489D, 499D Datasheet

489D, 499D
www.vishay.com
Vishay Sprague
Resin-Coated, Radial-Lead
Solid Tantalum Capacitors
FEATURES
• Terminations: Standard SnPb, 100 % tin
available
• Large capacitance range
• Encapsulated in a hard orange epoxy resin
• Large variety of lead styles available
• Supplied on tape and reel or ammopack
• Low impedance and ESR at high frequencies
• Material categorization: For definitions of compliance
please see www.vishay.com/doc?99912
Note
* Lead (Pb)-containing terminations are not RoHS-compliant.
Exemptions may apply.
ELECTRICAL CHARACTERISTICS
APPLICATIONS
Operating Temperature:- 55 °C to + 85 °C: Type 489D
- 55 °C to + 125 °C (above 85 °C, voltage derating is
required): Type 499D
Offer a very cost effective solution in the consumer,
industrial and professional electronics markets. The
capacitors are intended for high volume applications.
ORDERING INFORMATION
489D
686
X0
6R3
D
2
A
E3
TYPE
CAPACITANCE
CAPACITANCE
TOLERANCE
DC VOLTAGE
RATING AT + 85 °C
CASE
CODE
LEAD STYLE
PACKAGING
RoHS
COMPLIANT
489D
Standard
+ 85 °C
499D
Standard
+ 125 °C
Low IL
Expressed in
picofarads. The
first two digits
are the
significant
figures. The
third is the
number of
zeros following.
X0 = ± 20 %
X9 = ± 10 %
Expressed by zeros if
needed to complete
the 3 digit block. A
decimal point is
indicated by an “R”
(6R3 = 6.3 V).
See
Ratings
and Case
Codes
table
1, 2, 3, 4, 6, 9
See
description on
next page
A = Ammopack
B = Reel pack,
positive leader
C = Reel pack,
negative leader
V = Bulk pack
E3 = 100 % tin
termination
(RoHS compliant
design)
Blank = SnPb
termination
(standard design)
LEAD STYLE CONFIGURATIONS AND DIMENSIONS (MAX.) in millimeters
Bulk: Code V
1 and 3
D max.
2 and 4
D max.
H
max.
0.5¯
0.5¯
15 min.
20 max.
3
0.5¯
LEAD
CASE
A
B
C
D
E
F
H
M
N
R
Revision: 11-Mar-13
H4
max.
4.5 ± 1.5
1.1 ± 0.05
0.5¯
P ± 0.5
P ± 0.5
D
3.7
4.0
4.5
5.0
5.5
6.0
6.5
10.0
11.0
12.0
H3
max.
H2
max.
P ± 0.5
P
P ± 0.5
Upper edge
of Printed
Circuit Board
5.5 ± 0.5
15 min.
20 max.
D max.
D max.
H1
max.
H
max.
Reel/Ammo: Code A, B, C
2 and 4
6
9
D max.
6
D max.
STYLES 1-2-3-4
P
H
2.5
7.0
2.5
7.5
2.5
8.0
2.5
9.0
2.5
10.0
2.5
11.0
2.5
12.0
5.0
14.5
5.0
16.0
5.0
19.0
P
5
5
5
5
5
5
5
-
STYLE 6
H1
11.0
11.5
12.0
13.0
14.0
15.0
16.0
-
P
5
5
5
5
5
5
5
5
5
5
STYLE 9
H2
10.0
10.5
11.0
12.0
13.0
14.0
15.0
18.0
19.0
22.0
P ± 0.5
P ± 0.5
STYLES 2-4
P
H3
2.5
7.0
2.5
7.5
2.5
8.0
2.5
9.0
2.5
10.0
2.5
11.0
2.5
12.0
5.0
14.5
-
P
5
5
5
5
5
5
5
-
STYLE 6
H4
11.0
11.5
12.0
13.0
14.0
15.0
16.0
-
Document Number: 42070
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
489D, 499D
www.vishay.com
Vishay Sprague
LEAD STYLE
LEAD STYLE 1:
LEAD STYLE 2:
Straight leads,
2.5 mm lead space,
uneven length
Straight leads,
2.5 mm lead space,
even length
LEAD STYLE 3:
LEAD STYLE 4:
Straight leads,
5 mm lead space,
uneven length
Straight leads,
5 mm lead space,
even length
LEAD STYLE 6:
LEAD STYLE 9:
Shouldered leads,
5 mm lead space
Snap-In leads,
5 mm lead space
RATINGS, CASE CODES AND LEAD STYLE
CR
μF
RATED VOLTAGE UR AT + 85 °C
3.0 V
6.3 V
10 V
16 V
20 V
LEAD STYLE
25 V
35 V
50 V
0.10
A
A
0.15
A
A
0.22
A
A
0.33
A
B
BULK
AMMO/REEL
0.47
A
B
1-2
0.68
B
C
6-9
2-6
3-4-9
4
1.0
A
B
D
A
B
C
E
A
B
B
C
F
B
C
C
D
F
1.5
2.2
3.3
A
4.7
A
A
B
C
C
D
H
6.8
A
A
B
C
D
D
E
N
10
B
B
B
C
D
D
F
N
15
B
B
C
D
E
E
M
N
22
C
C
C
D
F
H
M
N
33
C
C
D
E
H
M
N
N
47
D
D
D
F
M
M
68
D
D
E
M
N
N
N
100
E
E
M
N
150
H
M
M
N
220
M
M
N
R
330
N
N
R
470
N
R
680
R
R
Revision: 11-Mar-13
Document Number: 42070
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
489D, 499D
www.vishay.com
Vishay Sprague
STANDARD RATINGS
CAPACITANCE
CR (μF)
CASE CODE
PART NUMBER
MAX. DCL
AT + 25 °C
(μA)
489D
MAX. DCL
AT + 25 °C
(μA)
499D
MAX. DF, 100 Hz
AT + 25 °C
(%)
489D, 499D
UR = 3 VDC AT + 85 °C, SURGE = 4 V; UC = 2 VDC AT + 125 °C, SURGE = 2.6 V (ONLY 499D)
6.8
A
489D685X(*)003A_ _
1.0
0.5
6
10
B
489D106X(*)003B_ _
1.0
0.5
8
15
B
489D156X(*)003B_ _
1.0
0.5
8
22
C
489D226X(*)003C_ _
1.0
0.5
8
33
C
489D336X(*)003C_ _
1.4
0.7
8
47
D
489D476X(*)003D_ _
2.1
1.1
8
68
D
489D686X(*)003D_ _
3.0
1.6
8
100
E
489D107X(*)003E_ _
4.5
2.4
10
150
H
489D157X(*)003H_ _
6.7
3.6
10
220
M
489D227X(*)003M_ _
9.9
5.2
10
330
N
489D337X(*)003N_ _
14.8
7.9
10
470
N
489D477X(*)003N_ _
21.1
11.2
12
680
R
489D687X(*)003R_ _
30.6
16.3
12
UR = 6.3 VDC AT + 85 °C, SURGE = 8 V; UC = 4 VDC AT + 125 °C, SURGE = 5.2 V (ONLY 499D)
4.7
A
489D475X(*)6R3A_ _
1.0
0.5
6.8
A
489D685X(*)6R3A_ _
1.0
0.5
6
6
10
B
489D106X(*)6R3B_ _
1.0
0.5
8
15
B
489D156X(*)6R3B_ _
1.4
0.7
8
22
C
489D226X(*)6R3C_ _
2.0
1.1
8
33
C
489D336X(*)6R3C_ _
3.1
1.6
8
47
D
489D476X(*)6R3D_ _
4.4
2.3
8
68
D
489D686X(*)6R3D_ _
6.4
3.4
8
100
E
489D107X(*)6R3E_ _
9.4
5.0
10
150
M
489D157X(*)6R3M_ _
14.1
7.5
10
220
M
489D227X(*)6R3M_ _
20.7
11.0
10
330
N
489D337X(*)6R3N_ _
31.1
16.6
10
470
R
489D477X(*)6R3R_ _
44.4
23.6
12
680
R
489D687X(*)6R3R_ _
64.2
34.2
12
UR = 10 VDC AT + 85 °C, SURGE = 13 V; UC = 7 VDC AT + 125 °C, SURGE = 8.6 V (ONLY 499D)
3.3
A
489D335X(*)010A_ _
1.0
0.5
6
4.7
A
489D475X(*)010A_ _
1.0
0.5
6
6.8
B
489D685X(*)010B_ _
1.0
0.5
6
10
B
489D106X(*)010B_ _
1.5
0.8
8
15
C
489D156X(*)010C_ _
2.2
1.2
8
22
C
489D226X(*)010C_ _
3.3
1.7
8
33
D
489D336X(*)010D_ _
4.9
2.6
8
47
D
489D476X(*)010D_ _
7.0
3.7
8
68
E
489D686X(*)010E_ _
10.2
5.4
8
100
M
489D107X(*)010M_ _
15.0
8.0
10
150
M
489D157X(*)010M_ _
22.5
12.0
10
220
N
489D227X(*)010N_ _
33.0
17.6
10
330
R
489D337X(*)010R_ _
49.5
26.4
10
Note
489D Type part number 489D, 499D
(*) Insert 0 for ± 20 % tolerance or 9 for ± 10 %
_ _ Case code/lead style see case code table
Revision: 11-Mar-13
Document Number: 42070
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
489D, 499D
www.vishay.com
Vishay Sprague
STANDARD RATINGS
CAPACITANCE
CR (μF)
CASE CODE
PART NUMBER
MAX. DCL
AT + 25 °C
(μA)
489D
MAX. DCL
AT + 25 °C
(μA)
499D
MAX. DF, 100 Hz
AT + 25 °C
(%)
489D, 499D
UR = 16 VDC AT + 85 °C, SURGE = 20 V; UC = 10 VDC AT + 125 °C, SURGE = 13 V (ONLY 499D)
2.2
A
489D225X(*)016A_ _
1.0
0.5
6
3.3
B
489D335X(*)016B_ _
1.0
0.5
6
4.7
B
489D475X(*)016B_ _
1.1
0.6
6
6.8
C
489D685X(*)016C_ _
1.6
0.8
6
10
C
489D106X(*)016C_ _
2.4
1.2
8
15
D
489D156X(*)016D_ _
3.6
1.9
8
22
D
489D226X(*)016D_ _
5.2
2.8
8
33
E
489D336X(*)016E_ _
7.9
4.2
8
47
F
489D476X(*)016F_ _
11.2
6.0
8
68
M
489D686X(*)016M_ _
16.3
8.7
8
100
N
489D107X(*)016N_ _
24.0
12.8
10
150
N
489D157X(*)016N_ _
36.0
19.2
10
220
R
489D227X(*)016R_ _
52.8
28.1
10
UR = 20 VDC AT + 85 °C, SURGE = 26 V; UC = 13 VDC AT + 125 °C, SURGE = 16 V (ONLY 499D)
1.5
A
489D155X(*)020A_ _
1.0
0.5
4
2.2
B
489D225X(*)020B_ _
1.0
0.5
6
3.3
C
489D335X(*)020C_ _
1.0
0.5
6
4.7
C
489D475X(*)020C_ _
1.4
0.7
6
6.8
D
489D685X(*)020D_ _
2.0
1.0
6
10
D
489D106X(*)020D_ _
3.0
1.6
8
15
E
489D156X(*)020E_ _
4.5
2.4
8
22
F
489D226X(*)020F_ _
6.6
3.5
8
33
H
489D336X(*)020H_ _
9.9
5.2
8
47
M
489D476X(*)020M_ _
14.1
7.5
8
68
N
489D686X(*)020N_ _
20.4
10.8
8
100
N
489D107X(*)020N_ _
30.0
16.0
10
UR = 25 VDC AT + 85 °C, SURGE = 32 V; UC = 17 VDC AT + 125 °C, SURGE = 21 V (ONLY 499D)
1.0
A
489D105X(*)025A_ _
1.0
0.5
4
1.5
B
489D155X(*)025B_ _
1.0
0.5
4
2.2
B
489D225X(*)025B_ _
1.0
0.5
6
3.3
C
489D335X(*)025C_ _
1.2
0.6
6
4.7
C
489D475X(*)025C_ _
1.7
0.9
6
6.8
D
489D685X(*)025D_ _
2.5
1.3
6
10
D
489D106X(*)025D_ _
3.7
2.0
8
15
E
489D156X(*)025E_ _
5.6
3.0
8
22
H
489D226X(*)025H_ _
8.2
4.4
8
33
M
489D336X(*)025M_ _
12.3
6.6
8
47
M
489D476X(*)025M_ _
17.6
9.4
8
68
N
489D686X(*)025N_ _
25.5
13.6
8
Note
489D Type part number 489D, 499D
(*) Insert 0 for ± 20 % tolerance or 9 for ± 10 %
_ _ Case code/lead style see case code table
Revision: 11-Mar-13
Document Number: 42070
4
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
489D, 499D
www.vishay.com
Vishay Sprague
STANDARD RATINGS
CAPACITANCE
CR (μF)
CASE CODE
MAX. DCL
AT + 25 °C
(μA)
499D
MAX. DCL
AT + 25 °C
(μA)
489D
PART NUMBER
MAX. DF, 100 Hz
AT + 25 °C
(%)
489D, 499D
UR = 35 VDC AT + 85 °C, SURGE = 46 V; UC = 23 VDC AT + 125 °C, SURGE = 28 V (ONLY 499D)
0.10
A
489D104X(*)035A_ _
1.0
0.5
4
0.15
A
489D154X(*)035A_ _
1.0
0.5
4
0.22
A
489D224X(*)035A_ _
1.0
0.5
4
0.33
A
489D334X(*)035A_ _
1.0
0.5
4
0.47
A
489D474X(*)035A_ _
1.0
0.5
4
0.68
B
489D684X(*)035B_ _
1.0
0.5
4
1.0
B
489D105X(*)035B_ _
1.0
0.5
4
1.5
C
489D155X(*)035C_ _
1.0
0.5
4
2.2
C
489D225X(*)035C_ _
1.1
0.6
6
3.3
D
489D335X(*)035D_ _
1.7
0.9
6
4.7
D
489D475X(*)035D_ _
2.4
1.3
6
6.8
E
489D685X(*)035E_ _
3.5
1.9
6
10
F
489D106X(*)035F_ _
5.2
2.8
8
15
M
489D156X(*)035M_ _
7.8
4.2
8
22
M
489D226X(*)035M_ _
11.5
6.1
8
33
N
489D336X(*)035N_ _
17.3
9.2
8
N
489D476X(*)035N_ _
24.6
13.1
8
47
UR = 50 VDC AT + 85 °C, SURGE = 65 V; UC = 33 VDC AT + 125 °C, SURGE = 40 V (ONLY 499D)
0.10
A
489D104X(*)050A_ _
1.0
0.5
4
0.15
A
489D154X(*)050A_ _
1.0
0.5
4
0.22
A
489D224X(*)050A_ _
1.0
0.5
4
0.33
B
489D334X(*)050B_ _
1.0
0.5
4
0.47
B
489D474X(*)050B_ _
1.0
0.5
4
0.68
C
489D684X(*)050C_ _
1.0
0.5
4
1.0
D
489D105X(*)050D_ _
1.0
0.5
4
1.5
E
489D155X(*)050E_ _
1.1
0.6
4
2.2
F
489D225X(*)050F_ _
1.6
0.8
6
3.3
F
489D335X(*)050F_ _
2.4
1.3
6
4.7
H
489D475X(*)050H_ _
3.5
1.8
6
6.8
N
489D685X(*)050N_ _
5.1
2.7
6
10
N
489D106X(*)050N_ _
7.5
4.0
8
15
N
489D156X(*)050N_ _
11.2
6.0
8
22
N
489D226X(*)050N_ _
16.5
8.8
8
Note
489D Type part number 489D, 499D
(*) Insert 0 for ± 20 % tolerance or 9 for ± 10 %
_ _ Case code/lead style see case code table
PACKAGING QUANTITIES
CASE CODE
A
B
C
D
BULK
E
F
H
M
500
AMMOPACK
2500
2000
1500
500
REEL PACK
2500
2000
1500
500
Revision: 11-Mar-13
N
R
100
Document Number: 42070
5
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
489D, 499D
www.vishay.com
Vishay Sprague
PERFORMANCE CHARACTERISTICS
1. Operating Temperature: - 55 °C to + 85 °C with rated
DC voltage UR applied. + 85 °C to + 125° C with linear
voltage derating to category voltage UC for 499D only
(see general information)
2. Capacitance and Tolerance: Capacitance measured at
100 Hz and + 25 °C shall be within the specified tolerance
limits of the nominal rating. Capacitance measurement
shall be made by means of a polarized capacitance
bridge. No polarizing voltage is required. The maximum
voltage applied during measurements shall be 0.5 VRMS
at 100 Hz and + 25 °C.
3. Reverse Voltage: These capacitors are capable of
withstanding peak voltage in the reverse direction equal to:
15 % of the rated DC voltage at + 20 °C
10 % of the rated DC voltage at + 25 °C
5 % of the rated DC voltage at + 85 °C
6. Life Test: After 2000 h at + 85 °C with rated DC voltage
applied, or after 1000 h at + 125 °C. With derated DC
voltage (only for 499D), capacitors shall meet the
requirements in table below.
Capacitance change
3
6.3
10
16
20
25
35
50
DC surge voltage
at + 85 °C (V)
4
8
13
20
26
32
46
65
DC rated voltage
at + 125 °C (V) (1)
2
4
7
10
13
17
23
33
13
16
21
28
40
DC surge voltage
at + 125 °C (V) (1)
2.6 5.2 8.6
Note
(1)For 499D
Within initial requirements at + 25 °C
Dissipation factor
Within initial requirements at + 25 °C
7. Humidity Test: After 21 days (504 h) (1) at + 40 °C, 90 %
to 95 % of relative humidity (per IEC 68-2-3) with no
voltage applied, capacitors shall meet the requirements
in table below.
4. Surge Voltage:
DC rated voltage
at + 85 °C (V)
Within ± 10 % of initial value
DC leakage current
Capacitance change
Within ± 5 % of initial value
DC leakage current
Within initial requirements
at + 25 °C - Table 2
Dissipation factor
Within initial requirements
at + 25 °C - Table 2
Note
(1)Humidity test is 56 days (1350 hours) for 499D
8. Marking: The capacitors shall be marked with the rated
capacitance and the rated DC working voltage. A code
may be used for both capacitance and voltage. Units
rated at 6.3 volts are usually marked as 6 volts. The
package shall be marked with full Vishay Sprague part
number, date code and quantity.
Capacitors shall withstand the surge voltage applied in
series with a 1000  (± 5 %) resistor, at the rate of 1.5 min
on, 5.5 min off for 1000 successive test cycles at + 85 °C.
After test, capacitance change shall not exceed 10 % of
initial value, dissipation factor and DC leakage current
shall meet initial requirements at + 25 °C - Table 2.
5. Stability at low and high temperatures:
489D - Table 2A
DC LEAKAGE CURRENT (1)
TEMP.
CAPACITANCE CHANGE
- 55 °C
- 10 % of initial value
-----------
+ 25 °C
-------------
0.015 CR x UR or 1 μA,
whichever is greater
+ 85 °C
+ 10 % of initial value
0.15 CR x UR or 10 μA,
whichever is greater
TEMP.
CAPACITANCE CHANGE
DC LEAKAGE CURRENT (1)
- 55 °C
- 10 % of initial value
-------------
+ 25 °C
------------
0.008 CR x UR or 0.5 μA,
whichever is greater
+ 85 °C
+ 10 % of initial value
0.08 CR x UR or 5 μA,
whichever is greater
+ 125 °C (2)
+ 10 % of initial value
0.1 CR x UR or 6.25 μA,
whichever is greater
DISSIPATION FACTOR AT 100 Hz
CR  1.5 μF
1.5 μF < CR < 10 μF
10 μF < CR < 100 μF
100 μF  CR  330 μF
330 μF < CR
4 % max
6 % max
8 % max
10 % max
12 % max
DISSIPATION FACTOR AT 100 Hz
CR  1.5 μF
1.5 μF < CR < 10 μF
10 μF < CR < 100 μF
100 μF  CR  330 μF
330 μF < CR
4 % max
6 % max
8 % max
10 % max
12 % max
Notes
(1) Rated voltage applied for 5 min with a series resistor of 1000 
(2) Only for 499 D
Revision: 11-Mar-13
Document Number: 42070
6
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
489D, 499D
www.vishay.com
Vishay Sprague
GUIDE TO APPLICATION
1. AC Ripple Current: The maximum allowable ripple
current shall be determined from the formula:
I RMS =
P
-----------R ESR
where,
P = Power dissipation in W at + 25 °C as given below
RESR = The capacitor Equivalent Series Resistance at the
specified frequency
2. AC Ripple Voltage: The maximum allowable ripple
voltage shall be determined from the formula:
P
------------ x Z
R ESR
4. Power Dissipation: Power dissipation will be affected by
the heat sinking capability of the mounting surface.
Non-sinusoidial ripple current may produce heating
effects which differ from those shown in the following
table. It is important that the equivalent IRMS value be
established when calculating permissible operating
levels.
CASE CODE
POWER DISSIPATION AT + 25 °C (W)
A
0.080
B
0.090
C
0.100
D
0.110
E
0.120
F
0.130
H
0.140
where,
M
0.150
Z = The capacitor impedance at the specified frequency
N
0.160
R
0.180
V RMS =
3. AC Ripple Current or Voltage Derating Factor: If these
capacitors are to be operated at temperatures above
+ 25 °C, the permissible RMS ripple current or voltage
shall be calculated using the derating factors in the table
below:
TEMPERATURE
DERATING FACTOR
+ 25 °C
1.0
+ 55 °C
0.9
+ 85 °C
0.8
+ 125 °C
0.4
Revision: 11-Mar-13
5. Cleaning: These capacitors are compatible with all
commonly used solvents, such as TES, TMS, Prelete and
Chloretane. Solvents containing methylene chloride or
other epoxy solvents should be avoided since these will
attack the epoxy encapsulation material.
Document Number: 42070
7
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
489D, 499D
www.vishay.com
Vishay Sprague
TAPE AND REEL PACKAGING in millimeters
h
P2
P2
P
P
P
H2
P1
F
P1
H
W2
F
H0
L
W0
W1
W
t
P0
Unreeling direction
D0
Dimensions for components on tape and tolerances:
DESIGNATION
SYMBOL
DIMENSIONS (mm)
Pitch of component
P
12.7 ± 1.0
Feed hole pitch
P0
12.7 ± 0.3
Tape width
W
18 (+ 1/- 0.5)
Hold down tape width
W0
5.0
Hole position
W1
9 (+ 0.75/- 0.5)
Hold down tape position
W2
0 (+ 3/- 0)
Overall component height
H1
32 max.
Component alignment
P
± 1.3 max.
Feed hole diameter
D0
4.0 ± 0.3
t
0.5 ± 0.2
Tape thickness
Component alignment
H
0±2
Lengh of snipped leads
L
11 max.
Lead clinch height
H0
Lead wire spacing
F
2.5 (+ 0.6/-0.1)
5 (+ 0.6/-0.1)
Feed hole center to wire center
P1
5.1 ± 0.7
3.65 ± 0.7
Hole center to component
center
P2
6.35 ± 1.3
6.35 ± 1.3
Component height
H
Revision: 11-Mar-13
16.0 ± 0.5
18 ± 1
Document Number: 42070
8
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000