Download Datasheet

L99DZ80EP
Door actuator driver
Features
■
One full bridge for 6 A load (RON = 150 mΩ)
■
Two half bridges for 3 A load (RON = 300 mΩ)
■
Two half bridges for 0.5 A load
(RON = 1600 mΩ)
*$3*&)7
TQFP-64
■
One high-side driver for 5 A load
(RON = 100 mΩ)
■
One configurable high-side driver for up to
1.5 A (RON = 500 mΩ) or 0.35 A
(RON = 1600 mΩ) load
■
One configurable high-side driver for 0.7 A
(RON = 800 mΩ) or 0.35 A (RON = 1600 mΩ)
load
■
Two high-side drivers for 0.5 A load
(RON = 1600 mΩ)
■
Programmable softstart function to drive loads
with higher inrush currents as current limitation
value
■
Very low VS current consumption in standby
mode (IS < 6 µA typ; Tj ≤ 85 °C)
■
Current monitor output for all high-side drivers
■
Central two-stage charge pump
■
Motor bridge driver with full Rdson down to 6 V
■
Device contains temperature warning and
protection
■
Open-load detection for all outputs
■
Overcurrent protection for all outputs
■
Separated half bridges for door lock motor
■
Programmable PWM control of all outputs
■
STM standard serial peripheral interface (STSPI 3.1)
■
Control block for electrochromic element
■
Electrochromic element can be negatively
discharged
■
Prepared for additional fail-safe path for
H-bridge
September 2013
Applications
■
Door actuator driver with 6 bridges for double
door lock control, mirror fold and mirror axis
control, high-side driver for mirror defroster,
bulbs and LEDs.
■
Control block with external MOS transistor for
charging / discharging of electrochromic glass.
Motor bridge driver.
■
H-bridge control for external power transistors
Description
The L99DZ80EP is a microcontroller driven
multifunctional door actuator driver for automotive
applications. Up to five DC motors and five
grounded resistive loads can be driven with six
half bridges and five high-side drivers. Four
external MOS transistors in bridge configuration
can be driven. An electrochromic mirror glass can
be controlled using the integrated SPI-driven
module in conjunction with an external MOS
transistor. The mirror glass can also be
discharged through a negative supply. The
integrated SPI controls all operating modes
(forward, reverse, brake and high impedance).
Also all diagnostic information is available via SPI
read.
Table 1.
Device summary
Order codes
Package
TQFP-64
Doc ID 18260 Rev 5
Tray
Tape and reel
L99DZ80EP
L99DZ80EPTR
1/68
www.st.com
1
Contents
L99DZ80EP
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1
3
2/68
TQFP-64 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6
Outputs OUT1 - OUT11, ECV, ECFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7
H-bridge driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8
Electrochrome mirror driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9
SPI / logic – electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1
Dual power supply: VS and VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2
Wake up and Active mode/standby mode . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4
Diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5
Overvoltage and undervoltage detection at VS . . . . . . . . . . . . . . . . . . . . 32
3.6
Overvoltage and undervoltage detection at VCC . . . . . . . . . . . . . . . . . . . 33
3.7
Temperature warning and shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8
Inductive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9
Open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10
Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.11
Current monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.12
PWM mode of the power outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.13
Cross-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.14
Programmable soft-start function to drive loads with higher inrush
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.15
H-bridge control (DIR, PWMH, bits SD, SDS) . . . . . . . . . . . . . . . . . . . . . 36
3.16
H-bridge driver slew-rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Doc ID 18260 Rev 5
L99DZ80EP
4
Contents
3.17
Resistive low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.18
Short circuit detection/drain source monitoring . . . . . . . . . . . . . . . . . . . . 38
3.19
H-bridge monitoring in off-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.20
Programmable cross current protection . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.21
Controller of electrochromic glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.22
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Functional description of the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1
4.2
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.1
Chip Select Not (CSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.2
Serial Data In (DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.3
Serial Clock (CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.4
Serial Data Out (DO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.5
SPI communication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1
4.3
5
6
Operation code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Device memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
SPI - control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1
Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2
Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3
Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4
Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5
Control Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.6
Control Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.7
Control Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.8
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.9
Status Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10
Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.11
Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.12
Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1
ECOPACK® package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2
TQFP-64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Doc ID 18260 Rev 5
3/68
Contents
L99DZ80EP
6.3
7
4/68
TQFP-64 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Doc ID 18260 Rev 5
L99DZ80EP
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Package thermal impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Overvoltage and undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Current monitor output (CM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
On-resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Power outputs switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Current monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Gate drivers for the external Power-MOS (H-bridge) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Gate drivers for the external Power-MOS switching times . . . . . . . . . . . . . . . . . . . . . . . . . 21
Drain source monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Open-load monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Electrochrome mirror driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Delay time from Standby to Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Inputs: DI, CSN, CLK, DIR and PWMH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AC-Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
H-bridge control truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
H-bridge DS-monitor threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Cross-current protection time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Operation code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
RAM memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
ROM memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Global status byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Control Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Control Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Control Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Status Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
TQFP-64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Doc ID 18260 Rev 5
5/68
List of figures
L99DZ80EP
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
6/68
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
TQFP-64 2 layer PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
TQFP-64 4 layer PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
TQFP-64 thermal impedance junction to ambient vs PCB copper area . . . . . . . . . . . . . . . 14
IGHxr ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
IGHxf ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
H-driver delay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SPI timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SPI input and output timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SPI delay description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Power-output (OUT<11:1>, ECV, ECFD) timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Overcurrent recovery mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
H-bridge GSHx slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
H-bridge diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
H-bridge open-load detection (no open-load detected) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
H-bridge open-load detection (open-load detected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
H-bridge open-load detection (short to ground detected) . . . . . . . . . . . . . . . . . . . . . . . . . . 41
H-bridge open-load detection with H-OLTH HIGH = ‘1’ (short to VS detected) . . . . . . . . . 41
Electrochrome mirror driver with mirror referenced to ground . . . . . . . . . . . . . . . . . . . . . . 43
Electrochrome mirror driver with mirror referenced to ECFD for negative discharge . . . . . 44
Write and read SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
TQFP-64 package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
TQFP-64 power lead-less tray shipment (no suffix) (part 1) . . . . . . . . . . . . . . . . . . . . . . . . 61
TQFP-64 power lead-less tray shipment (no suffix) (part 2) . . . . . . . . . . . . . . . . . . . . . . . . 62
TQFP-64 power lead-less tape and reel shipment (suffix “TR”) (part 1). . . . . . . . . . . . . . . 63
TQFP-64 power lead-less tape and reel shipment (suffix “TR”) (part 2). . . . . . . . . . . . . . . 64
Doc ID 18260 Rev 5
L99DZ80EP
Block diagram and pin description
1
Block diagram and pin description
Figure 1.
Block diagram
9%$7
aQ)
aQ)
!N
96
&33
&3
Pё
&30
&33
aQ)
/30
&KDUJH
3XPS
Pё
&30
Pё
0
287
0
287
0
287
Pё
*+
!
6+
0
*/
!
!
6/
)62
[
63,
DGMXVWDEOH
6OHZ
5DWH
63,
)DLO6DIH
&LUFXLWU\
9&&
3:0+
N
N
N
N
N
63&'
',5
&61
&/.
',
'2
63,,QWHUIDFH
72:DWFKGRJ
N
Pё
'ULYHU,QWHUIDFH/RJLF'LDJQRVWLF
!
:LQGRZ
:DWFKGRJ
!)DLO6DIH
287
287
Pё 287
0
0
Pё
:DWW%XOE
287
Pё
287
:DWW%XOE
Pё
Pё
287
287
Pё
287
(&'5
(&*ODVV
&RQWURO%ORFN
Q)
Q)
%,763,FRQWUROOHG
N
&0
&0
08;
(&9
Pё
(&)'
*1'
*$3*&)7
Doc ID 18260 Rev 5
7/68
Block diagram and pin description
Table 2.
8/68
L99DZ80EP
Pin definitions and functions
Pin
Symbol
57, 58
GND1
17, 18,
26, 31, 32
GND2
17
SGND
2, 3, 45,
46, 51, 52
VS1
11, 12, 23,
36, 37
VS2
Function
Ground: reference potential. GND1 and GND2 are internally connected.
GND1 supplies OUT1-3, GND2 supplies OUT4-6
Important: For the capability of driving the full current at the outputs, all
pins of GND must be externally connected!
Signal Ground: this pin is shared with GND2 pin
Power supply voltage for power stage outputs (external reverse
protection required): for this input a ceramic capacitor as close as
possible to GND is recommended. VS1 supplies OUT1-3, OUT7-11 and
the internal VS supply, VS2 supplies OUT4-6
Important: For the capability of driving the full current at the outputs all
pins of VS must be externally connected!
High-side-driver output 11: the output is built by a high-side switch and is
intended for resistive loads, hence the internal reverse diode from GND
to the output is missing. For ESD reason a diode to GND is present but
the energy which can be dissipated is limited. The High-side driver is a
power DMOS transistor with an internal parasitic reverse diode from the
output to VS (bulk-drain-diode). The output is overcurrent and open load
protected.
Important: For the capability of driving the full current at the outputs all
pins of OUT11 must be externally connected!
48, 49, 50
OUT11
59, 60
OUT1
56
OUT2
55
OUT3
19, 20,
21, 22
OUT4
27, 28,
29, 30
OUT5
24, 25
OUT6
40
DO
Serial data output: the diagnosis data is available via the SPI and this
3-state-output. The output remains in 3-state, if the chip is not selected by
the input CSN (CSN = high).
34
CM
Current monitor output: depending on the selected multiplexer bits of the
Control Register this output sources an image of the instant current
through the corresponding high side driver with a fixed ratio.
35
CSN
Chip-Select-Not input: this input is low active and requires CMOS logic
levels. The serial data transfer between the device and the micro
controller is enabled by pulling the input CSN to low level.
41
DI
Serial data input: the input requires CMOS logic levels and receives serial
data from the microcontroller. The data is a 24 bit control word and the
most significant bit (MSB, bit 23) is transferred first.
38
CLK
Serial clock input: this input controls the internal shift register of the SPI
and requires CMOS logic levels.
33
DIR
Direction Input: this input controls the H-Bridge Drivers
Half-bridge outputs 1,2,3,4,5,6: the output is built by a high side and a low
side switch, which are internally connected. The output stage of both
switches is a power DMOS transistor. Each driver has an internal
parasitic reverse diode (bulk-drain-diode: high side driver from output to
VS, low side driver from GND to output). This output is over current and
open load protected.
Doc ID 18260 Rev 5
L99DZ80EP
Block diagram and pin description
Table 2.
Pin definitions and functions (continued)
Pin
Symbol
Function
39
VCC
Supply Voltage: 5 V supply. A ceramic capacitor as close as possible to
GND is recommended.
44
OUT9
High-side-driver output 9: the output is built by a high side switch and is
intended for resistive loads; hence the internal reverse diode from GND
to the output is missing. For ESD reason a diode to GND is present but
the energy which can be dissipated is limited. The high-side driver is a
power DMOS transistor with an internal parasitic reverse diode from the
output to VS (bulk-drain-diode). The output is over current and open load
protected.
42
PWMH
PWMH input: this input signal can be used to control the H-Bridge Gate
drivers
43
ECDR
ECDR: using the device in EC control mode this pin is used to control the
Gate of an external MOSFET.
62, 63
OUT7
61
OUT8
47
OUT10/EC
High-side-driver-output 10: see OUT9
Important: Beside the OUT10-HS on/off bit this output can be switched on
setting the ECON bit for electrochrome control mode with higher priority.
54
ECFD
ECFD: using the device in EC control mode this pin is used as “virtual
GND” for the EC-glass. For EC-glasses, that require a negative discharge
voltage, this supplies the fast discharge voltage. If no EC-glass is used,
this pin must be connected to ground.
53
ECV
ECV: using the device in EC control mode this pin is used as voltage
monitor input. For fast discharge an additional low-side-switch is
implemented.
13
GH2
GH2: gate driver for power MOS high side switch in half-bridge 2
14
SH2
SH2: source of high-side switch in half-bridge 2
15
GL2
GL2: gate driver for power MOS low side switch in half-bridge 2
16
SL2
SL2: source of low side switch in half-bridge 2
64
GH1
GH1: gate driver for power MOS high side switch in half-bridge 1
1
SH1
SH1: source of high-side switch in half-bridge 1
4
GL1
GL1: gate driver for power MOS low side switch in half-bridge 1
5
SL1
SL1: source of low side switch in half-bridge 1
7
CP1P
CP1P: charge pump pin for capacitor 1, positive side
8
CP1M
CP1M: charge pump pin for capacitor 1, negative side
9
CP2P
CP2P: charge pump pin for capacitor 2, positive side
10
CP2M
CP2M: charge pump pin for capacitor 2, negative side
6
CP
High side driver output 8: see OUT9
Important: This output can be configured to supply a bulb with low onresistance or a LED with higher on-resistance in a different application.
CP: charge pump output
Doc ID 18260 Rev 5
9/68
Block diagram and pin description
6+
287
287
96
96
(&9
(&)'
287
287
*1'
*1'
287
287
287
287
287
Pin connection (top view)
*+
Figure 2.
L99DZ80EP
287
96
287
96
96
*/
96
6/
287
&3
(&'5
3:0+
&33
&30
',
74)3
&33
'2
&30
9&&
96
&/.
96
96
*+
96
6+
&61
*/
&0
*1'
287
287
287
287
*1'
287
96
287
287
287
287
*1'
287
*1'6*1'
',5
*1'
6/
*$3*&)7
10/68
Doc ID 18260 Rev 5
L99DZ80EP
Electrical specifications
2
Electrical specifications
2.1
Absolute maximum ratings
Stressing the device above the rating listed in the “Absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality document.
Table 3.
Absolute maximum ratings
Value
[DC Voltage]
Unit
DC supply voltage
-0.3 to +28
V
Single pulse / tmax < 400 ms “transient load dump”
-0.3 to +40
V
-0.3 to VS + 0.3
V
-0.3 to VCC + 0.3
V
-0.3 to VS + 0.3
V
-6 to 40
V
VSxy - 1 to VSxy + 10;
VCP + 0.3
V
Symbol
VS1, VS2
VCC
Parameter/test condition
Stabilized supply voltage, logic supply
VDI, VCLK, VCSN, VDO,
Logic input / output voltage range
VCM, VDIR, VPWMH, VDIR
VOUTn, ECDR, ECV, ECFD
Output voltage (n = 1 to 11)
VSL1, VSH1, VSL2, VSH2
(VSxy)
High voltage signal pins
VGL1, VGH1, VGL2, VGH2
High voltage signal pins
(VGxy)
VCP1P
High voltage signal pins
VS - 0.3 to VS + 10
V
VCP2P
High voltage signal pins
VS - 0.6 to VS + 10
V
VCP1M, VCP2M
High voltage signal pins
-0.3 to VS + 0.3
V
High voltage signal pin
VS1,2 ≤ 26 V
VS - 0.3 to VS + 14
V
VCP
VS1,2 > 26 V
VS - 0.3 to +40
V
±1.25
A
±5
A
IOUT2,3,9,10, ECV, ECFD
IOUT1,6,7
IOUT7
Output current
Output
(1)
current(1) (low
on-resistance mode)
Output current(1) (high on-resistance mode)
±5
A
Output
current(1)
±2.5
A
Output
current(1)
±10
A
IOUT11
Output
current(1)
±7.5
A
IVS1cum
Maximum cumulated input current at VS1 pins(1)
±12.5
A
IVS2cum
pins(1)
±12.5
A
±5
A
±12.5
A
IOUT8
IOUT4,5
IGND1cum
IGND2cum
Maximum cumulated input current at VS2
Maximum cumulated output current at GND1
pins(1)
(1)
Maximum cumulated output current at GND2 pins
1. Values for the absolute maximum DC current through the bond wires. This value does not consider maximum power
dissipation or other limits.
Doc ID 18260 Rev 5
11/68
Electrical specifications
2.2
L99DZ80EP
ESD protection
Table 4.
ESD protection
Parameter
Value
Unit
All pins
±2
(1)
kV
Power output pins: OUT1 – OUT11, ECV, ECFD
±4(1)
kV
1. HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114-A.
2.3
Thermal data
Table 5.
Operating junction temperature
Symbol
Tj
Table 6.
Operating junction temperature
Parameter
TjTW ON
Temperature warning threshold
(junction temperature)
TjTS ON
Thermal shutdown threshold
(junction temperature)
Tjtft
Thermal warning / shutdown
filter time
Symbol
Rthj-amb
Value
Unit
-40 to 150
°C
Temperature warning and thermal shutdown
Symbol
Table 7.
12/68
Parameter
Test condition
Min.
Typ.
Max.
Unit
130
150
°C
150
170
°C
32
µs
Package thermal impedance
Parameter
Thermal resistance junction to ambient (max)
Doc ID 18260 Rev 5
Value
Unit
See Figure 5
K/W
L99DZ80EP
Electrical specifications
2.4
Package and PCB thermal data
2.4.1
TQFP-64 thermal data
Figure 3.
TQFP-64 2 layer PCB
*$3*&)7
Figure 4.
TQFP-64 4 layer PCB
*$3*&)7
Note:
Layout condition of Rth and Zth measurements (board finish thickness 1.6 mm +/- 10%,
board double layer and four layers, board dimension 77 mm x114 mm, board material FR4,
Cu thickness 0.070mm (outer layers), Cu thickness 0.035mm (inner layers), thermal vias
separation 1.2 mm, thermal via diameter 0.3 mm +/- 0.08 mm, Cu thickness on vias
0.025 mm, footprint dimension 6 mm x 6 mm). 4-layer PCB: Cu on mid1 layer, Cu on mid2
layer and Cu on bottom layer: 62 cm2. Zth measured on the major power dissipator
contributor
Doc ID 18260 Rev 5
13/68
Electrical specifications
Figure 5.
L99DZ80EP
TQFP-64 thermal impedance junction to ambient vs PCB copper area
=7+ƒ&:
&X FP
&X FP
&X IRRWSULQW
/D\HU
7LPHV
*$3*&)7
14/68
Doc ID 18260 Rev 5
L99DZ80EP
2.5
Electrical specifications
Electrical characteristics
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V ≤ VS ≤ 18 V, 4.75 V ≤ VCC ≤ 5.5 V; all outputs open;
Tj = -40 °C to 150 °C, unless otherwise specified.
Table 8.
Supply
Symbol
Parameter
Test condition
VS
Operating voltage range
IVS(act)
Current consumption in
active mode
IVS(stby)
VCC
Current consumption in
standby mode
IVCC(stby) VCC standby current
Typ.
5
Max.
Unit
28
V
VS = 13.5 V(1)
5
10
mA
VS = 16 V; VCC = 5.3 V;
standby mode
OUT1 - OUT11; ECV;
ECDR floating
TTEST = -40 °C to 25 °C
4
12
µA
TTEST = 85 °C(1)
6
25
µA
5.5
V
Operating voltage range
IVCC(active) VCC supply current
Min.
4.5
VS = 16 V; VCC = 5.3 V;
CSN = VCC; active mode
OUT1 - OUT11; ECV;
ECDR floating
5
10
mA
VS = 16 V; VCC = 5.0 V;
CSN = VCC; active mode
OUT1 - OUT11; ECV;
ECFD ECDR floating
TTEST = -40 °C to 25 °C
3
6
µA
TTEST = 85 °C(1)
4
8
µA
25
µA
Max.
Unit
5.6
7.2
V
5
5.9
V
VS = 16 V; VCC = 5.3 V;
CSN = VCC; active mode
OUT1 - OUT11; ECV;
ECFD ECDR floating
TTEST = -40 °C to 125 °C
1. This parameter is guaranteed by design
Table 9.
Overvoltage and undervoltage detection
Symbol
Parameter
Test condition
voltage(1)
VSUV ON
VS UV threshold
VSUV OFF
VS UV threshold voltage(1) VS decreasing
VSUV hyst
tvsuvfilt
VS UV
hysteresis(1)
VS increasing
VSUV ON-VSUV OFF
VS UV filter time
voltage(1)
VSOV OFF
VS OV threshold
VSOV ON
VS OV threshold voltage(1) VS decreasing
VSOV hyst
Min.
VS OV
hysteresis(1)
VS increasing
VSOV OFF-VSOV ON
Doc ID 18260 Rev 5
Typ.
0.5
V
48
µs
18.5
24.5
V
18.0
23.5
V
1
V
15/68
Electrical specifications
Table 9.
L99DZ80EP
Overvoltage and undervoltage detection (continued)
Symbol
Parameter
tvsovfilt
VS OV filter time
VVCCRESHU
Upper VCC reset
threshold(2)
Test condition
Min.
Max.
48
VCC increasing
VVCCRESHD Upper VCC reset threshold VCC decreasing
VVCCRES
Typ.
Unit
µs
5.8
7.5
V
5.5
7.1
V
Upper reset hysteresis
VVCCRESHU - VVCCRESHD
VPOROFF
Power-on-reset threshold
VCC increasing
3.4
4.4
V
VPORON
Power-on-reset threshold
VCC decreasing
3.1
4.1
V
hysth
VPOR hystL
0.1
Power-on-reset hysteresis VPOROFFL - VPORONL
V
0.3
V
1. VS = 5V to 28V
2. If VCC exceeds this value all registers are reset and the device enters standby mode.
Table 10.
Current monitor output (CM)
Symbol
VCM
Parameter
Test condition
Functional voltage range
Min.
0
Current monitor output ratio:
ICM/IOUT1,4,5,6,11 and 7 (low onresistance)
ICM r
ICM/IOUT8 (low on-resistance)
Typ.
Max.
Unit
VCC - 1 V
V
1/10000
0 V ≤ VCM ≤ VCC - 1 V
1/6500
ICM/IOUT2,3,7,8,9,10 and 7,8 (high on-
1/2000
resistance)
Current monitor accuracy
accICMOUT1,4,5,6,11 and 7(low on-res.)
ICM acc
accICMOUT2,3,8,9,10 and 7(high on-res.)
tcmb
0 V ≤ VCM ≤ VCC - 1 V;
IOUTmin = 500 mA;
IOUT4,5max = 5.9 A;
IOUT11max = 4.9 A;
IOUT1,6max = 2.9 A;
IOUT7max = 1.4 A
0 V ≤ VCM ≤ VCC - 1 V;
IOUT.min = 100 mA;
IOUT2,3,9,10max = 0.4A;
IOUT7max = 0.3 A;
IOUT8(low rdson)max = 0.6 A;
IOUT8(high rdson)max = 0.3 A
Current monitor blanking time
4%+
1 % FS
8%+
2 % FS
(1)
(1)
32
µs
1. FS (full scale) = IOUTmax * ICMr
Table 11.
Symbol
VCP
16/68
Charge pump
Parameter
Charge pump output
voltage
Test condition
Min.
Typ.
Max.
Unit
VS = 6 V; ICP = -10 mA
VS + 6
VS + 7
VS + 7.85
V
VS ≥ 10 V; ICP = -15 mA
VS + 11
VS + 12 VS + 13.5
V
Doc ID 18260 Rev 5
L99DZ80EP
Electrical specifications
Table 11.
Charge pump (continued)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
ICP
Charge pump output
current(1)
VCP = VS + 10 V;
VS = 13.5 V;
C1 = C2 = CCP = 100 nF
25
47
mA
ICPlim
Charge pump output
current limitation(2)
VCP = VS; VS = 13.5 V;
C1 = C2 = CCP = 100 nF
29
70
mA
VS + 5.4
V
VCP_low
TCP
Charge pump low
threshold voltage
VS + 4.6
Charge pump low filter
time
VS + 5
64
µs
1. ICP is the minimum current the device can provide to an external circuit without VCP going below VS + 10 V
2. ICPlim is the maximum current, which flows out of the device in case of a short to VS
2.6
Outputs OUT1 - OUT11, ECV, ECFD
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V ≤ VS ≤ 18 V, 4.75 V ≤ VCC ≤ 5.5 V; all outputs open;
Tj = -40 °C to 150 °C, unless otherwise specified.
Table 12.
Symbol
rON OUT1,6
rON OUT2,3
rON OUT4,5
On-resistance
Parameter
On-resistance to supply or
GND
On-resistance to supply or
GND
On-resistance to supply or
GND
On-resistance to supply in
low resistance mode
rON OUT7
On-resistance to supply in
high resistance mode
Test condition
Min.
Typ. Max. Unit
VS = 13.5 V; Tamb = +25 °C;
IOUT1,6 = ±1.5 A
300
400
mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUT1,6 = ±1.5 A
450
600
mΩ
VS = 13.5 V; Tamb = +25 °C;
IOUT2,3 = ±0.4 A
1600 2200 mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUT2,3 = ±0.4 A
2500 3400 mΩ
VS = 13.5 V; Tamb = +25 °C;
IOUT4,5 = ±3.0 A
150
200
mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUT4,5 = ±3.0 A
225
300
mΩ
VS = 13.5 V; Tamb = +25 °C;
IOUT7 = -0.8 A
500
700
mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUT7 = -0.8 A
700
950
mΩ
VS = 13.5 V; Tamb = +25 °C;
IOUT7 = -0.2 A
1600 2400 mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUT7 = -0.2 A
2500 3400 mΩ
Doc ID 18260 Rev 5
17/68
Electrical specifications
Table 12.
Symbol
L99DZ80EP
On-resistance (continued)
Parameter
On-resistance to supply in
low resistance mode
rON OUT8
On-resistance to supply in
high resistance mode
rON OUT9,10
rON OUT11
On-resistance to supply
On-resistance to supply
rON ECV,ECFD On-resistance to GND
Test condition
800 1200 mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUT8 = -0.4 A
1200 1700 mΩ
VS = 13.5 V; Tamb = +25 °C;
IOUT8 = -0.2 A
1600 2400 mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUT8 = -0.2 A
2500 3400 mΩ
VS = 13.5 V; Tamb = +25 °C;
IOUT9,10 = -0.4 A
1600 2200 mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUT9,10 = -0.4 A
2500 3400 mΩ
VS = 13.5 V; Tamb = +25 °C;
IOUT11 = -3.0 A
100
140
mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUT11 = -3.0 A
140
190
mΩ
VS = 13.5 V; Tamb = +25 °C;
IOUTECV,ECFD = +0.4 A
1600 2200 mΩ
VS = 13.5 V; Tamb = +125 °C;
IOUTECV,ECFD = +0.4 A
2500 3400 mΩ
Switched-off output current VOUT = 0 V; standby mode
high side drivers of OUT1VOUT = 0 V; active mode
6,9-11
IQLH7,8
Switched-off output current VOUT = 0 V; standby mode
high side drivers of OUT7,8 V
OUT = 0 V; active mode
VOUT = VS; standby mode
Switched-off output current
low side drivers of OUT1-6 VOUT = VS - 0.5 V;
active mode
VOUT = VS; standby mode
Switched-off output current
VOUT = VS - 0.5 V;
low side drivers of ECV
active mode
Switched-off output current VOUT = 4 V; standby mode
low side drivers of ECFD
VOUT = 4 V; active mode
18/68
Typ. Max. Unit
VS = 13.5 V; Tamb = +25 °C;
IOUT8 = -0.4 A
IQLH
IQLL
Min.
Doc ID 18260 Rev 5
-5
-2
µA
-10.2
-7
µA
-5
-2
µA
-15
-10
µA
80
-10
-7
-15
-10
µA
µA
15
-7
80
-10
165
µA
µA
165
µA
10
µA
L99DZ80EP
Electrical specifications
Table 13.
Symbol
td ON H
td OFF H
td ON L
td OFF L
td HL
td LH
Power outputs switching times
Parameter
Test condition
Min. Typ. Max. Unit
Output delay time high side
driver on (all OUT except
OUT7,8)
10
40
80
µs
VS = 13.5 V; VCC = 5 V;
Output delay time high side
driver on (OUT7,8 in high RDSON corresponding low side
driver is not active(1)(2)(3)
mode)
15
35
60
µs
Output delay time high side
driver on (OUT7,8 in low RDSON
mode)
10
35
80
µs
50
150
300
µs
40
70
100
µs
VS = 13.5 V; VCC = 5 V;
Output delay time low side driver
corresponding low side
on
driver is not active(1)(2)(3)
15
30
70
µs
Output delay time low side driver VS = 13.5 V; VCC = 5 V
(1)(2)(3)
(OUT1-6) off
40
150
300
µs
Output delay time low side driver VS = 13.5 V;
VCC = 5 V(1)(2)(3)
(ECV, ECFD) off
15
45
88
µs
40
200
400
µs
0.08
0.2
0.6
V/µ
s
Output delay time high side
driver off (OUT1,4,5,6,11)
Output delay time high side
driver off (OUT2,3, 7,8,9,10)
Cross current protection time
(OUT1-6)
VS = 13.5 V;
VCC = 5 V(1)(2)(3)
tcc ONLS_OFFHS – td OFF H(4)
tcc ONHS_OFFLS – td OFF L(4)
dVOUT/dt
Slew rate of OUTx, ECV, ECFD
VS = 13.5 V;
VCC = 5 V(1)(2)(3)
fPWMx(low)
Low PWM switching frequency
VS = 13.5 V; VCC = 5 V
122
Hz
fPWMx(high)
High PWM switching frequency
VS = 13.5 V; VCC = 5 V
244
Hz
1. Rload = 16 Ω at OUT1,6 and OUT7,8 in low on-resistance mode
2. Rload = 4 Ω at OUT4,5,11
3. Rload = 64 Ω at OUT2,3,4,9,10 ECV, ECFD and OUT7,8 in high on-resistance mode
4. tCC is the switch-on delay time if complement in half bridge has to switch off
Table 14.
Symbol
Current monitoring
Parameter
Test condition
|IOC1|,
|IOC6|
|IOC2|,
|IOC3|,
|IOCECFD|
Overcurrent threshold to supply
or GND
VS = 13.5 V;
VCC = 5 V; sink and
source
|IOC4|,
|IOC5|
Doc ID 18260 Rev 5
Min.
Typ.
Max.
Unit
3
5.3
A
0.5
1.0
A
6
9.2
A
19/68
Electrical specifications
Table 14.
Symbol
|IOC7|
L99DZ80EP
Current monitoring (continued)
Parameter
|IOC9|,
|IOC10|
Typ.
Max.
Unit
1.5
2.5
A
Overcurrent threshold to supply
in high on-resistance mode
0.35
0.65
A
0.7
1.3
A
0.35
0.65
A
0.5
1.0
A
5
7.5
A
1.0
A
100
µs
Overcurrent threshold to supply
in high on-resistance mode
VS = 13.5 V;
VCC = 5 V;
source
Overcurrent threshold to supply
|IOC11|
|IOCECV|
Output current limitation to GND
VS = 13.5 V;
VCC = 5 V;
sink
0.5
tFOC
Filter time of overcurrent signal
Duration of
overcurrent condition
to set the status bit
10
frec0
Recovery frequency for OC;
recovery frequency bit = 0
1
4
kHz
frec1
Recovery frequency for OC;
recovery frequency bit = 1
2
6
kHz
|IOLD1|,
|IOLD6|
30
80
mA
10
20
30
mA
60
150
300
mA
Undercurrent threshold to supply
in low on-resistance mode
15
40
60
mA
Undercurrent threshold to supply
in high on-resistance mode
5
10
15
mA
10
30
45
mA
5
10
15
mA
10
20
30
mA
30
150
300
mA
VS = 13.5 V;
Undercurrent threshold to supply
VCC = 5 V;
or GND
|IOLDECFD|
sink and source
|IOLD4|,
|IOLD5|
|IOLD7|
|IOLD8|
Undercurrent threshold to supply V = 13.5 V;
S
in low on-resistance mode
VCC = 5 V;
Undercurrent threshold to supply source
in high on-resistance mode
|IOLD9|,
|IOLD10|
55
8
|IOLD2|,
|IOLD3|,
Undercurrent threshold to supply
|IOLD11|
20/68
Min.
Overcurrent threshold to supply
in low on-resistance mode
Overcurrent threshold to supply
in low on-resistance mode
|IOC8|
Test condition
Doc ID 18260 Rev 5
L99DZ80EP
Electrical specifications
Table 14.
Symbol
|IOLDECV|
tFOL
2.7
Current monitoring (continued)
Parameter
Test condition
Min.
Typ.
Max.
Unit
Undercurrent threshold to GND
VS = 13.5 V;
VCC = 5 V;
sink
10
20
30
mA
Filter time of open-load signal
Duration of openload condition to set
the status bit
0.5
2.0
3.0
ms
Typ.
Max.
Unit
H-bridge driver
Table 15.
Symbol
Gate drivers for the external Power-MOS (H-bridge)
Parameter
Test condition
Min.
Drivers for external high-side Power-MOS
IGHx(Ch)
RGHx
Average charge current
(charge stage)
On-resistance (dischargestage)
Tj = 25 °C
0.3
VSHx = 0 V; IGHx = 50 mA;
Tj = 25 °C
4
VSHx = 0 V; IGHx = 50 mA;
Tj = 125 °C
VGHxH
Gate-on voltage
Outputs floating
RGSHx
Passive gate-clamp
resistance
VGHx = 0.5 V
A
6
8
Ω
8
10
Ω
VSHx + VSHx + VSHx +
8
10
11.5
V
15
kΩ
0.3
A
Drivers for external low-side Power-MOS
IGLx(Ch)
RGLx
Average charge-current
(charge stage)
On-resistance (dischargestage)
VGHLx
Gate-on voltage
RGSLx
Passive gate-clamp
resistance
Table 16.
Symbol
Tj = 25 °C
VSLx = 0 V; IGHx = 50 mA;
Tj = 25 °C
VSLx = 0 V; IGHx = 50 mA;
Tj = 125 °C
Outputs floating
4
6
8
Ω
8
10
Ω
VSLx +
11.5
V
VSLx + VSLx +
8
10
15
kΩ
Gate drivers for the external Power-MOS switching times
Parameter
Test condition
Min. Typ. Max.
Unit
TG(HL)xHL
Propagation delay time high to VS = 13.5 V; VSHx = 0;
low (switch mode)(1)
RG = 0 Ω; CG = 2.7 nF
1.5
µs
TG(HL)xLH
Propagation delay time low to VS = 13.5 V; VSLx = 0;
high (switch mode)(1)
RG = 0 Ω; CG = 2.7 nF
1.5
µs
Doc ID 18260 Rev 5
21/68
Electrical specifications
Table 16.
L99DZ80EP
Gate drivers for the external Power-MOS switching times
Symbol
Parameter
Test condition
Unit
IGHxrmax
Maximum charge current
(current mode)
VS = 13.5 V; VSHx = 0;
VGHx = 1 V;
SLEW < 4:0 ≥ 1 FH
24.5
31
38.5
mA
IGHxfmax
Maximum discharge current
(current mode)
VS = 13.5 V; VSHx = 0;
VGHx = 2 V;
SLEW < 4:0 ≥ 1 FH
18.5
25
33
mA
dIIGHxr
Charge current accuracy
VS = 13.5 V; VSHx = 0;
VGHx = 1V
See Figure 6
dIIGHxf
Discharge current accuracy
VS = 13.5 V; VSHx = 0;
VGHx = 2 V
See Figure 7
Switching Voltage (VS - VSH)
VDSHxrSW between current mode and
switch mode (rising)
VTDSHxf(2)
Trigger Voltage to sample the
VGSH for switching between
switch mode and current
mode (falling)
VTGSHxacc Sampled trigger voltage
(2)
accuracy
VS = 13.5 V
1.5
V
VS = 13.5 V; VGHx = 4 V
1.5
V
VS = 13.5 V; VSHx = 0
1
V
t0GHxr
Rise time (switch mode)
VS = 13.5 V; VSHx = 0;
RG = 0 Ω; CG = 2.7 nF
45
ns
t0GHxf
Fall time (switch mode)
VS = 13.5 V; VSHx = 0;
RG = 0 Ω; CG = 2.7 nF
85
ns
t0GLxr
Rise time
VS = 13.5 V; VSLx = 0;
RG = 0 Ω; CG = 2.7 nF
45
ns
t0GLxf
Fall time
VS = 13.5 V; VSLx = 0;
RG = 0 Ω; CG = 2.7 nF
85
ns
tCCP
Programmable cross-current
protection time
fPWMH
VS = 13.5 V; VSLx = 0;
PWMH switching frequency(1) RG = 0 Ω; CG = 2.7 nF;
PWMH - duty cycle = 50 %
1. Without cross-current protection time tCCP
2. Parameter not tested, typical value validated by characterization.
22/68
Min. Typ. Max.
Doc ID 18260 Rev 5
0.1
5
µs
50
kHz
L99DZ80EP
Figure 6.
Electrical specifications
IGHxr ranges
,*+[UDFFXUDF\
FXUUUHQWLQP$
,*+[U0D[
,*+[U7\S
,*+[U0LQ
GDWDLQSXW
*$3*&)7
Figure 7.
IGHxf ranges
,*+[IDFFXUDF\
FXUUHQWLQP$
,*+[I0D[
,*+[I7\S
,*+[I0LQ
GDWDLQSXW
*$3*&)7
Doc ID 18260 Rev 5
23/68
Electrical specifications
Figure 8.
L99DZ80EP
H-driver delay times
7*+/[+/
7*+/[/+
9&613:0+',5
W
9&613:0+',5
W
9*6+/[
W
*$3*&)7
Table 17.
Symbol
24/68
Drain source monitoring
Parameter
Test condition
Min.
Typ.
Max.
Unit
VSCd1
Drain-source threshold voltage
VS = 13.5 V
0.3
0.5
0.7
V
VSCd2
Drain-source threshold voltage
VS = 13.5 V
0.8
1
1.2
V
VSCd3
Drain-source threshold voltage
VS = 13.5 V
1.2
1.5
1.8
V
VSCd4
Drain-source threshold voltage
VS = 13.5 V
1.6
2
2.4
V
tSCd
Drain-source monitor filter time
3
5.5
8
µs
tscs
Drain-source comparator
settling time
5
µs
VS = 13.5 V; VSH = jump
from GND to VS
Doc ID 18260 Rev 5
—
L99DZ80EP
Table 18.
Electrical specifications
Open-load monitoring
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
VODSL
Low-side drain-source monitor low
VSLx = 0 V; VS = 13.5 V
off-threshold voltage
0.14 * VS 0.18 * VS
0.21 * VS
V
VODSH
Low-side drain-source monitor
high off-threshold voltage
VSLx = 0 V; VS = 13.5 V
0.75 * VS 0.85 * VS
0.95 * VS
V
VOLSHx
Output voltage of selected SHx in
open-load test mode
VSLx = 0 V; VS = 13.5 V
0.5 * VS
V
RpdOL
Pull-down resistance of the nonselected SHx pin in open-load
mode
VSLx = 0 V; VS = 13.5 V;
VSHX = 4.5 V
20
kΩ
2
ms
TOL
Open-load filter time
2.8
Electrochrome mirror driver
Table 19.
Electrochrome mirror driver
Symbol
Parameter
VCTRLmax
Maximum EC-control voltage
(2)
DNLECV
IdVECVI
dVECVnr
dVECVhi
Test condition
Min.
Typ.
Max.
Unit
Bit0 = 1 control reg. 2(1)
1.4
1.6
V
2(1)
1.12
1.28
V
-1
1
LSB(3)
-5 % 1LSB(3)
+5 % +
1LSB(3)
mV
Bit0 = 0 control reg.
Differential non linearity
Voltage deviation between
target and ECV
dVECV = Vtarget(4) - VECV;
IIECDRI < 1 µA
Difference voltage below it
between target and
ECV sets flag if
above it
VECV is
dVECV = Vtarget(4) - VECV;
toggle bitx = 1 status reg. x
120
mV
-120
mV
tFECVNR
ECVNR filter time
32
µs
tFECVHI
ECVHI filter time
32
µs
VECDRminHIGH
Output voltage range
VECDRmaxLOW
IECDR = -10 µA
4.5
5.5
V
IECDR = 10 µA
0
0.7
V
Vtarget > VECV + 500 mV;
VECDR = 3.5 V
-100
-10
µA
Vtarget(4) < VECV - 500 mV;
VECDR = 1.0 V; Vtarget = 0 V;
VECV = 0.5 V
10
100
µA
10
kΩ
-1
1
LSB(3)
-5 %1LSB(3)
+5 %+
1LSB(3)
mV
(4)
IECDR
Recdrdis
DNLECFD(2)
IdVECFDI
Current into ECDR
Pull-down resistance at ECDR
VECDR = 0.7 V; ECON = ‘1’;
in fast discharge mode and
EC<5:0> = 0 or ECON = ‘0’
while EC-mode is off
Differential Non Linearity
Voltage deviation between
target and ECFD
dVECFD = Vtarget(4) - VECFD;
IECFD < TBD mA
Doc ID 18260 Rev 5
25/68
Electrical specifications
Table 19.
Electrochrome mirror driver (continued)
Symbol
dVECFDnr(5)
dVECFDhi
L99DZ80EP
Parameter
Test condition
below it
Difference voltage
between target and
ECFD sets flag if
VECFD is
above it
dVECFD = Vtarget
toggle status bit
ECV_VNR = ’1‘
(4)
Min.
Typ.
Max.
Unit
- VECFD;
dVECFD = Vtarget(4) - VECFD;
Toggle status bit
ECV_VH = ‘1’I
120
mV
-120
mV
1. Bit ECV_HV ='1' or ‘0’: ECV voltage, where IIECDR can change sign
2. ECV and ECFD share same DAC circuit (see Figure 20, Figure 21).
3. 1 LSB (least significant bit) = 23.8mVtyp
4. Vtarget is set by bits EC<5:0> and bit ECV_HV; tested for each individual bit
5. Not tested since pulling pin ECFD to a low voltage against the internal source follower may lead to an overcurrent at pin
ECFD HS.
26/68
Doc ID 18260 Rev 5
L99DZ80EP
2.9
Electrical specifications
SPI / logic – electrical characteristics
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6V ≤ VS ≤ 18 V, 4.75 V ≤ VCC ≤ 5.5 V; all outputs open;
Tj = -40 °C to 150 °C, unless otherwise specified.
Table 20.
Symbol
tset
twakup
tawake
Table 21.
Symbol
Delay time from Standby to Active mode
Parameter
Test condition
Min
Typ
Max
Unit
Delay time
Switching time from standby to
active mode. Time until output
drivers are enabled after CSN
going to high and set bit 0 = 1 of
control register 0.
250
310
410
µs
Wake-up time
Switching from standby to active
mode. Time after the first falling
edge of CSN until the first
positive CLK edge, which latches
EN = 1 correctly into the device
—
20
µs
Stay awake time
Switching from standby to active
mode. After the first rising edge
of CSN a second SPI frame with
EN = 1 is correctly recognized
—
256
µs
Inputs: DI, CSN, CLK, DIR and PWMH
Parameter
Test condition
Min
Typ
Max
Unit
Inputs: CSN, CLK, DI, DIR, PWMH
VIL
Input voltage low level
VS = 13.5 V; VCC = 5.0 V
VIH
Input voltage high level
VS = 13.5 V; VCC = 5.0 V
Input hysteresis
VS = 13.5 V; VCC = 5.0 V
500
RCSN in
CSN pull-up resistor
VS = 13.5 V; VCC = 5.0 V;
0 V ≤ VCSN ≤ 0.7 * VCC
60
110
215
kΩ
RCLK in
CLK pull-down resistor
VS = 13.5 V; VCC = 5.0 V;
0.3 * VCC ≤ VCLK ≤ VCC
60
110
215
kΩ
RDI in
DI pull-down resistor
VS = 13.5 V; VCC = 5.0 V;
0.3 * VCC ≤ VDI ≤ VCC
60
110
215
kΩ
RDIR
DIR pull-down resistor
VS = 13.5 V; VCC = 5.0 V;
0.3 * VCC ≤ VDIR ≤ VCC
60
110
215
kΩ
PWMH pull-down resistor
VS = 13.5 V; VCC = 5.0 V;
0.3 * VCC ≤ VPWMH ≤ VCC
60
110
215
kΩ
0.3 * VCC
V
VIHYS
RPWMH
0.3 * VCC
V
0.7 * VCC
V
mV
Output: DO
VOL
Output voltage low level
IOL = 5 mA; VS = 13.5 V;
VCC = 5.0 V
VOH
Output voltage high level
IOH = -5 mA; VS = 13.5 V;
VCC = 5.0 V
IDOLK
3-state leakage current
VCSN = VCC; 0 < VDO < VCC
Doc ID 18260 Rev 5
V
0.7 * VCC
-10
10
µA
27/68
Electrical specifications
Table 22.
Symbol
COUT(1)
CIN(1)
L99DZ80EP
AC-Characteristics
Parameter
Test condition
Min.
Typ.
Max.
Unit
Output capacitance
(DO)
—
—
10
pF
Input capacitance (DI,
CSN, CLK, DIR, PWMH)
—
—
10
pF
1. Value of input capacity is not measured in production test. Parameter guaranteed by design.
For definition of the parameters please see Figure 9, Figure 10 and Figure 11.
Table 23.
Symbol
28/68
Dynamic characteristics
Parameter
Test condition
Min. Typ. Max. Unit
tCSNQVL
DO enable from 3-state to
low level
CDO = 100 pF; IDO = 1 mA;
pull-up load to VCC; VS = 13.5 V;
VCC = 5 V
100
250
ns
tCSNQVH
DO enable from 3-state to
high level
CDO = 100pF; IDO = -1 mA;
pull-down load to GND;
VS = 13.5 V; VCC = 5 V
100
250
ns
tCSNQTL
CDO = 100pF; IDO = 4 mA;
DO disable from low level to
pull-up load to VCC; VS = 13.5 V;
3-state
VCC = 5 V
380
450
ns
tCSNQTH
CDO = 100 pF; IDO = -4 mA;
DO disable from high level to
pull-down load to GND;
3-state
VS = 13.5 V; VCC = 5 V
380
450
ns
50
250
ns
tCLKQV
CLK falling until DO valid
VDO < 0.3 * VCC or
VDO > 0.7 * VCC; CDO = 100 pF;
VS = 13.5 V; VCC = 5 V
tSCSN
CSN setup time, CSN low
before rising edge of CLK
VS = 13.5 V; VCC = 5 V
400
ns
tSDI
DI setup time, DI stable
before rising edge of CLK
VS = 13.5 V; VCC = 5 V
200
ns
TCLK
Clock Period
VS = 13.5 V; VCC = 5 V
1000
ns
tHCLK
minimum CLK high time
VS = 13.5 V; VCC = 5 V
115
ns
tLCLK
minimum CLK low time
VS = 13.5 V; VCC = 5 V
115
ns
tHCSN
minimum CSN high time
VS = 13.5 V; VCC = 5 V
4
µs
tSCLK
CLK setup time before CSN
rising
VS = 13.5 V; VCC = 5 V
400
ns
tr DO
DO rise time
CDO = 100 pF; VS = 13.5 V;
VCC = 5 V
80
140
ns
tf DO
DO fall time
CDO = 100 pF; VS = 13.5 V;
VCC = 5 V
50
100
ns
Doc ID 18260 Rev 5
L99DZ80EP
Electrical specifications
Table 23.
Dynamic characteristics (continued)
Symbol
Parameter
Test condition
Min. Typ. Max. Unit
tr in
rise time of input signal
DI, CLK, CSN
VS = 13.5 V; VCC = 5 V
100
ns
tf in
fall time of input signal
DI, CLK, CSN
VS = 13.5 V; VCC = 5 V
100
ns
Figure 9.
SPI timing parameters
W+&61
&61
W &6149
W &6147
'DWDRXW
'DWDRXW
'2
W &/.49
W6&61
W6&/.
&/.
W6',
',
W+&/.
W/&/.
'DWDLQ
'DWDLQ
*$3*06
Doc ID 18260 Rev 5
29/68
Electrical specifications
L99DZ80EP
Figure 10. SPI input and output timing parameters
WU'2
9&&
'2
ORZWRKLJK
9&&
WI'2
9&&
'2
KLJKWRORZ
9&&
WILQ
WULQ
',
&/.
&61
9&&
9&&
*$3*06
Figure 11.
SPI delay description
W6&.ILOW
W 6&.ULVH
W 6&.49
6&.
0LFUR&RQWUROOHU
0DVWHU
6ODYH
0,62
WVHWXS
*$3*06
30/68
Doc ID 18260 Rev 5
L99DZ80EP
Electrical specifications
Table 24.
Watchdog
Symbol
TCWDTO
Parameter
Test condition
Min.
Typ.
Max.
Unit
50
64
100
ms
Watchdog time out
Figure 12. Power-output (OUT<11:1>, ECV, ECFD) timing
&61ORZWRKLJKGDWDIURPVKLWUHJLVWHULV
WUDQVIHUUHGWRRXWSXWSRZHUVZLWFKHV
WULQ
WILQ
W&61B+,PLQ
&61
WG2))
2XWSXWYROWDJH
RIDGULYHU
21VWDWH
2))VWDWH
W2))
WG21
W21
2XWSXWYROWDJH
RIDGULYHU
2))VWDWH
21VWDWH
*$3*06
Doc ID 18260 Rev 5
31/68
Application information
L99DZ80EP
3
Application information
3.1
Dual power supply: VS and VCC
The power supply voltage VS supplies the power drivers and the Power-MOS gate drivers.
For supplying the high-side drivers for the power- and gate-driver outputs, an internal
charge-pump is used. The SPI interface and the logic circuitry is supplied by VCC.
Due to the independent VCC supply the control and status information are not lost, if there
are spikes or glitches on the power supply voltage.
3.2
Wake up and Active mode/standby mode
After power up of VS and VCC the device operates in standby-mode. Pulling the signal CSN
to low level wakes the device up and the analog part is activated (active mode). After at
least 10 µs, the first SPI communication is valid and the EN-bit can be used to set the ENmode.
The device can be set into active mode writing a ‘1’ into the EN-register. If the EN-register is
not set to ‘1’, the device goes back to standby mode typical 256 µs after the rising edge of
CSN and all latched data are cleared. In standby mode the current at VS (VCC) is less than
6 µA (5 µA) for CSN = high (DO in 3-state). It is recommended to switch all outputs off
before entering standby mode.
3.3
Charge pump
The charge pump uses two external capacitors, which are switched with a frequency of
typically 125 kHz. The output of the charge pump has a current limitation. In standby mode
and after a thermal shutdown has been triggered the charge pump is disabled. If the charge
pump output voltage remains too low for longer than TCP, the power-MOS outputs, the ECcontrol are switched off and the H-Bridge gate drivers are switched to resistive low. The
CP_LOW bit has to be cleared through a software reset to reactivate the drivers.
3.4
Diagnostic functions
All diagnostic functions (overcurrent, open-load, power supply overvoltage /undervoltage,
temperature warning and thermal shutdown) are internally filtered. The condition has to be
valid for at least the associated filter time before the corresponding status bit in the status
registers is set. The filters are used to improve the noise immunity of the device. The openload and temperature warning functions are intended for information purpose and do not
change the state of the output drivers. On contrary, the overcurrent condition disables the
corresponding driver and thermal shutdown disables all drivers. Without setting the
overcurrent recovery bits in the input data register, the microcontroller has to clear the
overcurrent status bits to reactivate the corresponding drivers.
32/68
Doc ID 18260 Rev 5
L99DZ80EP
3.5
Application information
Overvoltage and undervoltage detection at VS
If the power supply voltage VS rises above the overvoltage threshold VSOV_OFF, the outputs
OUT1 to OUT11, ECDR, ECV, ECFD are switched to high impedance state, the charge
pump is disabled and the H-Bridge gate drivers are switched into sink condition to protect
the H-bridge and the load. When the voltage VS drops below the undervoltage threshold
VSUV_OFF (UV-switch-OFF voltage), the output stages are switched to high impedance to
avoid the operation of the power devices without sufficient gate driving voltage (increased
power dissipation). If the supply voltage VS recovers to normal operating voltage, the charge
pump is switched on again, the CP_LOW bit is cleared and the output stages return to the
programmed state. If the undervoltage/overvoltage recovery disable bit is set, the automatic
turn-on of the drivers is deactivated.
If the undervoltage/overvoltage recovery disable bit (OV_UV_RD) is set, the microcontroller
needs to clear the status bits to reactivate the drivers. It is recommended to set OV_UV_RD
bit to avoid a possible high current oscillation in case of a shorted output to GND and low
battery voltage.
3.6
Overvoltage and undervoltage detection at VCC
At power-on (VCC increases from undervoltage to VPOROFF) the circuit is initialized by an
internally generated power-on-reset (POR). If the voltage VCC decreases below the low
threshold (VPORON), the outputs are switched to 3-state (high impedance) and the status
registers are cleared. If the voltage at pin VCC increases above the VCC reset high threshold
VVCCRESHU, the device enters the reset state, all outputs are switched off and all internal
registers are cleared. After the voltage at pin VCC has decreased below VVCCRESHL, the
device enters normal operating mode again and the internal registers are reset.
3.7
Temperature warning and shutdown
If the junction temperature rises above the temperature warning threshold (TjTW), a
temperature warning flag is set after the temperature warning filter time (Tjtft) and can be
read via SPI. If the junction temperature increases above the temperature shutdown
threshold (TjTS), the thermal shutdown bit is set and the power transistors of all output
stages are switched off to protect the device after the thermal shutdown filter time. The
gates of the H-Bridge are discharged by the ‘Resistive Low’ mode.
The temperature warning and thermal shutdown flags are latched and must be cleared by
the microcontroller. This is done by a read and clear command on an arbitrary register,
because both bits are part of the global status register.
After these bits have been cleared, the output stages are reactivated. If the temperature is
still above the thermal warning threshold, the thermal warning bit is set after Tjtft. Once this
bit is set and the temperature is above the temperature shutdown threshold, temperature
shutdown is detected after Tjtft and the outputs are switched off. Therefore the minimum
time after which the outputs are switched off after the bits have been cleared in case the
temperature is still above the thermo-shutdown threshold is twice the thermo-warning/shutdown filter time Tjtft.
Doc ID 18260 Rev 5
33/68
Application information
3.8
L99DZ80EP
Inductive loads
Each half bridge is built by internally connected high- and low-side power DMOS transistors.
Due to the built-in reverse diodes of the output transistors, inductive loads can be driven at
the outputs OUT1 to OUT6 without external freewheeling diodes. The high-side drivers
OUT7 to OUT11 are intended to drive resistive loads. Therefore only a limited energy
(E < 1 mJ) can be dissipated by the internal ESD-diodes in freewheeling condition. For
inductive loads (L > 100 µH) an external freewheeling diode connected between GND and
the corresponding output is required. The low side driver at ECV does not have a freewheel
diode built into the device.
3.9
Open-load detection
The open load detection monitors the load current in each activated output stage. If the load
current is below the open load detection threshold for at least tFOL the corresponding openload bit is set in the status register. Due to mechanical/electrical inertia of typical loads a
short activation of the outputs (e.g. 3 ms) can be used to test the open load status without
changing the mechanical/electrical state of the loads.
3.10
Overcurrent detection
In case of an overcurrent condition, a flag is set in the status register. If the overcurrent
signal is valid for at least TFOC, the overcurrent flag is set and the corresponding driver is
switched off to reduce the power dissipation and to protect the integrated circuit. If the
overcurrent recovery bit of the output is cleared, the microcontroller has to clear the status
bits to reactivate the corresponding driver.
3.11
Current monitor
The current monitor output sources a current image at the current monitor output, which has
three fixed ratios of the instantaneous current of the selected high-side driver. Outputs with
a resistance of 500 mΩ and higher have a ratio of 1/2000, except for OUT8, which has a
ratio of 1/6500, and those with a lower resistance one of 1/10000. The signal at output CM is
blanked after switching on the driver until correct settlement of the circuitry. The bits
CM_SEL<3:0> define which of the outputs are multiplexed to the current monitor output CM.
The current monitor output allows a more precise analysis of the actual state of the load
rather than the detection of an open- or overload condition. For example, it can be used to
detect the motor state (starting, free running, stalled). Moreover, it is possible to control the
power of the defroster more precisely by measuring the load current. The current monitor
output is enabled after the current-monitor blanking time, when the selected output is
switched on. If this output is off, the current monitor output is in high-impedance mode.
3.12
PWM mode of the power outputs
Each driver has a corresponding PWM enable bit, which can be programmed by the SPI
interface. If the PWM enable bit is set, the output is controlled by the logically ANDcombination of an internally generated PWM signal and the output control bit of the
corresponding driver. The PWM-Frequency of all outputs can be programmed to either
122 Hz of 244 Hz typically. The on-duty-cycle is set by the four 7-bit registers, which control
34/68
Doc ID 18260 Rev 5
L99DZ80EP
Application information
one PWM counter each. Therefore the maximum on-time is 100% - 1 LSB.
1 LSB = 100/128 %. Which output uses which corresponding PWM driver can be seen in
the SPI register definition. When programming a specific duty-cycle, the output on/off times
as well as the slopes must be taken into account.
3.13
Cross-current protection
The six half-brides of the device are crosscurrent protected by an internal delay time. If one
driver (LS or HS) is turned off, the activation of the other driver of the same half bridge is
automatically delayed by the crosscurrent protection time. After the crosscurrent protection
time is expired the slew-rate limited switch-off phase of the driver is changed to a fast turnoff phase and the opposite driver is turned-on with slew-rate limitation. Due to this behavior,
it is always guaranteed that the previously activated driver is completely turned off before
the opposite driver starts to conduct
3.14
Programmable soft-start function to drive loads with higher
inrush current
Loads with start-up currents higher than the overcurrent limits (e.g. inrush current of lamps,
Start current of motors and cold resistance of heaters) can be driven by using the
programmable softstart function (i.e. overcurrent recovery mode). Each driver has a
corresponding overcurrent recovery bit. If this bit is set, the device automatically switches
the outputs on again after a programmable recovery time. The duty cycle in overcurrent
condition can be programmed by the SPI interface to about 12 % or 25 %. The PWM
modulated current provides sufficient average current to power up the load (e.g. heat up the
bulb) until the load reaches operating condition. The PWM frequency settles at 1.7 kHz and
3 kHz. The device itself cannot distinguish between a real overload and a non linear load
like a light bulb. A real overload condition can only be qualified by time. For overload
detection the microcontroller can switch on the light bulbs by setting the overcurrent
recovery bit for the first e.g. 50 ms. After clearing the recovery bit the output is automatically
switched off, if the overload condition remains. This overcurrent detection procedure has to
be followed in order to make it possible to switch on the low side driver of a bridge output, if
the associated high-side driver has been used in recovery mode before.
Doc ID 18260 Rev 5
35/68
Application information
L99DZ80EP
Figure 13. Overcurrent recovery mode
,/2$'
8QOLPLWHG,QUXVK&XUUHQW
/LPLWHG,QUXVK&XUUHQWLQ
SURJUDPPDEOHUHFRYHU\PRGH
&XUUHQW/LPLWDWLRQ
W
*$3*&)7
3.15
H-bridge control (DIR, PWMH, bits SD, SDS)
The PWMH input controls the drivers of the external H-bridge transistors. The motor
direction can be chosen with the direction input (DIR), the duty cycle and frequency with the
PWMH input. With the SPI-registers SD and SDS four different slow-decay modes (via
drivers and via diode) can be selected using the high side or the low side transistors.
Unconnected inputs are defined by internal pull-down current.
Table 25.
H-bridge control truth table
Control pins Control bits
Failure bits
Output pin
N°
Comment
DIR PWMH HEN SD SDS CP_LOW OV UV DS TSD GH1 GL1 GH2 GL2
1
X
X
0
X
X
X
X
X
X
X
RL
RL
RL
RL H-bridge disabled
2
X
X
1
X
X
1
0
0
0
0
RL
RL
RL
RL Charge pump voltage too low
3
X
X
1
X
X
0
X
X
X
1
RL
RL
RL
RL Thermo-shutdown
4
X
X
1
X
X
0
1
0
0
0
L
L
L
L
L(1)
L(1)
L(1)
Overvoltage
5
X
X
1
X
X
0
0
0
1
0
L(1)
6
0
1
1
X
X
0
0
0
0
0
L
H
H
L
Bridge H2/L1 on
7
X
0
1
0
0
0
0
0
0
0
L
H
L
H
Slow-decay mode LS1 and LS2
on
8
0
0
1
0
1
0
0
0
0
0
L
H
L
L
Slow-decay mode LS1 on
9
1
0
1
0
1
0
0
0
0
0
L
L
L
H Slow-decay mode LS2 on
36/68
Doc ID 18260 Rev 5
Short-circuit(1)
L99DZ80EP
Table 25.
Application information
H-bridge control truth table (continued)
Control pins Control bits
Failure bits
Output pin
N°
Comment
DIR PWMH HEN SD SDS CP_LOW OV UV DS TSD GH1 GL1 GH2 GL2
10
1
1
1
X
X
0
0
0
0
0
H
L
L
H Bridge H1/L2 on
11
X
0
1
1
0
0
0
0
0
0
H
L
H
L
Slow-decay mode HS1 and HS2
on
12
0
0
1
1
1
0
0
0
0
0
L
L
H
L
Slow-decay mode HS2 on
13
1
0
1
1
1
0
0
0
0
0
H
L
L
L
Slow-decay mode HS1 on
1. Only the half-bridge (low and high-side), in which one MOSFET is in short circuit condition is switched off. Both MOSFETs
of the other half-bridge remain active and driven by DIR and PWMH
3.16
H-bridge driver slew-rate control
The rising and falling slope of the drivers for the external high-side Power-MOS can be slew
rate controlled. If this mode is enabled the gate of the external high-side Power-MOS is
driven by a current source instead of a low-impedance output driver switch as long as the
drain-source voltage over this Power-MOS is below the switch threshold. The current is
programmed using the bits SLEW<4:0>, which represent a binary number. This number is
multiplied by the minimum current step. This minimum current step is the maximum source/sink-current (IGHxrmax / IGHxfmax) divided by 31. Programming SLEW<4:0> to 0 disables the
slew rate control and the output is driven by the low-impedance output driver switch.
Doc ID 18260 Rev 5
37/68
Application information
L99DZ80EP
Figure 14. H-bridge GSHx slope
9*6+[
&XUUHQW
&RQWUROOHG
/RZ5HVLVWLYH
6ZLWFK
&RQWUROOHG
&XUUHQW
&RQWUROOHG
W
9'6+[
W
*$3*&)7
3.17
Resistive low
The resistive output mode protects the L99DZ80EP and the H-bridge in the standby mode
and in some failure modes (thermal shut down (TSD), charge pump low (CP_LOW) and
stuck-at-‘1’ at pin DI). When a gate driver changes into the resistive output mode due to a
failure a sequence is started. In this sequence the concerning driver is switched into sink
condition for 32 µs to 64 µs to ensure a fast switch-off of the H-bridge transistor. If slew rate
control is enabled, the sink condition is slew-rate controlled. Afterwards the driver is
switched into the resistive output mode (resistive path to source).
3.18
Short circuit detection/drain source monitoring
The drain source voltage of each activated external MOSFET of the H-bridge is monitored
by comparators to detect shorts to ground or battery. If the voltage-drop over the external
MOSFET exceeds the threshold voltage VSCd for longer than the short current detection
time tSCd the corresponding gate driver switches the external MOSFET off and the
corresponding drain source monitoring flag (DS_MON[3:0]) is set. The DS_MON bits have
38/68
Doc ID 18260 Rev 5
L99DZ80EP
Application information
to be cleared through the SPI to reactivate the gate drivers. The drain source monitoring has
a filter time of typ. 6 µs. This monitoring is only active while the corresponding gate driver is
activated. If a drain-source monitor event is detected, the corresponding gate-driver remains
activated for at maximum the filter time. When the gate driver switches on, the drain-source
comparator requires the specified settling time until the drain-source monitoring is valid.
During this time, this drain-source monitor event may start the filter time. The threshold
voltage VSCd can be programmed using the SPI.
Table 26.
H-bridge DS-monitor threshold
DIAG<1>
DIAG<0>
Monitoring threshold voltage (typical)
0
0
VSCD1 = 0.5 V
0
1
VSCD2 = 1.0 V
1
0
VSCD3 = 1.5 V
1
1
VSCD4 = 2.0 V
Figure 15. H-bridge diagnosis
9V
96
96
'60RQLWRULQJ+6
*DWH'ULYHU+6
'60RQLWRULQJ+6
97KUHV
N
N
*+
6+
97KUHV
*DWH'ULYHU+6
*+
0
6+
*DWH'ULYHU/6
*DWH'ULYHU/6
*/
*/
'60RQLWRULQJ/6
2/0RQLWRULQJ
'60RQLWRULQJ/6
2/0RQLWRULQJ
N
N
97KUHV
97KUHV
6/
6/
*$3*&)7
3.19
H-bridge monitoring in off-mode
The drain source voltages of the H-Bridge driver external transistors can be monitored,
while the transistors are switched off. If either bit OL_H1L2 or OL_H2L1 is set to ‘1’, while bit
HEN = ‘1’, the H-drivers enter resistive low mode and the drain-source voltages can be
monitored. Since the pull-up resistance is equal to the pull-down resistance on both sides of
Doc ID 18260 Rev 5
39/68
Application information
L99DZ80EP
the bridge a voltage of 2/3 VS on the pull-up high-side and 1/3 VS on the low side is
expected, if they drive a low-resistive inductive load (e.g. motor). If the drain source voltage
on each of these Power-MOS is less than 1/6 VS, the drain-source monitor bit of the
associated driver is set.
In case of a short to ground the drain-source monitor bits of both low-side gate drivers are
set. A short to VS can be diagnosed by setting the “H-Bridge OL high threshold (H-OLTH
HIGH)” bit to one.
Figure 16. H-bridge open-load detection (no open-load detected)
9V
N
9V
9V
0
P
'60 N
N
97 9V
'60 97 9V
*$3*&)7
Figure 17. H-bridge open-load detection (open-load detected)
9V
N
0
9V
2SHQ
P
'60 97 9V
N
N
'60 97 9V
*$3*&)7
40/68
Doc ID 18260 Rev 5
L99DZ80EP
Application information
Figure 18. H-bridge open-load detection (short to ground detected)
9V
N
*1'
0
*1'
P
'60 N
97 9V
6KRUW
N
'60 97 9V
*$3*&)7
Figure 19. H-bridge open-load detection with H-OLTH HIGH = ‘1’ (short to VS
detected)
9V
6KRUW
N
9V
9V
0
P
'60 N
97 9V
'60 N
97 9V
*$3*&)7
3.20
Programmable cross current protection
Both external MOSFET transistors in one half-bridge are disabled for the cross-current
protection time (tCCP) after one MOSFET inside this halfbridge is switched off to prevent
current flowing from the high-side to the low-side MOSFET.
The cross current protection time tCCP can be programmed by SPI using bits COPT<3:0>.
Doc ID 18260 Rev 5
41/68
Application information
Table 27.
3.21
L99DZ80EP
Cross-current protection time
COPT<3>
COPT<2>
COPT<1>
COPT<0>
Min
Typ
Max
unit
0
0
0
0
150
250
360
ns
0
0
0
1
390
500
670
ns
0
0
1
0
590
750
980
ns
0
0
1
1
800
1000
1280
ns
0
1
0
0
1000
1250
1600
ns
0
1
0
1
1210
1500
1910
ns
0
1
1
0
1420
1750
2220
ns
0
1
1
1
1630
2000
2540
ns
1
0
0
0
1830
2250
2850
ns
1
0
0
1
2050
2500
3120
ns
1
0
1
0
2250
2750
3450
ns
1
0
1
1
2460
3000
3760
ns
1
1
0
0
2660
3250
4100
ns
1
1
0
1
2880
3500
4370
ns
1
1
1
0
3080
3750
4680
ns
1
1
1
1
3200
4000
5000
ns
Controller of electrochromic glass
The voltage of an electrochromic element connected at pin ECV can be controlled to a
target value, which is set by the bits EC<5:0>. Setting bit ECON enables this function. An
on-chip differential amplifier and an external MOS source follower, with its gate connected to
pin ECDR, and which drives the electrochrome mirror voltage at pin ECV, form the control
loop. The drain of the external MOS transistor is supplied by OUT10. A diode from pin ECV
(anode) to pin ECDR (cathode) has been placed on the chip to protect the external MOS
source follower. A capacitor of at least 5 nF has to be added to pin ECDR for loop-stability.
The target voltage is binary coded with a full-scale range of 1.5 V. If Bit EC_HV s set to '0',
the maximum controller output voltage is clamped to 1.2 V without changing the resolution
of bits EC<5:0>.
When programming the ECVLS driver to on-state, the voltage at pin ECV is pulled to ground
by a 1.6 Ω low-side switch until the voltage at pin ECV is less than dVECVhi higher than the
target voltage (fast discharge). The status of the voltage control loop is reported via SPI. Bit
ECV_VHI is set, if the voltage at pin ECV is higher, whereas Bit ECV_VNR in the same
status register is set, if the voltage at pin ECV is lower than the target value. Both status bits
are valid, if they are stable for at least the ECVHI/ECVNR – filter time and are not latched.
Since OUT10 is the output of a high-side driver, it contains the same diagnose functions as
the other high-side drivers (e.g. during an overcurrent detection, the control loop is switched
off). In electrochrome mode, OUT10 cannot be controlled by PWM mode. For EMS reasons,
the loop capacitor at pin ECDR as well as the capacitor between ECV and GND have to be
placed to the respective pins as close as possible (see Figure 20 for details).
42/68
Doc ID 18260 Rev 5
L99DZ80EP
Application information
If the electrochrome element is connected between the pins ECV and ECFD instead
between ECV and ground, a negative voltage can be applied to the device by pulling ECFD
to a higher value than ECV, which is connected to ground by a 1.6 Ω low-side switch. In this
mode the voltage at pin ECFD is controlled to the target value defined by the register
EC<5:0>. This is done using an on-chip source-follower transistor (see Figure 21 for
details). The negative discharge is enabled by setting bit ECND to ‘1’.
When programming the ECFDLS driver to on-state, the voltage at pin ECFD is pulled to
ground by a 1.6 Ω low-side switch until the voltage at pin ECFD is less than dVECFDhi higher
than the target voltage (fast discharge).
During normal (positive) voltage control the low side driver at pin ECFD must be switched
on to connect the electrochrome element to ground.
Pin ECDR is pulled resistively (RECDRDIS) to ground while not in electrochrome mode.
Figure 20. Electrochrome mirror driver with mirror referenced to ground
96
ё
63,
'$&
287
/RJLF
$OOFRPSRQHQWVPXVWEHSODFHG
FORVHWRJHWKHUDQGFRQQHFWHGZLWK
DYHU\ORZLPSHGDQFH
(&9ROWDJH&RQWURO
96FRPSDWLEOH
(&'5
'URS5HJXODWRU
%LWUHVROXWLRQ )DVW
'LVFKDUJH
Q)
9ROWDJHQRWUHDFKHG
)DVW'LVFKDUJH
96FRPSDWLEOH
ё
ё
(&0LUURU
(&9
(&)'
9ROWDJHWRRKLJK
ё
Q)
*1'
Ä)DVW(&*ODV
%ULJKWHQLQJ³
*$3*&)7
Doc ID 18260 Rev 5
43/68
Application information
L99DZ80EP
Figure 21. Electrochrome mirror driver with mirror referenced to ECFD for negative discharge
96
ё
'$&
287
/RJLF
63,
$OOFRPSRQHQWVPXVWEHSODFHG
FORVHWRJHWKHUDQGFRQQHFWHGZLWK
DYHU\ORZLPSHGDQFH
(&9ROWDJH&RQWURO
96FRPSDWLEOH
(&'5
'URS5HJXODWRU
%LWUHVROXWLRQ )DVW
'LVFKDUJH
Q)
9ROWDJHQRWUHDFKHG
)DVW'LVFKDUJH
(&0LUURU
96FRPSDWLEOH
ё
ё
(&9
ё
(&)'
9ROWDJHWRRKLJK
ё
Q)
Nё
*1'
Ä)DVW(&*ODV
%ULJKWHQLQJ³
*$3*&)7
3.22
Watchdog
The watchdog monitors the µC during normal operation within a nominal trigger cycle of
60ms. The watchdog is triggered by toggling the watchdog bit, which restarts the watchdog
timer (i.e. content of the watchdog trigger bit has to be inverted). If no watchdog bit inversion
has been occurred during the watchdog time-out time TWDTO the H-bridge drivers switch
into resistive-low condition, all power outputs are switched off, the electrochrome driver is
disabled and the device enters standby mode.
44/68
Doc ID 18260 Rev 5
L99DZ80EP
Functional description of the SPI
4
Functional description of the SPI
4.1
General description
The SPI complies with Standard ST-SPI Interface Version 3.1.
Its communication is based on a Serial Peripheral Interface structure using CSN (Chip
Select Not), DI (Serial Data In), DO (Serial Data Out/Error) and CLK (Serial Clock) signal
lines.
4.1.1
Chip Select Not (CSN)
The CSN input pin is used to select the serial interface of this device. When CSN is high, the
output pin (DO) is in high impedance state. A low signal wakes up the device and a serial
communication can be started. The state when CSN is going low until the rising edge of
CSN is called a communication frame.
4.1.2
Serial Data In (DI)
The DI input pin is used to transfer data serially into the device. The data applied to the DI is
sampled at the rising edge of the CLK signal. A stuck-at ‘0’ or ‘1’ enters the standby mode.
4.1.3
Serial Clock (CLK)
The CLK input signal provides the timing of the serial interface. The Data Input (DI) is
latched at the rising edge of Serial Clock CLK. The SPI can be driven by a micro controller
with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. Data on Serial
Data Out (DO) is shifted out at the falling edge of the serial clock (CLK). The serial clock
CLK must be active only during a frame (CSN low). Any other switching of CLK close to any
CSN edge could generate set up/hold violations in the SPI logic of the device. The clock
monitor counts the number of clock pulses during a communication frame (while CSN is
low). If the number of CLK pulses does not correspond to the frame width indicated in the
<SPI-frame-ID> (ROM address 03H) the frame is ignored and the <frame error> bit in the
<Global Status Byte> is set.
Note:
Due to this safety functionality, daisy chaining the SPI is not possible. Instead, a parallel
operation of the SPI bus by controlling the CSN signal of the connected ICs is
recommended.
4.1.4
Serial Data Out (DO)
The data output driver is activated by a logical low level at the CSN input and goes from high
impedance to a low or high level depending on the global status bit 7 (Global Error Flag).
The content of the selected status or control register is transferred into the data out shift
register after the address bits have been transmitted. Each subsequent falling edge of the
CLK shifts the next bit out.
4.1.5
SPI communication flow
At the beginning of each communication the master can read the contents of the
<SPIframe-ID> register (ROM address 03H) of the slave device.
Doc ID 18260 Rev 5
45/68
Functional description of the SPI
L99DZ80EP
This 8-bit register indicates the SPI frame length (24 bit) and the availability of additional
features. Each communication frame consists of a command byte, which is followed by two
data bytes.
The data returned on DO within the same frame always starts with the <Global Status>
Byte. It provides general status information about the device. It is followed by two data bytes
(i. e. ‘In-frame-response’).
For write cycles the <Global Status> Byte is followed by the previous content of the
addressed register.
Figure 22. Write and read SPI
46/68
Doc ID 18260 Rev 5
L99DZ80EP
Functional description of the SPI
4.2
Command byte
Table 28.
Command byte
Command byte
Bit
23
22
Data byte 1
21 20 19 18 17 16 15
14
13
12
11
Data byte 2
10
9
8
7
6
5
4
3
2
1
0
Name OC1 OC0 A5 A4 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
OCx: operation code
Ax: address
Dx: data bit
Each communication frame starts with a command byte. It consists of an operating code
which specifies the type of operation (<Read>, <Write>, <Read and Clear>, <Read Device
Information>) and a 6 bit address. If less than 6 bits are required, the remaining bits are
unused but are reserved.
4.2.1
Operation code definition
Table 29.
Operation code definition
OC1
OC0
Meaning
0
0
<Write Mode>
0
1
<Read Mode>
1
0
<Read and Clear Mode>
1
1
<Read Device Information>
The <Write Mode> and <Read Mode> operations allow access to the RAM of the device.
A <Read and Clear Mode> operation is used to read a status register and subsequently
clear its content.
The <Read Device Information> allows access to the ROM area which contains device
related information such as <ID-Header>, <Product Code>, <Silicon Version> and <SPIframe-ID>.
4.3
Device memory map
Table 30.
RAM memory map
Address
Name
Access
Content
00h
Control Register 0
Read/write
Device enable, output bridge and H-bridge open-load
control
01h
Control Register 1
Read/write High-side/ low-side and electrochrome control
02h
Control Register 2
Read/write Bridge recovery mode, PWM and electrochrome setup
Doc ID 18260 Rev 5
47/68
Functional description of the SPI
Table 30.
RAM memory map (continued)
Address
Name
Access
03h
Control Register 3
Read/write
04h
Control Register 4
Read/write H-bridge driver control
05h
Control Register 5
Read/write PWM register
06h
Control Register 6
Read/write PWM register
10h
Status Register 0
Read/clear
11h
Status Register 1
Read/clear Output bridge and H-bridge open-load diagnosis
12h
Status Register 2
Read/clear
13h
Status Register 3
Read/clear VS and chargepump diagnosis
3Fh
Configuration Reg.
Read/write Mask bits in global status register
Table 31.
Address
48/68
L99DZ80EP
Content
High-side recovery mode, PWM setup and currentmonitor selection
Output bridge overcurrent and H-bridge drain-source
diagnosis
High-side overcurrent/open-load and electrochrome
diagnosis
ROM memory map
Name
Access
Content
00h
ID Header
Read only
4300h (ASSP ST_SPI)
01h
Version
Read only
0300h
02h
Product Code 1
Read only
5200h (82 ST_SPI)
03h
Product Code 2
Read only
4800h (H ST_SPI)
3Eh
SPI-Frame ID.
Read only
4200h SPI-Frame-ID (ST_SPI)
Doc ID 18260 Rev 5
L99DZ80EP
SPI - control and status registers
5
SPI - control and status registers
Table 32.
Global status byte
Bit
7
6
5
4
3
2
1
0
Name
GL_ER
CO_ER
C_RESET
TSD
TW
UOV_OC_DS
OL
NR
Reset
0
0
1
0
0
0
0
0
GL_ER:
Global Error Flag.
Failures of bits 6 to 0 are always linked to the Global Error Flag. This flag is
set, if at least one of these bits indicates a failure. It is reflected via the DO
pin while CSN is held low and no SPI clock signal is applied. This operation
does not cause the Communication Error bit in the <Global Status> to be
set. The signal TW bit3 and OL bit1can be masked.
CO_ER:
Communication Error.
If the number of clock pulses during the previous frame is not 24, the frame
is ignored and this bit is set.
C_RESET:
Chip RESET.
If a stuck at ‘1’ on input DI during any SPI frame occurs, or if a Power On
Reset (VCC monitor) occurs. C_RESET is reset (‘1’) with any SPI command.
When C_RESET is active (‘0’), the gate drivers are switched off (resistive
path to source). After a startup of the circuit C_RESET is active due to the
power-up reset pulse. Therefore, the gate drivers are switched off. They can
only be activated after the C_RESET has been reset by an SPI command.
TSD:
Thermal shutdown.
All gate drivers and the charge pump are switched off (resistive path to
source). The TSD bit has to be cleared through a read and clear command
to reactivate the gate drivers and the chargepump.
TW:
Thermal Warning.
This bit can be masked using the configuration register.
UOV_OC_DS: Logical OR of the filtered undervoltage/overvoltage, chargepump-low,
overcurrent of the power outputs and the H-bridge drain-source monitor
signals.
OL:
Open-load.
Logical OR of the filtered output driver open-load signals. This bit can be
masked using the configuration register.
NR:
Not Ready.
After switching the device from standby mode to active mode an internal
timer is started to allow the chargepump to settle before the outputs can be
activated. This bit is cleared automatically after the startup time.
Doc ID 18260 Rev 5
49/68
SPI - control and status registers
L99DZ80EP
5.1
Control Register 0
Table 33.
Control Register 0
Bit
Name
Access
Reset
15
OUT1_HS on/off
Read/write
0
14
OUT1_LS on/off
Read/write
0
13
OUT2_HS on/off
Read/write
0
12
OUT2_LS on/off
Read/write
0
11
OUT3_HS on/off
Read/write
0
10
OUT3_LS on/off
Read/write
0
9
OUT4_HS on/off
Read/write
0
8
OUT4_LS on/off
Read/write
0
7
OUT5_HS on/off
Read/write
0
6
OUT5_LS on/off
Read/write
0
5
OUT6_HS on/off
Read/write
0
4
OUT6_LS on/off
Read/write
0
3
0
0
2
0
0
1
0
0
0
EN
Read/write
The corresponding output driver is activated, if this bit is set.
Setting the PWM enable bit, the driver is only switched on, if the
PWM timer enables it. An internal cross-current protection
prevents, that both the low- and high-side of the half-bridges
OUT1-OUT6 are switched on simultaneously.
Reserved (must be set to ‘0’)
The device is switched into active mode, if EN is ‘1’. It enters the
standby mode, if the EN bit is ‘0’. In standby mode all bits are
reset.
0
5.2
Control Register 1
Table 34.
Control Register 1
Content
Bit
Name
Access
Reset
15
OUT7_HS1 on/off
Read/write
0
14
OUT7_HS2 on/off
Read/write
0
HS1
HS2
Mode
13
OUT8_HS1 on/off
Read/write
0
0
0
Off
0
1
Low on-resistance
1
0
High on-resistance
1
1
Off
12
OUT8_HS2 on/off
Read/write
0
11
OUT9_HS on/off
Read/write
0
10
OUT10_HS on/off
Read/write
0
9
OUT11_HS on/off
Read/write
0
8
ECV_LS on/off
Read/write
0
50/68
Content
The corresponding output driver is activated, if this bit is set.
Setting the PWM enable bit, the driver is only switched on, if
the PWM timer enables it.
Doc ID 18260 Rev 5
L99DZ80EP
Table 34.
SPI - control and status registers
Control Register 1 (continued)
Bit
Name
Access
Reset
7
EC<5>
Read/write
0
6
EC<4>
Read/write
0
5
EC<3>
Read/write
0
4
EC<2>
Read/write
0
3
EC<1>
Read/write
0
2
EC<0>
Read/write
0
1
ECON
Read/write
0
The electrochrome control is activated by setting this bit to ‘1’.
This enables the driver at pin ECDR and switches OUT10
directly on ignoring bit OUT10_HS on/off.
0
ECFD_LS on/off
Read/write
0
The corresponding output driver is activated, if this bit is set.
Setting the PWM enable bit, the driver is only switched on, if
the PWM timer enables it.
5.3
Control Register 2
Table 35.
Control Register 2
Content
The reference voltage for the electrochrome voltage controller
at pins ECV and ECFD is binary coded.
Bit
Name
Access
Reset
15
OUT1_OCR
Read/write
0
14
OUT2_OCR
Read/write
0
13
OUT3_OCR
Read/write
0
12
OUT4_OCR
Read/write
0
11
OUT5_OCR
Read/write
0
10
OUT6_OCR
Read/write
0
9
ECV_OCR
Read/write
0
8
ECND
Read/write
0
7
OUT1_PWM3
Read/write
0
6
OUT2_PWM1
Read/write
0
5
OUT3_PWM2
Read/write
0
4
OUT4_PWM1
Read/write
0
3
OUT5_PWM2
Read/write
0
2
OUT6_PWM3
Read/write
0
1
ECV_PWM4
Read/write
0
0
ECV_HV
Read/write
0
Content
Setting this bit to high enables the overcurrent recovery mode for
the corresponding output.
Setting this bit to ‘1’ puts the electrochrome controller into the
negative discharge mode.
Setting this bit to ‘1’ enables the PWM mode for the corresponding
output.
Setting this bit to ‘1’ sets the maximum electrochrome controller
voltage to 1.5 V (typ.). A ‘0’ clamps it to 1.2V (typ.).
Doc ID 18260 Rev 5
51/68
SPI - control and status registers
L99DZ80EP
5.4
Control Register 3
Table 36.
Control Register 3
Bit
Name
Access
Reset
15
OUT7_OCR
Read/write
0
14
OUT8_OCR
Read/write
0
13
OUT9_OCR
Read/write
0
12
OUT10_OCR
Read/write
0
11
OUT11_OCR
Read/write
0
10
OUT7_PWM1
Read/write
0
9
OUT8_PWM2
Read/write
0
8
OUT9_PWM3
Read/write
0
7
OUT10_PWM4
Read/write
0
6
OUT11_PWM4
Read/write
0
5
OCR_FREQ
Read/write
0
This bit defines the overcurrent recovery frequency (0: 1.7kHz
(typ.) 1: 3kHz (typ.))
4
OV_UV_RD
Read/write
0
If this bit is set, the associated status bit has to be cleared after
an overvoltage /undervoltage event to enable the output drivers
again.
3
CM_SEL<3>
Read/write
0
2
CM_SEL<2>
Read/write
0
1
0
52/68
CM_SEL<1>
CM_SEL<0>
Read/write
Read/write
0
0
Content
Setting this bit to high enables the overcurrent recovery mode
for the corresponding output.
Setting this bit to ‘1’ enables the PWM mode for the
corresponding output.
A current image of the selected binary coded output is
multiplexed to the CM output. If a corresponding output does not
exist, the current monitor is deactivated (especially ‘0000’).
CM_SEL<3:0>
Selected output
0000
3-state
0001
OUT<1>
0010
OUT<2>
0011
OUT<3>
0100
OUT<4>
0101
OUT<5>
0110
OUT<6>
0111
OUT<7>
1000
OUT<8>
1001
OUT<9>
1010
OUT<10>
1011
OUT<11>
1100
Reserved
1101-1111
3-state
Doc ID 18260 Rev 5
L99DZ80EP
SPI - control and status registers
5.5
Control Register 4
Table 37.
Control Register 4
Bit
Name
Access
Reset
Content
15
SLEW<4>
Read/write
0
14
SLEW<3>
Read/write
0
13
SLEW<2>
Read/write
0
12
SLEW<1>
Read/write
0
11
SLEW<0>
Read/write
0
10
H-OLTH
HIGH
Read/write
0
H-bridge OL high threshold (5/6 * VS) select
9
OL_H1L2
Read/write
0
Test open-load condition between H1 and L2
8
OL_H2L1
Read/write
0
Test open-load condition between H2 and L1
7
SD
Read/write
0
Slow decay
6
SDS
Read/write
0
Slow decay single
5
COPT<3>
Read/write
1
4
COPT<2>
Read/write
1
3
COPT<1>
Read/write
1
2
COPT<0>
Read/write
1
1
DIAG<1>
Read/write
0
0
DIAG<0>
Read/write
0
Binary coded Slew Rate Current of the H-Bridge
Cross-current protection time (default 4000ns)
Drain-source monitoring threshold voltage
5.6
Control Register 5
Table 38.
Control Register 5
Bit
Name
Access
Reset
15
0
14
PWM2<6>
Read/write
0
13
PWM2<5>
Read/write
0
12
PWM2<4>
Read/write
0
11
PWM2<3>
Read/write
0
10
PWM2<2>
Read/write
0
9
PWM2<1>
Read/write
0
8
PWM2<0>
Read/write
0
7
PWMFREQ
Read/write
0
0
Content
Reserved (must be set to ‘0’)
Binary coded PWM2 on-duty-cycle
PWM-frequency (0: 122 Hz or 1: 244 Hz)
Doc ID 18260 Rev 5
53/68
SPI - control and status registers
Table 38.
L99DZ80EP
Control Register 5 (continued)
Bit
Name
Access
Reset
6
PWM1<6>
Read/write
0
5
PWM1<5>
Read/write
0
4
PWM1<4>
Read/write
0
3
PWM1<3>
Read/write
0
2
PWM1<2>
Read/write
0
1
PWM1<1>
Read/write
0
0
PWM1<0>
Read/write
0
Content
Binary coded PWM1 on-duty-cycle
5.7
Control Register 6
Table 39.
Control Register 6
Bit
Name
15
0
14
PWM4<6>
Read/write
0
13
PWM4<5>
Read/write
0
12
PWM4<4>
Read/write
0
11
PWM4<3>
Read/write
0
10
PWM4<2>
Read/write
0
9
PWM4<1>
Read/write
0
8
PWM4<0>
Read/write
0
7
0
6
PWM3<6>
Read/write
0
5
PWM3<5>
Read/write
0
4
PWM3<4>
Read/write
0
3
PWM3<3>
Read/write
0
2
PWM3<2>
Read/write
0
1
PWM3<1>
Read/write
0
0
PWM3<0>
Read/write
0
54/68
Access
Reset
0
0
Content
Reserved (must be set to ‘0’)
Binary coded PWM4 on-duty-cycle
Reserved (must be set to ‘0’)
Binary coded PWM3 on-duty-cycle
Doc ID 18260 Rev 5
L99DZ80EP
SPI - control and status registers
5.8
Configuration Register
Table 40.
Configuration Register
Bit
Name
Access
Reset
Content
15
0
0
14
0
0
13
0
0
12
0
0
11
0
0
10
0
0
9
0
0
8
0
0
7
0
0
6
HEN
Read/write
0
A ‘1’ enables the H-bridge
5
MASK OL HS1
Read/write
0
Masks open-load of high-side 1 to global status register
4
MASK OL LS1
Read/write
0
Masks open-load of low-side 1 to global status register
3
MASK TW
Read/write
0
Masks thermo warning to global status register
2
MASK EC OL
Read/write
0
Masks open-load of ECV, ECFDHS, ECFDLS and OUT10
1
MASK OL
Read/write
0
Masks all open-load diagnosis to global status register
0
WD
Read/write
0
Watchdog
Reserved (must be set to ‘0’)
5.9
Status Register 0
Table 41.
Status Register 0
Bit
Name
Access
15
OUT1_HS OC
Read/clear
14
OUT1_LS OC
Read/clear
13
OUT2_HS OC
Read/clear
12
OUT2_LS OC
Read/clear
11
OUT3_HS OC
Read/clear
10
OUT3_LS OC
Read/clear
9
OUT4_HS OC
Read/clear
8
OUT4_LS OC
Read/clear
7
OUT5_HS OC
Read/clear
6
OUT5_LS OC
Read/clear
5
OUT6_HS OC
Read/clear
4
OUT6_LS OC
Read/clear
Content
Overcurrent status bit of the corresponding output driver. A ‘1’ indicates
that an overcurrent has occurred.
Doc ID 18260 Rev 5
55/68
SPI - control and status registers
Table 41.
L99DZ80EP
Status Register 0 (continued)
Bit
Name
Access
3
DS_MON_HS<2>
Read/clear
2
DS_MON_HS<1>
Read/clear
1
DS_MON_LS<2>
Read/clear
0
DS_MON_LS<1>
Read/clear
5.10
Status Register 1
Table 42.
Status Register 1
Bit
Name
Access
15
OUT1_HS OL
Read/clear
14
OUT1_LS OL
Read/clear
13
OUT2_HS OL
Read/clear
12
OUT2_LS OL
Read/clear
11
OUT3_HS OL
Read/clear
10
OUT3_LS OL
Read/clear
9
OUT4_HS OL
Read/clear
8
OUT4_LS OL
Read/clear
7
OUT5_HS_OL
Read/clear
6
OUT5_LS OL
Read/clear
5
OUT6_HS OL
Read/clear
4
OUT6_LS OL
Read/clear
3
0
Read
2
0
Read
1
0
Read
0
0
Read
Content
DS-Monitoring bit. A ‘1’ indicates that a drain-monitoring event (shortcircuit or open-load) has occurred.
Content
Open-Load status bit of the corresponding output driver. A ‘1’ indicates
that an open-load event has occurred.
Reserved
56/68
Doc ID 18260 Rev 5
L99DZ80EP
SPI - control and status registers
5.11
Status Register 2
Table 43.
Status Register 2
Bit
Name
Access
Content
15
OUT7 OC
Read/clear
14
OUT7 OL
Read/clear
13
OUT8 OC
Read/clear
12
OUT8 OL
Read/clear
11
OUT9 OC
Read/clear
10
OUT9 OL
Read/clear
9
OUT10 OC
Read/clear
8
OUT10 OL
Read/clear
7
OUT11 OC
Read/clear
6
OUT11 OL
Read/clear
5
ECV OC
Read/clear
4
ECV OL
Read/clear
3
VS UV
Read/clear
2
VS OV
Read/clear
1
ECV_VNR
Read/clear
0
ECV_VHI
Read/clear
Overcurrent and open-load status bit of the corresponding output driver
VS undervoltage and overvoltage status bit.
Electrochrome voltage not reached / too high status bits
5.12
Status Register 3
Table 44.
Status Register 3
Bit
Name
Access
15
0
Read
14
0
Read
13
0
Read
12
0
Read
11
0
Read
10
0
Read
9
0
Read
8
0
Read
7
0
Read
6
0
Read
Content
Reserved
Doc ID 18260 Rev 5
57/68
SPI - control and status registers
Table 44.
L99DZ80EP
Status Register 3 (continued)
Bit
Name
Access
5
ECFDH OC
Read/clear
4
ECFDH OL
Read/clear
3
ECFD OC
Read/clear
2
ECFD OL
Read/clear
1
0
Read
0
CP LOW
Read/clear
Content
Overcurrent and open-load status bit of the corresponding output driver
58/68
Reserved
This bit indicates, that the charge pump voltage is too low
Doc ID 18260 Rev 5
L99DZ80EP
Package and packing information
6
Package and packing information
6.1
ECOPACK® package
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.2
TQFP-64 mechanical data
Table 45.
TQFP-64 mechanical data
Millimeters
Symbol
Min.
Typ.
A
Max.
1,20
A1
0,05
A2
0,95
1,00
1,05
b
0,17
0,22
0,27
c
0,09
D
11,80
12,00
12,20
D1
9,80
10,00
10,20
D2(1)
5,85
6,00
6,15
D3
0,15
0,20
7,50
E
11,80
12,00
12,20
E1
9,80
10,00
10,20
5,85
6,00
6,15
E2
(1)
E3
7,50
e
0,50
L
0,45
L1
k
0,60
0,75
1,00
0°
ccc
3,50°
7°
0,08
1. The size of exposed pads is variable depending on lead frame design and pad size end user should verify
"D2" and "E2" dimensions for each device application
Doc ID 18260 Rev 5
59/68
Package and packing information
L99DZ80EP
Figure 23. TQFP-64 package dimension
*$3*&)7
60/68
Doc ID 18260 Rev 5
L99DZ80EP
6.3
Package and packing information
TQFP-64 packing information
The devices can be packed in tray or tape and reel shipments (see the Figure 1: Device
summary on page 1 for packaging quantities).
Figure 24. TQFP-64 power lead-less tray shipment (no suffix) (part 1)
*$3*&)7
Doc ID 18260 Rev 5
61/68
Package and packing information
L99DZ80EP
Figure 25. TQFP-64 power lead-less tray shipment (no suffix) (part 2)
*$3*&)7
62/68
Doc ID 18260 Rev 5
L99DZ80EP
Package and packing information
Figure 26. TQFP-64 power lead-less tape and reel shipment (suffix “TR”) (part 1)
$
%
.
)
3
:
*$3*&)7
Doc ID 18260 Rev 5
63/68
Package and packing information
L99DZ80EP
Figure 27. TQFP-64 power lead-less tape and reel shipment (suffix “TR”) (part 2)
'LPHQVLRQOLVW
$QQRWH
0LOLPHWHU
$QQRWH
0LOLPHWHU
$
.
$
3
$
3
%
3
%
3
%
(
'
)
'
7
.
:
.
*$3*&)7
64/68
Doc ID 18260 Rev 5
L99DZ80EP
7
Revision history
Revision history
Table 46.
Document revision history
Date
Revision
20-Dec-2010
1
Initial release
2
Updated Features list.
Updated following tables:
– Table 1: Device summary
– Table 2: Pin definitions and functions:
GH2, SH2, GL2, SL2: updated functions
– Table 7: Package thermal impedance
– Table 8: Supply:
IVCC(stby): set max value to TBD
– Table 13: Power outputs switching times:
td HL, td LH: updated parameter
– Table 31: ROM memory map:
updated content for address 01h
– Table 40: Configuration Register:
bit 5, 4, 3 and 1: updated contents
Updated following sections:
– Section 3.5: Overvoltage and undervoltage detection at VS
– Section 3.19: H-bridge monitoring in off-mode
– Section 3.20: Programmable cross current protection
Updated Figure 21: Electrochrome mirror driver with mirror referenced
to ECFD for negative discharge
Added Section 6.3: TQFP-64 packing information
10-Mar-2011
Change
Doc ID 18260 Rev 5
65/68
Revision history
L99DZ80EP
Table 46.
Date
06-Apr-2011
66/68
Document revision history (continued)
Revision
3
Change
Table 8: Supply:
– IVCC(stby): changed TBD at 6 µA and updated VCC from 5.1 V t0
5.0 V; added test condition for VCC = 5.3 V
Table 9: Overvoltage and undervoltage detection:
– VVCCRESHU, VVCCRESHD: updated max value
– VVCCRES hysth: updated test condition
Table 12: On-resistance:
– IQLL: updated max value for OUT1-6 and typ, min, max for ECFD
Table 13: Power outputs switching times:
– td ON H: updated min value for all OUT except OUT7,8
– dVOUT/dt: updated min value
Table 15: Gate drivers for the external Power-MOS (H-bridge):
– IpdGSHx: removed row
– RGHx, RGLx: updated min, typ and max values
Table 18: Open-load monitoring:
– VODSL: added min and max values, updated typ value
– VODSH: added min and max values
Table 19: Electrochrome mirror driver:
– DNLECV, DNLECFD: added note
Table 20: Delay time from Standby to Active mode:
– tset: updated max value
Doc ID 18260 Rev 5
L99DZ80EP
Revision history
Table 46.
Document revision history (continued)
Date
Revision
Change
16-Sep-2011
4
Updated Table 1: Device summary
Table 9: Overvoltage and undervoltage detection
– VSUV OFF: updated min value
Table 11: Charge pump
– VCP: updated test condition and max value
– ICP: updated max value
– ICPlim: updated min value
Table 12: On-resistance
– IQLH: updated min value
– IQLL: updated test condition
Table 13: Power outputs switching times
– td OFF L: updated max value
– td HL, td LH :updated min value
Table 14: Current monitoring
– |IOC1|, |IOC6|, |IOC4|, |IOC5|: updated max values
– |IOLD1|, |IOLD6|: updated min value
Table 15: Gate drivers for the external Power-MOS (H-bridge)
– RGHx, RGLx :updated min, typ and max values
Table 16: Gate drivers for the external Power-MOS switching times
– IGHxrmax, IGHxfmax, dIIGHxr, dIIGHxf: updated parameters; updated
min, typ and max values
– tCCP: updated max value
– tCCPacc: removed row
– Table 17: Drain source monitoring:
– VSCd1, VSCd2, VSCd3, VSCd4: updated test contitions, min and vax
values
– tSCd: updated min, typ and max values
– Table 20: Delay time from Standby to Active mode
– tset:updated min, typ and max values
Table 21: Inputs: DI, CSN, CLK, DIR and PWMH
– RCSN in,RCLK in, RDI in, RDIR, RPWMH:updated min, typ and max
values
Updated Table 27: Cross-current protection time
22-Sep-2013
5
Updated Disclaimer.
Doc ID 18260 Rev 5
67/68
L99DZ80EP
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
68/68
Doc ID 18260 Rev 5