Si52147 PCI-Express Gen1, Gen2, & Gen3 Nine Output Clock Generator (Chinese)

Si52147
PCI-E XPRESS 1 代 、 2 代 和 3 代 九 输 出 时 钟 发 生 器
特点







PCI-Express 1 代、 2 代和
3 代兼容
100 MHz 下支持串行 ATA (SATA)
低功耗推拉式差分输出缓冲器
无需终端电阻
所有时钟的输出使能引脚
扩频使能引脚
25 MHz 晶体输入或时钟输入

最高九个时钟输出

支持 I2C,带逆读功能
使用三角扩频改善图最大程度地减少
电磁干扰 (EMI)
工业温度:
–40 至 85 oC
3.3 V 电源
48 引脚 QFN 封装




应用
网络附加存储
 多功能打印机
订购信息:
参阅 第 20 页。
无线接入点
 服务器


描述
DIFF3
PLL1
(SSC)
Divider
XIN/CLKIN
XOUT
SCLK
NC
SDATA
NC
41
VDD_CORE
VSS_CORE
42
CKPWRGD/PDB1
NC
VSS_DIFF
43
40
39
38
37
36 DIFF8
VDD_DIFF
2
35 DIFF8
OE_DIFF0
3
34 VDD_DIFF
OE_DIFF11
4
33 DIFF7
SSON2
5
VSS_DIFF
6
VSS_DIFF
7
OE_DIFF21
8
29 VSS_DIFF
OE_DIFF31
9
28 DIFF5
OE_DIFF[4:5]1 10
27 DIFF5
32 DIFF7
31 DIFF6
49
GND
30 DIFF6
26 DIFF4
OE_DIFF[6:8]1 11
25 DIFF4
13
14
15
16
17
18
19
20
21
22
23
24
DIFF2
DIFF2
DIFF3
DIFF3
VDD_DIFF
VSS_DIFF
12
DIFF1
VDD_DIFF
DIFF1
DIFF2
44
VSS_DIFF
XOUT
45
DIFF0
DIFF1
46
DIFF0
XIN/CLKIN
47
1
VDD_DIFF
DIFF0
48
VDD_DIFF
1
功能方框图
NC
引脚分配
Si52147 是高性能 PCIe 时钟发生器,可用一个 25 MHz 晶体作为九个
PCIe 时钟的源或时钟输入。时钟输出兼容 PCIe 1 代、 2 代和 3 代规格。
设备有六个用于启用和禁用差分输出的硬件输出使能控制引脚。另还有一
个用于降低 EMI 的扩频控制引脚。 Si52147 的小体积和低功耗使其成为消
费者和嵌入应用的理想解决方案。
Notes:
1. Internal 100 kohm pull-up.
2. Internal 100 kohm pull-down.
DIFF4
DIFF5
专利申请中
DIFF6
SCLK
SDATA
Control & Memory
DIFF7
CKPWRGD/PDB
Control
OE [8:0]
RAM
DIFF8
SSON
修订版 1.2 2/14
版权所有 © 2014 Silicon Laboratories
Si52147
Si52147
2
??? 1.2
Si52147
目录
章节
页码
1. 电气规格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. 功能描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.1. 晶体建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.2. CKPWRGD/PDB (掉电)引脚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.3. PDB (掉电)断言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.4. PDB 无效置位 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.5. OE 引脚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.6. OE 断言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.7. OE 无效置位 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.8. SSON 引脚 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
3. 测试和测量设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
4. 控制寄存器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1. I2C 接口 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2. 数据协议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5. 引脚描述:48 引脚 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6. 订购指南 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7. 封装外形 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
文档修改列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
联系信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
??? 1.2
3
Si52147
1. 电气规格
Table 1. DC Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
3.3 V Operating Voltage
VDD core
3.3 ±5%
3.135
3.3
3.465
V
3.3 V Input High Voltage
VIH
Control input pins
2.0
—
VDD + 0.3
V
3.3 V Input Low Voltage
VIL
Control input pins
VSS – 0.3
—
0.8
V
Input High Voltage
VIHI2C
SDATA, SCLK
2.2
—
—
V
Input Low Voltage
VILI2C
SDATA, SCLK
—
—
1.0
V
Input High Leakage Current
IIH
Except internal pull-down
resistors, 0 < VIN < VDD
—
—
5
A
Input Low Leakage Current
IIL
Except internal pull-up
resistors, 0 < VIN < VDD
–5
—
—
A
High-impedance Output
Current
IOZ
–10
—
10
A
Input Pin Capacitance
CIN
1.5
—
5
pF
COUT
—
—
6
pF
LIN
—
—
7
nH
Power Down Current
IDD_PD
—
—
1
mA
Dynamic Supply Current
IDD_3.3V
—
—
85
mA
Output Pin Capacitance
Pin Inductance
4
All outputs enabled. Differential clocks with 5” traces
and 2 pF load.
??? 1.2
Si52147
Table 2. AC Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
LACC
Measured at VDD/2 differential
—
—
250
ppm
TDC
Measured at VDD/2
47
—
53
%
CLKIN Rise and Fall Times
TR/TF
Measured between 0.2 VDD and
0.8 VDD
0.5
—
4.0
V/ns
CLKIN Cycle to Cycle Jitter
TCCJ
Measured at VDD/2
—
—
250
ps
CLKIN Long Term Jitter
TLTJ
Measured at VDD/2
—
—
350
ps
Input High Voltage
VIH
XIN/CLKIN pin
2
—
VDD+0.3
V
Input Low Voltage
VIL
XIN/CLKIN pin
—
—
0.8
V
Input High Current
IIH
XIN/CLKIN pin, VIN = VDD
—
—
35
uA
Input Low Current
IIL
XIN/CLKIN pin, 0 < VIN <0.8
–35
—
—
uA
TDC
Measured at 0 V differential
45
—
55
%
TSKEW
Measured at 0 V differential
—
—
800
ps
Cycle to Cycle Jitter
TCCJ
Measured at 0 V differential
—
35
50
ps
PCIe Gen 1 Pk-Pk Jitter
Pk-Pk
PCIe Gen 1
0
40
50
ps
PCIe Gen 2 Phase Jitter
RMSGEN2
10 kHz < F < 1.5 MHz
0
1.8
2.0
ps
1.5 MHz < F < Nyquist
0
1.8
2.1
ps
RMSGEN3
Includes PLL BW 2–4 MHz,
CDR = 10 MHz
0
0.5
0.6
ps
Long Term Accuracy
LACC
Measured at 0 V differential
—
—
100
ppm
Rising/Falling Slew Rate
TR/TF
Measured differentially from
±150 mV
1
—
8
V/ns
Voltage High
VHIGH
—
—
1.15
V
Voltage Low
VLOW
–0.3
—
—
V
VOX
300
—
550
mV
—
–0.5
—
%
Crystal
Long-term Accuracy
Clock Input
CLKIN Duty Cycle
DIFF at 0.7 V
Duty Cycle
Output-to-Output skew
PCIe Gen 3 Phase Jitter
Crossing Point Voltage at
0.7 V Swing
Spread Range
SPR-2
Down spread
Modulation Frequency
FMOD
30
31.5
33
kHz
Clock Stabilization from
Power-up
TSTABLE
—
—
1.8
ms
Stopclock Set-up Time
TSS
10.0
—
—
ns
Enable/Disable and Setup
Note: Visit www.pcisig.com for complete PCIe specifications.
??? 1.2
5
Si52147
Table 3. Absolute Maximum Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
VDD_3.3V
Functional
—
—
4.6
V
Input Voltage
VIN
Relative to VSS
–0.5
—
4.6
VDC
Temperature, Storage
TS
Non-functional
–65
—
150
°C
Temperature, Operating Ambient
TA
Functional
–40
—
85
°C
Temperature, Junction
TJ
Functional
—
—
150
°C
Dissipation, Junction to Case
ØJC
JEDEC (JESD 51)
—
—
22
°C/W
Dissipation, Junction to Ambient
ØJA
JEDEC (JESD 51)
—
—
30
°C/W
ESDHBM
JEDEC (JESD 22-A114)
2000
—
—
V
UL-94
UL (Class)
Main Supply Voltage
ESD Protection (Human Body Model)
Flammability Rating
V–0
Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up.
Power supply sequencing is not required.
6
??? 1.2
Si52147
2. 功能描述
2.1. 晶体建议
如果使用晶体输入,则设备需要并联谐振 25 MHz 晶体。
Table 4. Crystal Recommendations
Frequency
(Fund)
Cut
Loading Load Cap
25 MHz
AT
Parallel
12–15 pF
Shunt
Cap (max)
Motional
(max)
Tolerance
(max)
Stability
(max)
Aging
(max)
5 pF
0.016 pF
35 ppm
30 ppm
5 ppm
2.1.1. 晶体负载
晶体负载是实现低 ppm 性能的关键。为实现低 / 零 ppm 错误,请使用第 2.1.2 节中的计算估计合适的电容性负载
(CL)。
图 1 显示的是使用两个微调电容的典型晶体结构。 请注意微调电容与晶体是串联的。
Figure 1. Crystal Capacitive Clarification
2.1.2. 计算负载电容
除标准外部微调电容外,还可考虑使用走线电容和引脚电容正确地计算晶体负载。每一侧的电容都是与晶体串联的。
两侧总电容是晶体负载电容 (CL) 上标示的两倍。 计算后的微调电容用于使两侧的电容负载相等。
Figure 2. Crystal Loading Example
使用以下公式为 Ce1 和 Ce2 计算微调电容值。
??? 1.2
7
Si52147
Load Capacitance (each side)
Ce = 2 x CL – (Cs + Ci)
Total Capacitance (as seen by the crystal)
CLe





=
1
1
( Ce1 + Cs1
+ Ci1 +
1
Ce2 + Cs2 + Ci2
)
CL: 晶体负载电容
CLe: 从晶体来看使用标准值微调电容时的实际负载
Ce: 外部微调电容
Cs: 杂散电容 (阶梯)
Ci : 内部电容 (引线框架、接合线等)
2.2. CKPWRGD/PDB (掉电)引脚
CKPWRGD/PDB 引脚是双功能引脚。初次加电时,引脚作为 CKPWRGD 引脚使用。初次加电后,若 CKPWRGD
引脚电位低,则输入将被禁用,但晶体振荡器和 I2C 逻辑将激活。 CKPWRGD 引脚由时钟芯片采样为高时,引脚发
挥 PDB 功能。引脚发挥 PDB 功能且被拉低时,设备将进入掉电模式。 CKPWRGD/PDB 引脚虽然有一个内置
100 k 电阻,但仍需要随时处于驱动状态。
2.3. PDB (掉电)断言
PDB 引脚是用于以无干扰的方式禁用所有输出时钟的异步低电平输入。掉电模式下所有输出均将被拉低。在掉电模
式下,所有输出、晶体振荡器以及 I2C 逻辑都将被禁用。
2.4. PDB 无效置位
CKPWRGD/PDB 引脚上应用有效上升沿时,将在两到六个输出时钟周期内以无干扰方式启用所有输出。
2.5. OE 引脚
OE 引脚是用于启用和禁用输出时钟的有效高输入。要启用输出时钟, OE 引脚和 I2C OE 位应为逻辑高。默认情况
下, OE 引脚和 I2C OE 位即设置为逻辑高。有两种禁用输出时钟的方法:将 OE 拉到逻辑低,或将 I2C OE 位设置
为逻辑低。 OE 引脚虽然有一个内置 100 k 电阻,但仍需要随时处于驱动状态。
2.6. OE 断言
OE 引脚是用于分别同步停止和启动输出时钟而其他时钟发生器继续发生作用时的高电平输入。OE 断言功能是通过
将 OE 引脚和 I2C OE 位拉高使各个停止的输入恢复正常运行实现的。时钟恢复时不会产生短时或延长的时钟脉冲。
从断言到有效输出的最高延迟不超过二到六个输出时钟周期。
2.7. OE 无效置位
OE 功能是通过将引脚或 I2C OE 位设置为逻辑低实现的。相应的输出将完全停止且最终输出状态被拉低。
2.8. SSON 引脚
SSON 是用于在输出上启用 –0.5% 扩频的有效输入。采样高时,输出时钟上即启用 –0.5% 扩频。采样低时,输出时
钟不扩频。
8
??? 1.2
Si52147
3. 测试和测量设置
图 3 显示 HCSL 兼容输出时钟的测试负载配置。
M e a s u re m e n t
P o in t
L1
O U T+
5 0
2 pF
L1 = 5"
M e a s u re m e n t
P o in t
L1
O U T-
5 0
2 pF
Figure 3. 0.7 V Differential Load Configuration
关于如何终止 LVDS、 LVPECL 或 CML 信号水平的差分输出的建议,请见应用注释 AN781。
Figure 4. Differential Output Signals (for AC Parameters Measurement)
??? 1.2
9
Si52147
VMIN = –0.30V
VMIN = –0.30V
Figure 5. Single-ended Measurement for Differential Output Signals
(for AC Parameters Measurement)
10
??? 1.2
Si52147
4. 控制寄存器
4.1. I2C 接口
为提高时钟合成器的灵活性和功能,可使用 I2C 接口。通过 I2C 接口可使用各种设备功能,如启用单个时钟输出。与
I2C 接口相关的寄存器在加电时初始化为默认设置。此接口的使用是可选的。若需要更改时钟寄存器,则这种更改通
常是在系统初始化时进行的。
4.2. 数据协议
时钟驱动器 I2C 协议可接受控制器的写字节、读字节、写块和读块操作。写 / 读块操作是从最低到最高按顺序访问各
字节 (从最高有效位开始) ,并有在传输完任何完整字节后停止的能力。对于写字节和读字节操作,系统控制器可
访问独立索引的字节。
写块和读块协议请见 表 5,写字节和读字节协议请见 表 6。从接收器地址为 11010110 (D6h)。
Table 5. Block Read and Block Write Protocol
Block Write Protocol
Bit
1
8:2
Block Read Protocol
Description
Bit
1
Start
8:2
Slave address—7 bits
Description
Start
Slave address–7 bits
9
Write
9
Write
10
Acknowledge from slave
10
Acknowledge from slave
18:11
Command Code—8 bits
18:11
19
Acknowledge from slave
19
Acknowledge from slave
Byte Count—8 bits
20
Repeat start
27:20
28
36:29
37
45:38
Acknowledge from slave
27:21
Command Code–8 bits
Slave address–7 bits
Data byte 1–8 bits
28
Read = 1
Acknowledge from slave
29
Acknowledge from slave
Data byte 2–8 bits
46
Acknowledge from slave
....
Data Byte/Slave Acknowledges
....
Data Byte N–8 bits
....
Acknowledge from slave
....
Stop
37:30
38
46:39
47
55:48
??? 1.2
Byte Count from slave–8 bits
Acknowledge
Data byte 1 from slave–8 bits
Acknowledge
Data byte 2 from slave–8 bits
56
Acknowledge
....
Data bytes from slave/Acknowledge
....
Data Byte N from slave–8 bits
....
NOT Acknowledge
....
Stop
11
Si52147
Table 6. Byte Read and Byte Write Protocol
Byte Write Protocol
Bit
1
8:2
Byte Read Protocol
Description
Bit
Start
1
Slave address–7 bits
8:2
Start
Slave address–7 bits
9
Write
9
Write
10
Acknowledge from slave
10
Acknowledge from slave
18:11
19
27:20
Command Code–8 bits
18:11
Command Code–8 bits
Acknowledge from slave
19
Acknowledge from slave
Data byte–8 bits
20
Repeated start
28
Acknowledge from slave
29
Stop
27:21
??? 1.2
Slave address–7 bits
28
Read
29
Acknowledge from slave
37:30
12
Description
Data from slave–8 bits
38
NOT Acknowledge
39
Stop
Si52147
Control Register 0. Byte 0
Bit
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
D2
D1
D0
DIFF1_OE
DIFF2_OE
DIFF3_OE
R/W
R/W
R/W
Name
Type
重置设置 = 00000000
Bit
Name
Function
7:0
Reserved
Control Register 1. Byte 1
Bit
D7
D6
D5
Name
Type
D4
D3
DIFF0_OE
R/W
R/W
R/W
R/W
R/W
重置设置 = 00010111
Bit
Name
7:5
Reserved
4
DIFF0_OE
3
Reserved
2
DIFF1_OE
Function
Output Enable for DIFF0.
0: Output disabled.
1: Output enabled.
Output Enable for DIFF1.
0: Output disabled.
1: Output enabled.
1
DIFF2_OE
Output Enable for DIFF2.
0: Output disabled.
1: Output enabled.
0
DIFF3_OE
Output Enable for DIFF3.
0: Output disabled.
1: Output enabled.
??? 1.2
13
Si52147
Control Register 2. Byte 2
Bit
D7
D6
D5
D4
D3
Name
DIFF4_OE
DIFF5_OE
DIFF6_OE
DIFF7_OE
DIFF8_OE
Type
R/W
R/W
R/W
R/W
R/W
重置设置 = 11111000
14
Bit
Name
Function
7
DIFF4_OE
Output Enable for DIFF4.
0: Output disabled.
1: Output enabled.
6
DIFF5_OE
Output Enable for DIFF5.
0: Output disabled.
1: Output enabled.
5
DIFF6_OE
Output Enable for DIFF6.
0: Output disabled.
1: Output enabled.
4
DIFF7_OE
Output Enable for DIFF7.
0: Output disabled.
1: Output enabled.
3
DIFF8_OE
Output Enable for DIFF8.
0: Output disabled.
1: Output enabled.
2:0
Reserved
??? 1.2
D2
D1
D0
R/W
R/W
R/W
Si52147
Control Register 3. Byte 3
Bit
D7
D6
Name
Type
D5
D4
D3
Rev Code[3:0]
R/W
R/W
R/W
D2
D1
D0
Vendor ID[3:0]
R/W
R/W
R/W
R/W
R/W
D3
D2
D1
D0
R/W
R/W
R/W
R/W
重置设置 = 00001000
Bit
Name
Function
7:4
Rev Code[3:0]
Program Revision Code.
3:0
Vendor ID[3:0]
Vendor Identification Code.
Control Register 4. Byte 4
Bit
D7
D6
D5
D4
Name
Type
BC[7:0]
R/W
R/W
R/W
R/W
重置设置 = 00000110
Bit
Name
7:0
BC[7:0]
Function
Byte Count Register.
??? 1.2
15
Si52147
Control Register 5. Byte 5
Bit
D7
D6
D5
D4
D3
D2
D1
D0
R/W
R/W
R/W
R/W
Name DIFF_Amp_Sel DIFF_Amp_Cntl[2] DIFF_Amp_Cntl[1] DIFF_Amp_Cntl[0]
Type
R/W
R/W
R/W
R/W
重置设置 = 11011000
Bit
Name
7
DIFF_Amp_Sel
Function
Amplitude Control for DIFF Differential Outputs.
0: Differential outputs with Default amplitude.
1: Differential outputs amplitude is set by Byte 5[6:4].
16
6
DIFF_Amp_Cntl[2]
5
DIFF_Amp_Cntl[1]
4
DIFF_Amp_Cntl[0]
3:0
Reserved
DIFF Differential Outputs Amplitude Adjustment.
000: 300 mV 001: 400 mV 010: 500 mV 011: 600 mV
100: 700 mV 101: 800 mV 110: 900 mV 111: 1000 mV
??? 1.2
Si52147
NC
NC
VSS_DIFF
VSS_CORE
NC
NC
XIN/CLKIN
XOUT
VDD_CORE
CKPWRGD/PDB1
SDATA
SCLK
5. 引脚描述:48 引脚 QFN
48
47
46
45
44
43
42
41
40
39
38
37
VDD_DIFF
1
36
DIFF8
VDD_DIFF
2
35
DIFF8
OE_DIFF0 1
3
34
VDD_DIFF
OE_DIFF1 1
4
33
DIFF7
SSON 2
5
32
DIFF7
VSS_DIFF
6
31
DIFF6
VSS_DIFF
7
30
DIFF6
OE_DIFF2 1
8
29
VSS_DIFF
OE_DIFF3 1
9
28
DIFF5
OE_DIFF[4:5]1
10
27
DIFF5
OE_DIFF[6:8]1
11
26
DIFF4
VDD_DIFF
12
49
GND
17
18
19
20
21
VSS_DIFF
DIFF1
DIFF1
DIFF2
DIFF2
DIFF3
22
23
24
VSS_DIFF
16
VDD_DIFF
15
DIFF3
14
DIFF0
VDD_DIFF
13
DIFF0
25 DIFF4
Notes:
1. Internal 100 kohm pull-up.
2. Internal 100 kohm pull-down.
.
Table 7. Si 52147 48-Pin QFN Descriptions
Pin #
Name
Type
Description
1
VDD_DIFF
PWR 3.3 V Power Supply
2
VDD_DIFF
PWR 3.3 V Power Supply
3
OE_DIFF0
I,PU
Active high input pin enables DIFF0 (internal 100 k pull-up).
4
OE_DIFF1
I,PU
Active high input pin enables DIFF1 (internal 100 k pull-up).
5
SSON
I, PD
Active high input pin enables –0.5% spread on DIFF clocks (internal
100 k pull-down)
6
VSS_DIFF
GND
Ground
7
VSS_DIFF
GND
Ground
??? 1.2
17
Si52147
Table 7. Si 52147 48-Pin QFN Descriptions (Continued)
Pin #
Name
Type
8
OE_DIFF2
I,PU
Active high input pin enables DIFF2 (internal 100 k pull-up).
9
OE_DIFF3
I,PU
Active high input pin enables DIFF3 (internal 100 k pull-up).
10
OE_DIFF[4:5]
I,PU
Active high input pin enables DIFF[4:5] (internal 100 k pull-up).
11
OE_DIFF[6:8]
I,PU
Active high input pin enables DIFF[6:8] (internal 100 k pull-up).
12
VDD_DIFF
PWR 3.3 V Power Supply
13
VDD_DIFF
PWR 3.3 V Power Supply
14
DIFF0
O, DIF 0.7 V, 100 MHz differential clock output
15
DIFF0
O, DIF 0.7 V, 100 MHz differential clock output
16
VSS_DIFF
17
DIFF1
O, DIF 0.7 V, 100 MHz differential clock output
18
DIFF1
O, DIF 0.7 V, 100 MHz differential clock output
19
DIFF2
O, DIF 0.7 V, 100 MHz differential clock output
20
DIFF2
O, DIF 0.7 V, 100 MHz differential clock output
21
DIFF3
O, DIF 0.7 V, 100 MHz differential clock output
22
DIFF3
O, DIF 0.7 V, 100 MHz differential clock output
23
VDD_DIFF
PWR 3.3V Power Supply
24
VSS_DIFF
GND
25
DIFF4
O, DIF 0.7 V, 100 MHz differential clock output
26
DIFF4
O, DIF 0.7 V, 100 MHz differential clock output
27
DIFF5
O, DIF 0.7 V, 100 MHz differential clock output
28
DIFF5
O, DIF 0.7 V, 100 MHz differential clock output
29
VSS_DIFF
30
DIFF6
O, DIF 0.7 V, 100 MHz differential clock output
31
DIFF6
O, DIF 0.7 V, 100 MHz differential clock output
32
DIFF7
O, DIF 0.7 V, 100 MHz differential clock output
33
DIFF7
O, DIF 0.7 V, 100 MHz differential clock output
34
VDD_DIFF
35
DIFF8
O, DIF 0.7 V, 100 MHz differential clock output
36
DIFF8
O, DIF 0.7 V, 100 MHz differential clock output
18
GND
GND
Description
Ground
Ground
Ground
PWR 3.3 V Power Supply
??? 1.2
Si52147
Table 7. Si 52147 48-Pin QFN Descriptions (Continued)
Pin #
Name
Type
Description
2
37
SCLK
I
I C compatible SCLOCK
38
SDATA
I/O
39
CKPWRGD/PDB
I, PU
40
VDD_CORE
41
XOUT
O
25.00 MHz crystal output, Float XOUT if using only CLKIN (Clock input).
42
XIN/CLKIN
I
25.00 MHz crystal input or 3.3 V, 25 MHz Clock Input.
43
NC
NC
No Connect
44
NC
NC
No Connect
45
VSS_CORE
GND
Ground
46
VSS_DIFF
GND
Ground
47
NC
NC
No Connect
48
NC
NC
No Connect
49
GND
GND
I2C compatible SDATA
Active low input pin asserts power down (PDB) and disables all outputs
(internal 100 k pull-up).
PWR 3.3 V Power Supply
Ground for bottom pad of the IC.
??? 1.2
19
Si52147
6. 订购指南
Part Number
Package Type
Temperature
Si52147-A01AGM
48-pin QFN
Industrial, –40 to 85 C
Si52147-A01AGMR
48-pin QFN—Tape and Reel
Industrial, –40 to 85 C
Lead-free
20
??? 1.2
Si52147
7. 封装外形
图 6 说明 Si52147 的封装详细信息。表 8 列出插图中的尺寸值。
Figure 6. 48-Pin Quad Flat No Lead (QFN) Package
Table 8. Package Diagram Dimensions
Symbol
Millimeters
Min
Nom
Max
A
0.70
0.75
0.80
A1
0.00
0.025
0.05
b
0.15
0.20
0.25
D
D2
6.00 BSC
4.30
4.40
e
0.40 BSC
E
6.00 BSC
4.50
E2
4.30
4.40
4.50
L
0.30
0.40
0.50
aaa
0.10
bbb
0.10
ccc
0.08
ddd
0.07
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise
noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
??? 1.2
21
Si52147
文档修改列表
修订版 0.1 至修订版 1.0







更新引脚输出。
更新表 2。
更新第 2.1 节。
更新第 2.1.1 节。
更新第 2.2-2.8 节。
更新第 4.2 节。
更新表 7。
修订版 1.0 至修订版 1.1

从表 3 删除了湿敏度规格。
修订版 1.1 至修订版 1.2


22
更新了表 2。
更新了第 3 节。
??? 1.2
Si52147
注意:
??? 1.2
23
ClockBuilder Pro
One-click access to Timing tools,
documentation, software, source
code libraries & more. Available for
Windows and iOS (CBGo only).
www.silabs.com/CBPro
Timing Portfolio
www.silabs.com/timing
SW/HW
Quality
Support and Community
www.silabs.com/CBPro
www.silabs.com/quality
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com