(x72, ECC, PLL, SR) 200-Pin DDR SDRAM SODIMMs

128MB, 256MB, 512MB, 1GB (x72, ECC, PLL, SR) 200-PIN DDR
SDRAM SODIMM
DDR SDRAM Small-Outline DIMM
MT9VDDT1672PH(I) – 128MB,
MT9VDDT3272PH(I) – 256MB,
MT9VDDT6472PH(I) – 512MB,
MT9VDDT12872PH(I) – 1GB (Advance‡)
For the lastest data sheet, please refer to the Micron® Web site: www.micron.com/products/modules
Features
Figure 1:
• 200-pin, small-outline, dual in-line memory
module (SODIMM)
• Supports ECC error detection and correction
• Fast data transfer rates: PC2100 and PC2700
• Utilizes 266 MT/s and 333 MT/s DDR SDRAM
components
• 128MB (16 Meg x 72); 256MB (32 Meg x 72); 512MB
(64 Meg x 72); 1GB (128 Meg x 72)
• VDD = VDDQ = +2.5V
• VDDSPD = +2.3V to +3.6V
• 2.5V I/O (SSTL_2 compatible)
• Commands entered on each positive CK edge
• DQS edge-aligned with data for READs; centeraligned with data for WRITEs
• Internal, pipelined double data rate (DDR)
architecture; two data accesses per clock cycle
• Four internal device banks for concurrent operation
• Programmable burst lengths: 2, 4, or 8
• Auto precharge option
• Auto Refresh and Self Refresh Modes
• 15.625µs (128MB), 7.8125µs (256MB, 512MB, 1GB)
maximum average periodic refresh interval
• Serial Presence Detect (SPD) with EEPROM
• Programmable READ CAS latency
• Bidirectional data strobe (DQS) transmitted/received with data—i.e., source-synchronous data
capture
• Differential clock inputs CK and CK#
• Gold edge contacts
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_1.fm - Rev. B 6/05 EN
200-Pin SODIMM (MO-224)
Low Profile: 1.25in. (31.75mm)
Options
• Operating Temperature Range
Commercial (0°C ≤ TA ≤ +70°C)
Industrial (-40°C ≤ TA ≤ +85°C)
• Package
200-pin SODIMM (standard)
200-pin SODIMM (lead-free)
• Memory Clock, Speed, CAS Latency2
6ns (267 MHz), 333 MT/s, CL = 2.5
7.5ns (133 MHz), 266 MT/s, CL = 2
7.5ns (133 MHz), 266 MT/s, CL = 2
7.5ns (133 MHz), 266 MT/s, CL = 2.5
• PCB Height
1.25in. (31.75mm)
Marking
None
I1
G
Y1
-335
-2621
-26A1
-265
Notes: 1. Consult Micron for product availability;
industrial temperature option available in 265 speed only.
2. CL = Device CAS (READ) Latency.
1
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
Products and specifications discussed herein are subject to change by Micron without notice.
128MB, 256MB, 512MB, 1GB (x72, ECC, PLL, SR) 200-PIN DDR
SDRAM SODIMM
Table 1:
Address Table
Refresh Count
Row Addressing
DeviceBankAddressing
Base Device Configuration
Column Addressing
Module Rank Addressing
Table 2:
128MB
256MB
512MB
1GB
4K
4K (A0–A11)
4 (BA0, BA1)
128Mb (16 Meg x 8)
1K (A0–A9)
1 (S0#)
8K
8K (A0–A12)
4 (BA0, BA1)
256Mb (32 Meg x 8)
1K (A0–A9)
1 (S0#)
8K
8K (A0–A12)
4 (BA0, BA1)
512Mb (64 Meg x 8)
1K (A0–A9, A11)
1 (S0#
8K
16K (A0–A13)
4 (BA0, BA1)
1Gb (128 Meg x 8)
2K (A0–A9, A11)
1 (S0#)
Part Numbers and Timing Parameters
Part Number
MT9VDDT1672PHG-335_
MT9VDDT1672PHY-335_
MT9VDDT1672PHG-262_
MT9VDDT1672PHY-262_
MT9VDDT1672PHG-26A_
MT9VDDT1672PHY-26A_
MT9VDDT1672PH(I)G-265_
MT9VDDT1672PH(I)Y-265_
MT9VDDT3272PHG-335_
MT9VDDT3272PHY-335_
MT9VDDT3272PHG-262_
MT9VDDT3272PHY-262_
MT9VDDT3272PHG-26A_
MT9VDDT3272PHY-26A_
MT9VDDT3272PH(I)G-265_
MT9VDDT3272PH(I)Y-265_
MT9VDDT6472PHG-335_
MT9VDDT6472PHY-335_
MT9VDDT6472PHG-262_
MT9VDDT6472PHY-262_
MT9VDDT6472PHG-26A_
MT9VDDT6472PHY-26A_
MT9VDDT6472PH(I)G-265_
MT9VDDT6472PH(I)Y-265_
MT9VDDT12872PHG-335_
MT9VDDT12872PHY-335_
MT9VDDT12872PHG-262_
MT9VDDT12872PHY-262_
MT9VDDT12872PHG-26A_
MT9VDDT12872PHY-26A_
MT9VDDT12872PH(I)G-265_
MT9VDDT12872PH(I)Y-265_
Note:
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_1.fm - Rev. B 6/05 EN
Module
Density
Configuration
Module
Bandwidth
Memory Clock/
Data Rate
Clock Latency
(CL - tRCD - tRP)
128MB
128MB
128MB
128MB
128MB
128MB
128MB
128MB
256MB
256MB
256MB
256MB
256MB
256MB
256MB
256MB
512MB
512MB
512MB
512MB
512MB
512MB
512MB
512MB
1GB
1GB
1GB
1GB
1GB
1GB
1GB
1GB
16 Meg x 72
16 Meg x 72
16 Meg x 72
16 Meg x 72
16 Meg x 72
16 Meg x 72
16 Meg x 72
16 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
32 Meg x 72
64 Meg x 72
64 Meg x 72
64 Meg x 72
64 Meg x 72
64 Meg x 72
64 Meg x 72
64 Meg x 72
64 Meg x 72
128 Meg x 72
128 Meg x 72
128 Meg x 72
128 Meg x 72
128 Meg x 72
128 Meg x 72
128 Meg x 72
128 Meg x 72
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
6ns, 333 MT/s
6ns, 333 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
6ns, 333 MT/s
6ns, 333 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
6ns, 333 MT/s
6ns, 333 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
6ns, 333 MT/s
6ns, 333 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
7.5ns, 266 MT/s
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
All part numbers end with a two-place code (not shown), designating component and PCB
revisions. Consult factory for current revision codes. Example: MT9VDDT3272PHG-265A1.
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB (x72, ECC, PLL, SR) 200-PIN DDR
SDRAM SODIMM
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Pin Assignments and Descriptions . . . . . . . . . . . . . . . .1
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . .4
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
PLL Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Serial Presence-Detect Operation . . . . . . . . . . . . . . . . .5
Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . .6
Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Read Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Extended Mode Register . . . . . . . . . . . . . . . . . . . . . . . .10
DLL Enable/Disable. . . . . . . . . . . . . . . . . . . . . . . . . .10
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .12
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . .12
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
PLL Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . .27
Serial Presence-Detect . . . . . . . . . . . . . . . . . . . . . . . . . .28
SPD Clock and Data Conventions . . . . . . . . . . . . .28
SPD Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . .28
SPD Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . .28
SPD Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Data Sheet Designation . . . . . . . . . . . . . . . . . . . . . . . . .36
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PHTOC.fm - Rev. B 6/05 EN
1
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB (x72, ECC, PLL, SR) 200-PIN DDR
SDRAM SODIMM
Figure 1:
Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
200-Pin SODIMM (MO-224) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Module Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Mode Register Definition Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
CAS Latency Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Extended Mode Register Definition Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Derating Data Valid Window (tQH - tDQSQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Pull-Down Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Pull-Up Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Initialization Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Component Case Temperature vs. Air Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Data Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Definition of Start and Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Acknowledge Response from Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
SPD EEPROM Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
200-Pin SODIMM Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PHLOF.fm - Rev. B 6/05 EN
1
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB (x72, ECC, PLL, SR) 200-PIN DDR
SDRAM SODIMM
Table 1:
Table 2:
Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Part Numbers and Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Burst Definition Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
CAS Latency (CL) Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Commands Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
DM Operation Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
DC Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
AC Input Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
IDD Specifications and Conditions – 128MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
IDD Specifications and Conditions – 256MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
IDD Specifications and Conditions – 512MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
IDD Specifications and Conditions – 1GB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Capacitance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Electrical Characteristics and Recommended AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . .17
PLL Clock Driver Timing Requirements and Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . .26
EEPROM Device Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
EEPROM Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Serial Presence-Detect EEPROM DC Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Serial Presence-Detect EEPROM AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Serial Presence-Detect Matrix – 128MB, 256MB, 512MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Serial Presence- Detect Matrix – 1GB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PHLOT.fm - Rev. B 6/05 EN
1
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Pin Assignments and Descriptions
Pin Assignments and Descriptions
Table 1:
Pin Assignment
200-Pin SODIMM Front
200-Pin SODIMM Back
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
VREF
VSS
DQ0
DQ1
Vdd
DQS0
DQ2
VSS
DQ3
DQ8
VDD
DQ9
DQS1
VSS
DQ10
DQ11
VDD
CK0
CK0#
VSS
DQ16
DQ17
VDD
DQS2
DQ18
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99
VSS
DQ19
DQ24
VDD
DQ25
DQS3
VSS
DQ26
DQ27
VDD
CB0
CB1
VSS
DQS8
CB2
VDD
CB3
NC
VSS
NC
NC
VDD
NC
NC
NC/A12
101
103
105
107
109
111
113
115
117
119
121
123
125
127
129
131
133
135
137
139
141
143
145
147
149
A9
VSS
A7
A5
A3
A1
VDD
A10/AP
BA0
WE#
S0#
NC/A13
VSS
DQ32
DQ33
VDD
DQS4
DQ34
VSS
DQ35
DQ40
VDD
DQ41
DQS5
VSS
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189
191
193
195
197
199
DQ42
DQ43
VDD
VDD
VSS
VSS
DQ48
DQ49
VDD
DQS6
DQ50
VSS
DQ51
DQ56
VDD
DQ57
DQS7
VSS
DQ58
DQ59
VDD
SDA
SCL
VDDSPD
NC
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
VREF
VSS
DQ4
DQ5
VDD
DM0
DQ6
VSS
DQ7
DQ12
VDD
DQ13
DM1
VSS
DQ14
DQ15
VDD
VDD
VSS
VSS
DQ20
DQ21
VDD
DM2
DQ22
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
VSS
DQ23
DQ28
VDD
DQ29
DM3
VSS
DQ30
DQ31
VDD
CB4
CB5
VSS
DM8
CB6
VDD
CB7
NC
VSS
VSS
VDD
VDD
CKE0
NC
A11
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
A8
VSS
A6
A4
A2
A0
VDD
BA1
RAS#
CAS#
NC
NC
VSS
DQ36
DQ37
VDD
DM4
DQ38
VSS
DQ39
DQ44
VDD
DQ45
DM5
VSS
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200
DQ46
DQ47
VDD
NC
NC
VSS
DQ52
DQ53
VDD
DM6
DQ54
VSS
DQ55
DQ60
VDD
DQ61
DM7
VSS
DQ62
DQ63
VDD
SA0
SA1
SA2
NC
Notes: 1. Pin 99 is a No Connect (NC) for 128MB; A12 for 256MB, 512MB, and 1GB.
2. Pin 123 is a No Connect (NC) for 128MB, 256MB, and 512MB; A13 for 1GB
Figure 1:
Module Layout
Back View
Front View
U8
U1
U2
U3
U4
U5
U6
U10
U7
U11
U9
PIN 1
(all odd pins)
PIN 199
PIN 200
Indicates a VDD or VDDQ pin
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
1
(all even pins)
PIN 2
Indicates a VSS pin
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Pin Assignments and Descriptions
Table 2:
Pin Descriptions
Refer to Pin Assignment Tables on page 1 for pin number and symbol correlation.
Pin Numbers
Symbol
Type
Description
118, 119, 120
WE#, CAS#, RAS#
Input
35, 37
CK0, CK0#
Input
96
CKE0,
Input
121
S0#
Input
117, 116
BA0, BA1
Input
99 (A12), 100, 101,102,
105, 106, 107, 108, 109,
110, 111, 112, 115,
123 (A13)
A0–A11
(128MB)
A0–A12
(256MB, 512MB)
A0–A13
(1GB)
Input
11, 25, 47, 61, 77, 133,
147,169, 183
DQS0–DQS8
Input/
Output
12, 26, 48, 62, 78, 134,
148, 170, 184
DM0–DM8
Input
71, 72, 73, 74, 79, 80, 83,
84
CB0–CB7
Input/
Output
Command Inputs: RAS#, CAS#, and WE# (along with S#) define
the command being entered.
Clock: CK and CK# are differential clock inputs distributed
through an on-board PLL to all devices. All address and control
input signals are sampled on the crossing of the positive edge
of CK and negative edge of CK#. Output data (DQ and DQS) is
referenced to the crossings of CK and CK#.
Clock Enable: CKE HIGH activates and CKE LOW deactivates the
internal clock, input buffers.and output drivers. Taking CKE
LOW provides PRECHARGE POWER- DOWN and SELF REFRESH
operations (all device banks idle), or ACTIVE POWER-DOWN
(row ACTIVE in any device bank). CKE is synchronous for
POWER-DOWN entry and exit, and for SELF REFRESH entry. CKE
is asynchronous for SELF REFRESH exit and for disabling the
outputs. CKE must be maintained HIGH throughout read and
write accesses. Input buffers (excluding CK, CK# and CKE) are
disabled during POWER-DOWN. Input buffers (excluding CKE)
are disabled during SELF REFRESH. CKE is an SSTL_2 input but
will detect an LVCMOS LOW level after VDD is applied.
Chip Select: S# enables (registered LOW) and disables
(registered HIGH) the command decoder. All com- mands are
masked when S# is registered HIGH. S# is considered part of the
command code.
Bank Address: BA0, BA1 define to which device bank an ACTIVE,
READ, WRITE, or PRECHARGE command is being applied.
Address Inputs: A0-A11/A12 provide the row address for ACTIVE
commands, and the column address, and auto precharge bit
(A10) for READ/WRITE commands, to select one location out of
the memory array in the respective device bank. A10 sampled
during a PRECHARGE command determines whether the
PRECHARGE applies to one device bank (A10 LOW, device bank
selected by BA0, BA1) or all device banks (A10 HIGH). The
address inputs also provide the op-code during a MODE
REGISTER SET command. BA0 and BA1 define which mode
register (mode register or extended mode register) is loaded
during the LOAD MODE REGISTER command.
Data Strobe: Output with READ data, input with WRITE data.
DQS is edge-aligned with READ data, centered in WRITE data.
Used to capture data.
Data Mask: DM is an input mask signal for write data. Input
data is masked when DM is sampled HIGH along with that input
data during a WRITE access. DM is sampled on both edges of
DQS. Although DM pins are input-only, the DM loading is
designed to match that of DQ and DQS pins.
Check Bits.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Pin Assignments and Descriptions
Table 2:
Pin Descriptions
Refer to Pin Assignment Tables on page 1 for pin number and symbol correlation.
Pin Numbers
Symbol
Type
5, 6, 7, 8, 13, 14, 17, 18,
19, 20, 23, 24, 29, 30, 31,
32, 41, 42, 43, 44, 49, 50,
53, 54, 55, 56, 59, 60, 61,
65, 66, 67, 68, 127, 128,
129, 130, 135, 136, 139,
140, 141, 142, 145, 146,
151, 152, 153, 154, 163,
164, 165, 166, 171, 172,
175, 176, 177, 181, 182,
187, 188, 189, 190
195
DQ0–DQ63
Input/
Output
SCL
Input
194, 196, 198
SA0–SA2
Input
193
SDA
Input/
Output
1, 2
9, 10, 21, 22, 33, 34, 36,
45, 46, 57, 58, 69, 70, 81,
82, 92, 93, 94, 113, 114,
131, 132, 143, 144, 155,
156, 157, 167, 168, 179,
180, 191, 192
3, 4, 15, 16, 27, 28, 38,
39, 40, 51, 52, 63, 64, 75,
76, 87, 88, 90, 103, 104,
125, 126, 137, 138, 149,
150, 159, 161, 162, 173,
174, 185, 186
197
85, 86, 89, 91, 95, 97, 98,
99 (128MB), 122, 123
(128MB, 256MB,
512MB), 124, 158, 160,
200
VREF
VDD
Supply
Supply
Serial Clock for Presence-Detect: SCL is used to synchronize the
presence-detect data transfer to and from the module.
Presence-Detect Address Inputs: These pins are used to
configure the presence-detect device.
Serial Presence-Detect Data: SDA is a bidirectional pin used to
transfer addresses and data into and out of the presence-detect
portion of the module.
SSTL_2 reference voltage.
DQ Power Supply: +2.5V ±0.2V.
VSS
Supply
Ground.
VDDSPD
NC
Supply
–
Serial EEPROM positive power supply: +2.3V to +3.6V.
No Connect: These pins should be left unconnected.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
Description
Data I/Os: Data bus.
3
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Functional Block Diagram
Functional Block Diagram
All resistor values are 22Ω unless otherwise specified. Per industry standard, Micron
modules utilize various component speed grades, as referenced in the module part
numbering guide at www.micron.com/numberguide.
Standard modules use the following DDR SDRAM devices: MT46V16M8TG (128MB);
MT46V32M8TG (256MB); MT46V64M8TG (512MB); and MT46V128M8TG (1GB).
Lead-free modules use the following DDR SDRAM devices: MT46V16M8P (128MB);
MT46V32M8P (256MB); MT46V64M8P (512MB); and MT46V128M8P (1GB). Contact
Micron for information on IT modules.
Figure 2:
Functional Block Diagram
S0#
DQS0
DQS4
DM0
DM4
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM CS# DQS
DQ
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS1
DQS5
DM1
DM5
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
DQ
DQ
U11
DQ
DQ
DQ
DQ
DQ
DQ
DQS2
DQS6
DM2
DM6
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM CS# DQS
DQ
U2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS3
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DM CS# DQS
DQ
U4
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM CS# DQS
DQ
U7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DM CS# DQS
DQ
U5
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM CS# DQS
DQ
U6
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS7
DM3
DM7
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM CS# DQS
DQ
U10
DQ
DQ
DQ
DQ
DQ
DQ
DQ
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
DM CS# DQS
DQ
U3
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS8
DM8
BA0, BA1
A0-A11/A12/A13
RAS#
CAS#
CKE0
WE#
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
DDR
DDR
DDR
DDR
DDR
U9
120
CK0
CK0#
PLL
4.7pF
SDRAM
SDRAM
SDRAM
SDRAM
SDRAM
X
X
X
X
X
2
2
2
2
1
SERIAL PD
SCL
WP
A0
U8
A1
A2
SDA
SA0 SA1 SA2
BA0, BA1: DDR SDRAMS
VDDSPD
SPD/EEPROM
RAS#: DDR SDRAMS
VDD
DDR SDRAMS
CAS#: DDR SDRAMS
VREF
DDR SDRAMS
VSS
DDR SDRAMS
A0-A11/A12/A13: DDR SDRAMS
CKE0: DDR SDRAMS
WE#: DDR SDRAMS
4
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
General Description
General Description
The Micron MT9VDDT1672PH, MT9VDDT3272PH, MT9VDDT6472PH, and
MT9VDDT12872PH, are high-speed CMOS, dynamic random-access, 128MB, 256MB,
512MB, and 1GB memory modules organized in x72 (ECC) configuration. DDR SDRAM
modules use internally configured quad-bank DDR SDRAM devices.
DDR SDRAM modules use a double data rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n-prefetch architecture with an
interface designed to transfer two data words per clock cycle at the I/O pins. A single
read or write access for the DDR SDRAM module effectively consists of a single 2n-bit
wide, one-clock-cycle data transfer at the internal DRAM core and two corresponding nbit wide, one-half-clock-cycle data transfers at the I/O pins.
A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in
data capture at the receiver. DQS is an intermittent strobe transmitted by the DDR
SDRAM device during READs and by the memory controller during WRITEs. DQS is
edge-aligned with data for READs and center-aligned with data for WRITEs.
DDR SDRAM modules operate from differential clock inputs (CK and CK#); the crossing
of CK going HIGH and CK# going LOW will be referred to as the positive edge of CK.
Commands (address and control signals) are registered at every positive edge of CK.
Input data is registered on both edges of DQS, and output data is referenced to both
edges of DQS, as well as to both edges of CK. A phase-lock loop (PLL) device on the
module is used to redrive the differential clock signals to the DDR SDRAM devices to
minimize system clock loading.
Read and write accesses to DDR SDRAM modules are burst oriented; accesses start at a
selected location and continue for a programmed number of locations in a programmed
sequence. Accesses begin with the registration of an ACTIVE command, which is then
followed by a READ or WRITE command. The address bits registered coincident with
the ACTIVE command are used to select the device bank and row to be accessed (BA0,
BA1 select device bank; A0–A11 select device row for 128MB; A0–A12 select device row
for 256MB and 512MB; and A0–A13 select device row for 1GB). The address bits registered coincident with the READ or WRITE command are used to select the device bank
and the starting device column location for the burst access.
DDR SDRAM modules provide for programmable read or write burst lengths of 2, 4, or 8
locations. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access.
The pipelined, multibank architecture of DDR SDRAM modules allows for concurrent
operation, thereby providing high effective bandwidth by hiding row precharge and activation time.
An auto refresh mode is provided, along with a power-saving power-down mode. All
inputs are compatible with the JEDEC Standard for SSTL_2. All outputs are SSTL_2, Class
II compatible. For more information regarding DDR SDRAM operation, refer to the
128Mb, 256Mb, 512Mb, or 1Gb DDR SDRAM data sheets.
PLL Operation
A phase-lock loop (PLL) on the module is used to redrive the differential clock signals CK
and CK# to the DDR SDRAM devices to minimize system clock loading.
Serial Presence-Detect Operation
DDR SDRAM modules incorporate serial presence-detect (SPD). The SPD function is
implemented using a 2,048-bit EEPROM. This nonvolatile storage device contains 256
bytes. The first 128 bytes can be programmed by Micron to identify the module type and
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
5
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Mode Register Definition
various SDRAM organizations and timing parameters. The remaining 128 bytes of storage are available for use by the customer. System READ/WRITE operations between the
master (system logic) and the slave EEPROM device (DIMM) occur via a standard I2C
bus using the DIMM’s SCL (clock) and SDA (data) signals, together with SA(2:0), which
provide eight unique DIMM/EEPROM addresses. Write protect (WP) is tied to ground on
the module, permanently disabling hardware write protect.
Mode Register Definition
The mode register is used to define the specific mode of operation of DDR SDRAM
device. This definition includes the selection of a burst length, a burst type, a CAS
latency and an operating mode, as shown in the Mode Register Diagram. The mode register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 0)
and will retain the stored information until it is programmed again or the device loses
power (except for bit A8, which is self-clearing).
Reprogramming the mode register will not alter the contents of the memory, provided it
is performed correctly. The mode register must be loaded (reloaded) when all device
banks are idle and no bursts are in progress, and the controller must wait the specified
time before initiating the subsequent operation. Violating either of these requirements
will result in unspecified operation.
Mode register bits A0–A2 specify the burst length, A3 specifies the type of burst (sequential or interleaved), A4–A6 specify the CAS latency, and A7–A11 (128MB), A7–A12
(256MB, 512MB), or A7–A13 (1GB) specify the operating mode.
Burst Length
Read and write accesses to the DDR SDRAM are burst oriented, with the burst length
being programmable, as shown in Mode Register Diagram. The burst length determines
the maximum number of column locations that can be accessed for a given READ or
WRITE command. Burst lengths of 2, 4, or 8 locations are available for both the sequential and the interleaved burst types.
Reserved states should not be used, as unknown operation or incompatibility with future
versions may result.
When a READ or WRITE command is issued, a block of columns equal to the burst
length is effectively selected. All accesses for that burst take place within this block,
meaning that the burst will wrap within the block if a boundary is reached. The block is
uniquely selected by A1–Ai when the burst length is set to two, by A2–Ai when the burst
length is set to four and by A3–Ai when the burst length is set to eight (where Ai is the
most significant column address bit for a given configuration; see note 5 of Table 3, Burst
Definition Table, on page 8). The remaining (least significant) address bit(s) is (are) used
to select the starting location within the block. The programmed burst length applies to
both read and write bursts.
Burst Type
Accesses within a given burst may be programmed to be either sequential or interleaved;
this is referred to as the burst type and is selected via bit M3.
The ordering of accesses within a burst is determined by the burst length, the burst type
and the starting column address, as shown in Table 3, Burst Definition Table, on page 8.
Read Latency
The READ latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first bit of output data. The latency can be set to 2 or 2.5
clocks, as shown in Figure 4, CAS Latency Diagram, on page 9.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
6
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Mode Register Definition
Figure 3:
Mode Register Definition Diagram
128MB Module
BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
13 12
0* 0*
Address Bus
11 10 9 8 7 6 5 4 3 2 1 0
Operating Mode CAS Latency BT Burst Length
Mode Register (Mx)
* M13 and M12 (BA0 and BA1) must be “0, 0” to select the
base mode register (vs. the extended mode register).
256MB and 512MB Modules
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
14 13 12 11 10 9 8
Operating Mode
0* 0*
7
Address Bus
6 5 4 3 2 1 0
CAS Latency BT Burst Length
Mode Register (Mx)
* M14 and M13 (BA0 and BA1) must be “0, 0” to select the
base mode register (vs. the extended mode register).
1GB Module
BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
15 14
0* 0*
13 12 11 10
9
8
7
Operating Mode
6
5
4
3
2
1
0
Mode Register (Mx)
CAS Latency BT Burst Length
* M15 and M14 (BA1 and BA0)
must be “0, 0” to select the
base mode register (vs. the
extended mode register).
Burst Length
M2 M1 M0
M3 = 0
0
0
0
Reserved
0
0
1
2
0
1
0
4
0
1
1
8
1
0
0
Reserved
1
0
1
Reserved
1
1
0
Reserved
1
1
1
Reserved
Burst Type
M3
0
Sequential
1
Interleaved
CAS Latency
M6 M5 M4
0
0
0
Reserved
0
0
1
Reserved
0
1
0
2
0
1
1
Reserved
1
0
0
Reserved
1
0
1
Reserved
1
1
0
2.5
1
1
1
Reserved
M13 M12 M11 M10 M9 M8 M7
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
Address Bus
M6-M0
Operating Mode
0
0
0
0
0
0
0
Valid
Normal Operation
0
0
0
0
0
1
0
Valid
Normal Operation/Reset DLL
-
-
-
-
-
-
-
-
7
All other states reserved
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Mode Register Definition
Table 3:
Burst Definition Table
Burst
Length
Starting Column
Address
8
A2
0
0
0
0
1
1
1
1
Type = Sequential
Type = Interleaved
0-1
1-0
0-1
1-0
0-1-2-3
1-2-3-0
2-3-0-1
3-0-1-2
0-1-2-3
1-0-3-2
2-3-0-1
3-2-1-0
0-1-2-3-4-5-6-7
1-2-3-4-5-6-7-0
2-3-4-5-6-7-0-1
3-4-5-6-7-0-1-2
4-5-6-7-0-1-2-3
5-6-7-0-1-2-3-4
6-7-0-1-2-3-4-5
7-0-1-2-3-4-5-6
0-1-2-3-4-5-6-7
1-0-3-2-5-4-7-6
2-3-0-1-6-7-4-5
3-2-1-0-7-6-5-4
4-5-6-7-0-1-2-3
5-4-7-6-1-0-3-2
6-7-4-5-2-3-0-1
7-6-5-4-3-2-1-0
A0
0
1
A0
0
1
0
1
A0
0
1
0
1
0
1
0
1
2
4
Order of Accesses Within a Burst
A1
0
0
1
1
A1
0
0
1
1
0
0
1
1
Notes: 1. For a burst length of two, A1-Ai select the two- data-element block; A0 selects the first
access within the block.
2. For a burst length of four, A2-Ai select the four- data-element block; A0-A1 select the first
access within the block.
3. For a burst length of eight, A3-Ai select the eight- data-element block; A0-A2 select the
first access within the block.
4. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block.
5. i = 9 for 128MB, 256MB
i = 9, 11 for 512MB, 1GB
Table 4:
CAS Latency (CL) Table
Allowable Operating Clock Frequency (MHz)
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
Speed
CL = 2
CL = 2.5
-335
-262
-26A
-265
N/A
75 ≤ f ≤ 133
75 ≤ f ≤ 133
75 ≤ f ≤ 100
75 ≤ f ≤ 167
75 ≤ f ≤ 133
75 ≤ f ≤ 133
75 ≤ f ≤ 133
8
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Mode Register Definition
Figure 4:
CAS Latency Diagram
T0
T1
T2
READ
NOP
NOP
T2n
T3
T3n
CK#
CK
COMMAND
NOP
CL = 2
DQS
DQ
CK#
T0
T1
T2
READ
NOP
NOP
T2n
T3
T3n
CK
COMMAND
NOP
CL = 2.5
DQS
DQ
Burst Length = 4 in the cases shown
Shown with nominal tAC, tDQSCK, and tDQSQ
TRANSITIONING DATA
DON’T CARE
If a READ command is registered at clock edge n, and the latency is m clocks, the data
will be available nominally coincident with clock edge n + m. Table 4, CAS Latency (CL)
Table, on page 8, indicates the operating frequencies at which each CAS latency setting
can be used.
Reserved states should not be used as unknown operation or incompatibility with future
versions may result.
Operating Mode
The normal operating mode is selected by issuing a MODE REGISTER SET command
with bits A7–A11 (128MB), A7–A12 (256MB, 512MB), or A7–A13 (1GB) each set to zero,
and bits A0–A6 set to the desired values.
A DLL reset is initiated by issuing a MODE REGISTER SET command with bits A7 and
A9–A11 (128MB); A7 and A9–A12 (256MB, 512MB); or A7 and A9–A13 (1GB) each set to
zero, bit A8 set to one, and bits A0–A6 set to the desired values. Although not required by
the Micron device, JEDEC specifications recommend when a LOAD MODE REGISTER
command is issued to reset the DLL, it should always be followed by a LOAD MODE
REGISTER command to select normal operating mode.
All other combinations of values for A7–A11 (128MB.), A7–A12 (256MB, 512MB), or A7–
A13 (1GB) are reserved for future use and/or test modes. Test modes and reserved states
should not be used because unknown operation or incompatibility with future versions
may result.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
9
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Extended Mode Register
Extended Mode Register
The extended mode register controls functions beyond those controlled by the mode
register; these additional functions are DLL enable/disable and output drive strength.
These functions are controlled via the bits shown in the Extended Mode Register Definition Diagram. The extended mode register is programmed via the LOAD MODE REGISTER command to the mode register (with BA0 = 1 and BA1 = 0) and will retain the stored
information until it is programmed again or the device loses power. The enabling of the
DLL should always be followed by a LOAD MODE REGISTER command to the mode register (BA0, /BA1 both low) to reset the DLL.
The extended mode register must be loaded when all device banks are idle and no bursts
are in progress, and the controller must wait the specified time before initiating any subsequent operation. Violating either of these requirements could result in unspecified
operation.
DLL Enable/Disable
The DLL must be enabled for normal operation. DLL enable is required during powerup initialization and upon returning to normal operation after having disabled the DLL
for the purpose of debug or evaluation. (When the device exits self refresh mode, the
DLL is enabled automatically.) Any time the DLL is enabled, 200 clock cycles with CKE
HIGH must occur before a READ command can be issued.
Figure 5:
Extended Mode Register Definition Diagram
128MB Module
BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
13 12 11 10 9 8 7 6 5
Operating Mode
01 11
4
3
1
2
0
Address Bus
Extended Mode
Register (Ex)
DS DLL
256MB and 512MB Modules
BA1 BA0 A2 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
14 13 12 11 10 9 8 7 6 5
Operating Mode
01 11
4
3
1
2
0
Address Bus
Extended Mode
Register (Ex)
DS DLL
1GB Module
BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
15 14 13 12 11 10 9 8 7 6 5
Operating Mode
01 11
4
3
2
1
0
Extended Mode
Register (Ex)
DS DLL
E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2
E1, E0
Address Bus
E0
DLL
0
Enable
1
Disable
E1
Drive Strength
0
Normal
Operating Mode
0
0
0
0
0
0
0
0
0
0
0
0
Valid
Reserved
–
–
–
–
–
–
–
–
–
–
–
–
–
Reserved
Notes: 1. BA1 and BA0 (E13 and E12 for 128MB; E14 and E13 for 256MB, 512MB; or E15 and E14 for
1GB) must be “0, 1” to select the Extended Mode Register (vs. the base Mode Register).
2.QFC# is not supported.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
10
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Commands
Commands
Table 5, Commands Truth Table, and Table 6, DM Operation Truth Table, provide a general reference of available commands. For a more detailed description of commands and
operations, refer to the Micron 128Mb, 256Mb, 512Mb, or 1Gb DDR SDRAM component
data sheets.
Table 5:
Commands Truth Table
CKE is HIGH for all commands shown except SELF REFRESH; all states and sequences not shown are illegal or
reserved
Name (Function)
CS#
DESELECT (NOP)
NO OPERATION (NOP)
ACTIVE (Select device bank and activate row)
READ (Select device bank and column, and start READ burst)
WRITE (Select device bank and column, and start WRITE burst)
BURST TERMINATE
PRECHARGE (Deactivate row in device bank or banks)
AUTO REFRESH or SELF REFRESH
(Enter self refresh mode)
LOAD MODE REGISTER
RAS# CAS#
WE#
Address
Notes
H
L
L
L
L
L
L
L
X
H
L
H
H
H
L
L
X
H
H
L
L
H
H
L
X
H
H
H
L
L
L
H
X
X
Bank/Row
Bank/Col
Bank/Col
X
Code
X
1
1
2
3
3
4
5
6, 7
L
L
L
L
Op-Code
8
Notes: 1. DESELECT and NOP are functionally interchangeable.
2. BA0–BA1 provide device bank address and A0–A11(128MB), A0–A12 (256MB, 512MB), or
A0–A13 (1GB) provide row address.
3. BA0–BA1 provide device bank address; A0–A9 (128MB, 256MB) or A0–A9, A11 (512MB,
1GB) provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature.
4. Applies only to read bursts with auto precharge disabled; this command is undefined (and
should not be used) for READ bursts with auto precharge enabled and for WRITE bursts.
5. A10 LOW: BA0–BA1 determine which device bank is precharged. A10 HIGH: all device
banks are precharged and BA0–BA1 are "Don’t Care."
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
7. Internal refresh counter controls row addressing; all inputs and I/Os are "Don’t Care"
except for CKE.
8. BA0–BA1 select either the mode register or the extended mode register (BA0 = 0, BA1 = 0
select the mode register;
BA0 = 1, BA1 = 0 select extended mode register; other combinations of BA0–BA1 are
reserved). A0–A11(128MB), A0–A12 (256MB, 512MB), or A0–A13 (1GB) provide the opcode to be written to the selected mode register.
Table 6:
DM Operation Truth Table
Used to mask write data; provided coincident with the corresponding data
Name (Function)
Write Enable
Write Inhibit
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
11
DM
DQs
L
H
Valid
X
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Absolute Maximum Ratings
Absolute Maximum Ratings
Stresses greater than those listed may cause permanent damage to the device. This is a
stress rating only, and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
VDD Supply Voltage Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
VDDQ Supply Voltage Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
VREF and Inputs Voltage Relative to Vss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
I/O Pins Voltage Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.5V to VddQ +0.5V
Operating Temperature,
TA (ambient - commercial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0°C to +70°C
TA (ambient - industrial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C
Storage Temperature (plastic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55°C to +150°C
Short Circuit Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Electrical Specifications
Table 7:
DC Electrical Characteristics and Operating Conditions
Notes: 1–5, 14; notes appear on pages 19–23; 0°C ≤ TA ≤ +70°C
Parameter/Condition
Supply Voltage
I/O Supply Voltage
I/O Reference Voltage
I/O Termination Voltage (system)
Input High (Logic 1) Voltage
Input Low (Logic 0) Voltage
INPUT LEAKAGE CURRENT
Any input 0V ≤ VIN ≤ VDD, VREF pin 0V ≤ VIN
≤ 1.35V
(All other pins not under test = 0V)
Command/Address,
RAS#, CAS#, WE#,
CKE, S#
CK, CK#
DM
DQ, DQS
OUTPUT LEAKAGE CURRENT
(DQs are disabled; 0V ≤ VOUT ≤ VDDQ)
OUTPUT LEVELS:
High Current (VOUT = VDDQ-0.373V, minimum VREF, minimum
VTT)
Low Current (VOUT = 0.373V, maximum VREF, maximum VTT)
Table 8:
Symbol
Min
Max
Units
Notes
VDD
VDDQ
2.3
2.3
2.7
2.7
V
V
VREF
VTT
VIH(DC)
VIL(DC)
II
0.49 x VDDQ
VREF - 0.04
VREF + 0.15
-0.3
-18
0.51 x VDDQ
VREF + 0.04
VDD + 0.3
VREF - 0.15
18
V
V
V
V
µA
32, 36
32, 36,
39
6, 39
7, 39
25
25
II
-5
5
µA
II
-2
2
µA
IOZ
-5
5
µA
46
IOH
IOL
-16.8
16.8
–
–
mA
mA
33, 34
46
AC Input Operating Conditions
Notes: 1–5, 12, 48; notes appear on pages 19–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
Parameter/Condition
Symbol
Min
Max
Units
Notes
Input High (Logic 1) Voltage
Input Low (Logic 0) Voltage
I/O Reference Voltage
VIH(AC)
VIL(AC)
VREF(AC)
VREF + 0.310
–
0.49 x VDDQ
–
VREF - 0.310
0.51 x VDDQ
V
V
V
25, 35
25, 35
6
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
12
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Electrical Specifications
Table 9:
IDD Specifications and Conditions – 128MB
DDR SDRAM components only;
Notes: 1–5, 8, 10, 12, 47; notes appear on pages 19–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
Max
Parameter/Condition
Symbol
-335
-262
-26A/
-265
Units
Notes
IDD0
1,125
990
945
mA
20, 41
IDD1
1,215
1,080
1,080
mA
20, 41
IDD2P
27
27
27
mA
21, 28,
43
IDD2F
405
405
360
mA
44
IDD3P
225
225
180
mA
21, 28,
43
IDD3N
450
450
405
mA
IDD4R
1,260
1,170
1,125
mA
20, 41
IDD4W
1,260
1,125
1,080
mA
20
IDD5
2,385
1,980
1,980
mA
20, 43
IDD5A
IDD6
IDD7
45
27
3,195
45
27
2,970
45
18
2,925
mA
mA
mA
24, 43
9
20, 42
OPERATING CURRENT: One device bank; Active-Precharge;
t
RC = tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs
changing once per clock cyle; Address and control inputs
changing once every two clock cycles
OPERATING CURRENT: One device bank; Active-ReadPrecharge; Burst = 2; tRC = tRC (MIN); tCK = tCK (MIN); IOUT =
0mA; Address and control inputs changing once per clock
cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All device
banks idle; Power-down mode; tCK = tCK (MIN); CKE =
(LOW)
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle;
tCK = tCK MIN; CKE = HIGH; Address and other control
inputs changing once per clock cycle. VIN = VREF for DQ,
DQS, and DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device
bank active; Power-down mode; tCK = tCK (MIN); CKE =
LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One
device bank; Active-Precharge; tRC = RAS (MAX); tCK = tCK
(MIN); DQ, DM and DQS inputs changing twice per clock
cycle; Address and other control inputs changing once per
clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous burst;
One device bank active; Address and control inputs
changing once per clock cycle; CK = tCK (MIN); IOUT = 0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous burst;
One device bank active; Address and control inputs
changing once per clock cycle; tCK = tCK (MIN); DQ, DM,
and DQS inputs changing twice per clock cycle
tREFC = tRFC
AUTO REFRESH CURRENT
(MIN)
tREFC
= 15.625µs
SELF REFRESH CURRENT: CKE ≤ 0.2V
OPERATING CURRENT: Four bank interleaving READs (BL=4)
with auto precharge with, tRC = tRC (MIN); tCK = tCK (MIN);
Address and control inputs change only during Active
READ, or WRITE commands
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
13
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Electrical Specifications
Table 10:
IDD Specifications and Conditions – 256MB
DDR SDRAM components only;
Notes: 1–5, 8, 10, 12, 47; notes appear on pages 19–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
Max
Parameter/Condition
Symbol
-335
-262
-26A/
-265
Units
Notes
IDD0
1,125
1,125
960
mA
20, 41
IDD1
1,530
1,440
1,305
mA
20, 41
IDD2P
35
36
36
mA
21, 28,
43
IDD2F
450
405
405
mA
44
IDD3P
270
225
225
mA
21, 28,
43
IDD3N
540
450
450
mA
IDD4R
1,575
1,350
1,350
mA
20, 41
IDD4W
1,400
1,200
1,200
mA
20
IDD5
2,295
2,115
2,115
mA
20, 43
IDD5A
IDD6
IDD7
54
36
3,645
54
36
3,150
54
36
3,150
mA
mA
mA
24, 43
9
20, 42
OPERATING CURRENT: One device bank; Active-Precharge;
t
RC = tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs
changing once per clock cyle; Address and control inputs
changing once every two clock cycles
OPERATING CURRENT: One device bank; Active-ReadPrecharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN);
IOUT = 0mA; Address and control inputs changing once per
clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All device
banks idle; Power-down mode; tCK = tCK (MIN);
CKE = (LOW)
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle;
tCK = tCK MIN; CKE = HIGH; Address and other control inputs
changing once per clock cycle. VIN = VREF for DQ, DQS, and
DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device
bank active; Power-down mode; tCK = tCK (MIN);
CKE = LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One
device bank; Active-Precharge; tRC = RAS (MAX); tCK = tCK
(MIN); DQ, DM and DQS inputs changing twice per clock
cycle; Address and other control inputs changing once per
clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous burst;
One device bank active; Address and control inputs
changing once per clock cycle; CK = tCK (MIN); IOUT = 0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous burst;
One device bank active; Address and control inputs
changing once per clock cycle; tCK = tCK (MIN); DQ, DM, and
DQS inputs changing twice per clock cycle
tREFC = tRFC(MIN)
AUTO REFRESH CURRENT
tREFC
= 7.8125µs
SELF REFRESH CURRENT: CKE ≤ 0.2V
OPERATING CURRENT: Four bank interleaving READs (BL=4)
with auto precharge with, tRC = tRC (MIN); tCK = tCK (MIN);
Address and control inputs change only during Active READ,
or WRITE commands
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
14
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Electrical Specifications
Table 11:
IDD Specifications and Conditions – 512MB
DDR SDRAM components only;
Notes: 1–5, 8, 10, 12, 47; notes appear on pages 19–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
Max
Parameter/Condition
OPERATING CURRENT: One device bank; Active-Precharge; tRC =
t
RC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing
once per clock cyle; Address and control inputs changing once
every two clock cycles
OPERATING CURRENT: One device bank; Active-Read-Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address
and control inputs changing once per clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All device
banks idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW)
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK
= tCK MIN; CKE = HIGH; Address and other control inputs
changing once per clock cycle. VIN = VREF for DQ, DQS, and DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One
device bank; Active-Precharge; tRC = RAS (MAX); tCK = tCK
(MIN); DQ, DM and DQS inputs changing twice per clock cycle;
Address and other control inputs changing once per clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
device bank active; Address and control inputs changing once
per clock cycle; CK = tCK (MIN); IOUT = 0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once
per clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs
changing twice per clock cycle
t
AUTO REFRESH CURRENT
REFC = tRFC (MIN)
tREFC
= 7.8125µs
SELF REFRESH CURRENT: CKE ≤ 0.2V
OPERATING CURRENT: Four bank interleaving READs (BL=4) with
auto precharge with, tRC = tRC (MIN); tCK = tCK (MIN); Address
and control inputs change only during Active READ, or WRITE
commands
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
15
Symbol
-335
-262
-26A/
-265
Units
Notes
IDD0
1,040
1,040
920
mA
20, 41
IDD1
1,280
1,280
1,160
mA
20, 41
IDD2P
40
40
40
mA
IDD2F
360
360
320
mA
21, 28,
43
44
IDD3P
280
280
240
mA
IDD3N
400
400
360
mA
IDD4R
1,320
1,320
1,160
mA
20, 41
IDD4W
1,400
1,240
1,080
mA
20
IDD5
2,320
2,320
2,240
mA
20, 43
IDD5A
IDD6
IDD7
80
40
3,240
80
40
3,200
80
40
2,800
mA
mA
mA
24, 43
9
20, 42
21, 28,
43
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Electrical Specifications
Table 12:
IDD Specifications and Conditions – 1GB
DDR SDRAM components only;
Notes: 1–5, 8, 10, 12, 47; notes appear on pages 19–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
Max
Parameter/Condition
OPERATING CURRENT: One device bank; Active-Precharge; tRC =
t
RC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing
once per clock cyle; Address and control inputs changing once
every two clock cycles
OPERATING CURRENT: One device bank; Active-Read-Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address
and control inputs changing once per clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All device
banks idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW)
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK
= tCK MIN; CKE = HIGH; Address and other control inputs
changing once per clock cycle. VIN = VREF for DQ, DQS, and DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One
device bank; Active-Precharge; tRC = RAS (MAX); tCK = tCK
(MIN); DQ, DM and DQS inputs changing twice per clock cycle;
Address and other control inputs changing once per clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
device bank active; Address and control inputs changing once
per clock cycle; CK = tCK (MIN); IOUT = 0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once
per clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs
changing twice per clock cycle
t
AUTO REFRESH CURRENT
REFC = tRFC (MIN)
tREFC
= 7.8125µs
SELF REFRESH CURRENT: CKE ≤ 0.2V
OPERATING CURRENT: Four bank interleaving READs (BL=4) with
auto precharge with, tRC = tRC (MIN); tCK = tCK (MIN); Address
and control inputs change only during Active READ, or WRITE
commands
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
16
Symbol
-335
-262
-26A/
-265
Units
Notes
IDD0
1,040
1,040
1,160
mA
20, 41
IDD1
1,280
1,280
1,440
mA
20, 41
IDD2P
40
40
80
mA
IDD2F
360
360
480
mA
21, 28,
43
44
IDD3P
280
280
240
mA
IDD3N
360
360
360
mA
IDD4R
1,320
1,320
1,600
mA
20, 41
IDD4W
1,240
1,240
1,680
mA
20
IDD5
2,320
2,320
2,640
mA
20, 43
IDD5A
IDD6
IDD7
80
40
3,240
80
40
3,200
80
72
3,880
mA
mA
mA
24, 43
9
20, 42
21, 28,
43
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Electrical Specifications
Table 13:
Capacitance)
Note: 11; notes appear on pages 19–23
Parameter
Symbol
Min
Typ
Max
Units
CIO
CI1
CI2
4.0
18.0
-
7.7
5.0
27.0
-
pF
pF
pF
Input/Output Capacitance: DQ, DQS, DM
Input Capacitance: Command and Address, S#, CKE
Input Capacitance: CK, CK#
Table 14:
Electrical Characteristics and Recommended AC Operating Conditions
DDR SDRAM components only; notes appear on pages 19–23
Notes: 1–5, 12–15, 29, 47; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
AC Characteristics
Parameter
-335
-262
-26a/-265
Symbol
Min
Max
Min
Max
Min
Max
tAC
Access window of DQs from CK/CK#
tCH
CK high-level width
tCL
CK low-level width
tCK (2.5)
Clock cycle time
CL = 2.5
tCK (2)
CL = 2
tDH
DQ and DM input hold time relative to
DQS
tDS
DQ and DM input setup time relative to
DQS
tDIPW
DQ and DM input pulse width (for each
input)
tDQSCK
Access window of DQS from CK/CK#
tDQSH
DQS input high pulse width
tDQSL
DQS input low pulse width
tDQSQ
DQS-DQ skew, DQS to last DQ valid, per
group, per access
tDQSS
Write command to first DQS latching
transition
t
DSS
DQS falling edge to CK rising - setup
time
t
DSH
DQS falling edge from CK rising - hold
time
tHP
Half clock period
tHZ
Data-out high-impedance window from
CK/CK#
t
LZ
Data-out low-impedance window from
CK/CK#
t
IHS
Address and control input hold time
(slow slew rate)
t
ISS
Address and control input setup time
(slow slew rate)
tIPW
Address and Control input pulse width
(for each input)
tMRD
LOAD MODE REGISTER command cycle
time
tQH
DQ-DQS hold, DQS to first DQ to go nonvalid, per access
tQHS
Data Hold Skew Factor
-0.7
0.45
0.45
6
7.5
0.45
+0.7
0.55
0.55
13
13
-0.75
0.45
0.45
7.5
7.5
0.5
+0.75
0.55
0.55
13
13
-0.75
0.45
0.45
7.5
10
0.5
+0.75
0.55
0.55
13
13
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
Units Notes
ns
tCK
ns
ns
ns
26
26
40, 45
40, 45
23, 27
tCK
0.45
0.5
0.5
ns
23, 27
1.75
1.75
1.75
ns
27
-0.60
0.35
0.35
+0.60
-0.75
0.35
0.35
0.45
0.75
1.25
+0.75
-0.75
0.35
0.35
0.5
0.75
1.25
0.75
+0.75
ns
tCK
tCK
0.6
ns
1.25
tCK
0.2
0.2
0.2
t
0.2
0.2
0.2
t
tCH, tCL
tCH, tCL
+0.70
CK
CK
tCH, tCL
+0.75
22, 23
+0.75
ns
ns
30
16, 37
-0.70
-0.75
-0.75
ns
16, 37
0.75
0.90
1.1
ns
12
0.75
0.90
1.1
ns
12
2.2
2.2
2.2
ns
0.80
15
15
ns
-
tHP-
ns
tQHS
tQHS
tHP
tHP
-
tQHS
0.50
17
0.75
0.75
22, 23
ns
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Electrical Specifications
Table 14:
Electrical Characteristics and Recommended AC Operating Conditions (Continued)
DDR SDRAM components only; notes appear on pages 19–23
Notes: 1–5, 12–15, 29, 47; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
AC Characteristics
Parameter
-335
-26a/-265
Min
Max
Min
Max
Min
Max
ACTIVE to PRECHARGE command
t
RAS
42
70,000
40
120,00
0
40
120,00
0
ACTIVE to READ with Auto precharge
command
ACTIVE to ACTIVE/AUTO REFRESH
command period
AUTO REFRESH command 128MB,
period
256MB,
512MB
1GB
ACTIVE to READ or WRITE delay
PRECHARGE command period
DQS read preamble
DQS read postamble
ACTIVE bank a to ACTIVE bank b
command
DQS write preamble
DQS write preamble setup time
DQS write postamble
Write recovery time
Internal WRITE to READ command delay
Data valid output window (DVW)
REFRESH to REFRESH
128MB
command interval
256MB,
512MB, 1GB
Average periodic refresh
128MB
interval
256MB,
512MB, 1GB
Terminating voltage delay to VDD
Exit SELF REFRESH to non-READ
command
Exit SELF REFRESH to READ command
tRAP
15
15
20
ns
60
60
65
ns
72
75
75
ns
43
120
15
15
0.9
0.4
12
120
15
15
0.9
0.4
15
120
20
20
0.9
0.4
15
ns
ns
ns
tCK
tCK
ns
43
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
Symbol
-262
t
RC
Units Notes
ns
31, 48
tRFC
tRCD
tRP
tRPRE
tRPST
tRRD
tWPRE
tWPRES
tWPST
tWR
tWTR
na
tREFC
1.1
0.6
0.25
0
0.4
0.6
15
1
tQH - tDQSQ
140.6
70.3
0.25
0
0.4
0.6
15
1
tQH - tDQSQ
140.6
70.3
15.6
7.8
15.6
7.8
tREFI
tVTD
1.1
0.6
0.25
0
0.4
0.6
15
1
tQH - tDQSQ
140.6
70.3
0
t
0
75
0
75
0
75
t
200
200
200
XSNR
XSRD
18
1.1
0.6
15.6
7.8
38
38
tCK
ns
tCK
18, 19
17
ns
tCK
ns
µs
µs
22
21
21
µs
µs
21
ns
ns
t
CK
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Notes
Notes
1. All voltages referenced to VSS.
2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted
at nominal reference/supply voltage levels, but the related specifications and device
operation are guaranteed for the full voltage range specified.
3. Outputs measured with equivalent load:
VTT
Output
(VOUT)
50Ω
Reference
Point
30pF
4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#),
and parameter specifications are guaranteed for the specified AC input levels under
normal use conditions. The minimum slew rate for the input signals used to test the
device is 1V/ns in the range between VIL(AC) and VIH(AC).
5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e.,
the receiver will effectively switch as a result of the signal crossing the AC input level,
and will remain in that state as long as the signal does not ring back above [below] the
DC input LOW [HIGH] level).
6. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in
the DC level of the same. Peak-to-peak noise (non-common mode) on Vref may not
exceed ±2 percent of the DC value. Thus, from VDDQ/2, Vref is allowed ±25mV for DC
error and an additional ±25mV for AC noise. This measurement is to be taken at the
nearest VREF bypass capacitor.
7. VTT is not applied directly to the device. VTT is a system supply for signal termination
resistors, is expected to be set equal to VREF and must track variations in the DC level
of VREF.
8. IDD is dependent on output loading and cycle rates. Specified values are obtained
with minimum cycle time at CL = 2 for -26A and -202, CL = 2.5 for -335 and -265 with
the outputs open.
9. Enables on-chip refresh and address counters.
10. IDD specifications are tested after the device is properly initialized, and is averaged at
the defined cycle rate.
11. This parameter is sampled. VDD = +2.5V ±0.2V, VDDQ = +2.5V ±0.2V, VREF = VSS, f = 100
MHz, TA = 25°C, VOUT(DC) = VDDQ/2, VOUT (peak to peak) = 0.2V. DM input is grouped
with I/O pins, reflecting the fact that they are matched in loading.
12. For slew rates < 1 V/ns and ≥ to 0.5 Vns. If the slew rate is < 0.5V/ns, timing must be
derated: tIS has an additional 50ps per each 100 mV/ns reduction in slew rate from
500 mV/ns, while tIH is unaffected. If the slew rate exceeds 4.5 V/ns, functionality is
uncertain. For -335, slew rates must be ≥ 0.5 V/ns.
13. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at
which CK and CK# cross; the input reference level for signals other than CK/CK# is
VREF.
14. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period
before VREF stabilizes, CKE ≤ 0.3 x VDDQ is recognized as LOW.
15. The output timing reference level, as measured at the timing reference point indicated in Note 3, is VTT.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
19
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Notes
16. tHZ and tLZ transitions occur in the same access time windows as data valid transitions. These parameters are not referenced to a specific voltage level, but specify
when the device output is no longer driving (HZ) or begins driving (LZ).
17. The intent of the Don’t Care state after completion of the postamble is the DQS-driven
signal should either be high, low, or high-Z and that any signal transition within the
input switching region must follow valid input requirements. That is, if DQS transitions high [above VIHDC (MIN)] then it must not transition low (below VIHDC) prior to
tDQSH (MIN).
18. This is not a device limit. The device will operate with a negative value, but system
performance could be degraded due to bus turnaround.
19. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE command. The case shown (DQS going from High-Z to logic LOW) applies when no
WRITEs were previously in progress on the bus. If a previous WRITE was in progress,
DQS could be HIGH during this time, depending on tDQSS.
20. MIN (tRC or tRFC) for IDD measurements is the smallest multiple of tCK that meets the
minimum absolute value for the respective parameter. tRAS (MAX) for IDD measurements is the largest multiple of tCK that meets the maximum absolute value for tRAS.
21. The refresh period 64ms. This equates to an average refresh rate of 15.625µs (128MB),
or 7.8251µs (256MB, 512MB, 1GB). However, an AUTO REFRESH command must be
asserted at least once every 140.6µs (128MB) or 70.3µs (256MB, 512MB, 1GB); burst
refreshing or posting by the DRAM controller greater than eight refresh cycles is not
allowed.
22. The valid data window is derived by achieving other specifications: tHP (tCK/2),
t
DQSQ, and tQH (tQH = tHP - tQHS). The data valid window derates in direct porportion with the clock duty cycle and a practical data valid window can be derived, as
shown in Figure 6, Derating Data Valid Window (tQH - tDQSQ). The clock is allowed a
maximum duty cycle variation of 45/55, beyond which functionality is uncertain. The
data valid window derating curves are provided below for duty cycles ranging
between 50/50 and 45/55.
23. Each byte lane has a corresponding DQS.
24. This limit is actually a nominal value and does not result in a fail value. CKE is HIGH
during REFRESH command period (tRFC [MIN]) else CKE is LOW (i.e., during
standby).
25. To maintain a valid level, the transitioning edge of the input must:
a. Sustain a constant slew rate from the current AC level through to the target AC
level, VIL(AC) or VIH(AC).
b. Reach at least the target AC level.
c. After the AC target level is reached, continue to maintain at least the target DC
level, VIL(DC) or VIH(DC).
26. JEDEC specifies CK and CK# input slew rate must be ≤ 1V/ns (2V/ns differentially).
27. DQ and DM input slew rates must not deviate from DQS by more than 10 percent. If
the DQ/DM/DQS slew rate is less than 0.5 V/ns, timing must be derated: 50ps must
be added to tDS and tDH for each 100 mv/ns reduction in slew rate. If slew rate
exceeds 4 V/ns, functionality is uncertain. For -335, slew rates must be ≥ 0.5 V/ns.
28. VDD must not vary more than 4 percent if CKE is not active while any bank is active.
29. The clock is allowed up to ±150ps of jitter. Each timing parameter is allowed to vary by
the same amount.
30. tHP min is the lesser of tCL minimum and ttCH minimum actually applied to the
device CK and CK# inputs, collectively during bank active.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
20
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Notes
Figure 6:
Derating Data Valid Window (tQH - tDQSQ)
3.8
3.750
3.700
3.6
3.650
3.600
3.550
3.500
3.4
3.450
3.400
3.350
3.2
3.300
3.250
tCK
NA -335 @
= 6ns
-262/-26A/-265 @ tCK = 10ns
-262/-26A/-265 @ tCK = 7.5ns
ns
3.0
2.8
2.6
2.500
2.463
2.425
2.388
2.4
2.350
2.313
2.275
2.238
2.200
2.163
2.2
2.125
2.0
1.8
50/50
49.5/50.5
49/51
48.5/52.5
48/52
47.5/53.5
47/53
46.5/54.5
46/54
45.5/55.5
45/55
Clock Duty Cycle
31. READs and WRITEs with auto precharge are not allowed to be issued until tRAS(min)
can be satisfied prior to the internal precharge command being issued.
32. Any positive glitch must be less than 1/3 of the clock and not more than +400mV or
2.9V, whichever is less. Any negative glitch must be less than 1/3 of the clock cycle and
not exceed either -300mV or 2.2V, whichever is more positive.
33. Normal Output Drive Curves:
a. The full variation in driver pull-down current from minimum to maximum process, temperature and voltage will lie within the outer bounding lines of the V-I
curve of Figure 7, Pull-Down Characteristics.
b. The variation in driver pull-down current within nominal limits of voltage and
temperature is expected, but not guaranteed, to lie within the inner bounding
lines of the V-I curve of Figure 7, Pull-Down Characteristics.
c. The full variation in driver pull-up current from minimum to maximum process,
temperature and voltage will lie within the outer bounding lines of the V-I curve
of Figure 8, Pull-Up Characteristics
d. The variation in driver pull-up current within nominal limits of voltage and temperature is expected, but not guaranteed, to lie within the inner bounding lines of
the V-I curve of Figure 8, Pull-Up Characteristics.
e. The full variation in the ratio of the maximum to minimum pull-up and pulldown current should be between 0.71 and 1.4, for device drain-to-source voltages
from 0.1V to 1.0V, and at the same voltage and temperature.
f. The full variation in the ratio of the nominal pull-up to pull-down current should
be unity ±10 percent, for device drain-to-source voltages from 0.1V to 1.0V.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
21
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Notes
34. The voltage levels used are derived from a minimum VDD level and the referenced test
load. In practice, the voltage levels obtained from a properly terminated bus will provide significantly different voltage values.
35. VIH overshoot: VIH(MAX) = VDDQ + 1.5V for a pulse width ≤ 3ns and the pulse width
can not be greater than 1/3 of the cycle rate. VIL undershoot: VIL(MIN) = -1.5V for a
pulse width ≤ 3ns and the pulse width can not be greater than 1/3 of the cycle rate.
36. VDD and VDDQ must track each other.
37. tHZ (MAX) will prevail over tDQSCK (MAX) + tRPST (MAX) condition. tLZ (MIN) will
prevail over tDQSCK (MIN) + tRPRE (MAX) condition.
t
38. RPST end point and tRPRE begin point are not referenced to a specific voltage level
but specify when the device output is no longer driving (tRPST), or begins driving
(tRPRE).
39. During initialization, VDDQ, VTT, and VREF must be equal to or less than VDD + 0.3V.
Alternatively, VTT may be 1.35V maximum during power up, even if VDD/VDDQ are
0Vs, provided a minimum of 42Ω of series resistance is used between the VTT supply
and the input pin.
40. The current Micron part operates below the slowest JEDEC operating frequency of 83
MHz. As such, future die may not reflect this option.
41. Random addressing changing and 50 percent of data changing at every transfer.
42. Random addressing changing and 100 percent of data changing at every transfer.
Figure 7:
Pull-Down Characteristics
160
um
140
Maxim
120
IOUT (mA)
high
Nominal
100
80
Nominal low
60
Minimum
40
20
0
0.0
0.5
1.0
1.5
2.0
2.5
VOUT (V)
Figure 8:
Pull-Up Characteristics
0
-20
Maximum
-40
Nominal high
IOUT (mA)
-60
-80
-100
Nom
-120
inal
-140
Min
low
imu
-160
m
-180
-200
0.0
0.5
1.0
1.5
2.0
2.5
VDDQ - VOUT (V)
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
22
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Notes
43. CKE must be active (high) during the entire time a refresh command is executed.
That is, from the time the AUTO REFRESH command is registered, CKE must be
active at each rising clock edge, until tREF later.
44. IDD2N specifies the DQ, DQS, and DM to be driven to a valid high or low logic level.
IDD2Q is similar to IDD2F except IDD2Q specifies the address and control inputs to
remain stable. Although IDD2F, IDD2N, and IDD2Q are similar, IDD2F is “worst case.”
45. Whenever the operating frequency is altered, not including jitter, the DLL is required
to be reset. This is followed by 200 clock cycles.
46. Leakage number reflects the worst case leakage possible through the module pin, not
what each memory device contributes.
47. When an input signal is HIGH or LOW, it is defined as a steady state logic HIGH or
LOW.
48. The -335 speed grade will operate with tRAS (MIN) = 40ns and tRAS (MAX) = 120,000ns
at any slower frequency.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
23
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Initialization
Initialization
To ensure device operation the DRAM must be initialized as described below:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
Simultaneously apply power to VDD and VDDQ.
Apply VREF and then VTT power.
Assert and hold CKE at a LVCMOS logic low.
Provide stable CLOCK signals.
Wait at least 200µs.
Bring CKE high and provide at least one NOP or DESELECT command. At this point
the CKE input changes from a LVCMOS input to a SSTL2 input only and will remain a
SSTL_2 input unless a power cycle occurs.
Perform a PRECHARGE ALL command.
Wait at least tRP time, during this time NOPs or DESELECT commands must be given.
Using the LMR command program the Extended Mode Register (E0 = 0 to enable the
DLL and E1 = 0 for normal drive or E1 = 1 for reduced drive, E2 through En must be set
to 0; where n = most significant bit).
Wait at least tMRD time, only NOPs or DESELECT commands are allowed.
Using the LMR command program the Mode Register to set operating parameters
and to reset the DLL. Note at least 200 clock cycles are required between a DLL reset
and any READ command.
Wait at least tMRD time, only NOPs or DESELECT commands are allowed.
Issue a PRECHARGE ALL command.
Wait at least tRP time, only NOPs or DESELECT commands are allowed.
Issue an AUTO REFRESH command (Note this may be moved prior to step 13).
Wait at least tRFC time, only NOPs or DESELECT commands are allowed.
Issue an AUTO REFRESH command (Note this may be moved prior to step 13).
Wait at least tRFC time, only NOPs or DESELECT commands are allowed.
Although not required by the Micron device, JEDEC requires a LMR command to clear
the DLL bit (set M8 = 0). If a LMR command is issued the same operating parameters
should be utilized as in step 11.
Wait at least tMRD time, only NOPs or DESELECT commands are allowed.
At this point the DRAM is ready for any valid command. Note 200 clock cycles are
required between step 11 (DLL Reset) and any READ command.
24
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Initialization
Figure 9:
Initialization Flow Diagram
Step
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
1
VDD and VDDQ Ramp
2
Apply VREF and VTT
3
CKE must be LVCMOS Low
4
Apply stable CLOCKs
5
Wait at least 200us
6
Bring CKE High with a NOP command
7
PRECHARGE ALL
8
Assert NOP or DESELECT for tRP time
9
Configure Extended Mode Register
10
Assert NOP or DESELECT for tMRD time
11
Configure Load Mode Register and reset DLL
12
Assert NOP or DESELECT for tMRD time
13
PRECHARGE ALL
14
Assert NOP or DESELECT for tRP time
15
Issue AUTO REFRESH command
16
Assert NOP or DESELECT commands for tRFC
17
Issue AUTO REFRESH command
18
Assert NOP or DESELECT for tRFC time
19
Optional LMR command to clear DLL bit
20
Assert NOP or DESELECT for tMRD time
21
DRAM is ready for any valid command
25
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
PLL Specifications
PLL Specifications
Table 15:
PLL Clock Driver Timing Requirements and Switching Characteristics
Note: 1
0°C ≤ TA ≤ +70°C
Vdd = +2.5V ±0.2V
Parameter
Symbol
Operating Clock Frequency
Input Duty Cycle
Stabilization Time
Cycle to Cycle Jitter
Static Phase Offset
Output Clock Skew
Period Jitter
Half-Period Jitter
Input Clock Slew Rate
Output Clock Slew Rate
f
CK
tDC
t
STAB
JITCC
t∅
tSK
O
tJIT
PER
tJIT
HPER
tLS
I
tLS
O
t
Min
Nominal
Max
Units
notes
60
40
-75
-50
-75
-100
1.0
1.0
0
-
170
60
100
75
50
100
75
100
4
2
MHz
%
ms
ps
ps
ps
ps
ps
V/ns
V/ns
2, 3
4
5
6
6
7
Notes: 1. The timing and switching specifications for the PLL listed above are critical for proper
operation of DDR SDRAM modules. These are meant to be a subset of the parameters
for the specific device used on the module. Detailed information for this PLL is available in JEDEC Standard JESD82.
2. The PLL must be able to handle spread spectrum induced skew.
3. Operating clock frequency indicates a range over which the PLL must be able to lock,
but in which it is not required to meet the other timing parameters. (Used for lowspeed system debug.)
4. Stabilization time is the time required for the integrated PLL circuit to obtain phase
lock of its feedback signal to its reference signal after power up.
5. Static Phase Offset does not include Jitter.
6. Period Jitter and Half-Period Jitter specifications are separate specifications that must
be met independently of each other.
V
7. The Output Slew Rate is determined from the IBIS model:
DD
CDCV857
VCK
R=60Ω
R=60 Ω
VDD/2
VCK
GND
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
26
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Thermal Specifications
Thermal Specifications
Figure 10:
Component Case Temperature vs. Air Flow
100
Ambient Temperature = 25º C
90
Tmax- memory stress software
Degrees Celsius
80
70
Tave- memory stress software
60
50
Tave- 3D gaming software
40
30
Minimum Air Flow
20
2.0
1.0
0.5
0.0
Air Flow (meters/sec)
8. Micron Technology, Inc. recommends a minimum air flow of 1 meter/second (~197 LFM)
across all modules.
9. The component case temperature measurements shown above were obtained experimentally. The typical system to be used for experimental purposes is a dual-processor 600 MHz
work station, fully loaded, with four comparable registered memory modules. Case temperatures charted represent worst-case component locations on modules installed in the
internal slots of the system.
10. Temperature versus air speed data is obtained by performing experiments with the system
motherboard removed from its case and mounted in a Eiffel-type low air speed wind tunnel. Peripheral devices installed on the system motherboard for testing are the processor(s) and video card, all other peripheral devices are mounted outside of the wind tunnel
test chamber.
11. The memory diagnostic software used for determining worst-case component temperatures is a memory diagnostic software application developed for internal use by Micron
Technology, Inc.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
27
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Serial Presence-Detect
Serial Presence-Detect
SPD Clock and Data Conventions
Data states on the SDA line can change only during SCL LOW. SDA state changes during
SCL HIGH are reserved for indicating start and stop conditions (as shown in Figure 11,
Data Validity, and Figure 12, Definition of Start and Stop).
SPD Start Condition
All commands are preceded by the start condition, which is a HIGH-to-LOW transition
of SDA when SCL is HIGH. The SPD device continuously monitors the SDA and SCL
lines for the start condition and will not respond to any command until this condition
has been met.
SPD Stop Condition
All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when SCL is HIGH. The stop condition is also used to place the SPD device
into standby power mode.
SPD Acknowledge
Acknowledge is a software convention used to indicate successful data transfers. The
transmitting device, either master or slave, will release the bus after transmitting eight
bits. During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge
that it received the eight bits of data (as shown in Figure 13, Acknowledge Response from
Receiver).
The SPD device will always respond with an acknowledge after recognition of a start
condition and its slave address. If both the device and a WRITE operation have been
selected, the SPD device will respond with an acknowledge after the receipt of each subsequent eight-bit word. In the read mode the SPD device will transmit eight bits of data,
release the SDA line and monitor the line for an acknowledge. If an acknowledge is
detected and no stop condition is generated by the master, the slave will continue to
transmit data. If an acknowledge is not detected, the slave will terminate further data
transmissions and await the stop condition to return to standby power mode.
Figure 11:
Data Validity
SCL
SDA
DATA STABLE
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
DATA
CHANGE
28
DATA STABLE
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Serial Presence-Detect
Figure 12:
Definition of Start and Stop
SCL
SDA
START
BIT
Figure 13:
STOP
BIT
Acknowledge Response from Receiver
SCL from Master
8
9
Data Output
from Transmitter
Data Output
from Receiver
Acknowledge
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
29
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Serial Presence-Detect
Table 16:
EEPROM Device Select Code
Most significant bit (b7) is sent first
Device Type Identifier
Select Code
Memory Area Select Code (two arrays)
Protection Register Select Code
Table 17:
RW
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
1
1
1
0
0
SA2
SA2
SA1
SA1
SA0
SA0
RW
RW
EEPROM Operating Modes
Mode
Current Address Read
Random Address Read
Sequential Read
Byte Write
Page Write
Figure 14:
Chip Enable
RW Bit
WC
Bytes
1
0
1
1
0
0
VIH or VIL
VIH or VIL
VIH or VIL
VIH or VIL
VIL
VIL
1
1
1
≥1
1
≤ 16
Initial Sequence
START, Device Select, RW = ‘1’
START, Device Select, RW = ‘0’, Address
reSTART, Device Select, RW = ‘1’
Similar to Current or Random Address Read
START, Device Select, RW = ‘0’
START, Device Select, RW = ‘0’
SPD EEPROM Timing Diagram
tF
t HIGH
tR
t LOW
SCL
t SU:STA
t HD:STA
t SU:DAT
t HD:DAT
t SU:STO
SDA IN
t DH
t AA
t BUF
SDA OUT
UNDEFINED
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
30
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Serial Presence-Detect
Table 18:
Serial Presence-Detect EEPROM DC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
Parameter/Condition
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
OUTPUT LOW VOLTAGE: IOUT = 3mA
INPUT LEAKAGE CURRENT: VIN = GND to VDD
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD
STANDBY CURRENT:
SCL = SDA = VDD - 0.3V; All other inputs = VSS or VDD
POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz
Table 19:
Symbol
Min
Max
Units
VDD
VIH
VIL
VOL
ILI
ILO
ISB
2.3
VDD X 0.7
-1
–
–
–
–
3.6
VDD + 0.5
VDD x 0.3
0.4
10
10
30
V
V
V
V
µA
µA
µA
IDD
–
2
mA
Serial Presence-Detect EEPROM AC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
Parameter/Condition
SCL LOW to SDA data-out valid
Time the bus must be free before a new transition can start
Data-out hold time
SDA and SCL fall time
Data-in hold time
Start condition hold time
Clock HIGH period
Noise suppression time constant at SCL, SDA inputs
Clock LOW period
SDA and SCL rise time
SCL clock frequency
Data-in setup time
Start condition setup time
Stop condition setup time
WRITE cycle time
Symbol
Min
Max
Units
Notes
tAA
0.2
1.3
200
0.9
µs
µs
ns
ns
µs
µs
µs
ns
µs
µs
KHz
ns
µs
µs
ms
1
tBUF
tDH
tF
tHD:DAT
tHD:STA
tHIGH
300
0
0.6
0.6
tI
tLOW
50
1.3
tR
0.3
400
fSCL
tSU:DAT
tSU:STA
tSU:STO
t
WRC
100
0.6
0.6
10
2
2
3
4
Notes: 1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1
and the falling or rising edge of SDA.
2. This parameter is sampled.
3. For a reSTART condition, or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a
write sequence to the end of the EEPROM internal erase/program cycle. During the WRITE
cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
31
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Serial Presence-Detect
Table 20:
Serial Presence-Detect Matrix – 128MB, 256MB, 512MB
“1”/”0”: Serial Data, “driven to HIGH”/”driven to LOW”
BYTE
DESCRIPTION
ENTRY(VERSION)
0
1
2
3
4
5
6
7
8
9
Number of SPD Bytes Used by Micron
Total Number of Bytes in SPD Device
Fundamental Memory Type
Number of Row Addresses on Ass’y
Number of Column Addresses on Ass’y
Number of Physical Ranks on DIMM
Module Data Width
Module Data Width (Continued)
Module Voltage Interface Levels
SDRAM Cycle Time, tCK (CAS Latency =
2.5) (see note 2)
10
128
256
DDR SDRAM
12 or13
10 or 11
1
72
0
SSTL 2.5V
6ns (-335)
7ns (-262/-26A)
7.5ns (-265)
0.7ns (-335)
0.75ns (-262/-26A/-265)
ECC
15.6µs or 7.8µs/SELF
8
SDRAM Access from Clock, tAC (CAS
Latency = 2.5) (see note 1)
Module Configuration Type
Refresh Rate/ Type
SDRAM Device Width (Primary DDR
SDRAM)
8
Error-checking DDR SDRAM Data
Width
1 clock
Minimum Clock Delay, Back-to-Back
Random Column Access
2, 4, 8
Burst Lengths Supported
4
Number of Banks on DDR SDRAM Device
2, 2.5
CAS Latencies Supported
0
CS Latency
1
WE Latency
Unbuff, Diff CLK, PLL
SDRAM Module Attributes
Fast/concurrent AP
SDRAM Device Attributes: General
7.5ns (-335/-262/-26A)
SDRAM Cycle Time, tCK (CL = 2) (See
10ns (-265)
note 2)
0.7ns (-335)
SDRAM Access from CK, tAC (CL = 2)
0.75ns (-265/-26A)
(See note 2)
N/A
SDRAM Cycle Time, tCK (CL = 1.5)
t
N/A
SDRAM Access from CK, AC (CL = 1.5)
18ns (-335)
Minimum Row Precharge Time, tRP
15ns (-262)
(see note 5)
20ns (-26A/-265)
12ns (-335)
Minimum Row Active to Row Active,
t
15ns (-262/-26A/-265)
RRD
18ns (-335)
Minimum RAS# to CAS# Delay, tRCD
15ns (-262)
(see note 5)
20ns (-26A/-265)
42ns (-335)
Minimum RAS# Pulse Width, tRAS (see
45ns (-262/-26A/-265)
note 3)
128MB, 256MB, 512MB
Module Rank Density
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
32
MT9VDDT1672PH MT9VDDT3272PH MT9VDDT6472PH
80
08
07
0C
0A
01
48
00
04
60
70
75
70
75
02
80
08
80
08
07
0D
0A
01
48
00
04
60
70
75
70
75
02
82
08
80
08
07
0D
0B
01
48
00
04
60
70
75
70
75
02
82
08
08
08
08
01
01
01
0E
04
0C
01
02
24
00
75
A0
70
75
00
00
48
3C
50
30
3C
48
3C
50
2A
2D
20
0E
04
0C
01
02
24
C0
75
A0
70
75
00
00
48
3C
50
30
3C
48
3C
50
2A
2D
40
0E
04
0C
01
02
24
C0
75
A0
70
75
00
00
48
3C
50
30
3C
48
3C
50
2A
2D
80
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Serial Presence-Detect
Table 20:
Serial Presence-Detect Matrix – 128MB, 256MB, 512MB (Continued)
“1”/”0”: Serial Data, “driven to HIGH”/”driven to LOW”
BYTE
32
DESCRIPTION
ENTRY(VERSION)
t
34
Address and Command Setup Time, IS
(see note 4)
Address and Command Hold Time, tIH
(see note 4)
Data/Data Mask Input Setup Time, tDS
35
Data/ Data Mask Input Hold Time, tDH
33
0.8ns (-335)
1.0ns (-262/-26A/-265)
0.8ns (-335)
1.0ns (-262/-26A/-265)
0.45ns (-335
0.5ns (-262/-26A/-265)
0.45ns (-335
0.5ns (-262/-26A/-265)
36-40 Reserved
41 Min Active Refresh Time tRC
60ns (-335/-262)
65ns (-26A/-265)
72ns (-335)
42 Minimum Auto Refresh to Active/Auto
75ns (-262/-26A/-265)
Refresh Command Period, tRFC
12ns (-335)
43 SDRAM Device Max Cycle Time, tCKMAX
13ns (-262/-26A/-265)
0.45ns (-335)
44 SDRAM Device Max DQS–DQ Skew
0.5ns (-262/-26A/-265)
Time, tDQSQ
45 SDRAM Device Max Read Data Hold
0.55ns (-335)
0.75ns (-262/-26A/-265)
Skew Factor
46 Reserved
47 DIMM Height
48–61 Reserved
62 SPD Revision
Revision 1.0
63 Checksum For Bytes 0–62
-335
-262
-26A
-265
64 Manufacturer’s JEDEC ID Code
MICRON
65-71 Manufacturer’s JEDEC ID Code
(continued)
72 Manufacturing Location
01–12
73-90 Module Part Number (ASCII)
91 PCB Identification Code
1–9
92 Identification Code (Continued)
0
93 Year Of Manufacture in BCD
94 Week Of Manufacture in BCD
95-98 Module Serial Number
99-127 Manufacturer-Specific Data ( RSVD)
MT9VDDT1672PH MT9VDDT3272PH MT9VDDT6472PH
80
A0
80
A0
45
50
45
50
00
3C
41
48
4B
30
34
2D
32
55
75
00
01
00
10
1A
ED
1A
4A
2C
00
80
A0
80
A0
45
50
45
50
00
3C
41
48
4B
30
34
2D
32
55
75
00
01
00
10
3D
D0
FD
2D
2C
00
80
A0
80
A0
45
50
45
50
00
3C
41
48
4B
30
34
2D
32
55
75
00
01
00
10
7E
11
3E
6E
2C
00
01–0C
Variable Data
01–09
00
Variable Data
Variable Data
Variable Data
–
01–0C
Variable Data
01–09
00
Variable Data
Variable Data
Variable Data
–
01–0C
Variable Data
01–09
00
Variable Data
Variable Data
Variable Data
–
Notes: 1. Device latencies used for SPD values.
2. Value for -262/-26A tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device
spec. value is 7.5ns.
3. The value of tRAS used for -265 modules is calculated from tRC - tRP. Actual device spec
value is 40ns.
4. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worstcase (slow slew rate) value is represented here. Systems requiring the fast slew rate setup
and hold values are supported, provided the faster minimum slew rate is met.
5. The value of tRP, tRCD, and tRAP for -335 modules indicated as 18ns to align with industry
specifications; actual DDR SDRAM device specification is 15ns.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
33
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Serial Presence-Detect
Table 21:
Serial Presence- Detect Matrix – 1GB
“1”/”0”: Serial Data, “driven to HIGH”/”driven to LOW”
BYTE
DESCRIPTION
0
1
2
3
4
5
6
7
8
9
Number of SPD Bytes Used by Micron
Total Number of Bytes in SPD Device
Fundamental Memory Type
Number of Row Addresses on Assembly
Number of Column Addresses on Assembly
Number of Physical Ranks on DIMM
Module Data Width
Module Data Width (Continued)
Module Voltage Interface Levels
SDRAM Cycle Time, tCK (CAS Latency = 2.5)
(see note 2)
10
25
26
27
SDRAM Access from Clock, tAC (CAS Latency = 2.5)
(see note 1)
Module Configuration Type
Refresh Rate/ Type
SDRAM Device Width (Primary DDR SDRAM)
Error-checking DDR SDRAM Data Width
Minimum Clock Delay, Back-to-Back Random Column
Access
Burst Lengths Supported
Number of Banks on DDR SDRAM Device
CAS Latencies Supported
CS Latency
WE Latency
SDRAM Module Attributes
SDRAM Device Attributes: General
SDRAM Cycle Time, tCK (CAS Latency = 2)
(see note 2)
SDRAM Access from CK, tAC (CAS Latency = 2)
(see note 2)
SDRAM Cycle Time, tCK (CAS Latency = 1.5)
SDRAM Access from CK, tAC (CAS Latency = 1.5)
Minimum Row Precharge Time, tRP (see note 5)
28
Minimum Row Active to Row Active, tRRD
29
Minimum RAS# to CAS# Delay, tRCD (see note 5)
30
Minimum RAS# Pulse Width, tRAS (see note 3)
31
32
Module Rank Density
Address and Command Setup Time, tIS
(see note 4)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
34
ENTRY(VERSION)
MT9VDDT12872PH
128
256
SDRAM DDR
14
11
2
72
0
SSTL 2.5V
6ns (-335)
7ns (-262/-26A)
7.5ns (-265)
0.7ns (-335)
0.75ns (-262/-26A/-265)
ECC
7.8µs/SELF
x8
x8
1 clock
80
08
07
0E
0B
01
48
00
04
60
70
75
70
75
02
82
08
08
01
2, 4, 8
4
2.5
0
1
Unbuffered, Diff CLK, PLL
Fast/concurrent AP
7.5ns (-335/-26A/-262)
10ns (-265)
0.7ns (-335)
0.75ns (-262/-26A/-265)
N/A
N/A
18ns (-335)
15ns (-262)
20ns (-265/-26A)
12ns (-335)
15ns (-262/-26A/-265)
18ns (-335)
15ns (-262)
20ns (-26A/-265)
42ns (-335)
45ns (-262/-26A/-265)
1GB
0.8ns (-335)
1.0ns (-262/-26A/-265)
0E
04
0C
01
02
24
C0
75
A0
70
75
00
00
48
3C
50
30
3C
48
3C
50
2A
2D
01
80
A0
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM
Serial Presence-Detect
Table 21:
Serial Presence- Detect Matrix – 1GB (Continued)
“1”/”0”: Serial Data, “driven to HIGH”/”driven to LOW”
BYTE
33
DESCRIPTION
t
34
Address and Command Hold Time, IH
(see note 4)
Data/Data Mask Input Setup Time, tDS
35
Data/ Data Mask Input Hold Time, tDH
36-40
41
42
Reserved
Min Active Refresh Time tRC
43
Minimum Auto Refresh to Active/Auto Refresh
Command Period, tRFC
SDRAM Device Max Cycle Time, tCKMAX
44
SDRAM Device Max DQS-DQ Skew Time, tDQSQ
45
SDRAM Device Max Read Data Hold Skew Factor
46
47
48–61
62
63
Reserved
DIMM Height
Reserved
SPD Revision
Checksum For Bytes 0-62
64
65-71
72
73-90
91
92
93
94
95-98
99-127
Manufacturer’s JEDEC ID Code
Manufacturer’s JEDEC ID Code (continued)
Manufacturing Location
Module Part Number (ASCII)
PCB Identification Code
Identification Code (Continued)
Year of Manufacture in BCD
Week of Manufacture in BCD
Module Serial Number
Manufacturer-Specific Data ( RSVD)
ENTRY(VERSION)
MT9VDDT12872PH
0.8ns (-335)
1.0ns (-262/-26A/-265)
0.45ns (-335
0.5ns (-262/-26A/-265)
0.45ns (-335
0.5ns (-262/-26A/-265)
80
A0
45
50
45
50
00
3C
41
78
60ns (-335/-262)
65ns (-265/-26A)
120ns
12ns (-335)
13ns (-262/-26A/-265)
0.45ns (-335)
0.5ns (-262/-26A/-265)
0.55ns (-335)
0.75ns (-262/-26A/-265)
Revision 1.0
-335
-262
-26A
-265
MICRON
01–12
1–9
0
30
34
2D
32
55
75
00
01
00
10
30
C0
ED
1D
2C
00
01–0C
Variable Data
01–09
00
Variable Data
Variable Data
Variable Data
–
Notes: 1. Device latencies used for SPD values.
2. Value for -26A tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device spec.
value is 7.5ns.
3. The value of tRAS used for -265 modules is calculated from tRC - tRP. Actual device spec
value is 40ns.
4. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worstcase (slow slew rate) value is represented here. Systems requiring the fast slew rate setup
and hold values are supported, provided the faster minimum slew rate is met.
5. The value of tRP, tRCD, and tRAP for -335 modules indicated as 18ns to align with industry
specifications; actual DDR SDRAM device specification is 15ns.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
35
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.
128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR
SODIMM
Package Dimensions
All dimensions are in inches (millimeters); MAX or typical where noted.
MIN
Figure 15:
200-Pin SODIMM Dimensions
0.150 (3.80)
MAX
FRONT VIEW
2.667 (67.75)
2.656 (67.45)
0.079 (2.00) R
(2X)
U2
U1
U3
U4
U5
1.256 (31.90)
1.244 (31.60)
0.071 (1.80)
(2X)
0.787 (20.00)
TYP
0.236 (6.00)
0.096 (2.44)
0.079 (2.00)
0.043 (1.10)
0.035 (0.90)
0.039 (0.99)
TYP
0.018 (0.46)
TYP
0.024 (0.61)
TYP
PIN 199
PIN 1
2.504 (63.60)
BACK VIEW
U8
U6
U10
U7
U11
U9
PIN 200
PIN 2
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
[email protected] www.micron.com Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range
for production devices. Although considered final, these specifications are subject to change, as further product
development and data characterization sometimes occur.
pdf: 09005aef808ffe58, source: 09005aef808ffdc7
DD9C16_32_64_128x72PH_2.fm - Rev. B 6/05 EN
36
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc. All rights reserved.