IRF IRF7820PBF

IRF7820PbF
HEXFET® Power MOSFET
Applications
l Synchronous MOSFET for Notebook
Processor Power
l Synchronous Rectifier MOSFET for
Isolated DC-DC Converters in
Networking Systems
Benefits
l Very Low RDS(on) at 10V VGS
l Low Gate Charge
l Fully Characterized Avalanche Voltage
and Current
l 20V VGS Max. Gate Rating
VDSS
RDS(on) max
Qg (typ.)
200V 78m @VGS = 10V
29nC
A
A
D
S
1
8
S
2
7
D
S
3
6
D
G
4
5
D
SO-8
Top View
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
200
VGS
Gate-to-Source Voltage
± 20
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
3.7
ID @ TA = 70°C
2.9
IDM
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
PD @TA = 25°C
Power Dissipation
2.5
PD @TA = 70°C
Power Dissipation
TJ
Linear Derating Factor
Operating Junction and
T STG
Storage Temperature Range
f
f
c
Units
V
A
29
W
1.6
0.02
-55 to + 150
W/°C
°C
Thermal Resistance
Parameter
RJL
Junction-to-Drain Lead
RJA
Junction-to-Ambient
f
g
Typ.
Max.
–––
20
–––
50
Units
°C/W
Notes  through … are on page 9
www.irf.com
1
07/24/2012
IRF7820PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
 VDSS / TJ
RDS(on)
VGS(th)
 VGS(th)
IDSS
IGSS
gfs
Qg
Q gs1
Q gs2
Q gs
Q gd
Q godr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q gs2 + Qgd)
Output Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
Typ. Max. Units
200
–––
–––
3.0
–––
–––
–––
–––
–––
5.0
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.23
62.5
4.0
-12
–––
–––
–––
–––
–––
29
8.6
1.5
10.1
8.7
10.2
10.2
30
0.73
7.1
3.2
14
12
1750
90
25
Conditions
–––
V
VGS = 0V, ID = 250μA
–––
V/°C Reference to 25°C, ID = 1mA
78
m VGS = 10V, ID = 2.2A
5.0
V
VDS = VGS , ID = 100μA
––– mV/°C
20
VDS = 200V, VGS = 0V
μA
VDS = 200V, VGS = 0V, T J = 125°C
250
VGS = 20V
100
nA
-100
VGS = -20V
VDS = 50V, ID = 2.2A
–––
S
44
VDS = 100V
–––
VGS = 10V
–––
–––
nC ID = 2.2A
–––
See Figs. 6, 16a & 16b
–––
–––
–––
nC VDS = 20V, VGS = 0V

–––
–––
VDD = 200V, VGS = 10V
–––
ID = 2.2A
ns
–––
RG = 1.8
–––
See Figs. 15a & 15b
–––
VGS = 0V
–––
pF VDS = 100V
–––
ƒ = 1.0MHz
e
e
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
c
d
Typ.
Max.
Units
–––
–––
606
2.8
mJ
A
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
Qrr
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
2
c
Min.
–––
Typ. Max. Units
–––
1.5
A
–––
–––
29
–––
–––
–––
–––
33
213
1.3
50
320
Conditions
MOSFET symbol
V
ns
nC
showing the
integral reverse
p-n junction diode.
T J = 25°C, IS = 2.2A, VGS = 0V
T J = 25°C, IF = 2.2A, VDD = 100V
di/dt = 500A/μs
e
e
www.irf.com
IRF7820PbF
1000
100
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
7.0V
6.25V
6.0V
5.75V
5.5V
5.25V
1
5.25V
0.1
10
BOTTOM
VGS
15V
10V
7.0V
6.25V
6.0V
5.75V
5.5V
5.25V
5.25V
1
60μs PULSE WIDTH
60μs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.01
0.1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
2.5
100
VDS = 50V
60μs PULSE WIDTH
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
10
T J = 150°C
T J = 25°C
1
2.0
ID = 3.7A
VGS = 10V
1.5
1.0
0.5
0.0
0.1
4
4
5
5
6
6
7
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
7
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF7820PbF
100000
VGS, Gate-to-Source Voltage (V)
ID= 2.2A
C oss = C ds + C gd
10000
C, Capacitance (pF)
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
Ciss
1000
Coss
Crss
100
10
12.0
VDS= 160V
VDS= 100V
10.0
VDS= 40V
8.0
6.0
4.0
2.0
0.0
1
10
100
1000
0
VDS, Drain-to-Source Voltage (V)
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
30
40
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
100
T J = 150°C
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R (on)
DS
100μsec
1msec
10
10msec
1
DC
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.01
0.1
0.3
0.4
0.5
0.6
0.7
0.8
0.9
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
20
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
10
10
1.0
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7820PbF
4
VGS(th) , Gate threshold Voltage (V)
6.0
ID, Drain Current (A)
3
2
1
5.5
5.0
4.5
ID = 100μA
ID = 250μA
4.0
ID = 1.0mA
ID = 1.0A
3.5
3.0
2.5
0
25
50
75
100
125
-75 -50 -25
150
T A , Ambient Temperature (°C)
0
25
50
75 100 125 150
TJ , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Ambient Temperature
Thermal Response ( Z thJA ) °C/W
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
10
1
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
150
2500
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m )
IRF7820PbF
ID = 3.6A
ID
0.25A
0.37A
BOTTOM 2.8A
TOP
2000
125
T J = 125°C
1500
100
1000
75
T J = 25°C
50
500
0
4
6
8
10
12
14
16
18
20
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy
vs. Drain Current
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
+
V
- DD
IAS
tp
tp
A
0.01
I AS
Fig 14a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- VDD
VGS
Pulse Width µs
Duty Factor 
Fig 15a. Switching Time Test Circuit
6
Fig 14b. Unclamped Inductive Waveforms
10%
VGS
td(on)
tr
td(off) tf
Fig 15b. Switching Time Waveforms
www.irf.com
IRF7820PbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 16b. Gate Charge Waveform
Fig 16a. Gate Charge Test Circuit
Driver Gate Drive
D.U.T
P.W.
+
ƒ
+
‚
-

*
RG
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
VDD
**
P.W.
Period
***
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
Period
VGS=10V
Circuit Layout Considerations
 Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
-
Qgs2 Qgs1
Qgd
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
Forward Drop
Inductor Curent
Ripple  5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
VDD
ISD
*** VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
www.irf.com
7
IRF7820PbF
SO-8 Package Outline(Mosfet & Fetky)
Dimensions are shown in milimeters (inches)
'
',0
%
$
+
>@
(
$
0,1
$ E
F
'
(
H
%$6,&
H
;
H
H
;E
>@
$
$
0,//,0(7(56
0$;
$
,1&+(6
0,1
0$;
%$6,&
%$6,&
%$6,&
+
.
/
\
ƒ
ƒ
ƒ
ƒ
.[ƒ
&
\
>@
;F
;/
& $ %
)22735,17
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
;>@
>@
;>@
;>@
SO-8 Part Marking Information
(;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
;;;;
)
'$7(&2'(<::
3 ',6*1$7(6/($')5((
352'8&7237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
IR WORLD
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRF7820PbF
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 155mH, RG = 50, IAS = 2.8A
ƒ Pulse width  400μs; duty cycle  2%.
„ When mounted on 1 inch square copper board.
… R is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd.., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/12
www.irf.com
9