Si4565ADY Datasheet

Si4565ADY
Vishay Siliconix
N- and P-Channel 40-V (D-S) MOSFET
FEATURES
PRODUCT SUMMARY
RDS(on) (Ω)
ID (A)a
0.039 at VGS = 10 V
6.6
0.050 at VGS = 4.5 V
5.8
0.054 at VGS = - 10 V
- 4.5
0.072 at VGS = - 4.5 V
- 3.9
VDS (V)
N-Channel
P-Channel
40
- 40
Qg (Typ.)
6.6
• Halogen-free According to IEC 61249-2-21
Available
• TrenchFET® Power MOSFET
• 100 % Rg and UIS Tested
APPLICATIONS
9
• CCFL Inverter
D1
SO-8
S1
1
8
D1
G1
2
7
D1
S2
3
6
D2
G2
4
5
D2
S2
G2
G1
Top View
Ordering Information: Si4565ADY-T1-E3 (Lead (Pb)-free)
Si4565ADY-T1-GE3 (Lead (Pb)-free and Halogen-free)
S1
D2
N-Channel MOSFET
P-Channel MOSFET
ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted
Parameter
Drain-Source Voltage
Gate-Source Voltage
Symbol
VDS
VGS
TC = 25 °C
TC = 70 °C
TA = 25 °C
TA = 70 °C
Continuous Drain Current (TJ = 150 °C)
N-Channel
40
± 16
6.6
5.3
- 5.6
- 4.5
5.3b, c
4.2b, c
30
2.5
- 4.5b, c
- 3.6b, c
- 30
- 2.5
1.7b, c
30
13
8.5
3.1
2
- 1.7b, c
- 30
16
13
3.1
2
2b, c
1.28b, c
2b, c
1.28b, c
ID
IDM
Pulsed Drain Current (10 µs Pulse Width)
TC = 25 °C
TA = 25 °C
Source-Drain Current Diode Current
Pulsed Source-Drain Current
Single Pulse Avalanche Current
Single Pulse Avalanche Energy
L = 0.1 mH
Maximum Power Dissipation
TC = 25 °C
TC = 70 °C
TA = 25 °C
TA = 70 °C
IS
ISM
IAS
EAS
PD
TJ, Tstg
Operating Junction and Storage Temperature Range
P-Channel
- 40
Unit
V
A
mJ
W
- 55 to 150
°C
THERMAL RESISTANCE RATINGS
Parameter
Maximum Junction-to-Ambientb, d
Maximum Junction-to-Foot (Drain)
t ≤ 10 s
Steady-State
Symbol
RthJA
RthJF
N-Channel
Typ.
Max.
52
62.5
32
40
P-Channel
Typ.
Max.
50
62.5
30
38
Unit
°C/W
Notes:
a. Based on TC = 25 °C.
b. Surface Mounted on 1" x 1" FR4 board.
c. t = 10 s.
d. Maximum under Steady State conditions is 120 °C/W (N-Channel) and 110 °C/W (P-Channel).
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
www.vishay.com
1
Si4565ADY
Vishay Siliconix
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Test Conditions
Min.
Typ.a
Max.
Unit
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
VGS(th) Temperature Coefficient
Gate Threshold Voltage
Gate-Body Leakage
VDS
ΔVDS/TJ
ΔVDS(th)/TJ
VGS(th)
IGSS
VGS = 0 V, ID = 250 µA
N-Ch
40
VGS = 0 V, ID = - 250 µA
P-Ch
- 40
ID = 250 µA
N-Ch
37
ID = - 250 µA
P-Ch
- 38
ID = 250 µA
N-Ch
-5
4.0
ID = - 250 µA
P-Ch
VDS = VGS, ID = 250 µA
N-Ch
0.8
2.2
VDS = VGS, ID = - 250 µA
P-Ch
- 0.8
- 2.2
VDS = 0 V, VGS = ± 16 V
VDS = 40 V, VGS = 0 V
Zero Gate Voltage Drain Current
On-State Drain Currentb
Drain-Source On-State Resistanceb
Forward Transconductanceb
IDSS
ID(on)
RDS(on)
gfs
V
N-Ch
P-Ch
100
- 100
N-Ch
1
VDS = - 40 V, VGS = 0 V
P-Ch
-1
VDS = 40 V, VGS = 0 V, TJ = 55 °C
N-Ch
10
VDS = - 40 V, VGS = 0 V, TJ = 55 °C
P-Ch
- 10
VDS = 5 V, VGS = 10 V
N-Ch
20
VDS = - 5 V, VGS = - 10 V
P-Ch
- 20
VGS = 10 V, ID = 5 A
N-Ch
0.032
VGS = - 10 V, ID = - 4.5 A
P-Ch
0.045
0.054
VGS = 4.5 V, ID = 4 A
N-Ch
0.041
0.050
VGS = - 4.5 V, ID = - 3.9 A
P-Ch
0.059
0.072
VDS = 15 V, ID = 5 A
N-Ch
15
VDS = - 15 V, ID = - 4.5 A
P-Ch
13
N-Ch
625
P-Ch
805
nA
µA
A
0.039
Ω
S
Dynamica
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Ciss
N-Channel
VDS = 20 V, VGS = 0 V, f = 1 MHz
Coss
Crss
P-Channel
VDS = - 20 V, VGS = 0 V, f = 1 MHz
VDS = 20 V, VGS = 10 V, ID = 5 A
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Gate Resistance
www.vishay.com
2
Qg
VDS = - 20 V, VGS = - 10 V, ID = - 5 A
Rg
88
P-Ch
120
N-Ch
50
85
N-Ch
14.4
P-Ch
18.5
28
N-Ch
6.6
10
14
P-Ch
9
N-Ch
1.6
P-Channel
VDS = - 20 V, VGS = - 4.5 V, ID = - 5 A
P-Ch
2
N-Ch
2.3
f = 1 MHz
pF
P-Ch
N-Channel
VDS = 20 V, VGS = 4.5 V, ID = 5 A
Qgs
Qgd
N-Ch
22
P-Ch
3.6
N-Ch
2.3
3.5
P-Ch
11.5
18
nC
Ω
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
Si4565ADY
Vishay Siliconix
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Test Conditions
Min.
Typ.a
Max.
Unit
Dynamica
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
tf
Fall Time
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
tf
Fall Time
N-Channel
VDD = 20 V, RL = 4 Ω
ID ≅ 5 A, VGEN = 10 V, Rg = 1 Ω
P-Channel
VDD = - 20 V, RL = 4 Ω
ID ≅ - 5 A, VGEN = - 10 V, Rg = 1 Ω
N-Channel
VDD = 20 V, RL = 4 Ω
ID ≅ 5 A, VGEN = 4.5 V, Rg = 1 Ω
P-Channel
VDD = - 20 V, RL = 4 Ω
ID ≅ - 5 A, VGEN = - 4.5 V, Rg = 1 Ω
N-Ch
9
15
P-Ch
7
14
N-Ch
51
77
P-Ch
42
65
N-Ch
21
32
P-Ch
33
50
N-Ch
6
10
P-Ch
56
85
N-Ch
13
20
P-Ch
21
32
N-Ch
85
128
P-Ch
90
135
N-Ch
17
26
P-Ch
44
66
N-Ch
7
11
P-Ch
56
85
ns
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
Pulse Diode Forward Current
a
Body Diode Voltage
IS
TC = 25 °C
ISM
N-Ch
2.5
P-Ch
- 2.5
N-Ch
30
P-Ch
VSD
- 30
IS = 1.7 A
N-Ch
0.79
1.2
IS = - 1.7 A
P-Ch
- 0.79
- 1.2
N-Ch
30
45
P-Ch
27
45
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
N-Channel
IF = 1.7 A, dI/dt = 100 A/µs, TJ = 25 °C
N-Ch
30
45
P-Ch
17
26
Reverse Recovery Fall Time
ta
P-Channel
IF = - 1.7 A, dI/dt = - 100 A/µs, TJ = 25 °C
N-Ch
17
Reverse Recovery Rise Time
tb
A
P-Ch
13
N-Ch
13
P-Ch
14
V
ns
nC
ns
Notes:
a. Guaranteed by design, not subject to production testing.
b. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
www.vishay.com
3
Si4565ADY
Vishay Siliconix
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
2.0
24
VGS = 10 thru 4 V
18
12
1.6
I D – Drain Current (A)
I D – Drain Current (A)
30
3V
1.2
0.8
TC = 125 °C
6
0.4
0
0.0
0.0
0.0
25 °C
- 55 °C
0.5
1.0
1.5
2.0
2.5
0.8
VDS – Drain-to-Source Voltage (V)
2.4
3.2
4.0
VGS – Gate-to-Source Voltage (V)
Output Characteristics
Transfer Characteristics
0.052
900
0.047
720
C – Capacitance (pF)
R DS(on) – On-Resistance (Ω)
1.6
VGS = 4.5 V
0.042
0.038
VGS = 10 V
Ciss
540
360
0.033
Crss
180
Coss
0.028
0
0
4
8
12
16
0
20
6
12
24
30
VDS – Drain-to-Source Voltage (V)
ID – Drain Current (A)
On-Resistance vs. Drain Current and Gate Voltage
Capacitance
10
1.8
ID = 5 A
ID = 5 A
8
VDS = 10 V
VDS = 20 V
VDS = 30 V
4
1.5
(Normalized)
6
R DS(on) – On-Resistance
V GS – Gate-to-Source Voltage (V)
18
VGS = 10 V
1.2
VGS = 4.5 V
0.9
2
0
0
3
6
9
Qg – Total Gate Charge (nC)
Gate Charge
www.vishay.com
4
12
15
0.6
- 50
- 25
0
25
50
75
100
125
150
TJ – Junction Temperature ( C)
On-Resistance vs. Junction Temperature
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
Si4565ADY
Vishay Siliconix
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
0.30
TJ = 150 °C
10
25 °C
1
R DS(on) – Drain-to-Source On-Resistance (Ω)
I S – Source Current (A)
100
0.1
0.0
0.2
0.4
0.6
0.8
1.0
0.24
0.18
0.12
TA = 125 °C
0.06
TA = 25 °C
0.00
0
1.2
2
VSD – Source-to-Drain Voltage (V)
4
6
8
10
VGS – Gate-to-Source Voltage (V)
On-Resistance vs. Gate-to-Source Voltage
Source-Drain Diode Forward Voltage
60
0.4
I D = 250 µA
48
Power (W)
VGS(th) Variance (V)
0.2
0.0
ID = 5 mA
- 0.2
- 0.4
- 0.6
- 50
36
24
12
0
- 25
0
25
50
75
100
125
150
0.001
0.01
0.1
1
TJ – Temperature (°C)
Time (s)
Threshold Voltage
Single Pulse Power, Junction-to-Ambient
10
100
Limited by RDS(on)*
I D – Drain Current (A)
10
1 ms
1
10 ms
100 ms
0.1
TA = 25 °C
Single Pulse
0.01
0.1
* VGS
1s
10 s
DC
1
10
100
VDS – Drain-to-Source Voltage (V)
minimum VGS at which RDS(on) is specified
Safe Operating Area, Junction-to-Ambient
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
www.vishay.com
5
Si4565ADY
Vishay Siliconix
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
8
ID – Drain Current (A)
6
5
3
2
0
0
25
50
75
100
125
150
TC – Case Temperature (°C)
4.0
1.5
3.2
1.2
Power Dissipation (W)
Power Dissipation (W)
Current Derating*
2.4
1.6
0.8
0.9
0.6
0.3
0.0
0.0
0
25
50
75
100
125
150
0
25
50
75
100
125
TC – Case Temperature (°C)
TA – Ambient Temperature (°C)
Power Derating, Junction-to-Foot
Power Derating, Junction-to-Ambient
150
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
www.vishay.com
6
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
Si4565ADY
Vishay Siliconix
N-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
Notes:
0.1
PDM
0.05
t1
0.02
1. Duty Cycle, D =
t1
t2
2. Per Unit Base = RthJA = 110 °C/W
3. TJM – T = PDMZthJA(t)
4. Surface Mounted
Single Pulse
0.01
10-4
10-3
10-2
10-1
10
1
100
1000
Square Wave Pulse Duration (s)
Normalized Thermal Transient Impedance, Junction-to-Ambient
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10-4
10-3
10-2
10-1
1
10
Square Wave Pulse Duration (s)
Normalized Thermal Transient Impedance, Junction-to-Case
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
www.vishay.com
7
Si4565ADY
Vishay Siliconix
P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
20
20
I D – Drain Current (A)
I D – Drain Current (A)
VGS = 10 thru 4 V
16
12
3V
8
4
16
12
8
TC = 125 °C
4
25 °C
- 55 °C
0
0
1
2
3
4
0
0.0
5
0.8
VDS – Drain-to-Source Voltage (V)
3.2
4.0
Transfer Characteristics
0.08
1240
0.07
992
C – Capacitance (pF)
RDS(on) – On-Resistance (Ω)
2.4
VGS – Gate-to-Source Voltage (V)
Output Characteristics
VGS = 4.5 V
0.06
0.05
1.6
VGS = 10 V
Ciss
744
496
248
0.04
Coss
0.03
Crss
0
0
4
8
12
16
20
0
8
ID – Drain Current (A)
16
24
32
40
VDS – Drain-to-Source Voltage (V)
On-Resistance vs. Drain Current and Gate Voltage
Capacitance
10
1.8
1.6
8
R DS(on) – On-Resistance
(Normalized)
V GS – Gate-to-Source Voltage (V)
I D = 4.5 A
VDS = 10 V
6
VDS = 20 V
4
2
1.4
1.2
1.0
0.8
0
0
5
10
15
Qg – Total Gate Charge (nC)
Gate Charge
www.vishay.com
8
20
0.6
- 50
- 25
0
25
50
75
100
125
150
TJ – Junction Temperature (°C)
On-Resistance vs. Junction Temperature
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
Si4565ADY
Vishay Siliconix
P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
0.30
TJ = 150 °C
10
R DS(on) – Drain-to-Source On-Resistance (Ω)
I S – S o u rc e C u rre n t (A )
100
25 °C
ID = 6 A
0.24
0.18
0.12
TA = 125 °C
0.06
TA = 25 °C
0.00
1
0.0
0.3
0.6
1.2
0.9
0
1.5
2
VSD – Source-to-Drain Voltage (V)
0.6
100
0.4
80
Power (W)
VGS(th) Variance (V)
6
8
10
On-Resistance vs. Gate-to-Source Voltage
Source-Drain Diode Forward Voltage
0.2
ID = 250 µA
0.0
- 0.2
- 0.4
- 50
4
VGS – Gate-to-Source Voltage (V)
60
40
20
- 25
0
25
50
75
100
125
150
0
0.001
0.01
TJ – Temperature (°C)
0.1
1
10
Time (s)
Threshold Voltage
Single Pulse Power vs. Junction-to-Ambient
100
Limited by RDS(on)*
I D – Drain Current (A)
10
1 ms
1
10 ms
100 ms
0.1
TA = 25 °C
Single Pulse
0.01
0.1
* VGS
1s
10 s
DC
1
10
100
VDS – Drain-to-Source Voltage (V)
minimum VGS at which RDS(on) is specified
Safe Operating Area, Junction-to-Ambient
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
www.vishay.com
9
Si4565ADY
Vishay Siliconix
P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
7
ID – Drain Current (A)
6
4
3
1
0
0
25
50
100
75
125
150
TC – Case Temperature (°C)
4.0
1.5
3.2
1.2
Power Dissipation (W)
Power Dissipation (W)
Current Derating*
2.4
1.6
0.8
0.9
0.6
0.3
0.0
0.0
0
25
50
75
100
125
TC – Case Temperature (°C)
Power Derating, Junction-to-Foot
150
0
25
50
75
100
125
150
TA – Ambient Temperature (°C)
Power Derating, Junction-to-Ambient
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
www.vishay.com
10
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
Si4565ADY
Vishay Siliconix
P-CHANNEL TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
Notes:
Notes:
0.1
PDM
P
DM
0.05
tt11
tt22
tt1
1. Duty
Duty Cycle,
Cycle, D
D == 1
1.
tt22
= 93
120°C°C/W
2. Per
Per Unit
Unit Base
Base == R
RthJA
2.
thJA =
0.02
(t)
(t)
3. TTJM
T == P
PDM
ZthJA
3.
JM –– T
DMZ
thJA
4. Surface
Surface Mounted
Mounted
4.
Single Pulse
0.01
10-4
10-3
10-2
10-1
10
1
100
1000
Square Wave Pulse Duration (s)
Normalized Thermal Transient Impedance, Junction-to-Ambient
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10 -4
10-3
10-2
10-1
1
10
Square Wave Pulse Duration (s)
Normalized Thermal Transient Impedance, Junction-to-Foot
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?73880.
Document Number: 73880
S09-0393-Rev. B, 09-Mar-09
www.vishay.com
11
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000