V23990 K210 F40 D2 1 14

V23990-K210-F40-PM
MiniSKiiP® 1 PACK
1200V/25A
MiniSKiiP® 1 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Servo Drives
● Industrial Motor Drives
● UPS
Types
● V23990-K210-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
25
A
tp limited by Tjmax
75
A
VCE≤1200V, Tj≤Topmax
50
A
82
W
±20
V
10
800
µs
V
Tjmax
175
°C
VRRM
1200
V
20
A
75
A
63
W
175
°C
T1,T2,T3,T4,T5,T6
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
Tj≤150°C
VGE=15V
D1,D2,D3,D4,D5,D6
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Th=80°C
Revision: 2.1
V23990-K210-F40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
V23990-K210-F40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
2,09
2,52
2,15
T1,T2,T3,T4,T5,T6
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,00085
25
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,06
200
Rgoff=16Ω
Rgon=16Ω
±15
600
25
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
-
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
71
72
32
36
199
270
90
135
1,61
2,46
1,53
2,5
ns
mWs
1430
f=1MHz
0
Tj=25°C
25
115
pF
85
Tj=25°C
±15
Thermal grease
thickness≤50µm
λ=1W/mK
200
nC
1
K/W
D1,D2,D3,D4,D5,D6
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
25
Rgon=16Ω
±15
600
di(rec)max
/dt
Erec
RthJH
25
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,3
Thermal grease
thickness≤50µm
λ=1W/mK
2,64
2,64
11,9
17,4
278
580
1,55
3,88
111
89
0,61
1,63
2,8
V
A
ns
µC
A/µs
mWs
1,52
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
T=25°C
R100=1670 Ω
T=100°C
-3
3
%
T=100°C
1670,313
Ω
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
R100
R
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 2.1
V23990-K210-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
75
IC (A)
IC (A)
75
60
60
45
45
30
30
15
15
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
150
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IF (A)
75
IC (A)
25
5
Tj = 25°C
20
60
15
45
Tj = 25°C
Tj = Tjmax-25°C
10
30
5
15
Tj = Tjmax-25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
1
250
2
3
4
V F (V)
5
µs
Revision: 2.1
V23990-K210-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
7,5
E (mWs)
E (mWs)
4,5
Eon High T
6
Eon High T
4
3,5
Eon Low T
3
4,5
Eoff High T
Eon Low T
2,5
Eoff High T
2
3
Eoff Low T
1,5
Eoff Low T
1
1,5
0,5
0
0
0
10
20
30
40
I C (A)
0
50
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
Ω
16
Rgoff =
16
Ω
16
32
48
64
RG( Ω )
80
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
25
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
2,5
E (mWs)
2,5
Erec
2
2
Tj = Tjmax -25°C
Tj = Tjmax -25°C
1,5
1,5
Erec
1
1
Erec
Tj = 25°C
Tj = 25°C
0,5
Erec
0,5
0
0
0
10
20
30
40
I C (A)
50
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
16
32
48
64
RG( Ω )
80
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
5
Revision: 2.1
V23990-K210-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
tf
0,1
0,1
tr
tr
tdon
0,01
0,01
0,001
0,001
0
10
20
30
40
I C (A)
50
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
Ω
16
Rgoff =
16
Ω
16
32
48
RG( Ω )
64
80
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1
t rr( µs)
t rr( µs)
1
trr
trr
0,8
0,8
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,6
0,6
trr
trr
0,4
0,4
Tj = 25°C
0,2
0,2
Tj = 25°C
0
0
0
0
10
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
16
20
30
40
I C (A)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
copyright Vincotech
16
32
50
6
25/150
600
25
±15
48
64
R g on ( Ω )
80
°C
V
A
V
Revision: 2.1
V23990-K210-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
6
Qrr( µC)
Qrr( µC)
6
5
5
Qrr
Tj = Tjmax -25°C
4
Qrr
4
Tj = Tjmax -25°C
3
3
Qrr
2
2
Tj = 25°C
1
Qrr
1
Tj = 25°C
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
I C (A)
50
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
16
At
Tj =
VR =
IF =
VGE =
25/150
600
25
±15
32
48
64
R g on ( Ω)
80
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
50
IrrM (A)
IrrM (A)
25
40
20
Tj = Tjmax -25°C
IRRM
15
30
Tj = Tjmax - 25°C
IRRM
20
10
Tj = 25°C
IRRM
10
5
Tj = 25°C
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
I C (A)
0
50
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
copyright Vincotech
7
16
25/150
600
25
±15
32
48
64
R gon ( Ω )
80
°C
V
A
V
Revision: 2.1
V23990-K210-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
direc / dt (A/ µs)
1200
direc / dt (A/µ s)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
1000
5000
dIrec/dt
dI0/dt
4000
800
Tj = Tjmax - 25°C
3000
dIo/dtLow T
600
Tj = 25°C
di0/dtHigh T
2000
400
1000
dIrec/dtHigh T
200
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
I C (A)
50
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/150
600
25
±15
32
48
64
R gon ( Ω )
80
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
100
10
10
16
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
D=
RthJH =
tp / T
1
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
K/W
10-4
10-3
R (C/W)
0,05
0,12
0,57
0,19
0,06
0,03
R (C/W)
0,05
0,25
0,97
0,43
0,23
0,08
8
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
1,52
IGBT thermal model values
Tau (s)
6,6E+00
8,0E-01
1,4E-01
2,9E-02
3,2E-03
2,8E-04
10-2
Tau (s)
9,3E+00
5,6E-01
1,0E-01
1,7E-02
2,3E-03
4,6E-04
Revision: 2.1
V23990-K210-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
30
IC (A)
Ptot (W)
180
150
25
120
20
90
15
60
10
30
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
30
IF (A)
Ptot (W)
120
200
25
90
20
60
15
10
30
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
copyright Vincotech
9
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
V23990-K210-F40-PM
T1,T2,T3,T4,T5,T6 / D1,D2,D3,D4,D5,D6
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
IC (A)
VGE (V)
16
14
102
240V
100uS
10
12
960V
10
1
1mS
8
10mS
100
6
100mS
4
10-1
DC
2
0
0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
103
0
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
20
25
40
60
80
100
Q g (nC)
120
A
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
50
copyright Vincotech
75
100
T (°C)
125
10
Revision: 2.1
V23990-K210-F40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 16 Ω
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
200
%
%
120
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
tdoff
IC
160
VCE
100
VGE 90%
VCE 90%
120
80
IC
60
VCE
VGE
80
tdon
tEoff
40
40
IC 1%
20
IC10%
VGE10%
VCE 3%
0
0
VGE
tEon
-20
-0,25
-0,05
0,15
0,35
0,55
-40
0,75
2,7
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
25
0,27
0,66
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,1
-15
15
600
25
0,07
0,33
3,3
3,5
time(us)
3,7
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
140
180
%
fitted
%
2,9
Ic
120
IC
140
100
VCE
IC 90%
80
100
IC90%
VCE
IC 60%
60
tr
60
IC 40%
40
20
IC10%
-20
0,15
20
tf
0
0,2
0,25
IC10%
0,3
0,35
0,4
-20
0,45
3
3,05
3,1
3,15
time (us)
VC (100%) =
IC (100%) =
tf =
600
25
0,14
copyright Vincotech
3,2
3,25
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
11
600
25
0,04
V
A
µs
Revision: 2.1
V23990-K210-F40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
Pon
%
Eoff
100
140
80
100
60
40
Eon
60
20
VGE 90%
20
0
VGE 10%
VCE 3%
tEoff
tEon
IC 1%
-20
-0,2
0
0,2
0,4
0,6
-20
2,95
0,8
3,05
3,15
3,25
Poff (100%) =
Eoff (100%) =
tEoff =
15,03
2,50
0,66
3,35
3,45
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
15,03
2,46
0,33
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
0
Vd
IRRM10%
-40
IRRM90%
IRRM100%
-80
fitted
-120
2,95
3,1
3,25
3,4
3,55
3,7
3,85
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
600
25
-17
0,58
copyright Vincotech
V
A
A
µs
12
Revision: 2.1
V23990-K210-F40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
Id
Qrr
100
100
80
50
tErec
60
tQrr
40
0
20
Prec
-50
0
-100
-20
2,9
3,15
3,4
3,65
3,9
4,15
4,4
2,9
3,15
3,4
3,65
Id (100%) =
Qrr (100%) =
tQrr =
25
3,88
1,00
copyright Vincotech
3,9
4,15
4,4
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
13
15,03
1,63
1,00
kW
mJ
µs
Revision: 2.1
V23990-K210-F40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K12-T-PM)
with std lid (black V23990-K12-T-PM) and P12
with thin lid (white V23990-K13-T-PM)
with thin lid (white V23990-K13-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K210-F40-/0A/-PM
V23990-K210-F40-/1A/-PM
V23990-K210-F40-/0B/-PM
V23990-K210-F40-/1B/-PM
K210F40
K210F40
K210F40
K210F40
in packaging barcode as
K210F40-/0A/
K210F40-/1A/
K210F40-/0B/
K210F40-/1B/
Outline
Pinout
copyright Vincotech
14
Revision: 2.1
V23990-K210-F40-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
Revision: 2.1