INTERSIL HUF76121D3S

HUF76121D3, HUF76121D3S
Data Sheet
20A, 30V, 0.023 Ohm, N-Channel, Logic
Level UltraFET Power MOSFETs
These N-Channel power MOSFETs
are manufactured using the
innovative UltraFET™ process.
This advanced process technology
achieves the lowest possible on-resistance per silicon area,
resulting in outstanding performance. This device is capable
of withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable
and battery-operated products.
October 1999
File Number
4391.5
Features
• Logic Level Gate Drive
• 20A, 30V
• Ultra Low On-Resistance, rDS(ON) = 0.023Ω
• Temperature Compensating PSPICE® Model
• Temperature Compensating SABER© Model
• Thermal Impedance SPICE Model
• Thermal Impedance SABER Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Formerly developmental type TA76121.
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
Symbol
PART NUMBER
PACKAGE
BRAND
HUF76121D3
TO-251AA
76121D
HUF76121D3S
TO-252AA
76121D
D
G
NOTE: When ordering, use the entire part number. Add the suffix T to
obtain the TO-252AA variant in tape and reel, e.g., HUF76121D3ST.
S
Packaging
JEDEC TO-251AA
JEDEC TO-252AA
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
1
DRAIN
(FLANGE)
GATE
SOURCE
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
SABER© is a Copyright of Analogy Inc. 1-888-INTERSIL or 407-727-9207 | Copyright © Intersil Corporation 1999.
HUF76121D3, HUF76121D3S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
30
V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
30
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
±16
V
Drain Current
Continuous (TC = 25oC, VGS = 10V) (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
20
20
20
Figure 4
A
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Figures 6, 17, 18
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
0.6
W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
-55 to 150
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
TA = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
30
-
-
V
VDS = 25V, VGS = 0V
-
-
1
µA
VDS = 25V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±16V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
BVDSS
IDSS
Gate to Source Leakage Current
IGSS
ID = 250µA, VGS = 0V (Figure 12)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 11)
1
-
3
V
Drain to Source On Resistance
rDS(ON)
ID = 20A, VGS = 10V (Figure 9, 10)
-
0.017
0.023
Ω
ID = 20A, VGS = 5V (Figure 9)
-
0.021
0.030
Ω
ID = 20A, VGS = 4.5V (Figure 9)
-
0.023
0.033
Ω
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
1.66
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-251AA, TO-252AA
-
-
100
oC/W
tON
VDD = 15V, ID ≅ 20A,
RL = 0.75Ω, VGS = 4.5V,
RGS = 11.0Ω
(Figures 15, 21, 22)
-
-
275
ns
-
18
-
ns
-
165
-
ns
td(OFF)
-
18
-
ns
tf
-
40
-
ns
tOFF
-
-
87
ns
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn-On Time
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
2
HUF76121D3, HUF76121D3S
TA = 25oC, Unless Otherwise Specified (Continued)
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
-
85
ns
-
6
-
ns
-
50
-
ns
td(OFF)
-
45
-
ns
tf
-
45
-
ns
tOFF
-
-
135
ns
-
24
30
nC
-
13
16
nC
-
1.0
1.2
nC
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDD = 15V, ID ≅ 20A,
RL = 0.75Ω, VGS = 10V,
RGS = 12.0Ω
(Figures 16, 21, 22)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 10V
Gate Charge at 5V
Qg(5)
VGS = 0V to 5V
Qg(TH)
VGS = 0V to 1V
Threshold Gate Charge
VDD = 15V,
ID ≅ 20A,
RL = 0.75Ω
Ig(REF) = 1.0mA
(Figures 14, 19, 20)
Gate to Source Gate Charge
Qgs
-
2.40
-
nC
Gate to Drain “Miller” Charge
Qgd
-
7.40
-
nC
-
850
-
pF
-
465
-
pF
-
100
-
pF
MIN
TYP
MAX
UNITS
ISD = 20A
-
-
1.25
V
trr
ISD = 20A, dISD/dt = 100A/µs
-
-
58
ns
QRR
ISD = 20A, dISD/dt = 100A/µs
-
-
70
nC
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 13)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
Reverse Recovered Charge
TEST CONDITIONS
Typical Performance Curves
25
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
0.2
0
20
15
VGS = 10V
10
VGS = 4.5V
5
0
0
25
50
75
100
125
150
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
3
175
25
50
75
100
125
TC, CASE TEMPERATURE (oC)
150
175
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
HUF76121D3, HUF76121D3S
Typical Performance Curves
(Continued)
2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
THERMAL IMPEDANCE
ZθJC, NORMALIZED
1
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
1000
IDM, PEAK CURRENT (A)
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
I
175 - TC
= I25
150
VGS = 10V
100
VGS = 5V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
300
TJ = MAX RATED
TC = 25oC
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
500
100
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10ms
BVDSS MAX = 30V
1
1
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
100
100
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 25oC
10
STARTING TJ = 150oC
1
0.001
0.01
0.1
1
10
100
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
4
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
HUF76121D3, HUF76121D3S
Typical Performance Curves
(Continued)
75
75
-55oC
VGS = 4.5V
25oC
60
45
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
175oC
30
15
60
VGS = 4V
45
30
VGS = 3.5V
15
VGS = 3V
= 10V = 80µs
PULSEVGS
DURATION
DUTY V
CYCLE
= 0.5% MAX
GS = 5V
VDD = 15V
0
0
0
1
3
4
2
VGS, GATE TO SOURCE VOLTAGE (V)
0
5
FIGURE 7. TRANSFER CHARACTERISTICS
1.6
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
ID = 20A
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
rDS(ON), ON-STATE RESISTANCE (mΩ)
5
FIGURE 8. SATURATION CHARACTERISTICS
35
30
ID = 10A
25
ID = 1A
20
PULSE DURATION = 250µs, VGS = 10V, ID = 20A
1.4
1.2
1.0
0.8
0.6
15
2
4
6
8
VGS, GATE TO SOURCE VOLTAGE (V)
-80
10
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. SOURCE TO DRAIN ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
VGS = VDS, ID = 250µA
1.0
0.8
0.6
NORMALIZED DRAIN TO SOURCE
BREAKOWN VOLTAGE
1.2
NORMALIZED GATE
THRESHOLD VOLTAGE
1
2
3
4
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID = 250µA
1.1
1.0
1.0
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
5
-80
-40
0
40
80
0.12k
0.16k
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
HUF76121D3, HUF76121D3S
Typical Performance Curves
10
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
900
VGS , GATE TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
1200
(Continued)
CISS
600
COSS
300
CRSS
VDD = 15V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 20A
ID = 10A
ID = 1A
2
0
0
0
5
10
15
20
25
0
30
5
VDS , DRAIN TO SOURCE VOLTAGE (V)
10
15
Qg, GATE CHARGE (nC)
20
25
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
400
200
tr
VGS = 10V, VDD = 15V, ID = 20A, RL = 0.75Ω
300
SWITCHING TIME (ns)
SWITCHING TIME (ns)
VGS = 4.5V, VDD = 15V, ID = 20A, RL = 0.75Ω
200
tf
100
td(OFF)
td(OFF)
150
tf
100
tr
50
td(ON)
td(ON)
0
0
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
50
0
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
50
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
6
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
HUF76121D3, HUF76121D3S
Test Circuits and Waveforms
(Continued)
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
VGS = 5V
VGS
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
IgREF)
0
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT
7
10%
50%
50%
PULSE WIDTH
FIGURE 22. SWITCHING TIME WAVEFORM
HUF76121D3, HUF76121D3S
PSPICE Electrical Model
.SUBCKT HUF76121D 2 1 3 ;
rev May 1998
CA 12 8 1.3e-9
CB 15 14 1.25e-9
CIN 6 8 7.5e-10
LDRAIN
DPLCAP
DRAIN
2
5
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
DBREAK
+
RSLC2
5
51
ESLC
11
-
EBREAK 11 7 17 18 33.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LDRAIN 2 5 1e-9
LGATE 1 9 2.4e-9
LSOURCE 3 7 3.14e-9
+
17
EBREAK 18
50
-
IT 8 17 1
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RLSOURCE
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 2.6e-3
RGATE 9 20 4
RLDRAIN 2 5 10
RLGATE 1 9 24
RLSOURCE 3 7 31.4
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 12.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
RLDRAIN
RSLC1
51
S2A
13
8
14
13
S1B
17
18
RVTEMP
S2B
13
CA
RBREAK
15
CB
6
8
-
-
IT
14
+
+
EGS
19
VBAT
5
8
EDS
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*155),4))}
.MODEL DBODYMOD D (IS = 3.5e-13 RS = 8.7e-3 TRS1 = 2.2e-3 TRS2 = 2e-6 CJO = 1.34e-9 TT = 2.8e-8 M = 0.4 XTI = 4.3 N = 0.95 IKF = 3.7)
.MODEL DBREAKMOD D (RS = 1.3e-1 TRS1 = 2e-3 TRS2 = -2e-5)
.MODEL DPLCAPMOD D (CJO = 7.7e-10 IS = 1e-30 N = 10 M = 0.63)
.MODEL MMEDMOD NMOS (VTO = 1.9 KP = 3.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 4)
.MODEL MSTROMOD NMOS (VTO = 2.23 KP = 55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.64 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 40 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 9.7e-4 TC2 = 0)
.MODEL RDRAINMOD RES (TC1 = 2e-2 TC2 = 2.4e-5)
.MODEL RSLCMOD RES (TC1 = 5e-3 TC2 = 8e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -1.9e-3 TC2 = -5.5e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.2e-3 TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -5.5 VOFF= -3)
VON = -3 VOFF= -5.5)
VON = -1 VOFF= 1.8)
VON = 1.8 VOFF= -1)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
8
HUF76121D3, HUF76121D3S
SABER Electrical Model
REV May 1998
template huf76121d n2, n1, n3
electrical n2, n1, n3
{
var i iscl
d..model dbodymod = (is = 3.5e-13, xti = 4.3, cjo = 1.34e-9, tt = 2.8e-8, n = 0.95, m = 0.4)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 7.7e-10, is = 1e-30, n = 10, m = 0.63)
m..model mmedmod = (type=_n, vto = 1.9, kp = 3.5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 2.23, kp = 55, is = 1e-30, tox = 1)
DPLCAP
m..model mweakmod = (type=_n, vto = 1.64, kp = 0.1, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.5, voff = -3)
10
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -5.5)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1, voff = 1.8)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 1.8, voff = -1)
RSLC2
LDRAIN
DRAIN
2
5
RSLC1
51
RLDRAIN
RDBREAK
72
ISCL
c.ca n12 n8 = 1.3e-9
c.cb n15 n14 = 1.25e-9
c.cin n6 n8 = 7.5e-10
EVTHRES
+ 19 8
+
LGATE
GATE
1
i.it n8 n17 = 1
RDRAIN
6
8
ESG
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 2.4e-9
l.lsource n3 n7 = 3.14e-9
EVTEMP
RGATE + 18 22
9
20
21
DBODY
EBREAK
+
17
18
MSTRO
-
8
LSOURCE
7
RSOURCE
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
RLSOURCE
S1A
12
S2A
13
8
S1B
CA
RBREAK
15
14
13
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equations {
i (n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/155))** 4))
}
}
-
IT
14
+
+
spe.ebreak n11 n7 n17 n18 = 33.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
9
MWEAK
MMED
CIN
71
11
16
6
RLGATE
res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = 0
res.rdbody n71 n5 = 8.7e-3, tc1 = 2.2e-3, tc2 = 2e-6
res.rdbreak n72 n5 = 1.3e-1, tc1 = 2e-3, tc2 = -2e-5
res.rdrain n50 n16 = 2.6e-3, tc1 = 2e-2, tc2 = 2.4e-5
res.rgate n9 n20 = 4
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 24
res.rlsource n3 n7 = 31.4
res.rslc1 n5 n51 = 1e-6, tc1 = 5e-3, tc2 = 8e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 12.5e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -1.2e-3, tc2 = 1e-6
res.rvthres n22 n8 = 1, tc1 = -1.9e-3, tc2 = -5.5e-6
DBREAK
50
-
RDBODY
VBAT
5
8
EDS
-
+
8
22
RVTHRES
SOURCE
3
HUF76121D3, HUF76121D3S
SPICE Thermal Model
th
JUNCTION
REV May 1998
HUF76121D
CTHERM1 th 6 1.1e-3
CTHERM2 6 5 2.5e-3
CTHERM3 5 4 3.2e-3
CTHERM4 4 3 8.5e-3
CTHERM5 3 2 4.0e-2
CTHERM6 2 tl 2.2
RTHERM1
RTHERM1 th 6 1.8e-3
RTHERM2 6 5 1.5e-2
RTHERM3 5 4 2.4e-1
RTHERM4 4 3 4.5e-1
RTHERM5 3 2 3.4e-1
RTHERM6 2 tl 7.0e-2
RTHERM2
CTHERM1
6
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUF76121D
4
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 1.1e-3
ctherm.ctherm2 6 5 = 2.5e-3
ctherm.ctherm3 5 4 = 3.2e-3
ctherm.ctherm4 4 3 = 8.5e-3
ctherm.ctherm5 3 2 = 4.0e-2
ctherm.ctherm6 2 tl = 2.2
RTHERM4
CTHERM4
3
RTHERM5
rtherm.rtherm1 th 6 = 1.8e-3
rtherm.rtherm2 6 5 = 1.5e-2
rtherm.rtherm3 5 4 = 2.4e-1
rtherm.rtherm4 4 3 = 4.5e-1
rtherm.rtherm5 3 2 = 3.4e-1
rtherm.rtherm6 2 tl = 7.0e-2
}
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
10
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029