ISL55210 High Speed ADC Input Interface Solutions

HIGH SPEED ADC INPUT
INTERFACE SOLUTIONS
ISL55210
ADDING A LOW POWER, VERY
HIGH DYNAMIC RANGE LAST STAGE
INTERFACE TO HIGH SPEED ADC’S
Michael Steffes
Sr. Applications Manager
June, 2011
SIMPLY SMARTER™
ISL55210 Front Page of Data Sheet
2
ISL55210 – Low Power, Wideband FDA
•
Differential I/O, Voltage Feedback, with output Common mode
control.
• 3.0V to 4.5V supply voltage range
• 35mA on 3.3V supply (production trimmed) , 115mW power
• 4.0GHz gain bandwidth product, 5600V/usec slew rate
• 0.85nV/√Hz input voltage noise, 5pA/√Hz input current noise
• Default output common mode voltage at 1.2V on single 3.3V supply
•
Significant loop gain at lower frequencies
• Intended to hold > 100dBc SFDR to >100MHz frequencies.
•
While the device can operate DC coupled (with a negative supply
voltage), most data has been taken with a specific apps circuit that
offers considerable even order distortion suppression.
3
ISL55210 – 100kHz ->200Mhz Apps Circuit
•
Focusing first on the input side of the solution to the amplifier Rg elements, we do
most of the characterization with the following applications circuit. This circuit is
available on our Eval board.
• AC coupled input to a broadband 1:1.4 turns ratio transformer – the ADT2-1T is setting the bandwidth to
100kHz to 400Mhz in this circuit.
• Gain resistors act as input termination. Their sum, 100ohm to the virtual ground nodes of the differential op
amp, reflect to the input side as a 50Ω input termination.
• Total gain Vo/Vi = 1.4*4 = 5.2V/V (15dB)
• Output is AC coupled into a 200ohm differential load – 1:1 transformer is only for measurement purposes –
would not normally be used in an ADC interface design.
+3.3V
33mA
110mW
200 ohm
85 ohm
50 ohm
+
50 ohm
1:1.4
Vi
200 ohm
1uF
ISL55210
Vcm
1uF
50 ohm
35 ohm
1:1
Vo
1uF
0.1uF
ADT2-1T
35 ohm
50 ohm
4
200 ohm
1uF
85 ohm
ADT1-1WT
Vm
Building Towards a Full ADC Interface Solution
•
While we need to provide the whole solution, we normally break this
into pieces looking first at the amplifier by itself then combining it
with various interstage circuits from the amplifier to the ADC to get a
combined solution.
• Most of the data has been with this 200ohm load getting out through a 1:1 transformer while
presenting a 50ohm source to our spectrum analyzers. This introduces about a 17dB insertion
loss from the amplifier outputs to the single ended output from the transformer.
• This is what we call the ISL55210 Eval board. That board also includes the option to insert a
differential RLC interface with ADC input R & C to test filter performance
• Adding the required elements to drive into an Intersil ADC leads to various ADC daughterboard
designs where we can also insert various interstage filter designs and take FFT data.
• Before we get to those ADC daughterboard results, let’s look at some amplifier only issues and
measured data.
• The ISL55210 also has a fixed gain version, ISL55211 offering 3 internal gain settings.
5
ISL55210/11 Eval Board
6
Amplifier only testing on the Rev. C EVM board
•
Since the IM3 can usually not be filtered, most of the design and early
characterization effort was focused on the IM3. Below is some recently measured
data. The differential structure of the amplifier stage does a good job of
suppressing even order distortion, but with IM3 this low, HD2 it is in fact now the
limiting issue in the interface.
7
ISL55210 – Performance Comparison IM3
This compares most of the best FDA devices for 3rd order intercept –
high is good here. We far outperform the competitive devices through
150Mhz and all competitive devices require higher quiescent power.
OIP3 for Differential Drivers (200Ω) Load
65
60
55
50
OIP3 (dBm)
•
45
ISL55210 (120mW)
40
35
30
25
50
8
100
150
200
250
Center Frequency (MHz) Usually, < +/-2Mhz spacing
300
ISL55210 – 300MHz ->600Mhz Apps Circuit
•
To test performance at higher frequencies in a similar configuration,
the following circuit was used for these tests.
• AC coupled input to a higher frequency 1:1.4 turns ratio transformer (2Mhz -> 800Mhz)
• Gain and feedback resistors scaled up a bit to reduce output loading. This required an added
input shunt R of 200Ω to get the input match which will increase noise figure.
• Total gain Vo/Vi = 1.4*4 = 5.2V/V (15dB)
• Output is AC coupled into a 200ohm differential load – 1:1 transformer is only for measurement
purposes – would not normally be used in an ADC interface design.
+3.3V
33mA
110mW
400 ohm
85 ohm
100 ohm
+
50 ohm
1:1.4
Vi
1nF
200 ohm
200 ohm
ISL55210
Vcm
1nF
50 ohm
35 ohm
1:1
Vo
1nF
0.1uF
TX-2-5-1
35 ohm
100 ohm
9
400 ohm
1nF
85 ohm
ADT1-1WT
Vm
ISL55210 – 300Mhz ->600Mhz IM3 and IM2
2-tone testing was done at 2Vpp output envelope and 1Vpp output
envelope. (does show intercept characteristic vs. output swing)
• Each test frequency was then a 1Vpp and then 0.5Vpp across the differential outputs.
• Used a +/-2Mhz spacing around each test center frequency (Fo). This puts the IM2 terms at
4Mhz and 2*Fo and the IM3 terms at Fo +/- 6Mhz.
• 4Mhz IM2 term falls where there is considerable loop gain and is consistently un-measureable.
Simulations estimate it should be < -120dBc below the carriers.
• 2*Fo term falls at a much higher, lower loop gain, frequency giving rapidly decreasing
suppression. This term, however, can often be filtered out prior to the converter input.
ISL55210, gain 15dB, 200ohm
load IM2
ISL55210, gain 15dB, 200ohm
load IM3
-60
-70
IM3 2Vpp
-80
IM3 1Vpp
-90
-40
-45
-50
-55
-60
-65
-70
IM2 2Vpp
IM2 1vpp
600
300
400
500
Center Frequency (Mhz) +/-2Mhz
10
IM2 dBc
-50
IM3 dBc
•
600
800
1000
F1 + F2 Frequency (Mhz)
1200
Intersil High Speed ADC Options
•
•
All of these ADC’s use the Femto-Charge technique pioneered by
Kenet – now part of Intersil.
The latest 12Bit, 500MSPS ADC is the ISLA112P50 using <500mW
power. This is an interleaved ADC using two 250MSPS cores.
11
Intersil High Speed ADC Options
•
•
For 1st Nyquist zone designs, the ISLA112P50 is in -80dBc to
-90dBc on the HD2 and HD3 terms. This data is taken with the
two transformer input interface typical of ADC characterization.
Beyond this, there is an emerging family of 12,14, and 16bit
ADCs based on a 14bit core.
12
Combining Amplifiers with ADCs
•
The input spectrum to the ADC inputs can be considered to have its
own SNR and SFDR characteristics. Referenced from a single tone
signal swing amplitude at -1dBFS (in RMS), an SNR can be developed
from the spot noise at the amplifier outputs and the integration BW to
the ADC inputs. The SFDR is simply the HD2 or HD3 dBc delivered to
the ADC inputs for that level of signal swing.
• For SNR, combining the ADC with the input signal is an RMS calculation,

SNRSystem  20  log 10

 SNRADC
20
 
  10
 
 
2
 SNROp Amp
20




2
• For SFDR, the spurious combine linearly so it is straight addition of spurious amplitude- stating
that in an SFDR specification form gives this.
13
 SFDRAmp
  SFDRADC

20
20

SFDRSystem  20  log10
 10




Drop from ADC Specification Adding the Amplifier
We can normalize these two equations to show just the degradation from any ADC
SNR or SFDR given an input signal that has its own SNR and SFDR that is >= ADC.
These curves start at 0dB on the x-axis, which is where the SNR and SFDR coming
into the ADC equals the ADC numbers, then go up from there showing the effect of
design margin in the input signal. SFDR needs a lot of margin.
Normalized SFDR Degradation
from ADC (dB)
14
0
-0.5
-1
-1.5
-2
-2.5
-3
0
5
10
15
SNR at Inputs - ADC SNR (dB)
20
SFDR Degradation from ADC
SFDR (dB)
Normalized SNR Degradation from
ADC (dB)
SNR Degradation from ADC
SNR (dB)
•
0
-1
-2
-3
-4
-5
-6
0
5
10
15
SFDR at Inputs - ADC SFDR (dB)
20
ISL55210 – Combined with 12Bit 500MSPS ADC
Value Proposition:
• Industry’s Lowest Power, Lowest HD,
FDA (Fully Differential Amplifier)
Key Strengths
• 4GHz Gain Bandwidth Product. VFA
design.
• Lowest input noise at 0.85nV/√Hz
• Lowest power – 35mA on 3.3V supply
(115mW)
• Lowest distortion (HD3 <-100dBc
through 100MHz)
Amplifier + ADC FFT
• Here a 17.3dB gain circuit is combined
with an output 2nd order low pass filter
to give a controlled noise power
bandwidth interface with very good FFT
results
15
ISL55210 + ISLA112P50 ADC Daughterboard
16
Design Example with the ISL55210 + ISLA112P50
Details for the circuit example design using a 1:2 turns ratio step up on the input and an RLC
filter flat through 120MHz using a resistor bias for the Icm as the interstage connection (green
are optional elements)
17
Design Example with the ISL55210 + ISLA112P50
•
This circuit includes a passive differential to single ended measurement port as part
of the shunt R element in the filter. This allows us to measure the frequency
response right up to the ADC input with the ADC clocking. This solution is giving
18dB gain to the ADC but the test port has 27db insertion loss – but it gives us the
shape we want. 180MHz -3dB here
18
Comparative SNR and SFDR Data
•
Measuring single tone from 65Mhz to 115Mhz for this 18dB gain interface with
postfilter vs. the simple 2 transformer interface that requires about 10dBm input
power for -1dBFS. The amplifier interface has dropped the required input swing to
180mVpp from 2Vopp with minimal SNR or SFDR degradation.
• ISL55210 gain of 18dB interface test data.
Frequency (MHz) SNRFS (dBFS)
SNR (dBc) SFDR (dBc) HD2 (dBc) HD3 (dBc)
65
64.8
63.8
78
-78
-85
75
64.9
63.8
80
-80
-85
85
64.8
63.8
80
-82
-84
95
64.7
63.8
80
-87
-82
105
64.8
63.8
80
-90
-82
115
64.7
63.8
79
-82
-84
• Simple 2 transformer interface test data – typical ADC characterization data
Frequency
(MHz)
19
SNRFS
(dBFS)
65
75
85
95
105
115
SNR
(dBc)
65.8
65.8
65.7
65.7
65.6
65.5
SFDR
(dBc)
64.8
64.8
64.7
64.7
64.6
64.6
86
84
83
83
82
81
HD2 (dBc)
-98
-105
-90
-88
-90
-82
HD3
(dBc)
-94
-84
-86
-89
-85
-82
2-tone FFT Data at 115MHz with an 18dB Gain Stage
•
This is showing about -85dBc in the IM3 terms – very close to the
ADC itself suggesting the input signal is much better. This is using
an input interface that is only using 115mW on 3.3V.
20
ISL55210 Additional Features
•
Packaging and Pinout
• 16Lead QFN with backside ground holds very low internal Tj rise from ambient.
• Measured thermal impedance is only 63°C/W. For a 115mW internal dissipation this is only a 7°C rise
above ambient – excellent long term reliability and extended high temperature range performance.
• Pinout duplicates the output pins on the input side of the package – this gives a very good layout for the Rg
and Rf resistors.
•
Shutdown Characteristics
• The shutdown feature takes the typical supply current to 400uA. This is not zero as the internal circuitry is
still active to hold the output pins close to the Vcm setting. This is intended to have a start up characteristic
that does not require large voltage/current spikes to reach the nominal Vcm voltage at the outputs.
•
Overdrive Considerations
• The differential input pins include back to back low capacitance diodes that will limit the differential input
voltage under large overdrive conditions and sink the input signal current through the two gain resistors.
These act to limit large output signals under disable as well – protecting the ADC inputs.
•
Highest ESD ratings in the industry for this type of device.
21
ISL55210 Performance and Design in Summary
• Easy to use, very wideband, FDA with independent output Vcm.
• Lowest IM3 vs. quiescent power (115mW) for this type of FDA
• Even order distortion is now the limiting factor. Output side filter design can help
this (and reduce integrated noise) with minimal insertion loss and no added
quiescent power.
• Single ended to differential can be implemented using the ISL55210. Both DC
coupled and AC coupled give excellent performance – app notes underway to
describe these approaches and resulting performance.
• Fixed gain version, ISL55211, offers 3 possible gain settings – 2, 4 or 5V/V
depending on input side pin connections. Fixed Bandwidth of approximately
1.4GHz at all gain settings.
• Combined amplifier + ADC daughterboards in development for customer
application. Available by 3Q2011.
22
Detailed Converter Interface Design Articles
• 4 part series on Planet Analog, from April 2011
– Part 1. Advantages to transformer input in a single to differential AC coupled application.
http://www.eetimes.com/design/analog-design/4215415/Deliver-the-lowest-distortionand-noise-in-a-low-power--wideband--ADC-interface--Part-1-of-4– Part 2. Calculating integrated noise at the ADC for different filters and input pin SNR with
the ADC for a net result
http://www.eetimes.com/design/analog-design/4215416/Deliver-the-lowest-distortionand-noise-in-a-low-power--wideband--ADC-interface--Part-2-of-4– Part3. Distortion issues and combining SFDR at input pins with ADC for a net result
http://www.eetimes.com/design/analog-design/4215417/Deliver-the-lowest-distortionand-noise-in-a-low-power--wideband--ADC-interface--Part-3-of-4– Part 4. Summary amplifier + ADC data on the Rev. A daughterboard and transformer
modeling.
http://www.eetimes.com/design/analog-design/4215418/Deliver-the-lowest-distortionand-noise-in-a-low-power--wideband--ADC-interface--Part-4-of-4-?Ecosystem=analogdesign
23