Application Note

TEP 160-WIR Series
Application Note
DC/DC Converter 8.5 (9.0) to 36Vdc or 16.5 to 75 Vdc and 43 to 160Vdc Input
3.3 to 48Vdc Single Outputs, up to 182W Output Power
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
pending
Industry standard half-brick footprint
61.057.912.7 mm (2.402.280.50 inch)
RoHS directive compliant
Six-sided continuous shield
for 24VIN, 48VIN and 72VIN module
Soft-start
3
High power density of 66.5W / inch
4:1 ultra wide input voltage range
High efficiency up to 91%
Input to output  basic Insulation: 2’250 VDC
Output current up to 43A
Adjustable output voltage
No minimum load required
Railway application
Options
•
•
•
•
Complete TEP 160-WIR datasheet can be downloaded at:
http://www.tracopower.com/products/tep160wir.pdf
Negative logic remote ON/OFF
Case pin
Synchronous
Terminal block
Applications
General Description
•
•
•
•
•
•
Wireless Network
Telecom/ Datacom
Industry Control System
Distributed Power Architectures
Semiconductor Equipment
Railway System
The TEP 160-WIR series offer up to 182 watts of output power from a 61.057.912.7mm industry standard
half-brick package and footprint with a 4:1 ultra wide input voltage of 8.5 (9)~36Vdc, 16.5~75Vdc and 43~160Vdc
and adjustable output voltage. The product features 2’250VDC of isolation for 60 seconds (basic insulation), short
circuit and over voltage protection, as well as six sided shielding.
Table of contents
Output Specifications
Input Specification
General Specification
Environmental Specification
EMC characteristic
Characteristic Curves
Testing Configurations
EMI Considerations
Output Voltage Adjustment
Remote Sense
Input Source Impedance
Output Over Current Protection
Short Circuitry Protection
Created by Traco Electronic AG
P2 & P3
P4 & P5
P5
P6
P6
P7 – P48
P49 – P51
P52 – P56
P56 & P57
P58
P58
P58
P59
Output Over Voltage Protection
Over Temperature Protection
Thermal Considerations
Heat-Sink Considerations
Remote ON/OFF Control
Synchronous Pin
Mechanical Data
Recommended Pad Layout
Soldering Considerations
Packaging Information
Part Number Structure
Safety and Installation Instruction
MTBF and Reliability
www.tracopower.com
P59
P59
P59
P60
P61
P62
P63– P65
P66
P67
P68
P69
P70
P70
Date: June 27th, 2012 / Rev.: 1.2 / Page 1 / 70
Application Note
182W, Single Output
Parameter
Output Voltage
(Vin = Vin nom, Full Load , TA = 25°C)
Voltage Adjustability (see page 56 & 57)
Output Regulation
Line (Vin min to Vin max at Full Load)
Load (0% to 100% of Full Load)
Output Ripple & Noise
(Vin = Vin nom, Full Load , TA = 25°C)
Peak to Peak (5Hz to 20MHz bandwidth)
Measured with a ripple &noise test board:
COUT, ext. = 1μF 25V 1206 X7R MLCC and
22μF 25V D-type POS-CAP
COUT, ext. = 4.7μF 50V 1812 X7R MLCC
COUT, ext. = 2.2μF 100V 1812 X7R MLCC
Temperature Coefficient
Output Voltage Overshoot
(Vin = Vin min to Vin max, Full Load , TA = 25°C).
Dynamic Load Response
(Vin = Vin nom, TA = 25°C)
Load step change between 75% to 100% of Full
Load
Peak Deviation
Setting Time (Vout < 10% peak deviation)
Created by Traco Electronic AG
Output Specification
Device
Min
Typ
Max
Unit
3.3
5
12
15
24
28
48
3.333
5.05
12.12
15.15
24.24
28.28
48.48
+10
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
%
All
All
±0.1
±0.1
±0.2
±0.2
%
%
TEP 160-xx10WIR
TEP 160-xx11WIR
TEP 160-xx12WIR
TEP 160-xx13WIR
TEP 160-xx15WIR
TEP 160-xx16WIR
TEP 160-xx18WIR
All
75
75
100
100
200
200
300
100
100
125
125
250
250
350
+0.02
mV pk-pk
mV pk-pk
mV pk-pk
mV pk-pk
mV pk-pk
mV pk-pk
mV pk-pk
%/°C
All
0
5
% Vout
TEP 160-xx10WIR
TEP 160-xx11WIR
TEP 160-xx12WIR
TEP 160-xx13WIR
TEP 160-xx15WIR
TEP 160-xx16WIR
TEP 160-xx18WIR
All
300
600
900
900
900
1100
1200
250
TEP 160-xx10WIR
TEP 160-xx11WIR
TEP 160-xx12WIR
TEP 160-xx13WIR
TEP 160-xx15WIR
TEP 160-xx16WIR
TEP 160-xx18WIR
All
www.tracopower.com
3.267
4.95
11.88
14.85
23.76
27.72
47.52
-20
-0.02
mV
mV
mV
mV
mV
mV
mV
μS
Date: June 27th, 2012 / Rev.: 1.2 / Page 2 / 70
Application Note
182W, Single Output
Parameter
Output Specification (continued)
Device
Min
Output Current
Output Capacitor Load
Output Over Voltage Protection (Hiccup Mode)
Output Over Current Protection (Hiccup Mode)
Output Short Circuit Protection (Hiccup Mode)
Created by Traco Electronic AG
TEP 160-2410WIR
TEP 160-2411WIR
TEP 160-2412WIR
TEP 160-2413WIR
TEP 160-2415WIR
TEP 160-2416WIR
TEP 160-2418WIR
TEP 160-4810WIR
TEP 160-4811WIR
TEP 160-4812WIR
TEP 160-4813WIR
TEP 160-4815WIR
TEP 160-4816WIR
TEP 160-4818WIR
TEP 160-7210WIR
TEP 160-7211WIR
TEP 160-7212WIR
TEP 160-7213WIR
TEP 160-7215WIR
TEP 160-7216WIR
TEP 160-7218WIR
TEP 160-2410WIR
TEP 160-2411WIR
TEP 160-2412WIR
TEP 160-2413WIR
TEP 160-2415WIR
TEP 160-2416WIR
TEP 160-2418WIR
TEP 160-4810WIR
TEP 160-4811WIR
TEP 160-4812WIR
TEP 160-4813WIR
TEP 160-4815WIR
TEP 160-4816WIR
TEP 160-4818WIR
TEP 160-7210WIR
TEP 160-7211WIR
TEP 160-7212WIR
TEP 160-7213WIR
TEP 160-7215WIR
TEP 160-7216WIR
TEP 160-7218WIR
TEP 160-xx10WIR
TEP 160-xx11WIR
TEP 160-xx12WIR
TEP 160-xx13WIR
TEP 160-xx15WIR
TEP 160-xx16WIR
TEP 160-xx18WIR
All
All
www.tracopower.com
Typ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3.795
5.75
13.80
17.25
27.60
32.20
55.20
120
Max
Unit
40.0
28.0
12.0
9.5
6.0
5.0
3.0
40.0
30.0
13.0
10.0
6.5
5.5
3.2
43.0
32.0
15.0
12.0
7.5
6.5
3.8
121’000
56’000
10’000
6’300
2’500
1’700
620
121’000
60’000
10’800
6’600
2’700
1’900
660
130’000
64’000
12’500
8’000
3’100
2’300
790
4.29
6.50
15.60
19.50
31.20
36.40
62.40
150
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
μF
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
% FL
Automatics recovery
Date: June 27th, 2012 / Rev.: 1.2 / Page 3 / 70
Application Note
182W, Single Output
Input Specification
Device
Parameter
Operating Input Voltage
TEP 160-2410WIR
TEP 160-2411WIR
TEP 160-24xxWIR
TEP 160-48xxWIR
TEP 160-72xxWIR
TEP 160-24xxWIR
TEP 160-48xxWIR
TEP 160-72xxWIR
TEP 160-24xxWIR
TEP 160-48xxWIR
TEP 160-72xxWIR
TEP 160-2410WIR
TEP 160-2411WIR
TEP 160-2412WIR
TEP 160-2413WIR
TEP 160-2415WIR
TEP 160-2416WIR
TEP 160-2418WIR
TEP 160-4810WIR
TEP 160-4811WIR
TEP 160-4812WIR
TEP 160-4813WIR
TEP 160-4815WIR
TEP 160-4816WIR
TEP 160-4818WIR
TEP 160-7210WIR
TEP 160-7211WIR
TEP 160-7212WIR
TEP 160-7213WIR
TEP 160-7215WIR
TEP 160-7216WIR
TEP 160-7218WIR
Input Voltage Continuous
Input Voltage Transient (1sec maximum)
Input Standby Current
(Vin = Vin nom, No Load, TA = 25℃)
Input reflected ripple current (see page 49)
(5 to 20MHz, 12μH source impedance)
Start Up Time
(Vin = Vin nom and constant resistive load)
Power up
Remote ON/OFF
Remote ON/OFF (see page 61)
(The CTRL pin voltage is referenced to -INPUT)
Positive logic (Standard) : Device code without Suffix
DC-DC ON (Short)
DC-DC OFF (Open)
Positive logic (Option) : Device code with Suffix “-N”
DC-DC ON (Open)
DC-DC OFF (Short)
Remote Off state Input Current
Input Current of Remote Control Pin
SYNC pin output signal (see page 62)  Optional
Created by Traco Electronic AG
Min
Typ
Max
Unit
9
9
8.5
16.5
43
24
24
24
48
110
36
36
36
75
160
40
80
165
50
100
185
20
25
25
25
25
25
25
15
15
20
20
20
20
25
10
10
10
10
10
10
10
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
50
mA pk-pk
All
All
75
75
100
100
mS
mS
3
0
12
1.2
Vdc
Vdc
0
3
1.2
12
Vdc
Vdc
mA
mA
V
All
3
All
www.tracopower.com
-0.5
-0.3
1
6
Date: June 27th, 2012 / Rev.: 1.2 / Page 4 / 70
Application Note
182W, Single Output
Parameter
Input Specification (continued)
Device
Min
Under Voltage Lockout Turn-on Threshold
Under Voltage Lockout Turn-off Threshold
Parameter
Efficiency
(Vin = Vin(nom) , Full Load , TA = 25℃)
Isolation voltage for 1 minute (Basic Insulation)
Input to Output
Input (Output) to Case
Isolation resistance
Isolation capacitance
Switching Frequency
Weight
MTBF
Bellcore TR-NWT-000332, TC = 40°C,
MIL-HDBK-217F
Over Temperature Protection (see page 59)
Case material
Base material
Potting material
Dimensions
Created by Traco Electronic AG
TEP 160-24xxWIR
TEP 160-48xxWIR
TEP 160-72xxWIR
TEP 160-24xxWIR
TEP 160-48xxWIR
TEP 160-72xxWIR
7.3
15.5
33.0
General Specification
Device
Min
TEP 160-2410WIR
TEP 160-2411WIR
TEP 160-2412WIR
TEP 160-2413WIR
TEP 160-2415WIR
TEP 160-2416WIR
TEP 160-2418WIR
TEP 160-4810WIR
TEP 160-4811WIR
TEP 160-4812WIR
TEP 160-4813WIR
TEP 160-4815WIR
TEP 160-4816WIR
TEP 160-4818WIR
TEP 160-7210WIR
TEP 160-7211WIR
TEP 160-7212WIR
TEP 160-7213WIR
TEP 160-7215WIR
TEP 160-7216WIR
TEP 160-7218WIR
All
All
All
All
All
All
Typ
Typ
Max
Unit
9
18
43
8.1
16.3
36.0
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Max
Unit
88
90
90
91
90
90
90
89
91
91
91
91
91
91
88
90
90
90
90
90
90
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
250
105
Vdc
Vdc
GΩ
PF
KHz
G
2250
1600
1
225
2500
275
6
All
TEP 160-24xxWIR
TEP 160-48xxWIR
TEP 160-72xxWIR
TEP 160-24xxWIR
TEP 160-48xxWIR
TEP 160-72xxWIR
All
All
www.tracopower.com
1.010×10
4
7.416×10
120
hours
hours
°C
Metal
Metal
Aluminum base-plate with plastic case
FR4 PCB
FR4 PCB
FR4 PCB
Silicon (UL94-V0)
2.40 x 2.28 x 0.50
(61.0 x 57.9 x 12.7)
Inch
(mm)
Date: June 27th, 2012 / Rev.: 1.2 / Page 5 / 70
Application Note
182W, Single Output
Parameter
Environmental Specification
Model
Min
Operating case temperature
Storage temperature
Over temperature protection (see page 59)
Thermal impedance* without Heat-sink
with Heat-sink
with Terminal block
Only mount on the iron base-plate
Relative humidity
Thermal shock
Vibration
All
All
All
All
All
Typ
-40
-55
Max
Unit
115
125
°C
°C
°C
°C/ Watt
°C/ Watt
°C/ Watt
°C/ Watt
% RH
120
6.1
4.6
4.4
2.8
5
95
EN 61373,MIL-STD-810F
EN 61373,MIL-STD-810F
* Test condition with vertical direction by natural convection 20FLM
EMC characteristic**
EMI (see page 52 - 56)
EN 55011, EN 55022
ESD
EN 61000-4-2
Radiated immunity
Fast transient
Surge
Conducted immunity
EN 61000-4-3
EN 61000-4-4
EN 61000-4-5
EN 61000-4-6
Class A
Air: ±8KV
Contact: ±6KV
20V/m
±2KV
±2KV
10Vr.m.s
Performance Criteria A
Performance Criteria A
Performance Criteria A
Performance Criteria A
Performance Criteria A
** The TEP 160WIR series meets EMC characteristics only with external components connected before the input pin to the converter. If
customer need to comply with EN 61000-4-4, EN 61000-4-5 only, an external input filter capacitor is required. For the TEP 160-24xxWIR and
TEP 160-48-xxWIR we recommend to use 2 pcs of aluminum electrolytic capacitors (Nippon Chemi-Con KY series, 220μF/100V, ESR 48mΩ)
connected in parallel. For the TEP 160-72-xxWIR we recommend to use 3 pcs of aluminum electrolytic capacitors (Ruby-con BXF series,
100μF/250V) connected in parallel.
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 6 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-2410WIR (order on demand)
Vin= 9V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 9V
Vin= 12V
Vin= 24V
Vin= 36V
80
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
9
12
15
21
24
27
18
INPUT VOLTAGE(V)
30
33
36
Efficiency versus Input Voltage. Full Load
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 7 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-2410WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 8 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-2411WIR (order on demand)
Vin= 9V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 9V
Vin= 12V
Vin= 24V
Vin= 36V
80
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
9
12
15
18
21
24
27
INPUT VOLTAGE(V)
30
33
36
Efficiency versus Input Voltage. Full Load
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 9 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-2411WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 10 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-2412WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
12
15
27
21
24
18
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
36
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 11 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-2412WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 12 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-2413WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
12
15
27
21
24
18
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
36
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 13 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-2413WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 14 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-2415WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
12
15
27
21
24
18
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
36
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 15 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-2415WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 16 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-2416WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
12
15
27
21
24
18
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
36
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 17 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-2416WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 18 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-2418WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
12
15
27
21
24
18
INPUT VOLTAGE(V)
30
33
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 8.5V
Vin= 12V
Vin= 24V
Vin= 36V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
36
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 19 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-2418WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 20 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-4810WIR (order on demand)
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
80
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
16.5
24
30
36
60
42
48
54
INPUT VOLTAGE(V)
66
72
75
Efficiency versus Input Voltage. Full Load
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 21 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-4810WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 22 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-4811WIR (order on demand)
100
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
24
30
36
54
60
42
48
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
75
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 23 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-4811WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 24 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-4812WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
24
30
36
54
60
42
48
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
75
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 25 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-4812WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 26 / 70
Application Note
182W, Single Output
Characteristic Curve
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-4813WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
24
30
36
54
60
42
48
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
75
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 27 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-4813WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 28 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-4815WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
24
30
36
54
60
42
48
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
75
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 29 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-4815WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 30 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-4816WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
24
30
36
54
60
42
48
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
75
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 31 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-4816WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 32 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-4818WIR
22.5
21.0
19.5
18.0
16.5
15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
24
30
36
54
60
42
48
INPUT VOLTAGE(V)
66
72
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 16.5V
Vin= 24V
Vin= 48V
Vin= 75V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
75
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 33 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-4818WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 34 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-7210WIR (order on demand)
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
43
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 35 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-7210WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 36 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-7211WIR (order on demand)
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
43
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 37 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-7211WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 38 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-7212WIR
37.5
35.0
32.5
30.0
27.5
25.0
22.5
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
43
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 39 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-7212WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 40 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-7213WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
43
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 41 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-7213WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 42 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-7215WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
Efficiency versus Output Current
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
43
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
80
-40
-20
40
60
80
0
20
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 43 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-7215WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 44 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-7216WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
43
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 45 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-7216WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 46 / 70
Application Note
182W, Single Output
Characteristic Curves
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
EFFICIENCY(%)
All test conditions are at 25°C. The figures are identical for TEP 160-7218WIR
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
100
10
20
30
40
50
60
70
% of FULL LOAD
80
90
100
Power Dissipation versus Output Current
120
100
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
43
50
60
70
OUTPUT POWER(%)
EFFICIENCY(%)
Efficiency versus Output Current
95.0
92.5
90.0
87.5
85.0
82.5
80.0
77.5
75.0
72.5
70.0
67.5
65.0
62.5
60.0
Vin= 43V
Vin= 72V
Vin= 110V
Vin= 160V
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
40
20
0
80 90 100 110 120 130 140 150 160
INPUT VOLTAGE(V)
Efficiency versus Input Voltage. Full Load
80
-40
-20
20
0
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current versus Ambient Temperature with
Airflow, Vin = Vin nom
120
OUTPUT POWER(%)
100
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature with
Heat-Sink and Airflow, Vin = Vin nom
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 47 / 70
Application Note
182W, Single Output
Characteristic Curves
All test conditions are at 25°C. The figures are identical for TEP 160-7218WIR (continued)
Typical Output Ripple and Noise.
Vin = Vin nom, Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load; Vin = Vin nom
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin nom, Full Load
Using ON/OFF Voltage Start-Up and Vout Rise Characteristic
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class A
Vin = Vin nom, Full Load
Conduction Emission of EN55022 Class B
Vin = Vin nom, Full Load
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 48 / 70
Application Note
182W, Single Output
Testing Configurations
Input reflected-ripple current measurement test up
TEP 160-24xxWIR
Component
L1
C1 & C2
Value
12μH
330μF
Voltage
---50V
TEP 160-48xxWIR
Component
L1
C1 & C2
Value
12μH
220μF
Voltage
---100V
TEP 160-72xxWIR
Component
L1
C1 & C2
Value
12μH
68μF
Voltage
---200V
Reference
NIPPON CHEMI-CON : KY series
Reference
NIPPON CHEMI-CON : KY series
Reference
Ruby-con : BXF series
Peak to peak output ripple & noise measurement test up
TEP 160-xx10WIR, TEP 160-xx11WIR, TEP 160-xx12WIR & TEP 160-xx13WIR
Component
Value
Voltage
Reference
C1
1μF
25V
TDK:
C3216X7R1E105
C2
22μF
25V
SANYO: 25TQC22MV
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 49 / 70
Application Note
182W, Single Output
Testing Configurations
Peak to peak output ripple & noise measurement test up
TEP 160-xx15WIR & TEP 160-xx16WIR
Component
Value
C2
4.7μF
Voltage
50V
Reference
TDK: C4532X7R1H475M
TEP 160-xx18WIR
Component
C2
Voltage
100V
Reference
TDK: C4532X7R2A225M
Value
2.2μF
Output voltage and efficiency measurement test up
Note: All measurements are taken at the module terminals.
V
×I
Efficiency =  OUT OUT
 VIN × I IN
Created by Traco Electronic AG

 × 100%


www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 50 / 70
Application Note
182W, Single Output
Testing Configurations
Output voltage and efficiency measurement test up
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 51 / 70
Application Note
182W, Single Output
EMI considerations
Suggested schematic for EN55011,EN55022 conducted emission Class A limits
Recommended Layout With Input Filter
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 52 / 70
Application Note
182W, Single Output
EMI considerations
To meet conducted emissions EN55011, EN55022 CLASS A needed the following components:
TEP 160-24xxWIR
Component
C1, C2, C4
C3, C6, C7
C8, C9, C10, C11, C13
C12
L1
TEP 160-48xxWIR
Component
C1, C2, C4
C3, C6, C7
C8, C9, C10, C11, C13, C12
L1
TEP 160-72xxWIR
Component
C1, C2, C4
C3, C6, C7
C8, C9, C10, C11, C13, C12
L1
Value
330μF
4.7μF
1000pF
3300pF
156μH ±35%
Voltage
50 V
50 V
3 KV
3 KV
---
Reference
Nippon Chemi-Con KY series
1812 MLCC
1808 MLCC
1808 MLCC
Common Choke, P/N: TCK-086
Value
100μF
2.2μF
1000pF
224μH ±35%
Voltage
100 V
100 V
3 KV
---
Reference
Nippon Chemi-Con KY series
1812 MLCC
1808 MLCC
Common Choke, P/N: TCK-087
Value
100uF
1μF
1000pF
521µH ±35%
Voltage
250V
250 V
3 KV
----
Reference
Rubycon BXF series
1812 MLCC
1808 MLCC
Common Choke, P/N: TCK-088
Note: 1. Common mode choke have been define and show in page 56.
2. While testing, connect four screw bolts to shield plane, the EMI could be reduced.
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 53 / 70
Application Note
182W, Single Output
EMI considerations
Suggested schematic for EN55011,EN55022 conducted emission Class B limits
Recommended Layout With Input Filter
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 54 / 70
Application Note
182W, Single Output
EMI considerations
To meet conducted emissions EN55011, EN55022 CLASS B needed the following components:
TEP 160-24xxWIR
Component
C1, C3, C6
C2, C4, C5, C7, C8
C9, C10, C13, C14
C11
C12
L1, L2
Value
330μF
4.7μF
10nF
1000pF
4700pF
156μH ±35%
Voltage
50 V
50 V
2 KV
3 KV
3 KV
----
Reference
Nippon Chemi-Con KY series
1812 MLCC
1812 MLCC
1808 MLCC
1812 MLCC
Common Choke, P/N: TCK-086
TEP 160-48xxWIR
Component
C1, C3, C6
C2, C4, C5, C7, C8
C9, C10, C13, C14
C11
C12
C15
L1, L2
Value
100μF
2.2μF
10nF
2200pF
4700pF
1000pF
224μH ±35%
Voltage
100 V
100 V
2 KV
3 KV
3 KV
2 KV
----
Reference
Nippon Chemi-Con KY series
1812 MLCC
1812 MLCC
1808 MLCC
1812 MLCC
1808 MLCC
Common Choke, P/N: TCK-087
TEP 160-72xxWIR
Component
C1, C3, C6
C2, C4, C5, C7, C8
C9, C10
C13, C14, C15
C11, C12
L1, L2
Value
100μF
1μF
2200pF
1000pF
2200pF
521μH ±35%
Voltage
250 V
250 V
2 KV
2 KV
3 KV
----
Reference
Rubycon BXF series
1812 MLCC
1808 MLCC
1808 MLCC
1808 MLCC
Common Choke, P/N: TCK-088
Note: 1. Common mode choke have been define and show in page 56.
2. While testing, connect four screw bolts to shield plane, the EMI could be reduced.
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 55 / 70
Application Note
182W, Single Output
EMI considerations
These common mode choke have been define as follow:
■ TCK-086 Inductance:
156μH±35%
Impedance:
2.5mΩ, max
Rated current: 21A, max.
■ TCK-087 Inductance:
224μH±35%
Impedance:
3.6mΩ, max
Rated current: 15.4A, max.
TBD
All dimensions in millimeters
■ TCK-088 Inductance:
521μH±35%
Impedance:
12mΩ, max
Rated current: 7.7A, max
Measurement Instrument (Test condition):
■ L:
HP 4263B LCR Meter (100KHz / 100mV)
■ DCR: HIOKI 3540mΩ HITESTER
■ IDC: Agilent 34401A Meter
Recommended through hole: Φ1.0mm
Output Voltage Adjustment
Output voltage is adjustable for 10% trim up or -20% trim down of nominal output voltage by connecting an external resistor
between the TRIM pin and either the +SENSE or -SENSE pins. With an external resistor between the TRIM and -SENSE pin,
the output voltage set point decreases. With an external resistor between the TRIM and +SENSE pin, the output voltage set
point increases. Maximum output deviation is +10% inclusive of remote sense. (Please refer to page 58, remote sense). The
value of external resistor can be obtained by equation or trim table shown in next page. The external TRIM resistor needs to be
at least 1/8W resistors.
TRIM UP
Created by Traco Electronic AG
TRIM DOWN
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 56 / 70
Application Note
182W, Single Output
Output Voltage Adjustment
TRIM EQUATION
(100 + ∆%) 100 + 2∆% 
V
RU =  OUT
−
 KΩ
∆%
1.225∆%



 100
RD = 
− 2  KΩ

 ∆%
TRIM TABLE
3
3.399
57.156
TEP 160-xx10WIR
4
5
6
3.432
3.465
3.498
43.041 34.571 28.925
7
3.531
24.892
8
3.564
21.867
9
3.597
19.515
10
3.630
17.633
Trim up (%)
1
2
3
VOUT (Volts) = 5.05
5.10
5.15
RU (KΩ) = 310.245 156.163 104.803
TEP 160-xx11WIR
4
5
6
5.20
5.25
5.30
79.122 63.714 53.442
7
5.35
46.105
8
5.40
40.602
9
5.45
36.322
10
5.50
32.898
TEP 160-xx12WIR
Trim up (%)
1
2
3
4
5
6
7
8
9
VOUT (Volts) = 12.12
12.24
12.36
12.48
12.60
12.72
12.84
12.96
13.08
RU (KΩ) = 887.388 447.592 300.993 227.694 183.714 154.395 133.452 117.745 105.528
10
13.20
95.755
Trim up (%)
1
VOUT (Volts) = 3.333
RU (KΩ) = 170.082
2
3.366
85.388
TEP 160-xx13WIR
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts) = 15.15
15.30
15.45
15.60
15.75
15.90
16.05
16.20
16.35
16.50
RU (KΩ) = 1134.735 572.490 385.075 291.367 235.143 197.660 170.886 150.806 135.188 122.694
TEP 160-xx15WIR
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts) = 24.24
24.48
24.72
24.96
25.20
25.44
25.68
25.92
26.16
26.40
RU (KΩ) = 1876.776 947.184 637.320 482.388 389.429 327.456 283.190 249.990 224.168 203.510
TEP 160-xx16WIR
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts) = 28.28
28.56
28.84
29.12
29.40
29.68
29.96
30.24
30.52
30.80
RU (KΩ) = 2206.571 1113.714 749.429 567.286 458.000 385.143 333.102 294.071 263.714 239.429
TEP 160-xx18WIR
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts) = 48.48
48.96
49.44
49.92
50.40
50.88
51.36
51.84
52.32
52.80
RU (KΩ) = 3855.551 1946.367 1309.973 991.776 800.857 673.578 582.665 514.480 461.447 419.020
Trim down (%)
1
RD (KΩ) = 98.000
Trim down (%)
11
RD (KΩ) = 7.091
Created by Traco Electronic AG
2
48.000
12
6.333
3
31.333
13
5.692
All TEP 160-xxxxWIR
4
5
6
23.000 18.000 14.667
14
15
16
5.143
4.667
4.250
www.tracopower.com
7
12.286
17
3.882
8
10.500
18
3.556
9
9.111
19
3.263
10
8.000
20
3.000
Date: June 27th, 2012 / Rev.: 1.2 / Page 57 / 70
Application Note
182W, Single Output
Remote Sense
To minimize the effects of distribution losses by regulating the voltage at the Remote Sense pin. The voltage between the
SENSE pin and OUTPUT pin must not exceed 10% of Vout, i.e.
[ +OUTPUT to –OUTPUT ] – [ +SENSE to –SENSE ] < 10% Vout
The voltage between +OUTPUT and –OUTPUT terminals must not exceed the minimum output overvoltage protection
threshold. This limit includes any increase in voltage due to remote sense compensation and trim function.
If not using the remote sense feature to regulate the output at the point of load, then connect +SENSE to +OUTPUT
and –SENSE to –OUTPUT.
Remote Sense circuit configuration
Input Source Impedance
The power modules will operate as specifications without external components, assuming that the source voltage has a very low
impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power
module. Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor
The TEP 160-24xxWIR and TEP 160-48xxWIR recommended Nippon Chemi-Con KY series, 100μF/100V, ESR 110mΩ.
The TEP 160-72xxWIR recommended Ruby-con BXF series, 68μF/200V.
Output Over Current Protection
When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload
current is maintained at approximately 120~150 percent of rated current for TEP 160WIR series.
Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged
during an over-current fault condition. It also enables the power supply to restart when the fault is removed. There are other ways
of protecting the power supply when it is over-loaded, such as the maximum current limiting or current foldback methods.
One of the problems resulting from over current is that excessive heat may be generated in power devices, especially MOSFET
and Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be
used to prevent those power devices from being damaged.
The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the
power supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the
power supply will start up and operate normally, otherwise, the controller will see another over-current event and shut off the
power supply again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection
methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for
only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower.
The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event
is detected, or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an
over-current event is detected, or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for
the latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor.
Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event
to occur. If the power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode
protection will give the best protection for a power supply against over current situations, since it will limit the average current to
the load at a low level, so reducing power dissipation and case temperature in the power devices.
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 58 / 70
Application Note
182W, Single Output
Short Circuitry Protection
Continuous, hiccup and auto-recovery mode.
During short circuit, converter still shut down. The average current during this condition will be very low and the device can be
safety in this condition.
Output Over Voltage Protection
The output over-voltage protection consists of circuitry that monitors the voltage on the output terminals. If the voltage on the
output terminals exceeds the over-voltage protection threshold, then the module enter the non-latch hiccup mode.
Over Temperature Protection
Sufficient cooling is needed for the power module and provides more reliable operation of the unit. If a fault condition occurs, the
temperature of the unit will be higher. And will damage the unit. For protecting the power module, the unit includes
over-temperature protection circuit. When the temperature of the case is to the protection threshold, the unit enters “Hiccup”
mode. And it will auto restart when the temperature is down.
Thermal Consideration
TEP 160WIR is a high power density product, it operates in a variety of thermal environments. However, sufficient cooling should
be provided to ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding
environment.
Proper cooling can be verified by measuring the point as the figure below. The case temperature at this location is -40 ~115°C.
When operating, although the maximum point temperature of the power modules is 115°C, we suggest to keep the test point
temperature at or below 80°C for extremely high reliability, so the module can be in stable operation and get better lifecycle.
Measurement shown in inches (mm)
TOP VIEW
The suggested heat dissipation modes as below:
1. Add the heat-sink
The main function of heat-sink is to add the touch surface of heat source for air. Under the suitable air convection condition
(including natural convection), that can reduce the heat resistance θca apparently.
After combination of the heat resistance θca, it’s the sub-total of θcp, θph and θha. Because the air gets big heat resistance
under no air convection, the θha which touch the air is the main heat resistance.
Suggestions as below:
(1) θca = θcp + θph + θha. In order to let the heat-sink reducing the
θha in big range, we suggest to use the thermal pad with good
heat conduction and flushing performance.
(2) The best layout for heat sink is to put the fin of the heat-sink
vertical to the air, and this will cause a good “stack effect”. So,
we can have the best natural air convection condition. When
there’s no force air to help the heat dissipation, this point is
critical.
2. Force Air
Normally, we use the fan for the force air. By the air movement rapidly, it can bring the heat energy from the case surface. This
is a good solution to reduce the heat resistance θca of the module. When the air speed is bigger, the heat resistance is
smaller, and the heat dissipation performance is better.
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 59 / 70
Application Note
182W, Single Output
Heat Sink
Heat-sink for lower temperature and higher reliability of the module. Order Code: TEP-HS1
Order code: TEP-HS1
Includes heatsink with thermal pad and mounting screws.
To order modules with mounted heatsink, please ask factory.
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 60 / 70
Application Note
182W, Single Output
Remote ON/OFF Control
The CTRL Pin is controlled DC/DC power module to turn on and off, the user must use a switch to control the logic voltage high
or low level of the pin referenced to -INPUT. The switch can be open collector transistor, FET and Photo-Couple. The switch
must be capable of sinking up to 1 mA at low-level logic voltage. High-level logic of the CTRL pin signal maximum voltage is
allowable leakage current of the switch at 12V is 0.5 mA.
Remote ON/OFF Implementation Circuits
Isolated-Closure Remote ON/OFF
Level Control Using TTL Output
Level Control Using Line Voltage
There are two remote control options available, positive logic and negative logic.
a. The Positive logic structure turned on of the DC/DC module when the CTRL pin is at high-level logic and low-level logic is
turned off it.
When TEP 160-xxxxWIR module is turned off
at Low-level logic
When TEP 160-xxxxWIR module is turned on
at High-level logic
b. The Negative logic structure turned on of the DC/DC module when the CTRL pin is at low-level logic and turned off when at
high-level logic.
When TEP 160-xxxxWIR module is turned on
at Low-level logic
Created by Traco Electronic AG
When TEP 160-xxxxWIR module is turned off at
High-level logic
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 61 / 70
Application Note
182W, Single Output
Synchronous Pin (optional)
1. Multiple TEP 160-xxxxWIR series module can be synchronized together simply by connecting the module SYNC pins
together.
Synchronous Circuits
Recommended Layout
NOTE:
(1) Care should be taken to ensure the ground potential differences between modules are minimized.
(2) In this configuration all of the modules will be synchronized to the highest frequency module.
(3) Up to three modules can be synchronized using this technique.
2. The SYNC pin can be used to synchronize the internal oscillator to an external clock.
NOTE:
(1) The internal oscillator can be synchronized to an external clock with an external
pull-down device. An open drain output is the recommended interface between
the external clock to the SYNC pin.
(2) The clock pulse width must be greater than 15 ns.
(3) The external clock frequency must be a higher than the converter frequency.
(Max. frequency < 280kHz)
(4) Sync Threshold (falling) voltage is 1.4V typical.
(5) Care should be taken to ensure the ground potential differences between modules are minimized.
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 62 / 70
Application Note
182W, Single Output
Mechanical Data Of The Standard Product
Metal Case Mechanical Drawing
Plastic Case Mechanical Drawing
1. All dimensions in inch (mm)
2. Tolerance: x.xx ±0.02 (x.x ±0.5)
x.xxx ±0.01 (x.xx ±0.25)
3. Pin pitch tolerance: ±0.01 (0.25)
4. Pin dimension tolerance: ±0.004(0.1)
TERMINAL CONNECTION
Pin
Define
Diameter
1
- INPUT
0.04 inch
EXTERNAL OUTPUT TRIMMING
2
CASE
0.04 inch
Output can be externally trimmed by using the
3
CTRL
0.04 inch
method shown below.
4
+ INPUT
0.04 inch
5
- OUTPUT
0.08 inch
6
- SENSE
0.04 inch
7
TRIM
0.04 inch
8
+ SENSE
0.04 inch
9
+ OUTPUT
0.08 inch
10
SYNC (Option)
0.04 inch
TRIM UP
TRIM DOWN
6
7
RU
8
Created by Traco Electronic AG
RD
7
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 63 / 70
Application Note
182W, Single Output
Mechanical Data Of The Terminal Block Type
1. Terminal Block without EMC Filter, Suffix: -CM
Note: These two M3×0.5 threaded holes are designed for Din Rail Clip assembly. The depth of heat-sink is allowed to be
screwed into 2.8mm maximum. Customer shall take care as select the screw to avoid damaging the converter.
TERMINAL CONNECTION
EXTERNAL OUTPUT TRIMMING
Output can be externally trimmed by using the
method shown below.
TRIM UP
TRIM DOWN
6
7
RU
8
Created by Traco Electronic AG
RD
7
Pin
Define
Wire Range
1
- INPUT
8AWG to 9AWG
2
CASE
14AWG to 18AWG
3
CTRL
14AWG to 18AWG
4
+ INPUT
8AWG to 9AWG
5
- OUTPUT
4AWG to 5AWG
6
- SENSE
14AWG to 18AWG
7
TRIM
14AWG to 18AWG
8
+ SENSE
14AWG to 18AWG
9
+ OUTPUT
4AWG to 5AWG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 64 / 70
Application Note
182W, Single Output
Mechanical Data Of The Terminal Block Type
2. Terminal Block with EMC Filter (EN55011, EN55022 Class A), Suffix: -CMF
Terminal Connection see above!
Note: These two M3×0.5 threaded holes are designed for Din Rail Clip assembly. The depth of heat-sink is allowed to be
screwed into 2.8mm maximum.
3. Terminal Block with Din Rail Clip TEP-MK1 (DIN-Rail incl. screws)
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 65 / 70
Application Note
182W, Single Output
Recommended Pad Layout
All dimensions in inch (mm)
Tolerances : x.xxx ± 0.010 (x.xx ± 0.25 )
PAD SIZE (LEAD FREE RECOMMENDED)
± OUTPUT:
THROUGH HOLE:
TOP VIEW PAD:
BOTTOM VIEW PAD:
OTHERS:
THROUGH HOLE:
TOP VIEW PAD:
BOTTOM VIEW PAD:
Created by Traco Electronic AG
Ø 2.3mm
Ø 2.9mm
Ø 3.6mm
Ø 1.3mm
Ø 1.9mm
Ø 2.6mm
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 66 / 70
Application Note
182W, Single Output
Soldering Considerations
Lead free wave solder profile for TEP 160WIR series
Zone
Preheat zone
Actual heating
Reference Parameter
Rise temp. speed:
3°C/sec max.
Preheat temperature: 100~130°C
Peak temperature:
250~260°C
Peak time (T1+T2 time): 4~6 sec
Reference Solder: Sn-Ag-Cu , Sn-Cu
Hand Welding:
Soldering iron: Power 90W
Welding Time: 2~4 sec
Temperature: 380~400°C
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 67 / 70
Application Note
182W, Single Output
Packaging Information
Dimensions shown in millimeters
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 68 / 70
Application Note
182W, Single Output
Part Number Structure
Model
Number
TEP 160-2410WIR
Input
Range
9 ~ 36 Vdc
Output
Voltage
3.3Vdc
Output Current
Max. Load
40.0A
Input Current
(1)
No Load
25mA
TEP 160-2411WIR
9 ~ 36 Vdc
5Vdc
28.0A
30mA
90
TEP 160-2412WIR
TEP 160-2413WIR
8.5 ~ 36 Vdc
8.5 ~ 36 Vdc
12Vdc
15Vdc
12.0A
9.5A
30mA
30mA
90
91
TEP 160-2415WIR
TEP 160-2416WIR
8.5 ~ 36 Vdc
8.5 ~ 36 Vdc
24Vdc
28Vdc
6.0A
5.0A
35mA
40mA
90
90
Efficiency
(%)
88
TEP 160-2418WIR
8.5 ~ 36 Vdc
48Vcd
3.0A
45mA
90
TEP 160-4810WIR
TEP 160-4811WIR
16.5 ~ 75 Vdc
16.5 ~ 75 Vdc
3.3Vdc
5Vdc
40.0A
30.0A
20mA
20mA
89
91
TEP 160-4812WIR
TEP 160-4813WIR
16.5 ~ 75 Vdc
16.5 ~ 75 Vdc
12Vdc
15Vdc
13.0A
10.0A
20mA
20mA
91
91
TEP 160-4815WIR
TEP 160-4816WIR
16.5 ~ 75 Vdc
16.5 ~ 75 Vdc
24Vdc
28Vdc
6.5A
5.5A
20mA
25mA
91
91
TEP 160-4818WIR
16.5 ~ 75 Vdc
48Vcd
3.2A
25mA
91
TEP 160-7210WIR
TEP 160-7211WIR
43 ~ 160 Vdc
43 ~ 160 Vdc
3.3Vdc
5Vdc
43.0A
32.0A
10mA
10mA
88
90
TEP 160-7212WIR
TEP 160-7213WIR
43 ~ 160 Vdc
43 ~ 160 Vdc
12Vdc
15Vdc
15.0A
12.0A
10mA
10mA
90
90
TEP 160-7215WIR
43 ~ 160 Vdc
24Vdc
7.5A
10mA
90
TEP 160-7216WIR
TEP 160-7218WIR
43 ~ 160 Vdc
43 ~ 160 Vdc
28Vdc
48Vcd
6.5A
3.8A
15mA
15mA
90
90
(2)
Note 1. Typical value at nominal input and no load.
Note 2. Typical value at nominal input and full load.
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 69 / 70
Application Note
182W, Single Output
Safety and Installation Instruction
Fusing Consideration
Caution: This power module is not internally fused. An input line fuse must always be used.
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an
integrated part of sophisticated power architecture. To maximum flexibility, internal fusing is not included, however, to achieve
maximum safety and system protection, always use an input line fuse. The safety agencies require a fast blow fuse with
maximum rating of 30A for TEP 160-24xxWIR, 15A for TEP 160-48xxWIR and 7A for TEP 160-72xxWIR. Based on the
information provided in this data sheet on Inrush energy and maximum dc input current, the same type of fuse with lower rating
can be used. Refer to the fuse manufacturer’s data for further information.
MTBF and Reliability
The MTBF of TEP 160WIR series DC/DC converters has been calculated using
Bellcore TR-NWT-000332 Case I: 50% stress, Operating Temperature at 40°C (Ground fixed and controlled environment). The
resulting figure for MTBF is 1’010’000 hours.
MIL-HDBK 217F NOTICE2 FULL LOAD, Operating Temperature at 25°C. The resulting figure for MTBF is 74’160 hours.
Created by Traco Electronic AG
www.tracopower.com
Date: June 27th, 2012 / Rev.: 1.2 / Page 70 / 70