IRF IRF7862PBF

PD - 97275B
IRF7862PbF
HEXFET® Power MOSFET
Applications
l Synchronous MOSFET for Notebook
Processor Power
l Synchronous Rectifier MOSFET for
Isolated DC-DC Converters
VDSS
RDS(on) max
3.3m:@VGS = 10V
30V
Benefits
l Very Low RDS(on) at 4.5V VGS
l Ultra-Low Gate Impedance
l Fully Characterized Avalanche Voltage
and Current
l 20V VGS Max. Gate Rating
l 100% tested for Rg
l Lead-Free
Qg
30nC
A
A
D
S
1
8
S
2
7
D
S
3
6
D
G
4
5
D
SO-8
Top View
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
30
VGS
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
± 20
ID @ TA = 25°C
V
21
IDM
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
170
ID @ TA = 70°C
Units
17
c
PD @TA = 25°C
Power Dissipation
2.5
PD @TA = 70°C
Power Dissipation
1.6
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
A
W
W/°C
0.02
-55 to + 150
°C
Thermal Resistance
Parameter
RθJL
Junction-to-Drain Lead
RθJA
Junction-to-Ambient
f
g
Typ.
Max.
–––
20
–––
50
Units
°C/W
Notes  through … are on page 9
www.irf.com
1
06/04/09
IRF7862PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
Min. Typ. Max. Units
30
–––
–––
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
0.023
3.0
–––
3.3
Gate Threshold Voltage
–––
1.35
3.7
–––
4.5
2.35
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-5.4
–––
–––
1.0
IGSS
Gate-to-Source Forward Leakage
–––
–––
–––
–––
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
87
–––
–––
mV/°C VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
µA
VDS = 24V, VGS = 0V, TJ = 125°C
150
VGS = 20V
100
nA
-100
VGS = -20V
–––
S VDS = 15V, ID = 16A
Total Gate Charge
Pre-Vth Gate-to-Source Charge
–––
–––
30
7.5
45
–––
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
–––
–––
3.1
9.8
–––
–––
Qgodr
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
9.6
12.9
–––
–––
Qoss
Rg
Output Charge
Gate Resistance
–––
–––
18
1.0
–––
1.6
td(on)
tr
Turn-On Delay Time
Rise Time
–––
–––
16
19
–––
–––
td(off)
tf
Turn-Off Delay Time
Fall Time
–––
–––
18
11
–––
–––
Ciss
Coss
Input Capacitance
Output Capacitance
–––
–––
4090
810
–––
–––
Crss
Reverse Transfer Capacitance
–––
390
–––
VGS(th)
∆VGS(th)
gfs
Qg
Qgs1
Qgs2
Qgd
V
Conditions
Drain-to-Source Breakdown Voltage
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
VGS = 10V, ID = 20A
mΩ
VGS = 4.5V, ID = 16A
V VDS = VGS, ID = 100µA
e
e
VDS = 15V
nC
VGS = 4.5V
ID = 16A
See Figs. 15 & 16
nC
Ω
ns
pF
VDS = 16V, VGS = 0V
VDD = 15V, VGS = 4.5V
ID = 16A
RG = 1.8Ω
See Fig. 18
VGS = 0V
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
–––
Max.
350
Units
mJ
–––
16
A
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
Min. Typ. Max. Units
–––
–––
Conditions
MOSFET symbol
3.1
A
D
showing the
integral reverse
G
(Body Diode)
Diode Forward Voltage
–––
–––
170
–––
–––
1.0
V
S
p-n junction diode.
TJ = 25°C, IS = 16A, VGS = 0V
trr
Qrr
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
17
33
26
50
ns
nC
TJ = 25°C, IF = 16A, VDD = 15V
di/dt = 430A/µs
ton
Forward Turn-On Time
2
c
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF7862PbF
≤60µs PULSE WIDTH
Tj = 25°C
1000
TOP
ID, Drain-to-Source Current (A)
100
BOTTOM
10
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
≤60µs PULSE WIDTH
Tj = 150°C
ID, Drain-to-Source Current (A)
1000
100
1
0.1
2.3V
0.01
BOTTOM
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
10
2.3V
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1000
1.6
VDS = 15V
≤60µs PULSE WIDTH
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
TOP
100
T J = 150°C
10
T J = 25°C
1
0.1
1.4
ID = 21A
VGS = 10V
1.2
1.0
0.8
0.6
1
2
3
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
4
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF7862PbF
100000
5.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 16A
C, Capacitance (pF)
C oss = C ds + C gd
10000
Ciss
Coss
1000
Crss
VDS= 24V
VDS= 15V
4.0
3.0
2.0
1.0
100
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
10
15
ID, Drain-to-Source Current (A)
1000
100
35
T J = 25°C
100µsec
1msec
10
10msec
1
T A = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
1.0
0.1
0.2
0.4
0.6
0.8
1.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
30
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
10
25
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
T J = 150°C
20
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
ISD, Reverse Drain Current (A)
5
1.2
0.1
1.0
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7862PbF
2.5
VGS(th) , Gate Threshold Voltage (V)
25
ID, Drain Current (A)
20
15
10
5
2.3
2.0
1.8
ID = 250µA
1.5
1.3
1.0
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T A , Ambient Temperature (°C)
Fig 9. Maximum Drain Current vs.
Ambient Temperature
Fig 10. Threshold Voltage vs. Temperature
100
Thermal Response ( Z thJA ) °C/W
D = 0.50
0.20
0.10
0.05
0.02
0.01
10
1
SINGLE PULSE
( THERMAL RESPONSE )
0.1
0.01
τJ
0.001
R1
R1
τJ
τ1
R2
R2
R3
R3
τA
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci= τi/Ri
0.0001
1E-006
Ri (°C/W)
R4
R4
1E-005
0.0001
0.001
τ4
τ4
τA
τi (sec)
1.242
0.000172
4.759
0.031397
28.506
1.2211
15.507
44.5
0.01
0.1
PDM
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJA + TA
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7862PbF
1600
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
12
ID = 21A
ID
TOP
1.0A
1.4A
BOTTOM 16A
1400
10
1200
1000
8
T J = 125°C
6
4
T J = 25°C
800
600
400
200
2
0
2
3
4
5
6
7
8
9
10 11 12
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 13. Maximum Avalanche Energy
vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
V(BR)DSS
tp
15V
L
VDS
DUT
DRIVER
0
D.U.T
RG
IAS
20V
L
tp
0.01Ω
+
- VDD
1K
20K
VCC
S
A
I AS
Fig 15. Gate Charge Test Circuit
Fig 14. Unclamped Inductive Test Circuit
and Waveform
Id
Vds
Vgs
Vgs(th)
Qgodr
Qgd
Qgs2 Qgs1
Fig 16. Gate Charge Waveform
6
www.irf.com
IRF7862PbF
D.U.T
Driver Gate Drive
P.W.
+
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
+
Re-Applied
Voltage
Body Diode
-
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
VDS
V GS
RG
RD
VDS
90%
D.U.T.
+
- V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
www.irf.com
10%
VGS
td(on)
tr
td(off) tf
Fig 18b. Switching Time Waveforms
7
IRF7862PbF
SO-8 Package Outline(Mosfet & Fetky)
Dimensions are shown in milimeters (inches)
'
',0
%
$
+
>@
(
$
0,1
$ E
F
'
(
H
%$6,&
H
;
H
H
;E
>@
$
$
0,//,0(7(56
0$;
$
,1&+(6
0,1
0$;
%$6,&
%$6,&
%$6,&
+
.
/
\
ƒ
ƒ
ƒ
ƒ
.[ƒ
&
\
>@
;F
;/
& $ %
)22735,17
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
;>@
>@
;>@
;>@
SO-8 Part Marking Information
(;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
;;;;
)
'$7(&2'(<::
3 ',6*1$7(6/($')5((
352'8&7237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRF7862PbF
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 2.7mH, RG = 25Ω, IAS = 16A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board.
… Rθ is measured at TJ of approximately 90°C.
Revision History
Date
Comment
6/4/2009
Maximum Rds(on) at Vgs =10V changed from 3.7mΩ to 3.3mΩ. All other parameters are unchanged.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.06/2009
www.irf.com
9