V23990 K438 F40 D2 14

V23990-K438-F40-PM
MiniSKiiP®3 PACK
1200V/75A
Features
MiniSKiiP®3 housing
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Servo Drives
● Industrial Motor Drives
● UPS
Types
● V23990-K438-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
68
A
tp limited by Tjmax
225
A
VCE≤1200V, Tj≤Top max
150
A
162
W
±20
V
10
600
µs
V
Tjmax
175
°C
VRRM
1200
V
64
A
150
A
126
W
175
°C
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
Tj≤150°C
VGE=15V
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Th=80°C
Revision: 2
V23990-K438-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 2
V23990-K438-F40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,87
2,29
2,2
T1,T2,T3,T4,T5,T6
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
±20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0,003
75
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,13
650
Rgoff=4Ω
Rgon=4Ω
±15
600
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
10
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
168
187
42
46
276
365
64,2
101
7,56
11,6
4,07
7,43
ns
mWs
4400
f=1MHz
0
Tj=25°C
25
290
pF
235
±15
Tj=25°C
Thermal grease
thickness≤50µm
λ=1W/mK
570
nC
0,58
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
VF
75
IRRM
trr
Qrr
Rgon=4Ω
±15
600
di(rec)max
/dt
Erec
RthJH
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,5
Thermal grease
thickness≤50µm
λ=1W/mK
2,02
2,05
47,2
67,7
139
487
5,28
14
424
769
1,53
4,99
2,7
V
A
ns
µC
A/µs
mWs
0,75
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
P
T=100°C
Power dissipation constant
-3
3
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
Copyright by Vincotech
Ω
1670,313
T=25°C
Vincotech NTC Reference
%
1/K
1/K²
E
3
Revision: 2
V23990-K438-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
210
IC (A)
IC (A)
210
180
180
150
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
µs
350
150
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
210
IF (A)
IC (A)
75
4
Tj = 25°C
175
60
140
45
Tj = Tjmax-25°C
105
30
70
Tj = 25°C
15
35
Tj = Tjmax-25°C
0
0
0
At
Tj =
tp =
VCE =
2
4
6
8
10
V GE (V)
12
0
0,8
1,6
2,4
3,2
V F (V)
4
At
25/150
350
10
°C
µs
V
Copyright by Vincotech
tp =
4
350
µs
Revision: 2
V23990-K438-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
20
E (mWs)
E (mWs)
32
Eon High T
Eon High T
15
24
Eon Low T
Eon Low T
10
16
Eoff High T
Eoff High T
5
8
Eoff Low T
Eoff Low T
0
0
0
30
60
90
120
I C (A)
0
150
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
75
A
D1,D2,D3,D4,D5,D6 FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
7,5
E (mWs)
7,5
Erec
6
6
Tj = Tjmax -25°C
Tj = Tjmax -25°C
Erec
4,5
4,5
3
3
Erec
Tj = 25°C
Erec
1,5
1,5
Tj = 25°C
0
0
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
RG(Ω)
20
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
5
Revision: 2
V23990-K438-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( µs)
t ( µs)
1
tdoff
tdon
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
30
60
90
120
I C (A)
150
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG(Ω )
20
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
75
A
D1,D2,D3,D4,D5,D6 FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
1
t rr( µs)
1
trr
0,8
0,8
trr
Tj = Tjmax -25°C
0,6
0,6
Tj = Tjmax -25°C
trr
trr
0,4
0,4
0,2
0,2
Tj = 25°C
Tj = 25°C
0
0
0
30
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
4
60
90
120
I C (A)
°C
V
V
Ω
Copyright by Vincotech
0
4
At
Tj =
VR =
IF =
VGE =
25/150
600
75
±15
8
150
6
12
16
R g on ( Ω )
20
°C
V
A
V
Revision: 2
V23990-K438-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
20
Qrr( µC)
Qrr( µC)
20
Qrr
16
16
Tj = Tjmax -25°C
Qrr
Tj = Tjmax -25°C
12
12
Qrr
8
8
Tj = 25°C
Qrr
4
4
Tj = 25°C
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
60
90
120
I C (A)
150
°C
V
V
Ω
D1,D2,D3,D4,D5,D6 FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
4
At
Tj =
VR =
IF =
VGE =
8
25/150
600
75
±15
12
16
R g on ( Ω)
20
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
IrrM (A)
IrrM (A)
100
80
80
Tj = Tjmax -25°C
Tj = Tjmax - 25°C
60
60
IRRM
IRRM
IRRM
40
40
IRRM
Tj = 25°C
Tj = 25°C
20
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
60
90
120
I C (A)
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/150
600
75
±15
8
12
16
R gon ( Ω )
20
°C
V
A
V
Revision: 2
V23990-K438-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ µs)
direc / dt (A/µ s)
3000
dI0/dt
dIrec/dt
2500
D1,D2,D3,D4,D5,D6 FWD
3000
dI0/dt
dIrec/dt
2500
Tj = Tjmax - 25°C
2000
2000
di0/dtHigh T
Tj = 25°C
dIo/dtLow T
1500
1500
1000
1000
dIrec/dtHigh T
500
dIrec/dtHigh T
500
dIrec/dtLow T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
25/150
600
±15
4
60
90
I C (A)
120
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/150
600
75
±15
8
12
R gon ( Ω )
16
20
°C
V
A
V
D1,D2,D3,D4,D5,D6 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
10
4
0
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
-1
10
-2
10-5
At
D=
RthJH =
tp / T
0,58
10
K/W
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-4
10-3
R (C/W)
0,11
0,33
0,08
0,04
0,02
R (C/W)
0,05
0,16
0,37
0,10
0,05
0,02
0,01
8
100
t p (s)
10110
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
0,75
IGBT thermal model values
Tau (s)
1,0E+00
1,5E-01
3,6E-02
7,3E-03
4,9E-04
10-2
Tau (s)
5,7E+00
8,7E-01
2,2E-01
5,5E-02
1,1E-02
1,3E-03
2,9E-04
Revision: 2
V23990-K438-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
120
IC (A)
Ptot (W)
300
240
90
180
60
120
30
60
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
D1,D2,D3,D4,D5,D6 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
Ptot (W)
IF (A)
250
150
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2
V23990-K438-F40-PM
T1,T2,T3,T4,T5,T6/D1,D2,D3,D4,D5,D6
T1,T2,T3,T4,T5,T6 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
IC (A)
VGE (V)
16
14
10uS
10
3
960V
12
240V
100uS
10
102
101
1mS
8
10mS
6
100mS
4
DC
10
0
2
0
10-1 0
10
At
D=
Th =
VGE =
10
1
10
2
103
0
100
150
200
250
300
350
400
Q g (nC)
At
IC =
single pulse
ºC
80
±15
V
Tjmax
ºC
Tj =
50
V CE (V)
75
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
50
Copyright by Vincotech
75
100
T (°C)
125
10
Revision: 2
V23990-K438-F40-PM
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
200
%
%
120
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
tdoff
IC
160
VCE
100
VGE 90%
VCE 90%
120
80
VCE
IC
60
VGE
80
tdon
tEoff
40
40
IC 1%
IC10%
20
VCE 3%
VGE10%
0
0
tEon
VGE
-20
-0,3
-0,15
0
0,15
0,3
0,45
0,6
0,75
-40
0,9
2,8
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
75
0,37
0,77
2,95
3,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,25
-15
15
600
75
0,19
0,60
3,4
3,7
time(us)
3,85
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,55
Turn-on Switching Waveforms & definition of tr
140
220
%
%
120
190
fitted
IC
100
160
VCE
IC 90%
80
130
VCE
IC 60%
60
IC90%
100
40
tr
70
IC 40%
20
40
IC10%
0
IC10%
10
tf
Ic
-20
0,2
0,25
0,3
0,35
0,4
0,45
0,5
-20
0,55
3
3,15
3,3
3,45
time (us)
VC (100%) =
IC (100%) =
tf =
600
75
0,09
Copyright by Vincotech
3,6
3,75
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
600
75
0,05
V
A
µs
Revision: 2
V23990-K438-F40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Pon
%
Poff
Eoff
100
140
80
Eon
100
60
40
60
20
VGE 90%
20
VCE 3%
VGE 10%
0
tEoff
tEon
IC 1%
-20
-0,2
-20
-0,05
0,1
0,25
0,4
0,55
0,7
2,9
0,85
3,05
3,2
3,35
3,5
3,65
Poff (100%) =
Eoff (100%) =
tEoff =
45,11
7,46
0,77
3,8
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
45,11
11,54
0,60
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
fitted
-80
IRRM90%
IRRM100%
-120
3
3,2
3,4
3,6
3,8
4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
Copyright by Vincotech
12
600
75
-70
0,48
V
A
A
µs
Revision: 2
V23990-K438-F40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
%
%
Id
Erec
100
Qrr
100
80
50
tErec
60
tQrr
40
0
20
Prec
-50
0
-100
-20
3
3,2
3,4
3,6
3,8
4
4,2
4,4
3
3,2
3,4
3,6
3,8
Id (100%) =
Qrr (100%) =
tQrr =
75
13,94
0,95
Copyright by Vincotech
4
4,2
4,4
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
45,11
4,91
0,95
kW
mJ
µs
Revision: 2
V23990-K438-F40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K12-T-PM)
with std lid (black V23990-K12-T-PM) and P12
with thin lid (white V23990-K13-T-PM)
with thin lid (white V23990-K13-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K430-F40-/0A/-PM
V23990-K430-F40-/1A/-PM
V23990-K430-F40-/0B/-PM
V23990-K430-F40-/1B/-PM
K430F40
K430F40
K430F40
K430F40
in packaging barcode as
K430F40-/0A/
K430F40-/1A/
K430F40-/0B/
K430F40-/1B/
Outline
Pinout
Copyright by Vincotech
14
Revision: 2
V23990-K438-F40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
15
Revision: 2