled
C In
Lim Out
THD
–
0.5
–
%
C In
Lim Out
Zin
–
16
–
kΩ
Input Impedance
–
Attack Time
Ccap = 1.0 µF,
Rfilt = 20 kΩ
(see Appendix B)
C In
Lim Out
ta
–
3.0
–
ms
Release Time
Ccap = 1.0 µF,
Rfilt = 20 kΩ
(see Appendix B)
C In
Lim Out
tr
–
13.5
–
ms
Expander to
Compressor Crosstalk
V (C In) = 0 Vrms,
Vin = –10 dBV
Rx Audio
In
Lim Out
CT
–
–
–40
dB
Tx Data Mute
Vin = –10 dBV, ALC
disabled
No popping
detectable during Rx
Mute transitions
C In
Lim Out
Me
–
–70
–
dB
–
C In
Lim Out
DR
–24
–
–2.5
dBV
Vin = –18 dBV
Vin = –2.5 dBV
C In
Lim Out
ALCout
–
–16
–
dBV
–
–12
–
ALC disabled
C In
–
0.8
–
ALC Dynamic Range
ALC Output Level
Limiter Output Level
MOTOROLA ANALOG IC DEVICE DATA
Tx Out
Vlim
Vpp
9
MC13109
ELECTRICAL CHARACTERISTICS (continued)
Splatter Amplifier (see Figure 7)
The Splatter Amplifier is an inverting rail–to–rail output
operational amplifier with the non–inverting input terminal
connected to the internal VB half supply reference. External
resistors and capacitors can be connected to set the gain and
frequency response. The “Spl Amp In” input is ac coupled.
(Test Conditions: VCC = 2.6 V, TA = 25°C, fin = 1.0 kHz, External resistors Set for Gain of 1.)
Characteristic
Condition
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
Open Loop Gain
–
Spl Amp
In
Tx Out
AVOL
–
60
–
dB
Gain Bandwidth
–
Spl Amp
In
Tx Out
GBW
–
100
–
kHz
RL = 10 kΩ
Spl Amp
In
Tx Out
VOmax
–
VCC – 0.3
–
Vpp
Maximum Output
Swing
Tx Audio Path Recommendation
The recommended configuration for the Tx Audio path
includes setting the Microphone Amplifier gain to 16 dB using
the external gain setting resistors and setting the Splatter
Amplifier gain to 9.0 dB using the external gain setting
resistors. With these gain values, the total Tx Path transfer
characteristic is shown in Figure 7.
PLL Voltage Regulator
The PLL supply voltage is regulated to a nominal of 2.2 V.
The “VCC Audio” pin is the supply voltage for the internal
voltage regulator. The “PLL Vref” pin is the 2.2 V regulated
output voltage. Two capacitors with 10 µF and 0.01 µF values
must be connected to the “PLL Vref” pin to filter and stabilize
this regulated voltage. The voltage regulator provides power
for the 2nd LO, Rx and Tx PLL’s, and MPU Interface. The
voltage regulator can also be used to provide a regulated
supply voltage for external IC’s. Rx and Tx PLL loop
performance are independent of the power supply voltage
when the voltage regulator is used. The voltage regulator
requires about 200 mV of “headroom”. When the power
supply decreases to within about 200 mV of the output
voltage, the regulator will go out of regulation but the output
voltage will not turn off. Instead, the output voltage will
maintain about a 200 mV delta to the power supply voltage as
the power supply voltage continues to decrease. The “PLL
Vref” pin can be connected to “VCC Audio” by the external
wiring if voltage higher than 2.2 V is required. But it should
not be connected to other supply except “VCC Audio”. The
voltage regulator is “on” in the Active and Rx modes. In the
Standby and Inactive modes, the voltage regulator is turned
off to reduce current drain and the “PLL Vref” pin is internally
connected to “VCC Audio” (i.e., the supply voltage is
maintained but is now unregulated).
(Test Conditions: VCC = 2.6 V, TA = 25°C.)
Characteristic
Output Voltge Level
Condition
VCC = 2.6 V,
OL= 0 mA
Input
Pin
Measure
Pin
Symbol
Min
Typ
Max
Unit
–
VCC PLL
Vout
1.9
2.2
2.5
V
Line Regulation
IL = 0 mA, VCC = 2.6 to
5.5 V
VCC
VCC PLL
Regline
–
1.43
40
mV
Load Regulation
VCC = 2.6 V, IL = 0 to
1.0 mA
VCC
VCC PLL
Regload
–
–1.86
40
mV
Drop–Out Voltage
IL = 0 mA
–
–
DO
–
–
Vout + 200
mV
10
MOTOROLA ANALOG IC DEVICE DATA
MC13109
ELECTRICAL CHARACTERISTICS (continued)
Low Battery Detect
An external resistor divider is connected to the “Ref” input
pin to set the threshold for the low battery detect. The voltage
at the “Ref” input pin is compared to an internal 1.23 V
Bandgap reference voltage. The “BD Out” pin is open
collector and requires and external pull–up resistor to VCC.
(Test Conditions: VCC = 2.6 V, TA = 25°C.)
Input
Pin
Measure
Pin
Take average of rising
and falling threshold
Ref
–
Condition
Characteristic
Average Threshold
Voltage
Hysteresis
Symbol
Min
Typ
Max
Unit
Ref/
BD Out
Threshold
–
1.23
–
V
Ref
Ref/
BD Out
Hys
–
4.0
–
mV
–
Ref
Iin
–50
5.71
+50
nA
Input Current
Vin = 1.6 V
Output High Voltage
Vref = 1.6, RL = 3.9 kΩ
Ref
BD Out
VOH
VCC – 0.1
2.6
–
V
Output Low Voltage
Vref = 0.9, RL = 3.9 kΩ
Ref
BD Out
VOL
–
0.12
0.4
V
Figure 3. Data Amp Operation
Data Amp
Data
Signal
Hysteresis
Data Amp
Output
Figure 4. Typical Expander Response
10
Expander, E Out (dBV)
0
–10
– 20
E Out = –5.0 dBV
Typical at THD = 5 %
– 30
– 40
– 50
– 60
– 40
– 30
– 20
–10
0
10
Rx AUDIO IN (dBV)
MOTOROLA ANALOG IC DEVICE DATA
11
Figure 6. Total Tx Path, Mic Amp Gain = 16 dB,
Splatter Amp Gain = 9.0 dB
Figure 5. Typical Compressor/ALC/Limiter Response
0
10
(Rapidly Changing Limited Signals)
Vin > = –12 dBV, Vout = 0.8 Vpp
–10
OUTPUT LEVEL, Tx OUTPUT (dBV)
COMPRESSOR LEVEL OUTPUT, LIM OUT (dBV)
MC13109
Vin = – 2.5 dBV,
Vout = –12 dBV
–20
–30
Vin = –24 dBV, Vout = –17 dBV
(Slowly Changing ALC Signals)
–40
–50
–80
–60
–50
–40
–30
–20
–10
(Rapidly Changing Limited Signals)
Vin > = –28 dBV, Vout = 2.25 Vpp
0
Vin = –18.5 dBV,
Vout = –3.0 dBV
–10
–20
Vin = –40 dBV, Vout = –8.0 dBV
(Slowly Changing ALC Signals)
–30
–40
–80
0
–60
–50
COMPRESSOR, Cin LEVEL INPUT (dBV)
–40
–30
–20
0
–10
INPUT LEVEL, Tx INPUT (dBV)
Figure 7. MC13109FTA Internal I/O Block Diagram
LO2
In
Ref
Tx
Out
Spl
Amp
In
48
47
46
1
Lim
Out
C
Cap
C In
Amp
Out
Tx In
Gnd
Audio
Vcap
Ctrl
LO1
Out
LO1
In
45
44
43
42
41
40
39
38
37
20k
20k
12k
8.0k
12k
2
PLL
Vref
3
Rx
PD
4
200
Mix1
In1
35
Mix1
In2
34
Mix1
Out
33
VB
32
Mix2
In
31
Mix2
Out
30
Gnd RF
29
Lim In
28
Lim C1
27
Lim C2
26
VCC RF
25
Q Coil
8.0k
200
LO2
Out
36
55k
20k
200
PLL Vref
1.5k
6.9k
100
200
PLL Vref
Gnd
PLL
1.0k
100k
VCC Audio
6.9k
1.0k
200
100k
150k
5
3.0k
200
63k
80k
Tx
PD
20k
PLL Vref
6
14k
186k
PLL Vref
Ecap
200
Tx
VCO
1.2k
7
1.0k
36k
PLL Vref
8
1.5k
2.0 k
200
36k
200
200
Data
9
200
200
200
EN
10
Clk
11
1.5k
30k
51k
100k
10k
200
200
10k
22p
200
Clk
Out
30k
12
13
CD Out/
Hardware
Interrupt
12
14
15
16
17
18
19
20
21
22
23
24
BD
Out
DA
Out
SA
Out
SA
In
E Out
VCC
Audio
DA
In
Pre–
Amp
Out
Rx
Audio
In
Det
Out
RSSI
MOTOROLA ANALOG IC DEVICE DATA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13109
PIN FUNCTION DESCRIPTION
48–TQFP
Pin
52–QFP
Pin
Symbol
Type
1
2
1
2
LO2 In
LO2 Out
–
3
3
PLL Vref
Supply
Voltage Regulator output pin. The internal voltage regulator provides a stable power
supply voltage for the Rx and Tx PLL’s and can also be used as a regulated supply
voltage for the other IC’s.
4
4
Rx PD
Output
Three state voltage output of the Rx Phase Detector. This pin is either “high”, “low”,
or “high impedance” depending on the phase difference of the phase detector input
signals. During lock, very narrow pulses with a frequency equal to the reference
frequency are present. This pin drives the external Rx PLL loop filter. It is important
to minimize the line length and capacitance of this pin.
5
5
Gnd PLL
Gnd
6
6
Tx PD
Output
7
7
E Cap
–
8
8
Tx VCO
Input
Transmit divide counter input which is driven by an ac coupled external transmit
loop VCO. The minimum signal level is 200 mVpp @ 80.0 MHz. This pin also
functions as the test mode input for the counter tests.
9
10
11
9
10
11
Data
EN
Clk
Input
Microprocessor serial interface input pins for programming various counters and
control functions.
12
12
Clk Out
Output
Microprocesor Clock Output which is derived from the 2nd LO crystal oscillator and
a programmable divider. It can be used to drive a microprocessor and thereby
reduce the number of crystals required in the system design. The driver has an
internal resistor in series with the output whch can be combined with an external
capacitor to form a low pass filter to reduce radiated noise on the PCB. This output
also functions as the output for the counter test modes.
N/A
14
Status Out
Output
This pin indicates when the internal latches may have lost memory due to a power
glitch.
13
15
CD Out/
Hardware
Interrupt
Output/
Input
Dual function pin; 1) Carrier detect output (open collector with external 100 kΩ
pull–up resistor. 2) Hardware interrupt input which can be used to “wake–up” from
Inactive Mode.
14
16
BD Out
Output
Low battery detect output (open collector with external pull–up resistor).
15
17
DA Out
Output
Data amplifier output (open collector with internal 100 kΩ pull–up resistor).
16
18
SA Out
Output
Speaker amplifier output.
17
19
SA In
Input
18
20
E Out
Output
Expander output.
19
21
VCC Audio
Supply
VCC supply for audio section.
20
22
DA In
Input
21
23
Pre–Amp Out
Output
22
24
Rx Audio In
Input
23
25
Det Out
Output
24
26
RSSI
–
Receive signal strength indicator filter capacitor.
N/A
27
N/A
–
Note used.
25
28
Q Coil
–
A quad coil or ceramic discriminator are connected to this pin.
26
29
VCC RF
Supply
27
28
30
31
Lim C2
Lim C1
–
MOTOROLA ANALOG IC DEVICE DATA
Description
These pins form the PLL reference oscillator when connected to an external
parallel–resonant crystal (10.24 MHz typical). The reference oscillator is also the
second Local Oscillator (LO2) for the RF receiver.
Ground pin for PLL section of IC.
Three state voltage output of the Tx Phase Detector. This pin is either “high”, “low”,
or “high impedance” depending on the phase difference of the phase detector input
signals. During lock, very narrow pulses with a frequency equal to the reference
frequency are present. This pin drives the external Tx PLL loop filter. It is important
to minimize the line length and capacitance on this pin.
Expander rectifier filter capacitor pin. Connect capacitor to VCC.
Speaker amplifier input (ac coupled).
Data amplifier input (ac coupled).
Pre–amplifier output for connection of pre–amplifier feedback resistor.
Rx audio input to pre–amplifier (ac coupled).
Audio output from FM detector.
VCC supply for RF receiver section.
IF amplifier/limiter capacitor pins.
13
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13109
PIN FUNCTION DESCRIPTION (continued)
48–TQFP
Pin
52–QFP
Pin
Symbol
Type
Description
29
32
Lim In
Input
Signal input for IF amplifier/limiter.
30
33
Gnd RF
Gnd
Ground pin for RF section of the IC.
31
34
Mix2 Out
Output
32
35
Mix2 In
Input
33
36
VB
–
34
37
Mix1 Out
Output
35
38
Mix1 In2
Input
Negative polarity first mixer input.
36
39
Mix1 In1
Input
Positive polarity first mixer input.
37
38
40
41
LO1 In
LO1 Out
–
Tank elements for 1st LO multivibrator oscillator are connected to these pins.
39
42
Vcap Ctrl
–
1st LO varactor control pin.
40
43
Gnd Audio
Gnd
Ground for audio section of the IC.
41
44
Tx In
Input
Tx path input to Microphone Amplifier (ac coupled).
42
45
Amp Out
Output
43
46
C In
Input
44
47
C Cap
–
45
48
Lim Out
Output
46
49
Spl Amp In
Input
47
50
Tx Out
Output
48
51
Ref
Input
N/A
52
N/A
–
Second mixer output.
Second mixer input.
Internal half supply analog ground reference.
First mixer output.
Microphone amplifier output.
Compressor input (ac coupled).
Compressor rectifier filter capacitor pin. Connect capacitor to VCC.
Tx path limiter output.
Splatter amplifier input (ac coupled).
Tx path audio output.
Reference voltage input for low battery detect.
Not used.
Power Supply Voltage
This circuit is used in a cordless telephone handset and
base unit. The handset is battery powered and can operate
on two ro three NiCad cells or on 5.0 V power.
PLL Frequency Synthesizer General Description
Figure 8 shows a simplified block diagram of the
programmable universal dual phase locked loop (PLL). This
dual PLL is fully programmable thorugh the MCU serial
interface and supports most country channel frequencies
including USA (25 ch), France, Spain, Australia, Korea, New
Zealand, U.K., Netherlands and China (see channel
frequency tables in Appendix A).
The 2nd local oscillator and reference divider provide the
reference frequency for the Rx and Tx PLL loops. The
14
programmed divider value for the reference divider is
selected based on the crystal frequency and the desired Rx
and Tx reference frequency values. Additional divide by 25
and divide by 4 blocks are provided to allow for generation of
the 1.0 kHz and 6.25 kHz reference frequencies required for
the U.K. The 14–bit Tx counter is programmed for the desired
transmit channel frequency. The 14–bit Rx counter is
programmed for the desired first local oscillator frequency. All
counters power up in the proper default state for USA
channel #6 and for a 10.24 MHz reference frequency crystal.
Internal fixed capacitors can be connected to the tank circuit
of the 1st LO through microprocessor control to extend the
sensitivity of the 1st LO for U.S. 25 channel operation.
MOTOROLA ANALOG IC DEVICE DATA
MC13109
Figure 8. Dual PLL Simplified Block Diagram
LO2 In
1, 1
LO2 Out
2, 2
14–b Programmable
Tx Counter
Tx VCO
U.K. Base
Tx Ref
Tx PD
÷ 25
12–b
Programmable
÷4
Reference
÷1
Counter
8, 8
Tx Phase
Detector
6, 6
Tx
VCO
LPF
U.K. Handset
U.K. Base
Rx Ref
U.K. Handset
Rx PD
Rx Phase
Detector
4, 4
Vcap Ctrl
LPF
39, 42
LO1 In
14–b Programmable
Rx Counter
37, 40
LO1 Out
1st LO
38, 41
ELECTRICAL CHARACTERISTICS (VCC = 2.6 V, TA = 25°C)
Characteristic
Condition
Measure
Pin
Symbol
Min
Max
Unit
PLL PIN DC
Input Voltage Low
–
Data
Clk
EN
Hardware Int.
VIL
–
0.3
V
Input Voltage High
–
Data
Clk
EN
VIH
“PLL Vref” – 0.3
“VCC Audio”
V
Data
Clk
EN
IIL
–5.0
–
µA
Input Current Low
Vin = 0.3 V
Input Current High
Vin = (VCC Audio) – 0.3
Data
Clk
EN
IIH
–
5.0
µA
Hysteresis Voltage
–
Data
Clk
EN
Vhys
1.0
–
V
Output Current High
–
Rx PD
Tx PD
IOH
–
– 0.7
mA
Output Current Low
–
Rx PD
Tx PD
IOL
0.7
–
mA
Output Voltage Low
IIL = 0.7 mA
Rx PD
Tx PD
VOL
–
(PLL Vref)* 0.2
V
Output Voltage High
IIH = – 0. 7mA
Rx PD
Tx PD
VOH
(PLL Vref)* 0.8
–
V
Tri–State Leakage Current
V = 1.2 V
Rx PD
Tx PD
IOZ
– 50
50
nA
Input Capacitance
–
Data
Clk
EN
Cin
–
8.0
pF
Output Capacitance
–
Rx PD
Tx PD
Cout
–
8.0
pF
MOTOROLA ANALOG IC DEVICE DATA
15
MC13109
ELECTRICAL CHARACTERISTICS (continued) (VCC = 2.6 V, TA = 25°C)
Characteristic
Measure
Pin
Condition
Symbol
Min
Max
Unit
PLL PIN INTERFACE
EN to Clk Setup Time
–
EN, Clk
tsuEC
200
–
ns
Data to Clk Setup Time
–
Data, Clk
tsuDC
100
–
ns
Hold Time
–
Data, Clk
th
90
–
ns
Recovery Time
–
EN, Clk
trec
90
–
ns
Input Pulse Width
–
EN, Clk
tw
100
–
ns
Input Rise and Fall Time
–
Data
Clk
EN
tr, tf
–
–
–
9.0
–
–
µs
–
tpuMPU
–
100
µs
Measure
Pin
Symbol
Min
Max
Unit
LO2 In
LO2 Out
fLO
–
12
MHz
Tx VCO
ftxmax
–
80
MHz
MPU Interface Power–Up
Delay
90% of PLL Vref to
Data, Clk, EN
PLL LOOP
Characteristic
Condition
2nd LO Frequency
–
“Tx VCO” Input Frequency
Vin = 200 mVpp
PLL I/O Pin Specifications
The 2nd LO, Rx and Tx PLL’s and MPU serial interface are
normally powered by the internal voltage regulator at the
“PLL Vref” pin. The “PLL Vref” pin is the output of a voltage
regulator which is powered from the “VCC Audio” power
supply pin. Therefore, the maximum input and output levels
for most PLL I/O pins (LO2 In, LO2 Out, Rx PD, Tx PD, Tx
VCO) is the regulated voltage at the “PLL Vref” pin. The ESD
protection diodes on these pins are also connected to “PLL
Vref”. Internal level shift buffers are provided for the pins
(Data, Clk, EN, Clk Out) which connect directly to the
microprocessor. The maximum input and output levels for
these pins is VCC. Figure 9 shows a simplified schematic of
the PLL I/O pins.
I/O
VCC Audio
(2.0 to 5.5 V)
PLL Vref
(2.2 V)
VCC Audio
(2.0 to 5.5 V)
1.0 kΩ
In
Out
2.0 µA
LO2 In, LO2 Out,
Rx PD, Tx PD and
Tx VCO Pins
Data, Clk, and EN Pins
Clk Out Pin
Microprocessor Serial Interface
The “Data”, “Clk”, and “EN” pins provide an MPU serial
interface for programming the reference counters, the
transmit and receive channel divider counter and various
control functions. The “Data” and “Clk” pins are used to load
data into the shift register. Figure 10 shows “Data” and “Clk”
pin timing. Data is clocked on positive clock transitions.
16
tr
tf
90%
10%
Data,
Clk, EN
50%
Data
tsuDC
th
50%
Clk
Figure 9. PLL I/O Pin Simplified Schematics
PLL Vref
(2.2 V)
Figure 10. Data and Clock Timing Requirement
After data is loaded into the shift register, the data is
latched into the appropriate latch register using the “EN” pin.
This is done in two steps. First, an 8–bit address is loaded
into the shift register and latched into the 8–bit address latch
register. Then, up to 16–bits of data is loaded into the shift
register and latched into the data latch register specified by
the address that was previously loaded. Figure 11 shows the
timing required on the EN pin. Latching occurs on the
negative EN transition.
Figure 11. Enable Timing Requirement
50%
Clk
tsuEC
First
Clock
trec
50%
EN
50%
Last
Clock
50%
Previous Data Latched
MOTOROLA ANALOG IC DEVICE DATA
MC13109
The state of the EN pin when clocking data into the shift
register determines whether the data is latched into the
address register or a data register. Figure 12 shows the
address and data programming diagrams. In the data
programming mode, there must not be any clock transitions
when “EN” is high. The clock can be in a high state (default
high) or a low state (default low) but must not have any
transitions during the “EN” high state. The convention in
these figures is that latch bits to the left are loaded into the
shift register first.
Figure 12. Microprocessor Interface Programming
Mode Diagrams
Data
MSB
8–Bit Address
LSB
Latch
EN
Data
Address Register Programming Mode
MSB
16–Bit Data
LSB
Latch
EN
Data Register Programming Mode
The MPU serial interface is fully operational within 100 µs
after the power supply has reached its minimum level during
power–up (See Figure 13). The MPU Interface shift registers
and data latches are operational in all four power saving
modes; Inactive, Standby, Rx, and Active Modes. Data can
be loaded into the shift registers and latched into the latch
registers in any of the operating modes.
MOTOROLA ANALOG IC DEVICE DATA
Figure 13. Microprocessor Serial Interface
Power–Up Delay
2.0 V
tpuMPU
VCC
Data,
Clk, EN
Status Out
This is a digital output which indicates whether the latch
registers have been reset to their power–up default values.
Latch power–up default values are given in Figure 32. If there
is a power glitch or ESD event which causes the latch
registers to be reset to their default values, the “Status Out”
pin will indicate this to the MPU so it can reload the correct
information into the latch registers.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Figure 14. Status Out Operation
Status Latch Register Bits
Status Out
Logic Level
Latch bits not at power–up default value
0
Latch bits at power–up default value
1
Data Registers
Figure 15 shows the data latch registers and addresses
which are used to select each of these registers. Latch bits to
the left (MSB) are loaded into the shift register first. The LSB
bit must always be the last bit loaded into the shift register.
“Don’t care” bits can be loaded into the shift register first if
8–bit bytes of data are loaded.
17
MC13109
Figure 15. Microprocessor Interface Data Latch Registers
Latch Address
MSB
14–Bit Tx Counter
LSB
1. (00000001)
LSB
2. (00000010)
Tx Counter Latch
MSB
14–Bit Rx Counter
Rx Counter Latch
U.K. Base
Select
U.K. Handset
Select
MSB
12–Bit Reference Counter
LSB
3. (00000011)
Reference Counter Latch
ALC
Disable
Not
Used
Limiter
Disable
Clk
Disable
2–Bit
Clk Out
Select
4–Bit
Volume
Control
Stdby
Mode
Rx
Mode
Tx
Mute
Rx
Mute
SP
Mute
4. (00000100)
15–Bit Mode Control Latch
5–Bit CD Threshold Control
5. (00000101)
Threshold Control Latch
6. (00000110)
4–Bit Test
Mode
3–Bit 1st LO
Capacitor Selection
7. (00000111)
7–Bit Auxillary Latch
Reference Frequency Selection
The “LO2 In” and “LO2 Out” pins form a reference oscillator
when connected to an external parallel–resonant crystal. The
reference oscillator is also the second local oscillator for the
RF Receiver. Figure 16 shows the relationship between
different crystal frequencies and reference frequencies for
cordless phone applications in various countries.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
Figure 16. Reference Frequency and
Reference Divider Values
Crystal
Frequency
Reference
Divider
Value
U.K. Base/
Handset
Divider
Reference
Frequency
10.24 MHz
2048
1
5.0 kHz
10.24 MHz
1024
4
2.5 kHz
11.15 MHz
2230
1
5.0 kHz
12.00 MHz
2400
1
5.0 kHz
11.15 MHz
1784
1
6.25 kHz
11.15 MHz
446
4
6.25 kHz
11.15 MHz
446
25
1.0 kHz
18
Reference Counter
Figure 17 shows how the reference frequencies for the Rx
and Tx loops are generated. All countries except U.K. require
that the Tx and Rx reference frequencies be identical. In this
case, set “U.K. Base Select” and “U.K. Handset Select” bits
to “0”. Then the fixed divider is set to “1” and the Tx and Rx
reference frequencies will be equal to the crystal oscillator
frequency divided by the programmable reference counter
value. The U.K. is a special case which requires a different
reference frequency value fo Tx and Rx.
For U.K. base operation, set “U.K. Base Select” to “1”. For
U.K. handset operation, set “U.K. Handset Select” to “1”. The
Netherlands is also a special case since a 2.5 kHz reference
frequency is used for both the Tx and Rx reference and the
total divider value required is 4096 which is larger than the
maximum divide value available from the 12–bit reference
divider (4095). In this case, set “U.K. Base Select” to “1” and
set “U.K. Handset Select” to “1”. This will give a fixed divide
by 4 for both the Tx and Rx reference. Then set the reference
divider to 1024 to get a total divider of 4096.
Mode Control Register
Power saving modes, mutes, disables, volume control,
and microprocessor clock output frequency are all set by the
Control Register. Operation of the Control Register is
explained in Figures 18 through 25.
MOTOROLA ANALOG IC DEVICE DATA
MC13109
Figure 17. Reference Register Programming Mode
U.K. Base
Tx Reference Frequency
LO2 In
÷ 25
12–b
Programmable
÷4
Reference
Counter
÷1
LO2
LO2 Out
U.K. Handset
U.K. Base
Rx Reference Frequency
U.K. Handset
U.K. Handset
Select
U.K. Base
Select
Tx Divider
Value
Rx Divider
Value
Application
0
0
1
1
0
1
0
1
1
25
4
4
1
4
25
4
All but U.K. and Netherlands
U.K. Base Set
U.K. Hand Set
Netherlands Base and Hand Set
U.K. Handset
Select
U.K. Base
Select
MSB
12–Bit Ref Counter
LSB
14–Bit Reference Counter Latch
Figure 18. Control Register Bits
ALC
Disable
Not
Used
Limiter
Disable
Clk
Disable
2–Bit
Clk Out
Select
4–Bit
Volume
Control
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Figure 19. Mute and Disable Control Bit Descriptions
ALC Disable
1
0
Automatic Level Control Disabled
Normal Operation
Limiter Disable
1
0
Limiter Disabled
Normal Operation
Clock Disable
1
0
MPU Clock Output Disabled
Normal Operation
Tx Mute
1
0
Transmit Channel Muted
Normal Operation
Rx Mute
1
0
Receive Channel Muted
Normal Operation
SP Mute
1
0
Speaker Amp Muted
Normal Operation
Power Saving Operating Modes
When the MC13109 is used in a handset, it is important to
conserve power in order to prolong battery life. There are five
modes of operation; Active, Rx, Standby, Interrupt and
Inactive. In Active Mode, all circuit blocks are powered. In Rx
mode, all circuitry is powered down exept for those circuit
MOTOROLA ANALOG IC DEVICE DATA
Stdby
Mode
Rx
Mode
Rx
Mute
Tx
Mute
SP
Mute
sections needed to receive a transmission from the base. In
the Standby and Interrupt Modes, all circuitry is powered
down except for the circuitry needed to provide the clock
output for the microprocessor. In Inactive Mode, all circuitry is
powered down except the MPU interface. Latch memory is
maintained in all modes. Figure 20 shows the control register
bit values for selection of each power saving mode and
Figure 21 show the circuit blocks which are powered in each
of these operating mode.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Figure 20. Power Saving Mode Selection
Stdby
Mode
Bit
Rx
Mode
Bit
“CD Out/Hardware
Interrupt” Pin
Power Saving
Mode
0
0
X
Active
0
1
X
Rx
1
0
X
Standby
1
1
1 or High Impedance
Inactive
1
1
0
Inactive
19
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13109
Figure 21. Circuit Blocks Powered During Power Saving Modes
Active
Rx
Standby
Inactive
“PLL Vref” Regulated
Voltage
Circuit Blocks
X
X
X1
X1
MPU Interface
X
X
X
X
2nd LO Oscillator
X
X
X
MPU Clock Output
X
X
X
RF Receiver
X
X
1st LO VCO
X
X
Rx PLL
X
X
Carrier Detect
X
X
Data Amp
X
X
Low Battery Detect
X
X
Tx PLL
X
Rx Audio Path
X
Tx Audio Path
X
NOTE: 1. In Standby and Inactive Modes, “PLL Vref” remains powered but is not regulated. It will fluctuate with VCC.
Inactive Mode Operation and Hardware Interrupt
In some handset applications it may be desirable to power
down all circuitry including the microprocessor (MPU). First
put the MC13109 into the Inactive mode, which turns off the
MPU Clock Output (see Figure 22), and then disable the
microprocessor. In order to give the MPU adequate time to
power down, the MPU Clock output remains active for a
minimum of one reference counter cycle (about 200 µs) after
the command is given to switch into the “Inactive” mode. An
external timing circuit should be used to initiate the turn–on
sequence. The “CD Out” pin has a dual function. In the Active
and Rx modes it performs the carrier detect function. In the
Standby and Inactive modes the carrier detect circuit is
disabled and the “CD Out” pin is in a “High” state due to the
external pull–up resistor. In the Inactive mode the “CD Out”
pin is the input for the hardware interrupt function. When the
“CD Out” pin is pulled “low” by the external timing circuit, the
MC13109 swtiches from the Inactive to the Interrupt mode
thereby turning on the MPU Clock Output. The MPU can then
resume control of the combo IC. The “CD Out” pin must
remain low until the MPU changes the operating mode from
Interrupt to Standby, Active or Rx modes.
Figure 22. Hardware Interrupt Operation
Mode
Active/Rx
EN
CD Out/Hardware Interrupt
Inactive
Interrupt
MPU Initiates
Inactive Mode
External Timer
Pulls Pin Low
CD Out Low
CD Turns Off
Standby/Rx/Active
MPU Initiates
Mode Change
Timer Output
Disabled
MPU Clock Out
Delay after MPU selects Inactive Mode to when CD turns off.
“MPU Clock Out” remains active for a minimum of one count of reference
counter after “CD Out/Hardware Interrupt” pin goes high
20
MOTOROLA ANALOG IC DEVICE DATA
MC13109
“Clk Out” Divider Programming
The “Clk Out” pin is derived from the 2nd local oscillator
and can be used to drive a microprocessor, thereby reducing
the number of crystals required. Figure 23 shows the
relationship between the crystal frequency and the clock
output for different divider values. Figure 24 shows the “Clk
Out” register bit values.
MPU “Clk Out“ Power–Up Default Divider Value
The power–up default divider value is “divide by 10”. This
provides an MPU clock of about 1.0 MHz after initial
power–up. The reason for choosing this relatively low clock
frequency after intial power–up is that some microprocessors
that operate down to a 2.0 V power supply have a maximum
clock frequency fo 1.0 MHz. After initial power–up, the MPU
can change the clock divider value to set the clock to the
desired operating frequency. Special care has been taken in
the design of the clock divider to ensure that the transition
between one clock divider value and another is “smooth”
(i.e., there will be no narrow clock pulses to disturb the MPU).
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
Figure 23. Clock Output Values
Clock Output Divider
Crystal
Frequency
2
3
5
10
10.24 MHz
5.120 MHz
3.413 MHz
2.560 MHz
2.048 MHz
11.15 MHz
5.575 MHz
3.717 MHz
2.788 MHz
2.230 MHz
12.00 MHz
6.000 MHz
4.000 MHz
3.000 MHz
2.400 MHz
Figure 24. Clock Output Divider
Clk Out
Bit #1
Clk Out
Bit #0
Clk Out
Divider Value
0
0
2
0
1
3
1
0
5
1
1
10
MPU “Clk Out” Radiated Noise on Circuit Board
The clock line running between the MC13109 and the
microprocessor has the potential to radiate noise which can
cause problems in the system especially if the clock is a
square wave digital signal with large high frequency
harmonics. In order to minimize radiated noise, a 1.0 kΩ
resistor is included on–chip in–series with the “Clk Out” output
driver. A small capacitor can be connected to the “Clk Out” line
on the PCB to form a single pole low pass filter. This filter will
significantly reduce noise radiated from the “Clk Out” line.
Volume Control
The volume control can be programmed in 2.0 dB gain
steps from –14 dB to +16 dB. The power–up default value is
0 dB.
Figure 25. Volume Control
Volume Control
Bit #3
Volume Control
Bit #2
Volume Control
Bit #1
Volume Control
Bit #0
Volume
Control #
Gain/Attenuation
Amount
0
0
0
0
0
–14 dB
0
0
0
1
1
–12 dB
0
0
1
0
2
–10 dB
0
0
1
1
3
– 8.0 dB
0
1
0
0
4
– 6.0 dB
0
1
0
1
5
– 4.0 dB
0
1
1
0
6
– 2.0 dB
0
1
1
1
7
0 dB
1
0
0
0
8
2.0 dB
1
0
0
1
9
4.0 dB
1
0
1
0
10
6.0 dB
1
0
1
1
11
8.0 dB
1
1
0
0
12
10 dB
1
1
0
1
13
12 dB
1
1
1
0
14
14 dB
1
1
1
1
15
16 dB
Gain Control Register
The gain control register contains bits which control the
Carrier Detect threshold. Operation of these latch bits are
explained in Figures 26 and 27.
MOTOROLA ANALOG IC DEVICE DATA
Figure 26. Gain Control Latch Bits
MSB
5–Bit CD Threshold Control
LSB
21
MC13109
Carrier Detect Threshold Programming
Th “CD Out” pin will give an indication to the
microprocessor if a carier signal is present on the selected
channel. The nominal value and tolerance of the carrier
detect threshold is given in the carrier detect specification
section of this document. If a different carrier detect threshold
value is desired, it can be set through the MPU interface as
shown in Figure 27 below.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Figure 27. Carrier Detect Threshold Control
22
CD
Bit #4
CD
Bit #3
CD
Bit #2
CD
Bit #1
CD
Bit #0
CD
Control #
Carrier Detect
Threshold
0
0
0
0
0
0
– 20 dB
0
0
0
0
1
1
–19 dB
0
0
0
1
0
2
–18 dB
0
0
0
1
1
3
–17 dB
0
0
1
0
0
4
–16 dB
0
0
1
0
1
5
–15 dB
0
0
1
1
0
6
–14 dB
0
0
1
1
1
7
–13 dB
0
1
0
0
0
8
–12 dB
0
1
0
0
1
9
–11 dB
0
1
0
1
0
10
–10 dB
0
1
0
1
1
11
– 9.0 dB
0
1
1
0
0
12
– 8.0 dB
0
1
1
0
1
13
–7.0 dB
0
1
1
1
0
14
– 6.0 dB
0
1
1
1
1
15
– 5.0 dB
1
0
0
0
0
16
– 4.0 dB
1
0
0
0
1
17
– 3.0 dB
1
0
0
1
0
18
– 2.0 dB
1
0
0
1
1
19
–1.0 dB
1
0
1
0
0
20
0 dB
1
0
1
0
1
21
1.0 dB
1
0
1
1
0
22
2.0 dB
1
0
1
1
1
23
3.0 dB
1
1
0
0
0
24
4.0 dB
1
1
0
0
1
25
5.0 dB
1
1
0
1
0
26
6.0 dB
1
1
0
1
1
27
7.0 dB
1
1
1
0
0
28
8.0 dB
1
1
1
0
1
29
9.0 dB
1
1
1
1
0
30
10 dB
1
1
1
1
1
31
11 dB
MOTOROLA ANALOG IC DEVICE DATA
MC13109
schematic of the 1st LO tank circuit. Figure 30 shows the
latch control bit values.
The internal varactor temperature coefficient is 1800 ppm/°C
(CO = 8.9 pF at 25°C, Vcap control voltage = 1.2 V, Freq =
36 MHz). Customer is suggested to use a negative
temperature coefficient capacitor in 1st LO tank circuit when
the whole operating temperature range of –40 to +85°C is
considered.
Auxiliary Register
The auxiliary register contains a 3–bit 1st LO Capacitor
Selection latch and a 4–bit Test Mode latch. Operation of
these latch bits are explained in Figures 28, 29 and 30.
Figure 28. Auxiliary Register Latch Bits
MSB
4–Bit Test Mode
LSB
MSB
3–Bit 1st LO Capacitor
Selection
Figure 29. 1st LO Schematic
LSB
First Local Oscillator Capacitor Selection for 25
Channel U.S. Operation
There is a very large frequency difference between the
minimum and maximum channel frequencies in the proposed
25 Channel U.S. standard. The sensitivity of the 1st LO is not
large enough to accommodate this large frequency variation.
Fixed capacitors can be connected across the 1st LO tank
circuit to change the 1st LO sensitivity. Internal switches and
capacitors are provided to enable microprocessor control
over internal fixed capacitor values. Figure 29 shows the
Vcap Ctrl
Varactor
42
Internal Capacitor
LO1 In
1st LO
Varactor
Cext
40
LO1 Out
Lext
41
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Figure 30. 1st LO Capacitor Select for U.S. 25 Channels
U.S.
Handset
Channels
Internal
Cap. Value
(Excluding
Varactor)
Varactor
Value over
0.5 to 2.2 V
Range
External
Capacitor
Value
External
Inductor
Value
16 – 25
–
0.92 pF
10 – 6.4 pF
27 pF
0.47 µH
–
16 – 25
0.92 pF
10 – 6.4 pF
33 pF
0.47 µH
1
1–6
–
2.61 pF
10 – 6.4 pF
27 pF
0.47 µH
0
2
7 – 15
–
1.82 pF
10 – 6.4 pF
27 pF
0.47 µH
1
1
3
–
1–6
8.69 pF
10 – 6.4 pF
33 pF
0.47 µH
0
0
4
–
7 – 15
7.19 pF
10 – 6.4 pF
33 pF
0.47 µH
1st LO
Cap.
Bit 2
1st LO
Cap.
Bit 1
1st LO
Cap
Bit 0
1st LO
Cap.
Select
U.S.
Base
Channels
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
MOTOROLA ANALOG IC DEVICE DATA
23
MC13109
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Figure 31. Test Mode Description
Counter Under Test or
Test Mode Option
“Tx VCO”
Input Signal
“Clk Out” Output Expected
>200 mVpp
–
TM #
TM 3
TM 2
TM 1
TM 0
0
0
0
0
0
Normal Operation
1
0
0
0
1
Rx Counter, upper 6
0 to 2.2 V
Input Frequency/64
2
0
0
1
0
Rx Counter, lower 8
0 to 2.2 V
See Note Below
3
0
0
1
1
Rx Prescaler
0 to 2.2 V
Input Frequency/4
4
0
1
0
0
Tx Counter, upper 6
0 to 2.2 V
Input Frequency/64
5
0
1
0
1
Tx Counter, lower 8
0 to 2.2 V
See Note Below
6
0
1
1
0
Tx Prescaler
7
0
1
1
1
Reference Counter
0 to 2.2 V
Input Frequency/Reference Counter Value
8
1
0
0
0
Divide by 4, 25
0 to 2.2 V
Input Frequency/100
9
1
0
0
1
AGC Gain = 10 Option
N/A
–
1
0
1
0
AGC Gain = 25 Option
N/A
–
10
NOTE:
>200 mVpp
Input Frequency/4
To determine the correct output, look at the lower 8 bits in the Rx or Tx register (Divisor (7;0). If the value of the divisor is > 16, then the output divisor
value is Divisor (7;2) (the upper 6 bits of the divisor). If Divisor (7;0) < 16 and Divisor (3;2) > = 2, then output divisor value is Divisor (3;2) (bits 2 and 3
of the divisor). If Divisor (7;0) < 16 and Divisor (3;2) < 2, then output divisor value is (Divisor (3;2) + 60).
Test Modes
Test Mode Control latch bits enable independent testing
of internal counters and set AGC Gain Options. In test
mode, the “Tx VCO” input pin is multiplexed to the input of
the counter under test and the output of the counter under
test is multiplexed to the “Clk Out” output pin so that each
counter can be individually tested. Make sure test mode bits
are set to “0” for normal operation. Test mode operation is
described in Figure 31. During normal operation and when
testing the Tx Prescaler, the “Tx VCO” input can be a
minimum of 200 mVpp at 80 MHz and should be ac coupled.
For other test modes, input signals should be standard logic
levels of 0 to 2.2 V and a maximum frequency of 16 MHz.
Power–Up Defaults for Control and Counter Registers
When the IC is first powered up, all latch registers are
initialized to a defined state. The MC13109 is initially placed in
the Rx mode with all mutes active and nothing disabled. The
reference counter is set to generate a 5.0 kHz reference
frequency from a 10.24 MHz crystal. The MPU clock output
divider is set to 10 to give the minimum clock output frequency.
The Tx and Rx latch registers are set for USA Channel
Frequency #21. Figure 32 shows the initial power–up states
for all latch registers.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
Á
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
Figure 32. Latch Register Power–Up Defaults
MSB
LSB
R i
Register
C
Count
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Tx
9966
–
–
1
0
0
1
1
0
1
1
1
0
1
1
1
0
Rx
7215
–
–
0
1
1
1
0
0
0
0
1
0
1
1
1
1
Ref
2048
–
–
0
0
1
0
0
0
0
0
0
0
0
0
0
0
Mode
N/A
–
0
0
0
0
1
1
0
1
1
1
0
1
1
1
1
Gain
N/A
–
–
–
–
–
–
–
–
–
–
–
1
0
1
0
0
TM
N/A
–
–
–
–
–
–
–
–
–
0
0
0
0
0
0
0
24
MOTOROLA ANALOG IC DEVICE DATA
MC13109
Figure 34. ICC versus VCC at Receive Mode
Figure 33. ICC versus VCC at Active Mode
8.0
I CC , SUPPLY CURRENT (mA)
I CC , SUPPLY CURRENT (mA)
8.0
6.0
4.0
2.0
0
2.5
3.0
3.5
4.0
4.5
6.0
4.0
2.0
0
2.5
5.0
3.0
Figure 35. ICC versus VCC at Standby Mode
4.5
5.0
Figure 36. ICC versus VCC at Inactive Mode
I CC , SUPPLY CURRENT (µ A)
I CC , SUPPLY CURRENT (mA)
4.0
80
1.0
0.8
0.6
0.4
0.2
0
2.5
3.5
VCC, SUPPLY VOLTAGE (V)
VCC, SUPPLY VOLTAGE (V)
3.0
3.5
4.0
4.5
60
40
20
0
2.5
5.0
3.0
VCC, SUPPLY VOLTAGE (V)
3.5
4.0
4.5
5.0
VCC, SUPPLY VOLTAGE (V)
Figure 37. RFin versus AFout, N+D, N, AMR
Figure 38. Recovered Audio/THD versus fDEV
3.0
0.30
10
R22 = 12 kΩ
–20
–30
AMR
N+D
–50
2.0
0.20
Recovered Audio
0.15
1.5
0.10
1.0
THD
0.5
0.05
N
–60
–120
–100
–80
–60
–40
RFin, RF INPUT (dBm)
MOTOROLA ANALOG IC DEVICE DATA
–20
0
0
0
2.0
4.0
6.0
8.0
10
0
fDEV, DEVIATION, (kHz)
25
THD (%)
–10
–40
2.5
0.25
AFout
RECOVERED AUDIO (V)
RELATIVE OUTPUT (dB)
0
MC13109
Figure 40. First Mixer Third Order
Intercept Performance
Figure 39. RSSI Output versus RFin
1.4
0
1.2
MIXER OUTPUT (dBm)
RSSI OUTPUT (V)
–20
1.0
0.8
0.6
0.4
–60
–80
0.2
0
–120
–40
–100
–80
–60
–40
–20
0
–100
–120
–100
RFin, RF INPUT (dBm)
–80
–60
–40
–20
0
RFin, RF INPUT (dBm)
APPENDIX A – MEASUREMENT OF COMPANDOR ATTACK/DECAY TIME
This measurement definition is based on EIA/CCITT
recommendations.
Compressor Attack Time
For a 12 dB step up at the input, attack time is defined as
the time for the output to settle to 1.5X of the final steady state
value.
Compressor Decay Time
For a 12 dB step down at the input, decay time is defined
as the time for the input to settle to 0.75X of the final steady
state value.
Expander Attack
For a 6.0 dB step up at the input, attack time is defined as
the time for the output to settle to 0.57X of the final steady
state value.
Expander Decay
For a 6.0 dB step down at the input, decay time is defined
as the time for the output to settle to 1.5X of the final steady
state value.
6.0 dB
Input
12 dB
0 mV
Input
Attack Time
Decay Time
0 mV
Attack Time
Decay Time
0.57X Final Value
1.5X Final Value
1.5X Final Value
Output
Output
0 mV
0.75X Final Value
0 mV
26
MOTOROLA ANALOG IC DEVICE DATA
MC13109
OUTLINE DIMENSIONS
FB SUFFIX
PLASTIC PACKAGE
CASE 848B–04
(QFP–52)
ISSUE C
L
B
B
39
27
S
D
V
S
0.20 (0.008)
0.20 (0.008)
M
L
–A–, –B–, –D–
DETAIL A
F
M
C A–B
S
S
B
H A–B
–B–
–A–
0.05 (0.002) A–B
DETAIL A
D
26
40
J
N
BASE METAL
14
52
1
D
13
0.02 (0.008)
–D–
B
0.20 (0.008) M H A–B
S
D
S
S
D
S
V
M
C A–B
DETAIL C
M_
C
E
–H–
DATUM
PLANE
0.10 (0.004)
H
–C–
M_
G
C A–B
S
D
S
SECTION B–B
0.05 (0.002) A–B
0.20 (0.008)
M
U_
R
Q_
K
T
W
X
DETAIL C
SEATING
PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF LEAD AND IS
COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE
PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED AT DATUM
PLANE –H–.
5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING
PLANE –C–.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER
SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE –H–.
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION.
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON
THE LOWER RADIUS OR THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
Q
R
S
T
U
V
W
X
MILLIMETERS
MIN
MAX
9.90
10.10
9.90
10.10
2.10
2.45
0.22
0.38
2.00
2.10
0.22
0.33
0.65 BSC
–––
0.25
0.13
0.23
0.65
0.95
7.80 REF
5_
10_
0.13
0.17
0_
7_
0.13
0.30
12.95
13.45
0.13
–––
0_
–––
12.95
13.45
0.35
0.45
1.6 REF
INCHES
MIN
MAX
0.390
0.398
0.390
0.398
0.083
0.096
0.009
0.015
0.079
0.083
0.009
0.013
0.026 BSC
–––
0.010
0.005
0.009
0.026
0.037
0.307 REF
5_
10_
0.005
0.007
0_
7_
0.005
0.012
0.510
0.530
0.005
–––
0_
–––
0.510
0.530
0.014
0.018
0.063 REF
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
MOTOROLA ANALOG IC DEVICE DATA
27
MC13109
OUTLINE DIMENSIONS
4
FTA SUFFIX
PLASTIC PACKAGE
CASE 932–02
(Thin QFP)
ISSUE D
0
.
0
0
8
)
X
0
.
2
9
0
0Z
(
D
A
A
4
3
A
P
I
L
7
3
T
T
NOTES:
T1 DIMENSIONING
–
U AND TOLERANCING PER ANSI
Y14.5M, 1982.
2 CONTROLLING
DIMENSION: MILLIMETER.
Y
3 DATUM PLANE –AB– IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE BOTTOM OF THE PARTING LINE.
4 DATUMS –T–, –U–, AND –Z– TO BE DETERMINED
AT DATUM PLANE –AB–.
5 DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE –AC–.
6 DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS
0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE –AB–.
7 DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
A CAUSE
E THE D DIMENSION TO EXCEED
NOT
0.350 (0.014).
8 MINIMUM SOLDER PLATE THICKNESS SHALL BE
0.0076 (0.0003).
9 EXACT SHAPE OF EACH CORNER IS OPTIONAL.
B
1
8
1
–
E
A
6
–
–
U
–
V
B
B
A
1
1
2
2
1
3
2
E
1
4
–
S
5
V
Z
–
1
–
T
–
,
–
U
T
A
S
4
D
X
0
.
2
0
0Z
(
0
.
0
G
–
A
B
–
–
A
C
–
A
ÇÇÇÇ
ÉÉÉÉ
ÇÇÇÇ
ÉÉÉÉ
ÇÇÇÇ
B
A
S
E
0
.
0
8
0
8
)
0
A
C
(
0
T
.
D
M
E
T
A
O
P
&
B
R
J
C
–
M_
L
T
N
E
MILLIMETERS
INCHES
DIM MIN
MAX
MIN
MAX
A
7.000 BSC
0.276 BSC
A1
3.500 BSC
0.138 BSC
B
7.000 BSC
0.276 BSC
– B1 , 3.500 BSC – 0.138ZBSC
C
1.400
1.600
0.055
0.063
I D L0.170 0.270 Y0.007 0.011
E
1.350
1.450
0.053
0.057
F
0.170
0.230
0.007
0.009
– G U 0.500 BASIC
0.020 BASIC
H
0.050
0.150
0.002
0.006
J
0.090
0.200
0.004
0.008
K
0.500
0.700
0.020
0.028
M
12 _REF
12 _REF
0 N 0 0.0903 0.160
)
A
C
0.004
0.006
P
0.250 BASIC
0.010 BASIC
Q
1_
5_
1_
5_
R
0.150
0.250
0.006
0.010
S
9.000 BSC
0.354 BSC
S1
4.500 BSC
0.177 BSC
V
9.000 BSC
0.354 BSC
V1
4.500 BSC
0.177 BSC
W
0.200 REF
0.008 REF
X
1.000 REF
0.039 REF
O
T
G
A
0
.
T
U
O
G
2
M
E
5
P
0
L
A
(
N
0
E
F
D
0
.
S
0
M
E
8A
T0C
C
S–
S
(U
T
I
0
.
O
0
N
0
3
)
HA
Z
E
D
–W
E
T
A
E
A
Q_
I K L
A
D
X
H
o
w
t
o
r
e
a
c
h
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
28
◊
u
s
:
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MOTOROLA ANALOG IC DEVICE DATA
*MC13109/D*
MC13109/D
E
.
0
1