10 FZ06NRA060FU P967F08(Y) D4 14

10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
flowNPC 0
650 V / 60 A
Features
flow0 12mm housing
● neutral point clamped inverter
● reactive power capability
● clip-in pcb mounting
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-FZ06NRA060FU-P967F08
● 10-PZ06NRA060FU-P967F08Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
15
20
A
20
A
9,5
A 2s
26
39
W
Tjmax
175
°C
VCES
650
V
53
70
A
tp limited by Tjmax
180
A
Tj≤150°C
VCE<=VCES
180
A
108
163
W
Buck & Boost Inv. Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Maximum repetitive forward current
IFRM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Buck IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
±20
V
Tjmax
175
°C
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
1
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
27
36
A
300
A
40
60
W
Tjmax
150
°C
VCES
600
V
46
63
A
tp limited by Tjmax
225
A
Tj≤150°C
VCE<=VCES
225
A
68
103
W
±20
V
6
360
µs
V
175
°C
1200
V
16
21
A
36
A
32
48
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
min 12,7
mm
9,15
mm
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Non-repetitive Peak Surge Current
IFSM
60Hz Single Half-Sine Wave
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
20kHz Square Wave
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Vis
t=2s
DC voltage
Creepage distance
Clearance
copyright Vincotech
2
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,25
1,66
1,52
1,16
1,00
0,05
0,05
1,95
Buck & Boost Inv. Diode
Forward voltage
VF
10
Threshold voltage (for power loss calc. only)
Vto
10
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
10
600
V
Ω
0,027
Thermal grease
thickness≤50u
m
λ = 1 W/mK
V
3,66
mA
K/W
Buck IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
VCE=VGE
0,00025
15
30
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
Thermal resistance chip to heatsink per chip
Rgoff=4 Ω
Rgon=4 Ω
4,5
5,6
1,51
1,52
2,1
0,03
230
±15
350
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
49
50
4
4
90
115
5
6
0,17
0,35
0,18
0,38
ns
mWs
2915
f=1MHz
0
Tj=25°C
30
270
pF
85
QGate
RthJH
3,9
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
±15
400
60
Tj=25°C
Thermal grease
thickness≤50u
m
λ = 1 W/mK
189
nC
0,88
K/W
Buck Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
Reverse recovery time
Reverse recovered charge
Qrr
Reverse recovered energy
Thermal resistance chip to heatsink per chip
copyright Vincotech
600
IRRM
trr
Peak rate of fall of recovery current
30
Rgon=4 Ω
350
±15
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50u
m
λ = 1 W/mK
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,15
1,61
50
59
14
26
0,36
0,94
16743
8913
0,022
0,098
1,77
3
2,8
100
V
µA
A
ns
µC
A/µs
mWs
K/W
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,31
1,40
1,85
Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,0012
15
50
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Gate charge
Thermal resistance chip to heatsink per chip
0,0038
600
Rgoff=4 Ω
Rgon=4 Ω
±15
350
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
87
88
11
12
177
204
85
93
0,37
0,54
1,69
2,25
ns
mWs
4620
f=1MHz
0
25
Tj=25°C
pF
288
Crss
137
QGate
RthJH
V
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
15
480
75
Tj=25°C
Thermal grease
thickness≤50u
m
λ = 1 W/mK
465
nC
1,40
K/W
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovery energy
Thermal resistance chip to heatsink per chip
VF
18
Ir
1200
IRRM
trr
Qrr
Rgon=4 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,43
2,10
3,3
100
69
77
25
123
3,42
6,27
9632
5392
1,04
1,97
Thermal grease
thickness≤50u
m
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
2,21
K/W
21500
Ω
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
-4,5
4,5
T=25°C
210
mW
T=25°C
3,5
mW/K
K
B-value
B(25/50)
T=25°C
3884
B-value
B(25/100)
T=25°C
3964
Vincotech NTC Reference
copyright Vincotech
%
K
F
4
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Buck
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
150
IC (A)
IC (A)
150
IGBT
125
125
100
100
75
75
50
50
25
25
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
IC = f(VGE)
IGBT
1
2
3
4
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
FWD
120
Tj = Tjmax-25°C
IF (A)
IC (A)
60
Tj = 25°C
50
100
40
80
30
60
20
40
10
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
0
V GE (V) 10
At
tp =
µs
V
5
1
250
2
3
4
V F (V)
5
µs
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Buck
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,8
IGBT
E (mWs)
E (mWs)
0,5
Eon High T
Eon High T
Eoff High T
0,4
0,6
Eoff High T
0,3
0,4
Eon Low T
Eon Low T
0,2
Eoff Low T
Eoff Low T
0,2
0,1
0
0,0
0
10
20
30
40
50
60
0
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
30
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,20
FWD
0,10
E (mWs)
E (mWs)
4
Erec High T
Erec High T
0,08
0,15
0,06
0,10
0,04
Erec Low T
0,05
0,02
Erec Low T
0,00
0,00
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
6
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Buck
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
IGBT
tdoff
tdoff
0,10
0,10
tdon
tdon
tr
0,01
0,01
tf
tf
tr
0,00
0,00
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,04
t rr(ms)
0,04
FWD
trr High T
trr High T
0,03
0,03
0,02
0,02
trr Low T
trr Low T
0,01
0,01
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
copyright Vincotech
20
30
40
50
I C (A)
0
60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
4
25/125
350
30
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Buck
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1
Qrr (µC)
Qrr (µC)
1,5
Qrr High T
1,2
FWD
0,8
Qrr High T
0,9
0,6
0,6
0,4
Qrr Low T
Qrr Low T
0,3
0,2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
20
30
40
50
60
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(I C)
FWD
4
25/125
350
30
±15
8
12
16
R gon ( Ω) 20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
75
IrrM (A)
75
FWD
IRRM High T
60
60
IRRM Low T
45
45
IRRM High T
30
30
IRRM Low T
15
15
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
copyright Vincotech
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
4
25/125
350
30
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Buck
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
20000
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
18000
FWD
dIo/dt T
15000
dIrec/dt T
dI0/dt T
16000
12000
12000
9000
8000
6000
4000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
20
30
40
50
0
I C (A) 60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
IGBT
25/125
350
30
±15
8
12
16
R gon ( Ω) 20
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
FWD
ZthJH (K/W)
ZthJH (K/W)
101
100
10
4
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
t p (s)
100
10-2
10110
tp / T
0,88
K/W
RthJH =
0,59
K/W
IGBT thermal model values
Thermal grease
Phase change interface
R (K/W) Tau (s)
R (K/W) Tau (s)
0,08
2,8E+00
0,05
1,87
0,20
3,7E-01
0,13
0,25
0,45
8,9E-02
0,30
0,06
0,13
1,2E-02
0,09
0,01
0,02
8,8E-04
0,02
0,00
copyright Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-5
10-4
At
D=
RthJH =
1,77
10-3
10-2
10-1
t p (s)
100
1021
tp / T
K/W
RthJH =
1,18
K/W
FWD thermal model values
Thermal grease
Phase change interface
R (K/W) Tau (s)
R (K/W) Tau (s)
0,10
5,3E+00
0,06
3,54
0,23
8,1E-01
0,15
0,54
0,71
1,4E-01
0,48
0,10
0,45
4,0E-02
0,30
0,03
0,16
8,4E-03
0,11
0,01
0,12
1,3E-03
0,08
0,00
9
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Buck
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
Ptot (W)
IC (A)
200
IGBT
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
FWD
50
175
15
100
150
T h ( o C)
°C
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
FWD
60
Ptot (W)
IF (A)
100
200
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
10
50
150
100
150
T h ( o C)
200
°C
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Buck
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
IGBT
VGE = f(Qg)
103
IC (A)
VGE (V)
15
100uS
102
12
400V
200V
1mS
100mS
10mS
9
101
DC
6
100
3
10-1
0
100
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
11
50
60
100
150
Q g (nC)
200
A
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Boost
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IGBT
200
IC (A)
IC (A)
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
IC = f(VGE)
IGBT
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
40
5
FWD
IC (A)
IF (A)
75
60
30
45
20
30
Tj = Tjmax-25°C
10
15
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
0
10
At
tp =
µs
V
12
1
250
2
3
4
V F (V)
5
µs
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Boost
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
IGBT
2,5
Eoff High T
E (mWs)
E (mWs)
4
Eoff High T
2
Eon High T
3
Eoff Low T
Eoff Low T
Eon Low T
1,5
2
1
Eon High T
1
0,5
Eon Low T
0
0
0
20
40
60
80
0
100
I C (A)
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
20
R G( Ω )
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
E (mWs)
3
Erec High T
FWD
2,5
2,5
2
2
Erec High T
1,5
Erec Low T
1,5
1
1
Erec Low T
0,5
0,5
0
0
0
10
20
30
40
50
60
70
80
I 90
C (A)
100
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
13
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Boost
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
1
IGBT
t ( µs)
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
0,01
0,01
tr
0,001
0,001
0
10
20
30
40
50
60
70
80
90
I C (A)
100
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,6
trr High T
t rr(ms)
t rr(ms)
0,15
FWD
trr High T
0,5
0,12
0,4
0,09
trr Low T
0,3
0,06
0,2
trr Low T
0,03
0,1
0,00
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
10
20
25/125
350
±15
4
copyright Vincotech
30
40
50
60
70
80
I90C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
14
4
25/125
350
50
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Boost
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (µC)
8
Qrr (µC)
10
FWD
Qrr High T
8
6
Qrr High T
6
Qrr Low T
4
Qrr Low T
4
2
2
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
20
25/125
350
±15
4
30
40
50
60
70
80
90
I C (A)
0
100
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(I C)
FWD
25/125
350
50
±15
8
12
16
R gon ( Ω)
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
20
FWD
IrrM (A)
IrrM (A)
100
IRRM High T
80
80
IRRM Low T
60
60
40
40
IRRM High T
IRRM Low T
20
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
20
25/125
350
±15
4
copyright Vincotech
30
40
50
60
70
80
90
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
4
25/125
350
50
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Boost
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
12000
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
18000
direc / dt (A/ms)
direc / dt (A/ms)
dIrec/dt T
dIo/dt T
10000
dIrec/dt T
dI0/dt T
15000
8000
12000
6000
9000
4000
6000
2000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
20
25/125
350
±15
4
30
40
50
60
70
80
0
90 I (A) 100
C
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
IGBT
4
8
25/125
350
50
±15
12
16
R gon ( Ω)
20
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
10
FWD
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
At
D=
RthJH =
10-4
10-3
tp / T
1,40
K/W
10-2
RthJH =
10-1
0,94
t p (s)
100
10
1021
copyright Vincotech
-2
10-5
At
D=
RthJH =
K/W
IGBT thermal model values
Thermal grease
R (K/W) Tau (s)
0,25
8,1E+00
0,22
4,7E-01
0,69
9,9E-02
0,14
2,0E-02
0,05
4,1E-03
0,05
4,0E-04
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
0
10-4
10-3
tp / T
2,21
K/W
10-2
10-1
RthJH =
100
1,48
t p (s)
1021
K/W
FWD thermal model values
Phase change interface
R (K/W) Tau (s)
0,17
5,45
0,14
0,32
0,47
0,07
0,10
0,01
0,03
0,00
0,03
0,00
Thermal grease
R (K/W) Tau (s)
0,08
2,5E+00
0,32
3,3E-01
1,23
8,5E-02
0,32
1,1E-02
0,18
2,1E-03
0,09
5,7E-04
16
Phase change interface
R (K/W) Tau (s)
0,05
0,21
0,82
0,21
0,12
0,06
1,64
0,22
0,06
0,01
0,00
0,00
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Boost
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
75
IC (A)
Ptot (W)
150
IGBT
125
60
100
45
75
30
50
15
25
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
FWD
50
175
15
100
150
T h ( o C)
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
FWD
30
Ptot (W)
IF (A)
80
200
25
60
20
40
15
10
20
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
17
50
150
100
150
Th ( o C)
200
ºC
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Buck & Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
40
Boost Inverse Diode
ZthJC (K/W)
IF (A)
101
30
100
20
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
0,5
1
250
1,5
2
2,5
V F (V)
10-2
3
10-5
At
D=
RthJH =
µs
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Boost Inverse Diode
10-3
tp / T
3,66
10-2
10-1
100
t p (s)
1021
K/W
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
Boost Inverse Diode
25
Ptot (W)
IF (A)
50
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
10-4
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Switching Definitions BUCK IGBT
General conditions
Tj
Rgon
Rgoff
=
=
=
Figure 1
BUCK IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
125
%
125 °C
4Ω
4Ω
Figure 2
BUCK IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
300
%
tdoff
IC
250
100
VGE 90%
IC
75
200
VGE
150
50
VCE 90%
tEoff
100
VCE
25
IC 1%
VGE
tdon
50
VCE
0
VCE 3%
VGE 10%
IC 10%
0
tEon
-25
-0,2
-0,1
0
0,1
0,2
-50
0,3
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tE off =
-15
15
700
30
0,12
0,26
V
V
V
A
µs
µs
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tE on =
Figure 3
BUCK IGBT
Turn-off Switching Waveforms & definition of t f
120
%
2,95
-15
15
700
30
0,05
0,09
3,05
3,1
time(us)
3,15
V
V
V
A
µs
µs
Figure 4
BUCK IGBT
Turn-on Switching Waveforms & definition of t r
300
%
fitted
IC
IC
250
100
IC 90%
200
80
VCE
IC 60%
60
150
100
IC 40%
40
50
20
IC 90%
tr
VCE
IC10%
IC 10%
0
0
tf
-50
2,97
-20
0
0,02
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,04
700
30
0,006
0,06
0,08
time (us)
0,1
V
A
µs
VC (100%) =
IC (100%) =
tr =
20
2,99
3,01
700
30
0,004
3,03
time(us)
3,05
V
A
µs
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Switching Definitions BUCK IGBT
Figure 5
BUCK IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
BUCK IGBT
Turn-on Switching Waveforms & definition of t Eon
120
120
IC 1%
%
Eon
%
Eoff
100
100
80
80
60
60
40
40
Pon
20
20
VGE 90%
VCE 3%
VGE 10%
Poff
0
0
tEoff
tEon
-20
-20
-0,2
-0,1
0
Poff (100%) =
Eoff (100%) =
tE off =
0,1
21,01
0,39
0,26
0,2
2,9
time (us) 0,3
kW
mJ
µs
Pon (100%) =
Eon (100%) =
tE on =
2,95
3
21,01
0,35
0,09
3,05
time(us)
3,1
kW
mJ
µs
Figure 7
BUCK FWD
Turn-off Switching Waveforms & definition of t rr
VGE (V)
150
20
%
Id
100
15
trr
50
10
Vd
05
IRRM 10%
-50 0
-100-5
fitted
-150
-10
IRRM 90%
-200
-15
-250
-20
3-50
IRRM 100%
0
50
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3,02
100
700
30
10
0,026
150
200
3,04
250
300
350
3,06
400
Qg
time(us)
(nC)
V
A
A
µs
21
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Switching Definitions BUCK IGBT
Figure 8
BUCK FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
BUCK FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
150
Id
%
%
Qrr
Prec
100
125
Erec
tQrr
50
100
0
75
-50
50
-100
25
-150
0
-200
2,98
3,005
Id (100%) =
Qrr (100%) =
tQrr =
3,03
3,055
30
0,943
0,05
3,08
tErec
-25
2,98
3,105
time(us)
A
µC
µs
3,005
Prec (100%) =
Erec (100%) =
tErec =
150
75
1,6
80
40
1,25
120
100
300
225
0,08
7032 11
3,03
21,01
0,098
0,05
3,055
3,08
3,105
time(us)
kW
mJ
µs
80
40
100
30
50
12
3000
40
60
25
150
50
1,4 1
1,25
Measurement circuits
Figure 10
BUCK stage switching measurement circuit
T5
T3
D3
VDC
700V
Figure 11
BOOST stage switching measurement circuit
D5
T1
400V
C1
100uF
100k
R1
VDC
350V
D1
200uH
L
Vcc V
D4
D6
T2
D2 400V
C2
100uF
Vce V
Vge V
T1
D3 D5
Ic
R2
100k
A
15V
D4 D6
D1
Vce
V
T2
D2
T4
Ic
200uH
L
1mH
A
L2
Vge
T6
VDC2
15V
0.00001
0.000003
Q
Q
Q
Q
0.00001
0.000003
0.000003
Q
Q
Q
Q
Q
Q
0.000003
Q
Q
copyright Vincotech
22
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Switching Definitions BOOST IGBT
General conditions
Tj
Rgon
Rgoff
=
=
=
Figure 1
BOOST IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
124 °C
4Ω
4Ω
Figure 2
BOOST IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
200
%
300
%
IC
175
250
150
200
125
tdoff
VCE
150
100
VGE 90%
IC
VCE
75
VGE
100
VGE
50
VCE 90%
tdon
tEoff
50
25
VGE 10%
IC 1%
VCE 3%
IC 10%
0
0
tEon
-25
-0,2
-0,1
0
0,1
0,2
0,3
0,4
0,5
-50
2,95
0,6
3
3,05
3,1
3,15
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tE off =
-15
15
350
50
0,20
0,53
V
V
V
A
µs
µs
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tE on =
Figure 3
BOOST IGBT
Turn-off Switching Waveforms & definition of t f
120
%
3,2
time(us)
-15
15
350
50
0,088
0,14
V
V
V
A
µs
µs
Figure 4
BOOST IGBT
Turn-on Switching Waveforms & definition of t r
300
%
fitted
IC
VCE
100
250
IC 90%
200
80
IC 60%
60
150
IC
VCE
100
IC 40%
40
IC 90%
tr
50
20
IC10%
0
IC 10%
0
tf
-50
-20
0
0,05
0,1
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,15
0,2
350
50
0,093
V
A
µs
0,25
0,3
3
0,35
0,4
time (us)
3,02
VC (100%) =
IC (100%) =
tr =
23
3,04
3,06
3,08
350
50
0,012
3,1
3,12
3,14
3,16
3,18
time(us)
3,2
V
A
µs
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Switching Definitions BOOST IGBT
Figure 5
BOOST IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
BOOST IGBT
Turn-on Switching Waveforms & definition of t Eon
120
120
%
%
Poff
100
Eoff
Eon
Pon
100
80
80
IC 1%
60
60
40
40
20
20
VGE 90%
VCE 3%
VGE 10%
0
0
tEoff
-20
-0,2
-0,1
0
Poff (100%) =
Eoff (100%) =
tE off =
0,1
0,2
17,48
2,25
0,53
tEon
0,3
0,4
0,5
time (us)
-20
2,95
0,6
3
3,05
3,1
3,15
3,2
time(us)
kW
mJ
µs
Pon (100%) =
Eon (100%) =
tE on =
17,48
0,54
0,14
kW
mJ
µs
Figure 7
BOOST FWD
Turn-off Switching Waveforms & definition of t rr
VGE (V)
150
20
%
Id
100
15
trr
50
10
Vd
05
IRRM 10%
-50 0
fitted
-100-5
IRRM 90%
-150
-10
IRRM 100%
-200
-15
-250
-20
3,05
-100
3,07
0
3,09
100
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3,11
200
3,13
300
350
50
10
0,123
3,15
400
3,17
500
3,19
600
3,21
700
3,23
800
time(us)
Qg (nC)
3,25
900
V
A
A
µs
24
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Switching Definitions BOOST IGBT
Figure 8
BOOST FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
BOOST FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
200
%
%
Id
Qrr
Prec
175
100
150
tQrr
50
125
Erec
0
100
-50
75
tErec
50
-100
25
-150
0
-200
-25
3
3,1
3,2
3,3
Id (100%) =
Qrr (100%) =
tQrr =
3,4
3,5
3,6
50
6,267
1,00
3,7
3,8
3,9
4
4,1
4,2
time(us)
3
A
µC
µs
3,1
3,2
3,3
Prec (100%) =
Erec (100%) =
tErec =
3,4
3,5
17,48
1,966
1,00
3,6
3,7
3,8
3,9
4
4,1
4,2
time(us)
kW
mJ
µs
Measurement circuits
Figure 10
BUCK stage switching measurement circuit
T5
T3
D3
VDC
700V
Figure 11
BOOST stage switching measurement circuit
D5
T1
400V
C1
100uF
100k
R1
VDC
350V
D1
200uH
L
Vcc V
D4
D6
T2
D2 400V
C2
100uF
Vce V
Vge V
T1
D3 D5
Ic
R2
100k
A
15V
D4 D6
D1
Vce
V
T2
D2
T4
Ic
200uH
L
1mH
A
L2
Vge
T6
VDC2
15V
0.00001
0.000003
Q
Q
Q
Q
0.00001
0.000003
0.000003
Q
Q
Q
Q
Q
Q
0.000003
Q
Q
copyright Vincotech
25
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
w/o thermal paste 12mm housing solder pin
Version
Ordering Code
10-FZ06NRA060FU-P967F08
in DataMatrix as
P967F08
in packaging barcode as
P967F08
w/o thermal paste 12mm housing Press-fit pin
10-PZ06NRA060FU-P967F08Y
P967F08Y
P967F08Y
Outline
Pinout
Identification
ID
Component
Voltage
Current
Function
T5,T6
D3,D4
T1,T2
D1,D2
D13,D14
D9,D10
T
IGBT
FWD
IGBT
FWD
FWD
FWD
NTC
650V
600V
600V
1200V
600V
600V
30A
30A
50A
18A
10A
10A
Buck switch
Buck diode
copyright Vincotech
Comment
Boost switch
Boost diode
Buck inverse diode
Boost inverse diode
26
10 Jun. 2015 / Revision 4
10-FZ06NRA060FU-P967F08
10-PZ06NRA060FU-P967F08Y
datasheet
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
27
10 Jun. 2015 / Revision 4