ATxmega64A3U/128A3U/192A3U/256A3U - Complete

8/16-bit Atmel XMEGA A3U Microcontroller
ATxmega256A3U / ATxmega192A3U /
ATxmega128A3U / ATxmega64A3U
DATASHEET
Features
z
High-performance, low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller
z
Nonvolatile program and data memories
̶ 64K - 256KBytes of in-system self-programmable flash
̶ 4K - 8KBytes boot section
̶ 2K - 4KBytes EEPROM
̶ 4K - 16KBytes internal SRAM
Peripheral features
̶ Four-channel DMA controller
̶ Eight-channel event system
̶ Seven 16-bit timer/counters
z Four timer/counters with four output compare or input capture channels
z Three timer/counters with two output compare or input capture channels
z High resolution extension on all timer/counters
z Advanced waveform extension (AWeX) on one timer/counter
̶ One USB device interface
z USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant
z 32 Endpoints with full configuration flexibility
̶ Seven USARTs with IrDA support for one USART
̶ Two two-wire interfaces with dual address match (I2C and SMBus compatible)
̶ Three serial peripheral interfaces (SPIs)
̶ AES and DES crypto engine
̶ CRC-16 (CRC-CCITT) and CRC-32 (IEEE® 802.3) generator
̶ 16-bit real time counter (RTC) with separate oscillator
̶ Two sixteen-channel, 12-bit, 2msps Analog to Digital Converters
̶ One two-channel, 12-bit, 1msps Digital to Analog Converter
̶ Four Analog Comparators with window compare function, and current
sources
̶ External interrupts on all general purpose I/O pins
̶ Programmable watchdog timer with separate on-chip ultra low power
oscillator
̶ QTouch® library support
z Capacitive touch buttons, sliders and wheels
z Special microcontroller features
̶ Power-on reset and programmable brown-out detection
̶ Internal and external clock options with PLL and prescaler
̶ Programmable multilevel interrupt controller
̶ Five sleep modes
z
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
̶
Programming and debug interfaces
z JTAG (IEEE 1149.1 compliant) interface, including boundary scan
z PDI (program and debug interface)
z
I/O and packages
̶ 50 Programmable I/O pins
̶ 64-lead TQFP
̶ 64-pad QFN
z
Operating voltage
̶ 1.6 – 3.6V
z
Operating frequency
̶ 0 – 12MHz from 1.6V
̶ 0 – 32MHz from 2.7V
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
2
1.
Ordering Information
Flash (bytes)
EEPROM
(bytes)
SRAM
(bytes)
256K + 8K
4K
16K
256K + 8K
4K
16K
192K + 8K
2K
16K
192K + 8K
2K
16K
ATxmega128A3U-AU
128K + 8K
2K
8K
ATxmega128A3U-AUR(4)
128K + 8K
2K
8K
ATxmega64A3U-AU
64K + 4K
2K
4K
64K + 4K
2K
4K
ATxmega256A3U-MH
256K + 8K
4K
16K
ATxmega256A3U-MHR(4)
256K + 8K
4K
16K
ATxmega192A3U-MH
192K + 8K
2K
16K
192K + 8K
2K
16K
ATxmega128A3U-MH
128K + 8K
2K
8K
ATxmega128A3U-MHR(4)
128K + 8K
2K
8K
ATxmega64A3U-MH
64K + 4K
2K
4K
64K + 4K
2K
4K
256K + 8K
4K
16K
256K + 8K
4K
16K
192K + 8K
2K
16K
192K + 8K
2K
16K
ATxmega128A3U-AN
128K + 8K
2K
8K
ATxmega128A3U-ANR(4)
128K + 8K
2K
8K
ATxmega64A3U-AN
64K + 4K
2K
4K
64K + 4K
2K
4K
ATxmega256A3U-MN
256K + 8K
4K
16K
ATxmega256A3U-MNR(4)
256K + 8K
4K
16K
ATxmega192A3U-MN
192K + 8K
2K
16K
192K + 8K
2K
16K
ATxmega128A3U-MN
128K + 8K
2K
8K
ATxmega128A3U-MNR(4)
128K + 8K
2K
8K
ATxmega64A3U-MN
64K + 4K
2K
4K
64K + 4K
2K
4K
Ordering code
ATxmega256A3U-AU
ATxmega256A3U-AUR
(4)
ATxmega192A3U-AU
ATxmega192A3U-AUR
(4)
Speed (MHz)
Power
supply
Package
(1)(2)(3)
Temp.
64A
ATxmega64A3U-AUR
(4)
32
ATxmega192A3U-MHR
(4)
1.6 - 3.6V
-40°C - 85°C
64M2
ATxmega64A3U-MHR
(4)
ATxmega256A3U-AN
ATxmega256A3U-ANR
(4)
ATxmega192A3U-AN
ATxmega192A3U-ANR
(4)
64A
ATxmega64A3U-ANR
(4)
32
ATxmega192A3U-MHR
(4)
1.6 - 3.6V
-40°C - 105°C
64M2
ATxmega64A3U-MNR
Notes:
1.
2.
(4)
This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.
Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
3
3.
4.
For packaging information, see “Packaging information” on page 71.
Tape and Reel.
Package Type
64A
64-lead, 14 x 14mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)
64M2
64-pad, 9 x 9 x 1.0mm body, lead pitch 0.50mm, 7.65mm exposed pad, quad flat no-lead package (QFN)
Typical Applications
Industrial control
Climate control
Low power battery applications
®
Factory automation
RF and ZigBee
Power tools
Building control
USB connectivity
HVAC
Board control
Sensor control
Utility metering
White goods
Optical
Medical applications
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
4
2.
Pinout/Block Diagram
Figure 2-1.
Block diagram and pinout.
Programming, debug, test
Power
Ground
External clock /Crystal pins
General Purpose I /O
PA2
PA1
PA0
AVCC
GND
PR1
PR0
RESET/PDI
PDI
PF7
PF6
VCC
GND
PF5
PF4
PF3
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Digital function
Analog function /Oscillators
Port R
GND
14
VCC
15
PC0
16
1.
SRAM
DATA BUS
EVENT ROUTING NETWORK
18
19
20
21
22
23
24
25
26
27
28
PC2
PC3
PC4
PC5
PC6
PC7
GND
VCC
PD0
PD1
PD2
Port E
17
Port D
PC1
Port C
Note:
EEPROM
USART0
13
FLASH
48
PF2
47
PF1
46
PF0
45
VCC
44
GND
43
PE7
42
PE6
41
PE5
40
PE4
39
PE3
38
PE2
37
PE1
36
PE0
35
VCC
34
GND
33
PD7
Port F
32
PB7
JTAG
PD6
12
AC0:1
TC0:1
PB6
CPU
31
11
BUS
matrix
PD5
PB5
DAC
Internal
references
TOSC
10
ADC
DMA
Controller
30
PB4
AREF
Interrupt
Controller
PD4
9
Prog/Debug
Interface
TWI
PB3
OCD
29
8
Crypto /
CRC
PD3
PB2
Event System
Controller
AC0:1
SPI
7
Reset
Controller
USART0:1
PB1
Watchdog
Timer
TC0:1
6
Real Time
Counter
ADC
USB
PB0
Sleep
Controller
AREF
SPI
5
Power
Supervision
USART0:1
PA7
Watchdog
oscillator
TC0:1
4
Internal
oscillators
TWI
PA6
OSC/CLK
Control
SPI
3
USART0:1
PA5
DATA BUS
TC0:1
2
IRCOM
PA4
XOSC
Port A
1
Port B
PA3
For full details on pinout and alternate pin functions refer to “Pinout and Pin Functions” on page 59.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
5
3.
Overview
The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers
based on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR
XMEGA device achieves throughputs CPU approaching one million instructions per second (MIPS) per
megahertz, allowing the system designer to optimize power consumption versus processing speed.
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are
directly connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a
single instruction, executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs many times faster than conventional single-accumulator or CISC based microcontrollers.
The AVR XMEGA A3U devices provide the following features: in-system programmable flash with read-whilewrite capabilities; internal EEPROM and SRAM; four-channel DMA controller, eight-channel event system and
programmable multilevel interrupt controller, 50 general purpose I/O lines, 16-bit real-time counter (RTC); seven
flexible, 16-bit timer/counters with compare and PWM channels; seven USARTs; two two-wire serial interfaces
(TWIs); one full speed USB 2.0 interface; three serial peripheral interfaces (SPIs); AES and DES cryptographic
engine; two 16-channel, 12-bit ADCs with programmable gain; one 2-channel 12-bit DAC; four analog
comparators (ACs) with window mode; programmable watchdog timer with separate internal oscillator; accurate
internal oscillators with PLL and prescaler; and programmable brown-out detection.
The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available.
The devices also have an IEEE std. 1149.1 compliant JTAG interface, and this can also be used for boundary
scan, on-chip debug and programming.
The ATx devices have five software selectable power saving modes. The idle mode stops the CPU while
allowing the SRAM, DMA controller, event system, interrupt controller, and all peripherals to continue
functioning. The power-down mode saves the SRAM and register contents, but stops the oscillators, disabling
all other functions until the next TWI, USB resume, or pin-change interrupt, or reset. In power-save mode, the
asynchronous real-time counter continues to run, allowing the application to maintain a timer base while the rest
of the device is sleeping. In standby mode, the external crystal oscillator keeps running while the rest of the
device is sleeping. This allows very fast startup from the external crystal, combined with low power
consumption. In extended standby mode, both the main oscillator and the asynchronous timer continue to run.
To further reduce power consumption, the peripheral clock to each individual peripheral can optionally be
stopped in active mode and idle sleep mode.
Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into
AVR microcontrollers.
The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program flash
memory can be reprogrammed in-system through the PDI or JTAG interfaces. A boot loader running in the
device can use any interface to download the application program to the flash memory. The boot loader
software in the boot flash section will continue to run while the application flash section is updated, providing
true read-while-write operation. By combining an 8/16-bit RISC CPU with in-system, self-programmable flash,
the AVR XMEGA is a powerful microcontroller family that provides a highly flexible and cost effective solution for
many embedded applications.
All Atmel AVR XMEGA devices are supported with a full suite of program and system development tools,
including C compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
6
3.1
Block Diagram
Figure 3-1.
XMEGA A3U block diagram.
PR[0..1]
Digital function
Programming, debug, test
Analog function
Oscillator/Crystal/Clock
XTAL1
General Purpose I/O
XTAL2
Oscillator
Circuits/
Clock
Generation
PORT R (2)
Real Time
Counter
DATA BUS
PA[0..7]
PORT A (8)
Watchdog
Timer
Event System
Controller
Oscillator
Control
DMA
Controller
ADCA
AREFA
Sleep
Controller
GND
RESET/
PDI_CLK
PDI
Prog/Debug
Controller
BUS Matrix
VCC
Power
Supervision
POR/BOD &
RESET
SRAM
ACA
Watchdog
Oscillator
PDI_DATA
Int. Refs.
AES
Tempref
JTAG
OCD
AREFB
PORT B
DES
Interrupt
Controller
CPU
ADCB
CRC
ACB
USARTF0
PORT B (8)
Flash
TCF0
EEPROM
DACB
IRCOM
PORT F (8)
NVM Controller
PF[0..7]
DATA BUS
PORT C (8)
PORT D (8)
SPIE
TWIE
TCE0:1
USARTE0:1
USB
SPID
TCD0:1
USARTD0:1
TWIC
SPIC
TCC0:1
EVENT ROUTING NETWORK
USARTC0:1
PB[0..7]/
JTAG
To Clock
Generator
PORT E (8)
TOSC1
TOSC2
PC[0..7]
PD[0..7]
PE[0..7]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
7
4.
Resources
A comprehensive set of development tools, application notes and datasheets are available for download on
http://www.atmel.com/avr.
4.1
Recommended reading
z
Atmel AVR XMEGA AU manual
z
XMEGA application notes
This device data sheet only contains part specific information with a short description of each peripheral and
module. The XMEGA AU manual describes the modules and peripherals in depth. The XMEGA application
notes contain example code and show applied use of the modules and peripherals.
All documentations are available from www.atmel.com/avr.
5.
Capacitive touch sensing
The Atmel QTouch library provides a simple to use solution to realize touch sensitive interfaces on most Atmel
AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully
debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS®) technology for
unambiguous detection of key events. The QTouch library includes support for the QTouch and QMatrix
acquisition methods.
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR
microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then
calling the touch sensing APIs to retrieve the channel information and determine the touch sensor states.
The QTouch library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the QTouch library
user guide - also available for download from the Atmel website.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
8
6.
AVR CPU
6.1
Features
6.2
z
8/16-bit, high-performance Atmel AVR RISC CPU
̶ 142 instructions
̶ Hardware multiplier
z
32x8-bit registers directly connected to the ALU
z
Stack in RAM
z
Stack pointer accessible in I/O memory space
z
Direct addressing of up to 16MB of program memory and 16MB of data memory
z
True 16/24-bit access to 16/24-bit I/O registers
z
Efficient support for 8-, 16-, and 32-bit arithmetic
z
Configuration change protection of system-critical features
Overview
All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code
and perform all calculations. The CPU is able to access memories, perform calculations, control peripherals,
and execute the program in the flash memory. Interrupt handling is described in a separate section, refer to
“Interrupts and Programmable Multilevel Interrupt Controller” on page 30.
6.3
Architectural Overview
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate
memories and buses for program and data. Instructions in the program memory are executed with single-level
pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory.
This enables instructions to be executed on every clock cycle. For details of all AVR instructions, refer to
http://www.atmel.com/avr.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
9
Figure 6-1.
Block diagram of the AVR CPU architecture.
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a
constant and a register. Single-register operations can also be executed in the ALU. After an arithmetic
operation, the status register is updated to reflect information about the result of the operation.
The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers
all have single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between
registers or between a register and an immediate. Six of the 32 registers can be used as three 16-bit address
pointers for program and data space addressing, enabling efficient address calculations.
The memory spaces are linear. The data memory space and the program memory space are two different
memory spaces.
The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the EEPROM can
be memory mapped in the data memory.
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as
the I/O memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from
0x00 to 0x3F. The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here
must be accessed as data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five
different addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.
Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.
The program memory is divided in two sections, the application program section and the boot program section.
Both sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for
self-programming of the application flash memory must reside in the boot program section. The application
section contains an application table section with separate lock bits for write and read/write protection. The
application table section can be used for safe storing of nonvolatile data in the program memory.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
10
6.4
ALU - Arithmetic Logic Unit
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a
constant and a register. Single-register operations can also be executed. The ALU operates in direct connection
with all 32 general purpose registers. In a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed and the result is stored in the register file. After
an arithmetic or logic operation, the status register is updated to reflect information about the result of the
operation.
ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit
arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit aritmetic. The
hardware multiplier supports signed and unsigned multiplication and fractional format.
6.4.1
Hardware Multiplier
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports
different variations of signed and unsigned integer and fractional numbers:
z
Multiplication of unsigned integers
z
Multiplication of signed integers
z
Multiplication of a signed integer with an unsigned integer
z
Multiplication of unsigned fractional numbers
z
Multiplication of signed fractional numbers
z
Multiplication of a signed fractional number with an unsigned one
A multiplication takes two CPU clock cycles.
6.5
Program Flow
After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory ‘0.’ The
program counter (PC) addresses the next instruction to be fetched.
Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the
whole address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32bit format.
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the
general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the
SRAM. After reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is
read/write accessible in the I/O memory space, enabling easy implementation of multiple stacks or stack areas.
The data SRAM can easily be accessed through the five different addressing modes supported in the AVR
CPU.
6.6
Status Register
The status register (SREG) contains information about the result of the most recently executed arithmetic or
logic instruction. This information can be used for altering program flow in order to perform conditional
operations. Note that the status register is updated after all ALU operations, as specified in the instruction set
reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in
faster and more compact code.
The status register is not automatically stored when entering an interrupt routine nor restored when returning
from an interrupt. This must be handled by software.
The status register is accessible in the I/O memory space.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
11
6.7
Stack and Stack Pointer
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for
storing temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented
as two 8-bit registers that are accessible in the I/O memory space. Data are pushed and popped from the stack
using the PUSH and POP instructions. The stack grows from a higher memory location to a lower memory
location. This implies that pushing data onto the stack decreases the SP, and popping data off the stack
increases the SP. The SP is automatically loaded after reset, and the initial value is the highest address of the
internal SRAM. If the SP is changed, it must be set to point above address 0x2000, and it must be defined
before any subroutine calls are executed or before interrupts are enabled.
During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return
address can be two or three bytes, depending on program memory size of the device. For devices with 128KB
or less of program memory, the return address is two bytes, and hence the stack pointer is
decremented/incremented by two. For devices with more than 128KB of program memory, the return address is
three bytes, and hence the SP is decremented/incremented by three. The return address is popped off the stack
when returning from interrupts using the RETI instruction, and from subroutine calls using the RET instruction.
The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented
by one when data is popped off the stack using the POP instruction.
To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable
interrupts for up to four instructions or until the next I/O memory write.
After reset the stack pointer is initialized to the highest address of the SRAM. See Figure 7-3 on page 16.
6.8
Register File
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The
register file supports the following input/output schemes:
z
One 8-bit output operand and one 8-bit result input
z
Two 8-bit output operands and one 8-bit result input
z
Two 8-bit output operands and one 16-bit result input
z
One 16-bit output operand and one 16-bit result input
Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling
efficient address calculations. One of these address pointers can also be used as an address pointer for lookup
tables in flash program memory.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
12
7.
Memories
7.1
Features
z
Flash program memory
̶ One linear address space
̶ In-system programmable
̶ Self-programming and boot loader support
̶ Application section for application code
̶ Application table section for application code or data storage
̶ Boot section for application code or boot loader code
̶ Separate read/write protection lock bits for all sections
̶ Built in fast CRC check of a selectable flash program memory section
Data memory
̶ One linear address space
̶ Single-cycle access from CPU
̶ SRAM
̶ EEPROM
z Byte and page accessible
z Optional memory mapping for direct load and store
̶ I/O memory
z Configuration and status registers for all peripherals and modules
z 16 bit-accessible general purpose registers for global variables or flags
̶ Bus arbitration
z Deterministic priority handling between CPU, DMA controller, and other bus masters
̶ Separate buses for SRAM, EEPROM and I/O memory
z Simultaneous bus access for CPU and DMA controller
z Production signature row memory for factory programmed data
̶ ID for each microcontroller device type
̶ Serial number for each device
̶ Calibration bytes for factory calibrated peripherals
z
z
7.2
User signature row
̶ One flash page in size
̶ Can be read and written from software
̶ Content is kept after chip erase
Overview
The Atmel AVR architecture has two main memory spaces, the program memory and the data memory.
Executable code can reside only in the program memory, while data can be stored in the program memory and
the data memory. The data memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All
memory spaces are linear and require no memory bank switching. Nonvolatile memory (NVM) spaces can be
locked for further write and read/write operations. This prevents unrestricted access to the application software.
A separate memory section contains the fuse bytes. These are used for configuring important system functions,
and can only be written by an external programmer.
The available memory size configurations are shown in “Ordering Information” on page 3. In addition, each
device has a Flash memory signature row for calibration data, device identification, serial number etc.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
13
7.3
Flash Program Memory
The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program
storage. The flash memory can be accessed for read and write from an external programmer through the PDI or
from application software running in the device.
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is
organized in two main sections, the application section and the boot loader section. The sizes of the different
sections are fixed, but device-dependent. These two sections have separate lock bits, and can have different
levels of protection. The store program memory (SPM) instruction, which is used to write to the flash from the
application software, will only operate when executed from the boot loader section.
The application section contains an application table section with separate lock settings. This enables safe
storage of nonvolatile data in the program memory.
Table 7-1.
Flash Program Memory (Hexadecimal address).
Word Address
ATxmega256A3U
ATxmega192A3U
ATxmega128A3U
ATxmega64A3U
0
0
0
0
Application Section
(256K/192K/128K/64K)
...
7.3.1
1EFFF
/
16FFF
/
37FF
/
77FF
1F000
/
17000
/
EFFF
/
7800
Application Table Section
1FFFF
/
17FFF
/
F000
/
7FFF
(8K/8K/8K/4K)
20000
/
18000
/
10000
/
8000
Boot Section
20FFF
/
18FFF
/
10FFF
/
87FF
(8K/8K/8K/4K)
Application Section
The Application section is the section of the flash that is used for storing the executable application code. The
protection level for the application section can be selected by the boot lock bits for this section. The application
section can not store any boot loader code since the SPM instruction cannot be executed from the application
section.
7.3.2
Application Table Section
The application table section is a part of the application section of the flash memory that can be used for storing
data. The size is identical to the boot loader section. The protection level for the application table section can be
selected by the boot lock bits for this section. The possibilities for different protection levels on the application
section and the application table section enable safe parameter storage in the program memory. If this section
is not used for data, application code can reside here.
7.3.3
Boot Loader Section
While the application section is used for storing the application code, the boot loader software must be located
in the boot loader section because the SPM instruction can only initiate programming when executing from this
section. The SPM instruction can access the entire flash, including the boot loader section itself. The protection
level for the boot loader section can be selected by the boot loader lock bits. If this section is not used for boot
loader software, application code can be stored here.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
14
7.3.4
Production Signature Row
The production signature row is a separate memory section for factory programmed data. It contains calibration
data for functions such as oscillators and analog modules. Some of the calibration values will be automatically
loaded to the corresponding module or peripheral unit during reset. Other values must be loaded from the
signature row and written to the corresponding peripheral registers from software. For details on calibration
conditions, refer to “Electrical Characteristics” on page 73.
The production signature row also contains an ID that identifies each microcontroller device type and a serial
number for each manufactured device. The serial number consists of the production lot number, wafer number,
and wafer coordinates for the device. The device ID for the available devices is shown in Table 7-2.
The production signature row cannot be written or erased, but it can be read from application software and
external programmers.
Table 7-2.
Device ID bytes for Atmel AVR XMEGA A3U devices.
Device
7.3.5
Device ID bytes
Byte 2
Byte 1
Byte 0
ATxmega64A3U
42
96
1E
ATxmega128A3U
42
97
1E
ATxmega192A3U
44
97
1E
ATxmega256A3U
42
98
1E
User Signature Row
The user signature row is a separate memory section that is fully accessible (read and write) from application
software and external programmers. It is one flash page in size, and is meant for static user parameter storage,
such as calibration data, custom serial number, identification numbers, random number seeds, etc. This section
is not erased by chip erase commands that erase the flash, and requires a dedicated erase command. This
ensures parameter storage during multiple program/erase operations and on-chip debug sessions.
7.4
Fuses and Lock bits
The fuses are used to configure important system functions, and can only be written from an external
programmer. The application software can read the fuses. The fuses are used to configure reset sources such
as brownout detector and watchdog, startup configuration, JTAG enable, and JTAG user ID.
The lock bits are used to set protection levels for the different flash sections (that is, if read and/or write access
should be blocked). Lock bits can be written by external programmers and application software, but only to
stricter protection levels. Chip erase is the only way to erase the lock bits. To ensure that flash contents are
protected even during chip erase, the lock bits are erased after the rest of the flash memory has been erased.
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the
value zero.
Both fuses and lock bits are reprogrammable like the flash program memory.
7.5
Data Memory
The data memory contains the I/O memory, internal SRAM, optionally memory mapped EEPROM, and external
memory if available. The data memory is organized as one continuous memory section, see Table 7-3 on page
16. To simplify development, I/O Memory, EEPROM and SRAM will always have the same start addresses for
all Atmel AVR XMEGA devices.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
15
Table 7-3.
Byte Address
Data memory map (Hexadecimal address).
ATxmega192A3U
0
FFF
I/O Registers (4K)
1000
EEPROM (2K)
17FF
Byte Address
ATxmega128A3U
0
FFF
1000
17FF
RESERVED
2000
Internal
SRAM (16K)
5FFF
Byte Address
Byte Address
ATxmega64A3U
0
I/O Registers (4K)
FFF
1000
EEPROM (2K)
17FF
RESERVED
2000
3FFF
I/O Registers (4K)
EEPROM (2K)
RESERVED
Internal SRAM (8K)
2000
2FFF
Internal SRAM (4K)
ATxmega256A3U
0
FFF
1000
13FF
I/O Registers (4K)
EEPROM (4K)
RESERVED
2000
27FF
7.6
Internal
SRAM (16K)
EEPROM
XMEGA AU devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data
space (default) or memory mapped and accessed in normal data space. The EEPROM supports both byte and
page access. Memory mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading.
When doing this, EEPROM is accessible using load and store instructions. Memory mapped EEPROM will
always start at hexadecimal address 0x1000.
7.7
I/O Memory
The status and configuration registers for peripherals and modules, including the CPU, are addressable through
I/O memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD)
instructions, which are used to transfer data between the 32 registers in the register file and the I/O memory.
The IN and OUT instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the
address range 0x00 - 0x1F, single-cycle instructions for manipulation and checking of individual bits are
available.
The I/O memory address for all peripherals and modules in XMEGA A3U is shown in the “Peripheral Module
Address Map” on page 64.
7.7.1
General Purpose I/O Registers
The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be
used for storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and
SBIC instructions.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
16
7.8
Data Memory and Bus Arbitration
Since the data memory is organized as four separate sets of memories, the different bus masters (CPU, DMA
controller read and DMA controller write, etc.) can access different memory sections at the same time.
7.9
Memory Timing
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a
read from SRAM takes two cycles. For burst read (DMA), new data are available every cycle. EEPROM page
load (write) takes one cycle, and three cycles are required for read. For burst read, new data are available every
second cycle. Refer to the instruction summary for more details on instructions and instruction timing.
7.10
Device ID and Revision
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the
device type. A separate register contains the revision number of the device.
7.11
JTAG Disable
It is possible to disable the JTAG interface from the application software. This will prevent all external JTAG
access to the device until the next device reset or until JTAG is enabled again from the application software. As
long as JTAG is disabled, the I/O pins required for JTAG can be used as normal I/O pins.
7.12
I/O Memory Protection
Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to
lock the I/O register related to the clock system, the event system, and the advanced waveform extensions. As
long as the lock is enabled, all related I/O registers are locked and they can not be written from the application
software. The lock registers themselves are protected by the configuration change protection mechanism.
7.13
Flash and EEPROM Page Size
The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible
for the flash and byte accessible for the EEPROM.
Table 7-4 on page 17 shows the Flash Program Memory organization and Program Counter (PC) size. Flash
write and erase operations are performed on one page at a time, while reading the Flash is done one byte at a
time. For Flash access the Z-pointer (Z[m:n]) is used for addressing. The most significant bits in the address
(FPAGE) give the page number and the least significant address bits (FWORD) give the word in the page.
Table 7-4.
Devices
Number of words and pages in the flash.
PC size
bits
Flash size
Page Size
bytes
words
FWORD
FPAGE
Application
No of
pages
Size
Boot
Size
No of
pages
ATxmega64A3U
16
64K + 4K
128
Z[7:1]
Z[16:8]
64K
256
4K
16
ATxmega128A3U
17
128K + 8K
256
Z[8:1]
Z[17:9]
128K
256
8K
16
ATxmega192A3U
17
192K + 8K
256
Z[8:1]
Z[17:9]
192K
384
8K
16
ATxmega256A3U
18
256K + 8K
256
Z[8:1]
Z[18:9]
256K
512
8K
16
Table 7-5 on page 18 shows EEPROM memory organization for the Atmel AVR XMEGA A3U devices.
EEEPROM write and erase operations can be performed one page or one byte at a time, while reading the
EEPROM is done one byte at a time. For EEPROM access the NVM address register (ADDR[m:n]) is used for
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
17
addressing. The most significant bits in the address (E2PAGE) give the page number and the least significant
address bits (E2BYTE) give the byte in the page.
Table 7-5.
Devices
Number of bytes and pages in the EEPROM.
EEPROM
Page Size
E2BYTE
E2PAGE
No of Pages
Size
bytes
ATxmega64A3U
2K
32
ADDR[4:0]
ADDR[10:5]
64
ATxmega128A3U
2K
32
ADDR[4:0]
ADDR[10:5]
64
ATxmega192A3U
2K
32
ADDR[4:0]
ADDR[10:5]
64
ATxmega256A3U
4K
32
ADDR[4:0]
ADDR[11:5]
128
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
18
8.
DMAC – Direct Memory Access Controller
8.1
Features
8.2
z
Allows high speed data transfers with minimal CPU intervention
̶ from data memory to data memory
̶ from data memory to peripheral
̶ from peripheral to data memory
̶ from peripheral to peripheral
z
Four DMA channels with separate
̶ transfer triggers
̶ interrupt vectors
̶ addressing modes
z
Programmable channel priority
z
From 1 byte to 16MB of data in a single transaction
̶ Up to 64KB block transfers with repeat
̶ 1, 2, 4, or 8 byte burst transfers
z
Multiple addressing modes
̶ Static
̶ Incremental
̶ Decremental
z
Optional reload of source and destination addresses at the end of each
̶ Burst
̶ Block
̶ Transaction
z
Optional interrupt on end of transaction
z
Optional connection to CRC generator for CRC on DMA data
Overview
The four-channel direct memory access (DMA) controller can transfer data between memories and peripherals,
and thus offload these tasks from the CPU. It enables high data transfer rates with minimum CPU intervention,
and frees up CPU time. The four DMA channels enable up to four independent and parallel transfers.
The DMA controller can move data between SRAM and peripherals, between SRAM locations and directly
between peripheral registers. With access to all peripherals, the DMA controller can handle automatic transfer
of data to/from communication modules. The DMA controller can also read from memory mapped EEPROM.
Data transfers are done in continuous bursts of 1, 2, 4, or 8 bytes. They build block transfers of configurable size
from 1 byte to 64KB. A repeat counter can be used to repeat each block transfer for single transactions up to
16MB. Source and destination addressing can be static, incremental or decremental. Automatic reload of
source and/or destination addresses can be done after each burst or block transfer, or when a transaction is
complete. Application software, peripherals, and events can trigger DMA transfers.
The four DMA channels have individual configuration and control settings. This include source, destination,
transfer triggers, and transaction sizes. They have individual interrupt settings. Interrupt requests can be
generated when a transaction is complete or when the DMA controller detects an error on a DMA channel.
To allow for continuous transfers, two channels can be interlinked so that the second takes over the transfer
when the first is finished, and vice versa.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
19
9.
Event System
9.1
Features
9.2
z
System for direct peripheral-to-peripheral communication and signaling
z
Peripherals can directly send, receive, and react to peripheral events
̶ CPU and DMA controller independent operation
̶ 100% predictable signal timing
̶ Short and guaranteed response time
z
Eight event channels for up to eight different and parallel signal routing configurations
z
Events can be sent and/or used by most peripherals, clock system, and software
z
Additional functions include
̶ Quadrature decoders
̶ Digital filtering of I/O pin state
z
Works in active mode and idle sleep mode
Overview
The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in
one peripheral’s state to automatically trigger actions in other peripherals. It is designed to provide a predictable
system for short and predictable response times between peripherals. It allows for autonomous peripheral
control and interaction without the use of interrupts, CPU, or DMA controller resources, and is thus a powerful
tool for reducing the complexity, size and execution time of application code. It also allows for synchronized
timing of actions in several peripheral modules.
A change in a peripheral’s state is referred to as an event, and usually corresponds to the peripheral’s interrupt
conditions. Events can be directly passed to other peripherals using a dedicated routing network called the
event routing network. How events are routed and used by the peripherals is configured in software.
Figure 9-1 on page 21 shows a basic diagram of all connected peripherals. The event system can directly
connect together analog and digital converters, analog comparators, I/O port pins, the real-time counter,
timer/counters, IR communication module (IRCOM), and USB interface. It can also be used to trigger DMA
transactions (DMA controller). Events can also be generated from software and the peripheral clock.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
20
Figure 9-1.
Event system overview and connected peripherals.
CPU /
Software
DMA
Controller
Event Routing Network
ADC
AC
clkPER
Prescaler
Real Time
Counter
Event
System
Controller
Timer /
Counters
DAC
USB
Port pins
IRCOM
The event routing network consists of eight software-configurable multiplexers that control how events are
routed and used. These are called event channels, and allow for up to eight parallel event routing
configurations. The maximum routing latency is two peripheral clock cycles. The event system works in both
active mode and idle sleep mode.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
21
10.
System Clock and Clock options
10.1
Features
10.2
z
Fast start-up time
z
Safe run-time clock switching
z
Internal oscillators:
̶ 32MHz run-time calibrated and tuneable oscillator
̶ 2MHz run-time calibrated oscillator
̶ 32.768kHz calibrated oscillator
̶ 32kHz ultra low power (ULP) oscillator with 1kHz output
z
External clock options
̶ 0.4MHz - 16MHz crystal oscillator
̶ 32.768kHz crystal oscillator
̶ External clock
z
PLL with 20MHz - 128MHz output frequency
̶ Internal and external clock options and 1x to 31x multiplication
̶ Lock detector
z
Clock prescalers with 1x to 2048x division
z
Fast peripheral clocks running at two and four times the CPU clock
z
Automatic run-time calibration of internal oscillators
z
External oscillator and PLL lock failure detection with optional non-maskable interrupt
Overview
Atmel AVR XMEGA A3U devices have a flexible clock system supporting a large number of clock sources. It
incorporates both accurate internal oscillators and external crystal oscillator and resonator support. A highfrequency phase locked loop (PLL) and clock prescalers can be used to generate a wide range of clock
frequencies. A calibration feature (DFLL) is available, and can be used for automatic run-time calibration of the
internal oscillators to remove frequency drift over voltage and temperature. An oscillator failure monitor can be
enabled to issue a non-maskable interrupt and switch to the internal oscillator if the external oscillator or PLL
fails.
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the
device will always start up running from the 2MHz internal oscillator. During normal operation, the system clock
source and prescalers can be changed from software at any time.
Figure 10-1 on page 23 presents the principal clock system in the XMEGA A3U family of devices. Not all of the
clocks need to be active at a given time. The clocks for the CPU and peripherals can be stopped using sleep
modes and power reduction registers, as described in “Power Management and Sleep Modes” on page 25.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
22
Figure 10-1.
The clock system, clock sources and clock distribution.
Real Time
Counter
Peripherals
RAM
AVR CPU
Non-Volatile
Memory
clkPER
clkPER2
clkCPU
clkPER4
USB
clkUSB
System Clock Prescalers
Brown-out
Detector
Prescaler
Watchdog
Timer
clkSYS
clkRTC
System Clock Multiplexer
(SCLKSEL)
RTCSRC
USBSRC
DIV32
DIV32
DIV32
PLL
PLLSRC
DIV4
XOSCSEL
32kHz
Int. ULP
32.768kHz
Int. OSC
32.768kHz
TOSC
32MHz
Int. Osc
2MHz
Int. Osc
XTAL2
XTAL1
TOSC2
TOSC1
10.3
0.4 – 16MHz
XTAL
Clock Sources
The clock sources are divided in two main groups: internal oscillators and external clock sources. Most of the
clock sources can be directly enabled and disabled from software, while others are automatically enabled or
disabled, depending on peripheral settings. After reset, the device starts up running from the 2MHz internal
oscillator. The other clock sources, DFLLs and PLL, are turned off by default.
The internal oscillators do not require any external components to run. For details on characteristics and
accuracy of the internal oscillators, refer to the device datasheet.
10.3.1 32kHz Ultra Low Power Internal Oscillator
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a
very low power clock source, and it is not designed for high accuracy. The oscillator employs a built-in prescaler
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
23
that provides a 1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for
any part of the device. This oscillator can be selected as the clock source for the RTC.
10.3.2 32.768kHz Calibrated Internal Oscillator
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default
frequency close to its nominal frequency. The calibration register can also be written from software for run-time
calibration of the oscillator frequency. The oscillator employs a built-in prescaler, which provides both a
32.768kHz output and a 1.024kHz output.
10.3.3 32.768kHz Crystal Oscillator
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and enables a dedicated
low frequency oscillator input circuit. A low power mode with reduced voltage swing on TOSC2 is available. This
oscillator can be used as a clock source for the system clock and RTC, and as the DFLL reference clock.
10.3.4 0.4 - 16MHz Crystal Oscillator
This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4 16MHz.
10.3.5 2MHz Run-time Calibrated Internal Oscillator
The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It is calibrated
during production to provide a default frequency close to its nominal frequency. A DFLL can be enabled for
automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the
oscillator accuracy.
10.3.6 32MHz Run-time Calibrated Internal Oscillator
The 32MHz run-time calibrated internal oscillator is a high-frequency oscillator. It is calibrated during production
to provide a default frequency close to its nominal frequency. A digital frequency looked loop (DFLL) can be
enabled for automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and
optimize the oscillator accuracy. This oscillator can also be adjusted and calibrated to any frequency between
30MHz and 55MHz. The production signature row contains 48MHz calibration values intended used when the
oscillator is used a full-speed USB clock source.
10.3.7 External Clock Sources
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic
resonator. XTAL1 can be used as input for an external clock signal. The TOSC1 and TOSC2 pins is dedicated
to driving a 32.768kHz crystal oscillator.
10.3.8 PLL with 1x-31x Multiplication Factor
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a
user-selectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range
of output frequencies from all clock sources.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
24
11.
Power Management and Sleep Modes
11.1
Features
11.2
z
Power management for adjusting power consumption and functions
z
Five sleep modes
̶ Idle
̶ Power down
̶ Power save
̶ Standby
̶ Extended standby
z
Power reduction register to disable clock and turn off unused peripherals in active and idle modes
Overview
Various sleep modes and clock gating are provided in order to tailor power consumption to application
requirements. This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.
All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing
application code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is
used to wake the device again. The application code decides which sleep mode to enter and when. Interrupts
from enabled peripherals and all enabled reset sources can restore the microcontroller from sleep to active
mode.
In addition, power reduction registers provide a method to stop the clock to individual peripherals from software.
When this is done, the current state of the peripheral is frozen, and there is no power consumption from that
peripheral. This reduces the power consumption in active mode and idle sleep modes and enables much more
fine-tuned power management than sleep modes alone.
11.3
Sleep Modes
Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power.
XMEGA microcontrollers have five different sleep modes tuned to match the typical functional stages during
application execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are
used to wake the device from sleep, and the available interrupt wake-up sources are dependent on the
configured sleep mode. When an enabled interrupt occurs, the device will wake up and execute the interrupt
service routine before continuing normal program execution from the first instruction after the SLEEP
instruction. If other, higher priority interrupts are pending when the wake-up occurs, their interrupt service
routines will be executed according to their priority before the interrupt service routine for the wake-up interrupt
is executed. After wake-up, the CPU is halted for four cycles before execution starts.
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the
device will reset, start up, and execute from the reset vector.
11.3.1 Idle Mode
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be
completed), but all peripherals, including the interrupt controller, event system and DMA controller are kept
running. Any enabled interrupt will wake the device.
11.3.2 Power-down Mode
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation
only of asynchronous modules that do not require a running clock. The only interrupts that can wake up the
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
25
MCU are the two-wire interface address match interrupt, asynchronous port interrupts, and the USB resume
interrupt.
11.3.3 Power-save Mode
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it
will keep running during sleep, and the device can also wake up from either an RTC overflow or compare match
interrupt.
11.3.4 Standby Mode
Standby mode is identical to power down, with the exception that the enabled system clock sources are kept
running while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time.
11.3.5 Extended Standby Mode
Extended standby mode is identical to power-save mode, with the exception that the enabled system clock
sources are kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
26
12.
System Control and Reset
12.1
Features
12.2
z
Reset the microcontroller and set it to initial state when a reset source goes active
z
Multiple reset sources that cover different situations
̶ Power-on reset
̶ External reset
̶ Watchdog reset
̶ Brownout reset
̶ PDI reset
̶ Software reset
z
Asynchronous operation
̶ No running system clock in the device is required for reset
z
Reset status register for reading the reset source from the application code
Overview
The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where
operation should not start or continue, such as when the microcontroller operates below its power supply rating.
If a reset source goes active, the device enters and is kept in reset until all reset sources have released their
reset. The I/O pins are immediately tri-stated. The program counter is set to the reset vector location, and all I/O
registers are set to their initial values. The SRAM content is kept. However, if the device accesses the SRAM
when a reset occurs, the content of the accessed location can not be guaranteed.
After reset is released from all reset sources, the default oscillator is started and calibrated before the device
starts running from the reset vector address. By default, this is the lowest program memory address, 0, but it is
possible to move the reset vector to the lowest address in the boot section.
The reset functionality is asynchronous, and so no running system clock is required to reset the device. The
software reset feature makes it possible to issue a controlled system reset from the user software.
The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and
shows which sources have issued a reset since the last power-on.
12.3
Reset Sequence
A reset request from any reset source will immediately reset the device and keep it in reset as long as the
request is active. When all reset requests are released, the device will go through three stages before the
device starts running again:
z
Reset counter delay
z
Oscillator startup
z
Oscillator calibration
If another reset requests occurs during this process, the reset sequence will start over again.
12.4
Reset Sources
12.4.1 Power-on Reset
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the VCC rises
and reaches the POR threshold voltage (VPOT), and this will start the reset sequence.
The POR is also activated to power down the device properly when the VCC falls and drops below the VPOT level.
The VPOT level is higher for falling VCC than for rising VCC. Consult the datasheet for POR characteristics data.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
27
12.4.2 Brownout Detection
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed,
programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level
during chip erase and when the PDI is enabled.
12.4.3 External Reset
The external reset circuit is connected to the external RESET pin. The external reset will trigger when the
RESET pin is driven below the RESET pin threshold voltage, VRST, for longer than the minimum pulse period,
tEXT. The reset will be held as long as the pin is kept low. The RESET pin includes an internal pull-up resistor.
12.4.4 Watchdog Reset
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not
reset from the software within a programmable timeout period, a watchdog reset will be given. The watchdog
reset is active for one to two clock cycles of the 2MHz internal oscillator. For more details see “WDT – Watchdog
Timer” on page 29.
12.4.5 Software Reset
The software reset makes it possible to issue a system reset from software by writing to the software reset bit in
the reset control register.The reset will be issued within two CPU clock cycles after writing the bit. It is not
possible to execute any instruction from when a software reset is requested until it is issued.
12.4.6 Program and Debug Interface Reset
The program and debug interface reset contains a separate reset source that is used to reset the device during
external programming and debugging. This reset source is accessible only from external debuggers and
programmers.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
28
13.
WDT – Watchdog Timer
13.1
Features
13.2
z
Issues a device reset if the timer is not reset before its timeout period
z
Asynchronous operation from dedicated oscillator
z
1kHz output of the 32kHz ultra low power oscillator
z
11 selectable timeout periods, from 8ms to 8s
z
Two operation modes:
̶ Normal mode
̶ Window mode
z
Configuration lock to prevent unwanted changes
Overview
The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to
recover from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a
predefined timeout period, and is constantly running when enabled. If the WDT is not reset within the timeout
period, it will issue a microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset)
instruction from the application code.
The window mode makes it possible to define a time slot or window inside the total timeout period during which
WDT must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be
issued. Compared to the normal mode, this can also catch situations where a code error causes constant WDR
execution.
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPUindependent clock source, and will continue to operate to issue a system reset even if the main clocks fail.
The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident.
For increased safety, a fuse for locking the WDT settings is also available.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
29
14.
Interrupts and Programmable Multilevel Interrupt Controller
14.1
Features
14.2
z
Short and predictable interrupt response time
z
Separate interrupt configuration and vector address for each interrupt
z
Programmable multilevel interrupt controller
̶ Interrupt prioritizing according to level and vector address
̶ Three selectable interrupt levels for all interrupts: low, medium and high
̶ Selectable, round-robin priority scheme within low-level interrupts
̶ Non-maskable interrupts for critical functions
z
Interrupt vectors optionally placed in the application section or the boot loader section
Overview
Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals
can have one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled
and configured, it will generate an interrupt request when the interrupt condition is present. The programmable
multilevel interrupt controller (PMIC) controls the handling and prioritizing of interrupt requests. When an
interrupt request is acknowledged by the PMIC, the program counter is set to point to the interrupt vector, and
the interrupt handler can be executed.
All peripherals can select between three different priority levels for their interrupts: low, medium, and high.
Interrupts are prioritized according to their level and their interrupt vector address. Medium-level interrupts will
interrupt low-level interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt
handlers. Within each level, the interrupt priority is decided from the interrupt vector address, where the lowest
interrupt vector address has the highest interrupt priority. Low-level interrupts have an optional round-robin
scheduling scheme to ensure that all interrupts are serviced within a certain amount of time.
Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.
14.3
Interrupt vectors
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific
interrupts in each peripheral. The base addresses for the Atmel AVR XMEGA A3U devices are shown in Table
14-1. Offset addresses for each interrupt available in the peripheral are described for each peripheral in the
XMEGA AU manual. For peripherals or modules that have only one interrupt, the interrupt vector is shown in
Table 14-1. The program address is the word address.
Table 14-1.
Reset and interrupt vectors.
Program address
(base address)
Source
0x000
RESET
0x002
OSCF_INT_vect
Crystal oscillator failure interrupt vector (NMI)
0x004
PORTC_INT_base
Port C interrupt base
0x008
PORTR_INT_base
Port R interrupt base
0x00C
DMA_INT_base
DMA controller interrupt base
0x014
RTC_INT_base
Real Time Counter Interrupt base
Interrupt description
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
30
Program address
(base address)
Source
Interrupt description
0x018
TWIC_INT_base
Two-Wire Interface on Port C Interrupt base
0x01C
TCC0_INT_base
Timer/Counter 0 on port C Interrupt base
0x028
TCC1_INT_base
Timer/Counter 1 on port C Interrupt base
0x030
SPIC_INT_vect
SPI on port C Interrupt vector
0x032
USARTC0_INT_base
USART 0 on port C Interrupt base
0x038
USARTC1_INT_base
USART 1 on port C Interrupt base
0x03E
AES_INT_vect
AES Interrupt vector
0x040
NVM_INT_base
Non-Volatile Memory Interrupt base
0x044
PORTB_INT_base
Port B Interrupt base
0x048
ACB_INT_base
Analog Comparator on Port B Interrupt base
0x04E
ADCB_INT_base
Analog to Digital Converter on Port B Interrupt base
0x056
PORTE_INT_base
Port E INT base
0x05A
TWIE_INT_base
Two-Wire Interface on Port E Interrupt base
0x05E
TCE0_INT_base
Timer/Counter 0 on port E Interrupt base
0x06A
TCE1_INT_base
Timer/Counter 1 on port E Interrupt base
0x072
SPIE_INT_vect
SPI on port E Interrupt vector
0x074
USARTE0_INT_base
USART 0 on port E Interrupt base
0x07A
USARTE1_INT_base
USART 1 on port E Interrupt base
0x080
PORTD_INT_base
Port D Interrupt base
0x084
PORTA_INT_base
Port A Interrupt base
0x088
ACA_INT_base
Analog Comparator on Port A Interrupt base
0x08E
ADCA_INT_base
Analog to Digital Converter on Port A Interrupt base
0x09A
TCD0_INT_base
Timer/Counter 0 on port D Interrupt base
0x0A6
TCD1_INT_base
Timer/Counter 1 on port D Interrupt base
0x0AE
SPID_INT_vector
SPI D Interrupt vector
0x0B0
USARTD0_INT_base
USART 0 on port D Interrupt base
0x0B6
USARTD1_INT_base
USART 1 on port D Interrupt base
0x0D0
PORTF_INT_base
Port F Interrupt base
0x0D8
TCF0_INT_base
Timer/Counter 0 on port F Interrupt base
0x0EE
USARTF0_INT_base
USART 0 on port F Interrupt base
0x0FA
USB_INT_base
USB on port D Interrupt base
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
31
15.
I/O Ports
15.1
Features
15.2
z
50 general purpose input and output pins with individual configuration
z
Output driver with configurable driver and pull settings:
̶ Totem-pole
̶ Wired-AND
̶ Wired-OR
̶ Bus-keeper
̶ Inverted I/O
z
Input with synchronous and/or asynchronous sensing with interrupts and events
̶ Sense both edges
̶ Sense rising edges
̶ Sense falling edges
̶ Sense low level
z
Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations
z
Optional slew rate control
z
Asynchronous pin change sensing that can wake the device from all sleep modes
z
Two port interrupts with pin masking per I/O port
z
Efficient and safe access to port pins
̶ Hardware read-modify-write through dedicated toggle/clear/set registers
̶ Configuration of multiple pins in a single operation
̶ Mapping of port registers into bit-accessible I/O memory space
z
Peripheral clocks output on port pin
z
Real-time counter clock output to port pin
z
Event channels can be output on port pin
z
Remapping of digital peripheral pin functions
̶ Selectable USART, SPI, and timer/counter input/output pin locations
Overview
One port consists of up to eight port pins: pin 0 to 7. Each port pin can be configured as input or output with
configurable driver and pull settings. They also implement synchronous and asynchronous input sensing with
interrupts and events for selectable pin change conditions. Asynchronous pin-change sensing means that a pin
change can wake the device from all sleep modes, included the modes where no clocks are running.
All functions are individual and configurable per pin, but several pins can be configured in a single operation.
The pins have hardware read-modify-write (RMW) functionality for safe and correct change of drive value and/or
pull resistor configuration. The direction of one port pin can be changed without unintentionally changing the
direction of any other pin.
The port pin configuration also controls input and output selection of other device functions. It is possible to have
both the peripheral clock and the real-time clock output to a port pin, and available for external use. The same
applies to events from the event system that can be used to synchronize and control external functions. Other
digital peripherals, such as USART, SPI, and timer/counters, can be remapped to selectable pin locations in
order to optimize pin-out versus application needs.
The notation of the ports are PORTA, PORTB, PORTC, PORTD, PORTE, PORTF and PORTR.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
32
15.3
Output Driver
All port pins (Pn) have programmable output configuration. The port pins also have configurable slew rate
limitation to reduce electromagnetic emission.
15.3.1 Push-pull
Figure 15-1.
I/O configuration - Totem-pole.
DIRn
OUTn
Pn
INn
15.3.2 Pull-down
Figure 15-2.
I/O configuration - Totem-pole with pull-down (on input).
DIRn
OUTn
Pn
INn
15.3.3 Pull-up
Figure 15-3.
I/O configuration - Totem-pole with pull-up (on input).
DIRn
OUTn
Pn
INn
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
33
15.3.4 Bus-keeper
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the
last level was ‘1’, and pull-down if the last level was ‘0’.
Figure 15-4.
I/O configuration - Totem-pole with bus-keeper.
DIRn
OUTn
Pn
INn
15.3.5 Others
Figure 15-5.
Output configuration - Wired-OR with optional pull-down.
OUTn
Pn
INn
Figure 15-6.
I/O configuration - Wired-AND with optional pull-up.
INn
Pn
OUTn
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
34
15.4
Input sensing
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the
configuration is shown in Figure 15-7.
Figure 15-7.
Input sensing system overview.
Asynchronous sensing
EDGE
DETECT
Interrupt
Control
IRQ
Synchronous sensing
Pxn
Synchronizer
INn
D
Q D
R
Q
EDGE
DETECT
Synchronous
Events
R
NVERTED I/O
Asynchronou
Events
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.
15.5
Alternate Port Functions
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate
function is enabled, it might override the normal port pin function or pin value. This happens when other
peripherals that require pins are enabled or configured to use pins. If and how a peripheral will override and use
pins is described in the section for that peripheral. “Pinout and Pin Functions” on page 59 shows which modules
on peripherals that enable alternate functions on a pin, and which alternate functions that are available on a pin.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
35
16.
TC0/1 – 16-bit Timer/Counter Type 0 and 1
16.1
Features
16.2
z
Seven 16-bit timer/counters
̶ Four timer/counters of type 0
̶ Three timer/counters of type 1
̶ Split-mode enabling two 8-bit timer/counter from each timer/counter type 0
z
32-bit Timer/Counter support by cascading two timer/counters
z
Up to four compare or capture (CC) channels
̶ Four CC channels for timer/counters of type 0
̶ Two CC channels for timer/counters of type 1
z
Double buffered timer period setting
z
Double buffered capture or compare channels
z
Waveform generation:
̶ Frequency generation
̶ Single-slope pulse width modulation
̶ Dual-slope pulse width modulation
z
Input capture:
̶ Input capture with noise cancelling
̶ Frequency capture
̶ Pulse width capture
̶ 32-bit input capture
z
Timer overflow and error interrupts/events
z
One compare match or input capture interrupt/event per CC channel
z
Can be used with event system for:
̶ Quadrature decoding
̶ Count and direction control
̶ Capture
z
Can be used with DMA and to trigger DMA transactions
z
High-resolution extension
̶ Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)
z
Advanced waveform extension:
̶ Low- and high-side output with programmable dead-time insertion (DTI)
z
Event controlled fault protection for safe disabling of drivers
Overview
Atmel AVR XMEGA devices have a set of seven flexible 16-bit Timer/Counters (TC). Their capabilities include
accurate program execution timing, frequency and waveform generation, and input capture with time and
frequency measurement of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter
with optional 32-bit capture.
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter
can be used to count clock cycles or events. It has direction control and period setting that can be used for
timing. The CC channels can be used together with the base counter to do compare match control, frequency
generation, and pulse width waveform modulation, as well as various input capture operations. A timer/counter
can be configured for either capture or compare functions, but cannot perform both at the same time.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
36
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or from the event
system. The event system can also be used for direction control and capture trigger or to synchronize
operations.
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and
timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for
timer/counter 0. Only Timer/Counter 0 has the split mode feature that split it into two 8-bit Timer/Counters with
four compare channels each.
Some timer/counters have extensions to enable more specialized waveform and frequency generation. The
advanced waveform extension (AWeX) is intended for motor control and other power control applications. It
enables low- and high-side output with dead-time insertion, as well as fault protection for disabling and shutting
down external drivers. It can also generate a synchronized bit pattern across the port pins.
The advanced waveform extension can be enabled to provide extra and more advanced features for the
Timer/Counter. This are only available for Timer/Counter 0. See “AWeX – Advanced Waveform Extension” on
page 39 for more details.
The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight
times by using an internal clock source running up to four times faster than the peripheral clock. See “Hi-Res –
High Resolution Extension” on page 40 for more details.
Figure 16-1.
Overview of a Timer/Counter and closely related peripherals.
Timer/Counter
Base Counter
Timer Period
Counter
Prescaler
Control Logic
clkPER
Event
System
Buffer
Capture
Control
Waveform
Generation
Dead-Time
Insertion
Pattern
Generation
Fault
Protection
PORT
Comparator
AWeX
Hi-Res
clkPER4
Compare/Capture Channel D
Compare/Capture Channel C
Compare/Capture Channel B
Compare/Capture Channel A
PORTC, PORTD and PORTE each has one Timer/Counter 0 and one Timer/Counter1. PORTF has one
Timer/Counter 0. Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0, TCD1, TCE0, TCE1 and TCF0,
respectively.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
37
17.
TC2 - Timer/Counter Type 2
17.1
Features
17.2
z
Eight eight-bit timer/counters
̶ Four Low-byte timer/counter
̶ Four High-byte timer/counter
z
Up to eight compare channels in each Timer/Counter 2
̶ Four compare channels for the low-byte timer/counter
̶ Four compare channels for the high-byte timer/counter
z
Waveform generation
̶ Single slope pulse width modulation
z
Timer underflow interrupts/events
z
One compare match interrupt/event per compare channel for the low-byte timer/counter
z
Can be used with the event system for count control
z
Can be used to trigger DMA transactions
Overview
There are four Timer/Counter 2. These are realized when a Timer/Counter 0 is set in split mode. It is then a
system of two eight-bit timer/counters, each with four compare channels. This results in eight configurable pulse
width modulation (PWM) channels with individually controlled duty cycles, and is intended for applications that
require a high number of PWM channels.
The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and high-byte
timer/counter, respectively. The difference between them is that only the low-byte timer/counter can be used to
generate compare match interrupts, events and DMA triggers. The two eight-bit timer/counters have a shared
clock source and separate period and compare settings. They can be clocked and timed from the peripheral
clock, with optional prescaling, or from the event system. The counters are always counting down.
PORTC, PORTD, PORTE and PORTF each has one Timer/Counter 2. Notation of these are TCC2
(Time/Counter C2), TCD2, TCE2 and TCF2, respectively.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
38
18.
AWeX – Advanced Waveform Extension
18.1
Features
18.2
z
Waveform output with complementary output from each compare channel
z
Four dead-time insertion (DTI) units
̶ 8-bit resolution
̶ Separate high and low side dead-time setting
̶ Double buffered dead time
̶ Optionally halts timer during dead-time insertion
z
Pattern generation unit creating synchronised bit pattern across the port pins
̶ Double buffered pattern generation
̶ Optional distribution of one compare channel output across the port pins
z
Event controlled fault protection for instant and predictable fault triggering
Overview
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform
generation (WG) modes. It is primarily intended for use with different types of motor control and other power
control applications. It enables low- and high side output with dead-time insertion and fault protection for
disabling and shutting down external drivers. It can also generate a synchronized bit pattern across the port
pins.
Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs
when any AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that
generates the non-inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion
between LS and HS switching. The DTI output will override the normal port value according to the port override
setting.
The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In
addition, the WG output from compare channel A can be distributed to and override all the port pins. When the
pattern generator unit is enabled, the DTI unit is bypassed.
The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will
disable the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in
the selection of fault triggers.
The AWeX is available for TCC0. The notation of this is AWEXC.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
39
19.
Hi-Res – High Resolution Extension
19.1
Features
19.2
z
Increases waveform generator resolution up to 8x (three bits)
z
Supports frequency, single-slope PWM, and dual-slope PWM generation
z
Supports the AWeX when this is used for the same timer/counter
Overview
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output
from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or
dual-slope PWM generation. It can also be used with the AWeX if this is used for the same timer/counter.
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so
the peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hires extension is enabled.
There are four hi-res extensions that each can be enabled for each timer/counters pair on PORTC, PORTD,
PORTE and PORTF. The notation of these are HIRESC, HIRESD, HIRESE and HIRESF, respectively.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
40
20.
RTC – 16-bit Real-Time Counter
20.1
Features
20.2
z
16-bit resolution
z
Selectable clock source
̶ 32.768kHz external crystal
̶ External clock
̶ 32.768kHz internal oscillator
̶ 32kHz internal ULP oscillator
z
Programmable 10-bit clock prescaling
z
One compare register
z
One period register
z
Clear counter on period overflow
z
Optional interrupt/event on overflow and compare match
Overview
The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep
modes, to keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular
intervals.
The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the
configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the
RTC needs a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the
32.768kHz internal oscillator or the 32kHz internal ULP oscillator.
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches
the counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock
source, the maximum resolution is 30.5µs, and time-out periods can range up to 2000 seconds. With a
resolution of 1s, the maximum timeout period is more than18 hours (65536 seconds). The RTC can give a
compare interrupt and/or event when the counter equals the compare register value, and an overflow interrupt
and/or event when it equals the period register value.
Figure 20-1.
Real-time counter overview.
External Clock
TOSC1
TOSC2
32.768kHz Crystal Osc
32.768kHz Int. Osc
DIV32
DIV32
32kHz int ULP (DIV32)
PER
RTCSRC
clkRTC
10-bit
prescaler
=
TOP/
Overflow
=
”match”/
Compare
CNT
COMP
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
41
21.
USB – Universal Serial Bus Interface
21.1
Features
21.2
z
One USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface
z
Integrated on-chip USB transceiver, no external components needed
z
16 endpoint addresses with full endpoint flexibility for up to 31 endpoints
̶ One input endpoint per endpoint address
̶ One output endpoint per endpoint address
z
Endpoint address transfer type selectable to
̶ Control transfers
̶ Interrupt transfers
̶ Bulk transfers
̶ Isochronous transfers
z
Configurable data payload size per endpoint, up to 1023 bytes
z
Endpoint configuration and data buffers located in internal SRAM
̶ Configurable location for endpoint configuration data
̶ Configurable location for each endpoint's data buffer
z
Built-in direct memory access (DMA) to internal SRAM for:
̶ Endpoint configurations
̶ Reading and writing endpoint data
z
Ping-pong operation for higher throughput and double buffered operation
̶ Input and output endpoint data buffers used in a single direction
̶ CPU/DMA controller can update data buffer during transfer
z
Multipacket transfer for reduced interrupt load and software intervention
̶ Data payload exceeding maximum packet size is transferred in one continuous transfer
̶ No interrupts or software interaction on packet transaction level
z
Transaction complete FIFO for workflow management when using multiple endpoints
̶ Tracks all completed transactions in a first-come, first-served work queue
z
Clock selection independent of system clock source and selection
z
Minimum 1.5MHz CPU clock required for low speed USB operation
z
Minimum 12MHz CPU clock required for full speed operation
z
Connection to event system
z
On chip debug possibilities during USB transactions
Overview
The USB module is a USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface.
The USB supports 16 endpoint addresses. All endpoint addresses have one input and one output endpoint, for
a total of 31 configurable endpoints and one control endpoint. Each endpoint address is fully configurable and
can be configured for any of the four transfer types; control, interrupt, bulk, or isochronous. The data payload
size is also selectable, and it supports data payloads up to 1023 bytes.
No dedicated memory is allocated for or included in the USB module. Internal SRAM is used to keep the
configuration for each endpoint address and the data buffer for each endpoint. The memory locations used for
endpoint configurations and data buffers are fully configurable. The amount of memory allocated is fully
dynamic, according to the number of endpoints in use and the configuration of these. The USB module has
built-in direct memory access (DMA), and will read/write data from/to the SRAM when a USB transaction takes
place.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
42
To maximize throughput, an endpoint address can be configured for ping-pong operation. When done, the input
and output endpoints are both used in the same direction. The CPU or DMA controller can then read/write one
data buffer while the USB module writes/reads the others, and vice versa. This gives double buffered
communication.
Multipacket transfer enables a data payload exceeding the maximum packet size of an endpoint to be
transferred as multiple packets without software intervention. This reduces the CPU intervention and the
interrupts needed for USB transfers.
For low-power operation, the USB module can put the microcontroller into any sleep mode when the USB bus is
idle and a suspend condition is given. Upon bus resumes, the USB module can wake up the microcontroller
from any sleep mode.
PORTD has one USB. Notation of this is USB.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
43
22.
TWI – Two-Wire Interface
22.1
Features
22.2
z
Two Identical two-wire interface peripherals
z
Bidirectional, two-wire communication interface
̶ Phillips I2C compatible
̶ System Management Bus (SMBus) compatible
z
Bus master and slave operation supported
̶ Slave operation
̶ Single bus master operation
̶ Bus master in multi-master bus environment
̶ Multi-master arbitration
z
Flexible slave address match functions
̶ 7-bit and general call address recognition in hardware
̶ 10-bit addressing supported
̶ Address mask register for dual address match or address range masking
̶ Optional software address recognition for unlimited number of addresses
z
Slave can operate in all sleep modes, including power-down
z
Slave address match can wake device from all sleep modes
z
100kHz and 400kHz bus frequency support
z
Slew-rate limited output drivers
z
Input filter for bus noise and spike suppression
z
Support arbitration between start/repeated start and data bit (SMBus)
z
Slave arbitration allows support for address resolve protocol (ARP) (SMBus)
Overview
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and System
Management Bus (SMBus) compatible. The only external hardware needed to implement the bus is one pull-up
resistor on each bus line.
A device connected to the bus must act as a master or a slave. The master initiates a data transaction by
addressing a slave on the bus and telling whether it wants to transmit or receive data. One bus can have many
slaves and one or several masters that can take control of the bus. An arbitration process handles priority if
more than one master tries to transmit data at the same time. Mechanisms for resolving bus contention are
inherent in the protocol.
The TWI module supports master and slave functionality. The master and slave functionality are separated from
each other, and can be enabled and configured separately. The master module supports multi-master bus
operation and arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is
supported. Quick command and smart mode can be enabled to auto-trigger operations and reduce software
complexity.
The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit
addressing is also supported. A dedicated address mask register can act as a second address match register or
as a register for address range masking. The slave continues to operate in all sleep modes, including powerdown mode. This enables the slave to wake up the device from all sleep modes on TWI address match. It is
possible to disable the address matching to let this be handled in software instead.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
44
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors,
collision, and clock hold on the bus are also detected and indicated in separate status flags available in both
master and slave modes.
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an
external TWI bus driver. This can be used for applications where the device operates from a different VCC
voltage than used by the TWI bus.
PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
45
23.
SPI – Serial Peripheral Interface
23.1
Features
23.2
z
Three Identical SPI peripherals
z
Full-duplex, three-wire synchronous data transfer
z
Master or slave operation
z
Lsb first or msb first data transfer
z
Eight programmable bit rates
z
Interrupt flag at the end of transmission
z
Write collision flag to indicate data collision
z
Wake up from idle sleep mode
z
Double speed master mode
Overview
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using three or four
pins. It allows fast communication between an Atmel AVR XMEGA device and peripheral devices or between
several microcontrollers. The SPI supports full-duplex communication.
A device connected to the bus must act as a master or slave. The master initiates and controls all data
transactions.
PORTC, PORTD, and PORTE each has one SPI. Notation of these peripherals are SPIC, SPID, and SPIE
respectivel
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
46
24.
USART
24.1
Features
24.2
z
Seven identical USART peripherals
z
Full-duplex operation
z
Asynchronous or synchronous operation
̶ Synchronous clock rates up to 1/2 of the device clock frequency
̶ Asynchronous clock rates up to 1/8 of the device clock frequency
z
Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits
z
Fractional baud rate generator
̶ Can generate desired baud rate from any system clock frequency
̶ No need for external oscillator with certain frequencies
z
Built-in error detection and correction schemes
̶ Odd or even parity generation and parity check
̶ Data overrun and framing error detection
̶ Noise filtering includes false start bit detection and digital low-pass filter
z
Separate interrupts for
̶ Transmit complete
̶ Transmit data register empty
̶ Receive complete
z
Multiprocessor communication mode
̶ Addressing scheme to address a specific devices on a multidevice bus
̶ Enable unaddressed devices to automatically ignore all frames
z
Master SPI mode
̶ Double buffered operation
̶ Operation up to 1/2 of the peripheral clock frequency
z
IRCOM module for IrDA compliant pulse modulation/demodulation
Overview
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible
serial communication module. The USART supports full-duplex communication and asynchronous and
synchronous operation. The USART can be configured to operate in SPI master mode and used for SPI
communication.
Communication is frame based, and the frame format can be customized to support a wide range of standards.
The USART is buffered in both directions, enabling continued data transmission without any delay between
frames. Separate interrupts for receive and transmit complete enable fully interrupt driven communication.
Frame error and buffer overflow are detected in hardware and indicated with separate status flags. Even or odd
parity generation and parity check can also be enabled.
The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART
baud rates from any system clock frequencies. This removes the need to use an external crystal oscillator with
a specific frequency to achieve a required baud rate. It also supports external clock input in synchronous slave
operation.
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and
receive buffers, shift registers, and baud rate generator enabled. Pin control and interrupt generation are
identical in both modes. The registers are used in both modes, but their functionality differs for some control
settings.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
47
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and
demodulation for baud rates up to 115.2Kbps.
PORTC, PORTD, and PORTE each has two USARTs, while PORTF has one USART only. Notation of these
peripherals are USARTC0, USARTC1, USARTD0, USARTD1, USARTE0, USARTE1 and USARTF0,
respectively.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
48
25.
IRCOM – IR Communication Module
25.1
Features
25.2
z
Pulse modulation/demodulation for infrared communication
z
IrDA compatible for baud rates up to 115.2Kbps
z
Selectable pulse modulation scheme
̶ 3/16 of the baud rate period
̶ Fixed pulse period, 8-bit programmable
̶ Pulse modulation disabled
z
Built-in filtering
z
Can be connected to and used by any USART
Overview
Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for
baud rates up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for
that USART.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
49
26.
AES and DES Crypto Engine
26.1
Features
26.2
z
Data Encryption Standard (DES) CPU instruction
z
Advanced Encryption Standard (AES) crypto module
z
DES Instruction
̶ Encryption and decryption
̶ DES supported
̶ Encryption/decryption in 16 CPU clock cycles per 8-byte block
z
AES crypto module
̶ Encryption and decryption
̶ Supports 128-bit keys
̶ Supports XOR data load mode to the state memory
̶ Encryption/decryption in 375 clock cycles per 16-byte block
Overview
The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two commonly used
standards for cryptography. These are supported through an AES peripheral module and a DES CPU
instruction, and the communication interfaces and the CPU can use these for fast, encrypted communication
and secure data storage.
DES is supported by an instruction in the AVR CPU. The 8-byte key and 8-byte data blocks must be loaded into
the register file, and then the DES instruction must be executed 16 times to encrypt/decrypt the data block.
The AES crypto module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key. The key and
data must be loaded into the key and state memory in the module before encryption/decryption is started. It
takes 375 peripheral clock cycles before the encryption/decryption is done. The encrypted/encrypted data can
then be read out, and an optional interrupt can be generated. The AES crypto module also has DMA support
with transfer triggers when encryption/decryption is done and optional auto-start of encryption/decryption when
the state memory is fully loaded.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
50
27.
CRC – Cyclic Redundancy Check Generator
27.1
Features
27.2
z
Cyclic redundancy check (CRC) generation and checking for
̶ Communication data
̶ Program or data in flash memory
̶ Data in SRAM and I/O memory space
z
Integrated with flash memory, DMA controller and CPU
̶ Continuous CRC on data going through a DMA channel
̶ Automatic CRC of the complete or a selectable range of the flash memory
̶ CPU can load data to the CRC generator through the I/O interface
z
CRC polynomial software selectable to
̶ CRC-16 (CRC-CCITT)
̶ CRC-32 (IEEE 802.3)
z
Zero remainder detection
Overview
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in
data, and it is commonly used to determine the correctness of a data transmission, and data present in the data
and program memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit
output that can be appended to the data and used as a checksum. When the same data are later received or
read, the device or application repeats the calculation. If the new CRC result does not match the one calculated
earlier, the block contains a data error. The application will then detect this and may take a corrective action,
such as requesting the data to be sent again or simply not using the incorrect data.
Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer
than n bits (any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2-n of
all longer error bursts. The CRC module in Atmel AVR XMEGA devices supports two commonly used CRC
polynomials; CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3).
z
CRC-16:
Polynomial:
Hex value:
z
x16+x12+x5+1
0x1021
CRC-32:
Polynomial:
Hex value:
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1
0x04C11DB7
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
51
28.
ADC – 12-bit Analog to Digital Converter
28.1
Features
28.2
z
Two Analog to Digital Converters (ADCs)
z
12-bit resolution
z
Up to two million samples per second
̶ Two inputs can be sampled simultaneously using ADC and 1x gain stage
̶ Four inputs can be sampled within 1.5µs
̶ Down to 2.5µs conversion time with 8-bit resolution
̶ Down to 3.5µs conversion time with 12-bit resolution
z
Differential and single-ended input
̶ Up to 16 single-ended inputs
̶ 16x4 differential inputs without gain
̶ 8x4 differential input with gain
z
Built-in differential gain stage
̶ 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options
z
Single, continuous and scan conversion options
z
Four internal inputs
̶ Internal temperature sensor
̶ DAC output
̶ AVCC voltage divided by 10
̶ 1.1V bandgap voltage
z
Four conversion channels with individual input control and result registers
̶ Enable four parallel configurations and results
z
Internal and external reference options
z
Compare function for accurate monitoring of user defined thresholds
z
Optional event triggered conversion for accurate timing
z
Optional DMA transfer of conversion results
z
Optional interrupt/event on compare result
Overview
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting
up to two million samples per second (msps). The input selection is flexible, and both single-ended and
differential measurements can be done. For differential measurements, an optional gain stage is available to
increase the dynamic range. In addition, several internal signal inputs are available. The ADC can provide both
signed and unsigned results.
This is a pipelined ADC that consists of several consecutive stages. The pipelined design allows a high sample
rate at a low system clock frequency. It also means that a new input can be sampled and a new ADC conversion
started while other ADC conversions are still ongoing. This removes dependencies between sample rate and
propagation delay.
The ADC has four conversion channels (0-3) with individual input selection, result registers, and conversion
start control. The ADC can then keep and use four parallel configurations and results, and this will ease use for
applications with high data throughput or for multiple modules using the ADC independently. It is possible to use
DMA to move ADC results directly to memory or peripherals when conversions are done.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
52
Both internal and external reference voltages can be used. An integrated temperature sensor is available for
use with the ADC. The output from the DAC, AVCC/10 and the bandgap voltage can also be measured by the
ADC.
The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software
intervention required.
Figure 28-1.
ADC overview.
ADC0
Compare
•
••
ADC11
ADC0
Internal
signals
VINP
CH0 Result
••
•
ADC7
ADC4
CH1 Result
Threshold
(Int Req)
½x - 64x
CH2 Result
•
••
ADC7
Int. signals
<
>
Internal
signals
CH3 Result
VINN
ADC0
•
••
ADC3
Int. signals
Internal 1.00V
Internal AVCC/1.6V
Internal AVCC/2
AREFA
AREFB
Reference
Voltage
Two inputs can be sampled simultaneously as both the ADC and the gain stage include sample and hold
circuits, and the gain stage has 1x gain setting. Four inputs can be sampled within 1.5µs without any
intervention by the application.
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay)
from 3.5µs for 12-bit to 2.5µs for 8-bit result.
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This eases calculation
when the result is represented as a signed integer (signed 16-bit number).
PORTA and PORTB each has one ADC. Notation of these peripherals are ADCA and ADCB, respectively.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
53
29.
DAC – 12-bit Digital to Analog Converter
29.1
Features
29.2
z
One Digital to Analog Converter (DAC)
z
12-bit resolution
z
Two independent, continuous-drive output channels
z
Up to one million samples per second conversion rate per DAC channel
z
Built-in calibration that removes:
̶ Offset error
̶ Gain error
z
Multiple conversion trigger sources
̶ On new available data
̶ Events from the event system
z
High drive capabilities and support for
̶ Resistive loads
̶ Capacitive loads
̶ Combined resistive and capacitive loads
z
Internal and external reference options
z
DAC output available as input to analog comparator and ADC
z
Low-power mode, with reduced drive strength
z
Optional DMA transfer of data
Overview
The digital-to-analog converter (DAC) converts digital values to voltages. The DAC has two channels, each with
12-bit resolution, and is capable of converting up to one million samples per second (msps) on each channel.
The built-in calibration system can remove offset and gain error when loaded with calibration values from
software.
Figure 29-1.
DAC overview.
DMA req
(Data Empty)
CH0DATA
12
D
A
T
A
DAC0
Output
Driver
Int.
driver
AVCC
Internal 1.00V
AREFA
AREFB
Reference
selection
12
Select
CTRLB
Trigger
CH1DATA
DMA req
(Data Empty)
Trigger
D
A
T
A
Enable
CTRLA
Select
DAC1
Enable
To
AC/ADC
Internal Output
enable
Output
Driver
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
54
A DAC conversion is automatically started when new data to be converted are available. Events from the event
system can also be used to trigger a conversion, and this enables synchronized and timed conversions between
the DAC and other peripherals, such as a timer/counter. The DMA controller can be used to transfer data to the
DAC.
The DAC has high drive strength, and is capable of driving both resistive and capacitive loads, aswell as loads
which combine both. A low-power mode is available, which will reduce the drive strength of the output. Internal
and external voltage references can be used. The DAC output is also internally available for use as input to the
analog comparator or ADC.
PORTB has one DAC. Notation of this peripheral is DACB.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
55
30.
AC – Analog Comparator
30.1
Features
30.2
z
Four Analog Comparators (AC)
z
Selectable propagation delay versus current consumption
z
Selectable hysteresis
̶ No
̶ Small
̶ Large
z
Analog comparator output available on pin
z
Flexible input selection
̶ All pins on the port
̶ Output from the DAC
̶ Bandgap reference voltage
̶ A 64-level programmable voltage scaler of the internal AVCC voltage
z
Interrupt and event generation on:
̶ Rising edge
̶ Falling edge
̶ Toggle
z
Window function interrupt and event generation on:
̶ Signal above window
̶ Signal inside window
̶ Signal below window
z
Constant current source with configurable output pin selection
Overview
The analog comparator (AC) compares the voltage levels on two inputs and gives a digital output based on this
comparison. The analog comparator may be configured to generate interrupt requests and/or events upon
several different combinations of input change.
Two important properties of the analog comparator’s dynamic behavior are: hysteresis and propagation delay.
Both of these parameters may be adjusted in order to achieve the optimal operation for each application.
The input selection includes analog port pins, several internal signals, and a 64-level programmable voltage
scaler. The analog comparator output state can also be output on a pin for use by external devices.
A constant current source can be enabled and output on a selectable pin. This can be used to replace, for
example, external resistors used to charge capacitors in capacitive touch sensing applications.
The analog comparators are always grouped in pairs on each port. These are called analog comparator 0 (AC0)
and analog comparator 1 (AC1). They have identical behavior, but separate control registers. Used as pair, they
can be set in window mode to compare a signal to a voltage range instead of a voltage level.
PORTA and PORTB each has one AC pair. Notations are ACA and ACB, respectively.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
56
Figure 30-1.
Analog comparator overview.
Pin Input
+
AC0OUT
Pin Input
Hysteresis
DAC
Voltage
Scaler
Enable
ACnMUXCTRL
ACnCTRL
Interrupt
Mode
WINCTRL
Enable
Bandgap
Interrupt
Sensititivity
Control
&
Window
Function
Interrupts
Events
Hysteresis
+
Pin Input
AC1OUT
Pin Input
The window function is realized by connecting the external inputs of the two analog comparators in a pair as
shown in Figure 30-2.
Figure 30-2.
Analog comparator window function.
+
AC0
Upper limit of window
Interrupt
sensitivity
control
Input signal
Interrupts
Events
+
AC1
Lower limit of window
-
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
57
31.
Programming and Debugging
31.1
Features
31.2
z
Programming
̶ External programming through PDI or JTAG interfaces
z Minimal protocol overhead for fast operation
z Built-in error detection and handling for reliable operation
̶ Boot loader support for programming through any communication interface
z
Debugging
̶ Nonintrusive, real-time, on-chip debug system
̶ No software or hardware resources required from device except pin connection
̶ Program flow control
z Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor
̶ Unlimited number of user program breakpoints
̶ Unlimited number of user data breakpoints, break on:
z Data location read, write, or both read and write
z Data location content equal or not equal to a value
z Data location content is greater or smaller than a value
z Data location content is within or outside a range
̶ No limitation on device clock frequency
z
Program and Debug Interface (PDI)
̶ Two-pin interface for external programming and debugging
̶ Uses the Reset pin and a dedicated pin
̶ No I/O pins required during programming or debugging
z
JTAG interface
̶ Four-pin, IEEE Std. 1149.1 compliant interface for programming and debugging
̶ Boundary scan capabilities according to IEEE Std. 1149.1 (JTAG)
Overview
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip
debugging of a device.
The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses, lock bits, and
the user signature row.
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not
require any software or hardware resources except for the device pin connection. Using the Atmel tool chain, it
offers complete program flow control and support for an unlimited number of program and complex data
breakpoints. Application debug can be done from a C or other high-level language source code level, as well as
from an assembler and disassembler level.
Programming and debugging can be done through two physical interfaces. The primary one is the PDI physical
layer, which is available on all devices. This is a two-pin interface that uses the Reset pin for the clock input
(PDI_CLK) and one other dedicated pin for data input and output (PDI_DATA). A JTAG interface is also
available on most devices, and this can be used for programming and debugging through the four-pin JTAG
interface. The JTAG interface is IEEE Std. 1149.1 compliant, and supports boundary scan. Any external
programmer or on-chip debugger/emulator can be directly connected to either of these interfaces. Unless
otherwise stated, all references to the PDI assume access through the PDI physical layer.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
58
32.
Pinout and Pin Functions
The device pinout is shown in “Pinout/Block Diagram” on page 5. In addition to general purpose I/O
functionality, each pin can have several alternate functions. This will depend on which peripheral is enabled and
connected to the actual pin. Only one of the pin functions can be used at time.
32.1
Alternate Pin Function Description
The tables below show the notation for all pin functions available and describe its function.
32.1.1 Operation/Power Supply
VCC
Digital supply voltage
AVCC
Analog supply voltage
GND
Ground
32.1.2 Port Interrupt functions
SYNC
Port pin with full synchronous and limited asynchronous interrupt function
ASYNC
Port pin with full synchronous and full asynchronous interrupt function
32.1.3 Analog functions
ACn
Analog Comparator input pin n
ACnOUT
Analog Comparator n Output
ADCn
Analog to Digital Converter input pin n
DACn
Digital to Analog Converter output pin n
AREF
Analog Reference input pin
32.1.4 Timer/Counter and AWEX functions
OCnxLS
Output Compare Channel x Low Side for Timer/Counter n
OCnxHS
Output Compare Channel x High Side for Timer/Counter n
32.1.5 Communication functions
SCL
Serial Clock for TWI
SDA
Serial Data for TWI
SCLIN
Serial Clock In for TWI when external driver interface is enabled
SCLOUT
Serial Clock Out for TWI when external driver interface is enabled
SDAIN
Serial Data In for TWI when external driver interface is enabled
SDAOUT
Serial Data Out for TWI when external driver interface is enabled
XCKn
Transfer Clock for USART n
RXDn
Receiver Data for USART n
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
59
TXDn
Transmitter Data for USART n
SS
Slave Select for SPI
MOSI
Master Out Slave In for SPI
MISO
Master In Slave Out for SPI
SCK
Serial Clock for SPI
D-
Data- for USB
D+
Data+ for USB
32.1.6 Oscillators, Clock and Event
TOSCn
Timer Oscillator pin n
XTALn
Input/Output for Oscillator pin n
CLKOUT
Peripheral Clock Output
EVOUT
Event Channel Output
RTCOUT
RTC Clock Source Output
32.1.7 Debug/System functions
RESET
Reset pin
PDI_CLK
Program and Debug Interface Clock pin
PDI_DATA
Program and Debug Interface Data pin
TCK
JTAG Test Clock
TDI
JTAG Test Data In
TDO
JTAG Test Data Out
TMS
JTAG Test Mode Select
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
60
32.2
Alternate Pin Functions
The tables below show the primary/default function for each pin on a port in the first column, the pin number in
the second column, and then all alternate pin functions in the remaining columns. The head row shows what
peripheral that enable and use the alternate pin functions.
For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted
under the first table where this apply.
Table 32-1. Port A - alternate functions.
PORTA
PIN#
INTERRUPT
ADCAPOS/
GAINPOS
ADCA
NEG
ADCA
GAINNEG
ACA
POS
ACA
NEG
GND
60
AVCC
61
PA0
62
SYNC
ADC0
ADC0
AC0
AC0
PA1
63
SYNC
ADC1
ADC1
AC1
AC1
PA2
64
SYNC/
ASYNC
ADC2
ADC2
AC2
PA3
1
SYNC
ADC3
ADC3
AC3
PA4
2
SYNC
ADC4
ADC4
AC4
PA5
3
SYNC
ADC5
ADC5
AC5
PA6
4
SYNC
ADC6
ADC6
AC6
PA7
5
SYNC
ADC7
ADC7
ACA
OUT
REFA
AREF
AC3
AC5
AC1OUT
AC7
AC0OUT
Table 32-2. Port B - alternate functions.
PORTB
PIN#
INTERRUPT
ADCAPOS/
GAINPOS
ADCBPOS/
GAINPOS
ADCB
NEG
PB0
6
SYNC
ADC8
ADC0
PB1
7
SYNC
ADC9
PB2
8
SYNC/
ASYNC
PB3
9
PB4
ADCB
GAINNEG
ACB
POS
ACB
NEG
ADC0
AC0
AC0
ADC1
ADC1
AC1
AC1
ADC10
ADC2
ADC2
AC2
SYNC
ADC11
ADC3
ADC3
AC3
10
SYNC
ADC12
ADC4
ADC4
AC4
PB5
11
SYNC
ADC13
ADC5
ADC5
AC5
PB6
12
SYNC
ADC14
ADC6
ADC6
AC6
PB7
13
SYNC
ADC15
ADC7
ADC7
GND
14
VCC
15
ACBOUT
DACB
REFB
JTAG
AREF
DAC0
AC3
DAC1
TMS
AC5
AC7
TDI
AC1OUT
TCK
AC0OUT
TDO
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
61
Table 32-3. Port C - alternate functions.
PORTC
PIN#
INTERRUPT
TCC0
AWEXC
TCC1
(1)(2)
USART
C0 (3)
USART
C1
TWIC
TWIC
w/ext
driver
SDA
SDAIN
SCL
SCLIN
SPIC
(4)
PC0
16
SYNC
OC0A
OC0ALS
PC1
17
SYNC
OC0B
OC0AHS
XCK0
PC2
18
SYNC/
ASYNC
OC0C
OC0BLS
RXD0
SDAOUT
PC3
19
SYNC
OC0D
OC0BHS
TXD0
SCLOUT
PC4
20
SYNC
OC0CLS
OC1A
PC5
21
SYNC
OC0CHS
OC1B
PC6
22
SYNC
PC7
23
SYNC
GND
24
VCC
25
Notes:
1.
2.
3.
4.
5.
6.
CLOCKOUT
EVENTOUT
(5)
(6)
SS
XCK1
MOSI
OC0DLS
RXD1
MISO
RTCOUT
OC0DHS
TXD1
SCK
clkPER
EVOUT
Pin mapping of all TC0 can optionally be moved to high nibble of port.
If TC0 is configured as TC2 all eight pins can be used for PWM output.
Pin mapping of all USART0 can optionally be moved to high nibble of port.
Pins MOSI and SCK for all SPI can optionally be swapped.
CLKOUT can optionally be moved between port C, D and E and be on pin 4 or 7.
EVOUT can optionally be moved between port C, D and E and be on pin 4 or 7.
Table 32-4. Port D - alternate functions.
PORT D
PIN #
INTERRUPT
TCD0
PD0
26
SYNC
OC0A
PD1
27
SYNC
OC0B
XCK0
PD2
28
SYNC/ASYNC
OC0C
RXD0
PD3
29
SYNC
OC0D
TXD0
PD4
30
SYNC
OC1A
PD5
31
SYNC
OC1B
PD6
32
SYNC
PD7
33
SYNC
GND
34
VCC
35
Notes:
1.
2.
3.
4.
5.
6.
TCD1
USBD
USARTD0
USARTD1
SPID
CLOCKOUT
EVENTOUT
clkPER
EVOUT
SS
XCK1
MOSI
D-
RXD1
MISO
D+
TXD1
SCK
Pin mapping of all TC0 can optionally be moved to high nibble of port.
If TC0 is configured as TC2 all eight pins can be used for PWM output.
Pin mapping of all USART0 can optionally be moved to high nibble of port.
Pins MOSI and SCK for all SPI can optionally be swapped.
CLKOUT can optionally be moved between port C, D and E and be on pin 4 or 7.
EVOUT can optionally be moved between port C, D and E and be on pin 4 or 7.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
62
Table 32-5. Port E - alternate functions.
PORTE
USART
E1
SPIE
SDA
SDAIN
SCL
SCLIN
TCE0
PE0
36
SYNC
OC0A
PE1
37
SYNC
OC0B
XCK0
PE2
38
SYNC/ASYNC
OC0C
RXD0
SDAOUT
PE3
39
SYNC
OC0D
TXD0
SCLOUT
PE4
40
SYNC
OC1A
PE5
41
SYNC
OC1B
PE6
42
PE7
43
GND
44
VCC
45
1.
2.
3.
4.
5.
6.
USART
E0
TWIE
w/ext
driver
INTERRUPT
Notes:
TCE1
TWIE
PIN #
TOSC
CLOCKOUT
EVENTOUT
clkPER
EVOUT
SS
XCK1
MOSI
SYNC
RXD1
MISO
TOSC2
SYNC
TXD1
SCK
TOSC1
Pin mapping of all TC0 can optionally be moved to high nibble of port.
If TC0 is configured as TC2 all eight pins can be used for PWM output.
Pin mapping of all USART0 can optionally be moved to high nibble of port.
Pins MOSI and SCK for all SPI can optionally be swapped.
CLKOUT can optionally be moved between port C, D and E and be on pin 4 or 7.
EVOUT can optionally be moved between port C, D and E and be on pin 4 or 7.
Table 32-6. Port F - alternate functions.
PORTF
PIN#
INTERRUPT
TCF0
USARTF0
PF0
46
SYNC
OC0A
PF1
47
SYNC
OC0B
XCK0
PF2
48
SYNC/ASYNC
OC0C
RXD0
PF3
49
SYNC
OC0D
TXD0
PF4
50
SYNC
PF5
51
SYNC
GND
52
VCC
53
PF6
54
SYNC
PF7
55
SYNC
PDI
XTAL
Table 32-7. Port R - alternate functions.
PORTR
PIN#
INTERRUPT
PDI
56
PDI_DATA
RESET
57
PDI_CLOCK
PR0
58
SYNC
XTAL2
PR1
59
SYNC
XTAL1
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
63
33.
Peripheral Module Address Map
The address maps show the base address for each peripheral and module in Atmel AVR XMEGA A3U. For
complete register description and summary for each peripheral module, refer to the XMEGA AU manual.
Table 33-1.
Peripheral module address map.
Base address
Name
Description
0x0000
GPIO
General Purpose IO Registers
0x0010
VPORT0
Virtual Port 0
0x0014
VPORT1
Virtual Port 1
0x0018
VPORT2
Virtual Port 2
0x001C
VPORT3
Virtual Port 2
0x0030
CPU
CPU
0x0040
CLK
Clock Control
0x0048
SLEEP
Sleep Controller
0x0050
OSC
Oscillator Control
0x0060
DFLLRC32M
DFLL for the 32MHz Internal RC Oscillator
0x0068
DFLLRC2M
DFLL for the 2MHz RC Oscillator
0x0070
PR
Power Reduction
0x0078
RST
Reset Controller
0x0080
WDT
Watch-Dog Timer
0x0090
MCU
MCU Control
0x00A0
PMIC
Programmable MUltilevel Interrupt Controller
0x00B0
PORTCFG
0x00C0
AES
AES Module
0x00D0
CRC
CRC Module
0x0100
DMA
DMA Module
0x0180
EVSYS
Event System
0x01C0
NVM
Non Volatile Memory (NVM) Controller
0x0200
ADCA
Analog to Digital Converter on port A
0x0240
ADCB
Analog to Digital Converter on port B
0x0320
DACB
Digital to Analog Converter on port B
0x0380
ACA
Analog Comparator pair on port A
0x0390
ACB
Analog Comparator pair on port B
0x0400
RTC
Real Time Counter
0x0480
TWIC
Two Wire Interface on port C
Port Configuration
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
64
Base address
Name
Description
0x04A0
TWIE
Two Wire Interface on port E
0x04C0
USB
Universal Serial Bus Interface
0x0600
PORTA
Port A
0x0620
PORTB
Port B
0x0640
PORTC
Port C
0x0660
PORTD
Port D
0x0680
PORTE
Port E
0x06A0
PORTF
Port F
0x07E0
PORTR
Port R
0x0800
TCC0
Timer/Counter 0 on port C
0x0840
TCC1
Timer/Counter 1 on port C
0x0880
AWEXC
Advanced Waveform Extension on port C
0x0890
HIRESC
High Resolution Extension on port C
0x08A0
USARTC0
USART 0 on port C
0x08B0
USARTC1
USART 1 on port C
0x08C0
SPIC
0x08F8
IRCOM
0x0900
TCD0
Timer/Counter 0 on port D
0x0940
TCD1
Timer/Counter 1 on port D
0x0990
HIRESD
0x09A0
USARTD0
USART 0 on port D
0x09B0
USARTD1
USART 1 on port D
0x09C0
SPID
Serial Peripheral Interface on port D
0x0A00
TCE0
Timer/Counter 0 on port E
0x0A90
HIRESE
0x0AA0
USARTE0
USART 0 on port E
0x0AB0
USARTE1
USART 1 on port E
0x0AC0
SPIE
Serial Peripheral Interface on port E
0x0B00
TCF0
Timer/Counter 0 on port F
Serial Peripheral Interface on port C
Infrared Communication Module
High Resolution Extension on port D
High Resolution Extension on port E
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
65
34.
Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
Arithmetic and Logic Instructions
ADD
Rd, Rr
Add without Carry
Rd
←
Rd + Rr
Z,C,N,V,S,H
1
ADC
Rd, Rr
Add with Carry
Rd
←
Rd + Rr + C
Z,C,N,V,S,H
1
ADIW
Rd, K
Add Immediate to Word
Rd
←
Rd + 1:Rd + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract without Carry
Rd
←
Rd - Rr
Z,C,N,V,S,H
1
SUBI
Rd, K
Subtract Immediate
Rd
←
Rd - K
Z,C,N,V,S,H
1
SBC
Rd, Rr
Subtract with Carry
Rd
←
Rd - Rr - C
Z,C,N,V,S,H
1
SBCI
Rd, K
Subtract Immediate with Carry
Rd
←
Rd - K - C
Z,C,N,V,S,H
1
SBIW
Rd, K
Subtract Immediate from Word
Rd + 1:Rd
←
Rd + 1:Rd - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND
Rd
←
Rd • Rr
Z,N,V,S
1
ANDI
Rd, K
Logical AND with Immediate
Rd
←
Rd • K
Z,N,V,S
1
OR
Rd, Rr
Logical OR
Rd
←
Rd v Rr
Z,N,V,S
1
ORI
Rd, K
Logical OR with Immediate
Rd
←
Rd v K
Z,N,V,S
1
EOR
Rd, Rr
Exclusive OR
Rd
←
Rd ⊕ Rr
Z,N,V,S
1
COM
Rd
One’s Complement
Rd
←
$FF - Rd
Z,C,N,V,S
1
NEG
Rd
Two’s Complement
Rd
←
$00 - Rd
Z,C,N,V,S,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd
←
Rd v K
Z,N,V,S
1
CBR
Rd,K
Clear Bit(s) in Register
Rd
←
Rd • ($FFh - K)
Z,N,V,S
1
INC
Rd
Increment
Rd
←
Rd + 1
Z,N,V,S
1
DEC
Rd
Decrement
Rd
←
Rd - 1
Z,N,V,S
1
TST
Rd
Test for Zero or Minus
Rd
←
Rd • Rd
Z,N,V,S
1
CLR
Rd
Clear Register
Rd
←
Rd ⊕ Rd
Z,N,V,S
1
SER
Rd
Set Register
Rd
←
$FF
None
1
MUL
Rd,Rr
Multiply Unsigned
R1:R0
←
Rd x Rr (UU)
Z,C
2
MULS
Rd,Rr
Multiply Signed
R1:R0
←
Rd x Rr (SS)
Z,C
2
MULSU
Rd,Rr
Multiply Signed with Unsigned
R1:R0
←
Rd x Rr (SU)
Z,C
2
FMUL
Rd,Rr
Fractional Multiply Unsigned
R1:R0
←
Rd x Rr<<1 (UU)
Z,C
2
FMULS
Rd,Rr
Fractional Multiply Signed
R1:R0
←
Rd x Rr<<1 (SS)
Z,C
2
FMULSU
Rd,Rr
Fractional Multiply Signed with Unsigned
R1:R0
←
Rd x Rr<<1 (SU)
Z,C
2
DES
K
Data Encryption
if (H = 0) then R15:R0
else if (H = 1) then R15:R0
←
←
Encrypt(R15:R0, K)
Decrypt(R15:R0, K)
PC
←
PC + k + 1
None
2
1/2
Branch instructions
RJMP
k
Relative Jump
IJMP
Indirect Jump to (Z)
PC(15:0)
PC(21:16)
←
←
Z,
0
None
2
EIJMP
Extended Indirect Jump to (Z)
PC(15:0)
PC(21:16)
←
←
Z,
EIND
None
2
JMP
k
Jump
PC
←
k
None
3
RCALL
k
Relative Call Subroutine
PC
←
PC + k + 1
None
2 / 3 (1)
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
66
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ICALL
Indirect Call to (Z)
PC(15:0)
PC(21:16)
←
←
Z,
0
None
2 / 3 (1)
EICALL
Extended Indirect Call to (Z)
PC(15:0)
PC(21:16)
←
←
Z,
EIND
None
3 (1)
call Subroutine
PC
←
k
None
3 / 4 (1)
RET
Subroutine Return
PC
←
STACK
None
4 / 5 (1)
RETI
Interrupt Return
PC
←
STACK
I
4 / 5 (1)
if (Rd = Rr) PC
←
PC + 2 or 3
None
1/2/3
CALL
k
CPSE
Rd,Rr
Compare, Skip if Equal
CP
Rd,Rr
Compare
CPC
Rd,Rr
Compare with Carry
CPI
Rd,K
Compare with Immediate
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b) = 0) PC
←
PC + 2 or 3
None
1/2/3
SBRS
Rr, b
Skip if Bit in Register Set
if (Rr(b) = 1) PC
←
PC + 2 or 3
None
1/2/3
SBIC
A, b
Skip if Bit in I/O Register Cleared
if (I/O(A,b) = 0) PC
←
PC + 2 or 3
None
2/3/4
SBIS
A, b
Skip if Bit in I/O Register Set
If (I/O(A,b) =1) PC
←
PC + 2 or 3
None
2/3/4
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC
←
PC + k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC
←
PC + k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC
←
PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC
←
PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC
←
PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC
←
PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC
←
PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC
←
PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC
←
PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC
←
PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC
←
PC + k + 1
None
1/2
BRLT
k
Branch if Less Than, Signed
if (N ⊕ V= 1) then PC
←
PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC
←
PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC
←
PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC
←
PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC
←
PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC
←
PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC
←
PC + k + 1
None
1/2
BRIE
k
Branch if Interrupt Enabled
if (I = 1) then PC
←
PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if (I = 0) then PC
←
PC + k + 1
None
1/2
Rd
←
Rr
None
1
Rd+1:Rd
←
Rr+1:Rr
None
1
Rd
←
K
None
1
Rd - Rr
Z,C,N,V,S,H
1
Rd - Rr - C
Z,C,N,V,S,H
1
Rd - K
Z,C,N,V,S,H
1
Data transfer instructions
MOV
Rd, Rr
Copy Register
MOVW
Rd, Rr
Copy Register Pair
LDI
Rd, K
Load Immediate
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
67
Mnemonics
Operands
Description
Flags
#Clocks
LDS
Rd, k
Load Direct from data space
Rd
←
(k)
None
2 (1)(2)
LD
Rd, X
Load Indirect
Rd
←
(X)
None
1 (1)(2)
LD
Rd, X+
Load Indirect and Post-Increment
Rd
X
←
←
(X)
X+1
None
1 (1)(2)
LD
Rd, -X
Load Indirect and Pre-Decrement
X ← X - 1,
Rd ← (X)
←
←
X-1
(X)
None
2 (1)(2)
LD
Rd, Y
Load Indirect
Rd ← (Y)
←
(Y)
None
1 (1)(2)
LD
Rd, Y+
Load Indirect and Post-Increment
Rd
Y
←
←
(Y)
Y+1
None
1 (1)(2)
LD
Rd, -Y
Load Indirect and Pre-Decrement
Y
Rd
←
←
Y-1
(Y)
None
2 (1)(2)
LDD
Rd, Y+q
Load Indirect with Displacement
Rd
←
(Y + q)
None
2 (1)(2)
LD
Rd, Z
Load Indirect
Rd
←
(Z)
None
1 (1)(2)
LD
Rd, Z+
Load Indirect and Post-Increment
Rd
Z
←
←
(Z),
Z+1
None
1 (1)(2)
LD
Rd, -Z
Load Indirect and Pre-Decrement
Z
Rd
←
←
Z - 1,
(Z)
None
2 (1)(2)
LDD
Rd, Z+q
Load Indirect with Displacement
Rd
←
(Z + q)
None
2 (1)(2)
STS
k, Rr
Store Direct to Data Space
(k)
←
Rd
None
2 (1)
ST
X, Rr
Store Indirect
(X)
←
Rr
None
1 (1)
ST
X+, Rr
Store Indirect and Post-Increment
(X)
X
←
←
Rr,
X+1
None
1 (1)
ST
-X, Rr
Store Indirect and Pre-Decrement
X
(X)
←
←
X - 1,
Rr
None
2 (1)
ST
Y, Rr
Store Indirect
(Y)
←
Rr
None
1 (1)
ST
Y+, Rr
Store Indirect and Post-Increment
(Y)
Y
←
←
Rr,
Y+1
None
1 (1)
ST
-Y, Rr
Store Indirect and Pre-Decrement
Y
(Y)
←
←
Y - 1,
Rr
None
2 (1)
STD
Y+q, Rr
Store Indirect with Displacement
(Y + q)
←
Rr
None
2 (1)
ST
Z, Rr
Store Indirect
(Z)
←
Rr
None
1 (1)
ST
Z+, Rr
Store Indirect and Post-Increment
(Z)
Z
←
←
Rr
Z+1
None
1 (1)
ST
-Z, Rr
Store Indirect and Pre-Decrement
Z
←
Z-1
None
2 (1)
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q)
←
Rr
None
2 (1)
Load Program Memory
R0
←
(Z)
None
3
LPM
Operation
LPM
Rd, Z
Load Program Memory
Rd
←
(Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Increment
Rd
Z
←
←
(Z),
Z+1
None
3
Extended Load Program Memory
R0
←
(RAMPZ:Z)
None
3
ELPM
ELPM
Rd, Z
Extended Load Program Memory
Rd
←
(RAMPZ:Z)
None
3
ELPM
Rd, Z+
Extended Load Program Memory and PostIncrement
Rd
Z
←
←
(RAMPZ:Z),
Z+1
None
3
Store Program Memory
(RAMPZ:Z)
←
R1:R0
None
-
Store Program Memory and Post-Increment
by 2
(RAMPZ:Z)
Z
←
←
R1:R0,
Z+2
None
-
SPM
SPM
Z+
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
68
Mnemonics
Operands
Description
IN
Rd, A
In From I/O Location
OUT
A, Rr
Out To I/O Location
PUSH
Rr
Push Register on Stack
POP
Rd
XCH
Operation
Flags
#Clocks
Rd
←
I/O(A)
None
1
I/O(A)
←
Rr
None
1
STACK
←
Rr
None
1 (1)
Pop Register from Stack
Rd
←
STACK
None
2 (1)
Z, Rd
Exchange RAM location
Temp
Rd
(Z)
←
←
←
Rd,
(Z),
Temp
None
2
LAS
Z, Rd
Load and Set RAM location
Temp
Rd
(Z)
←
←
←
Rd,
(Z),
Temp v (Z)
None
2
LAC
Z, Rd
Load and Clear RAM location
Temp
Rd
(Z)
←
←
←
Rd,
(Z),
($FFh – Rd) z (Z)
None
2
LAT
Z, Rd
Load and Toggle RAM location
Temp
Rd
(Z)
←
←
←
Rd,
(Z),
Temp ⊕ (Z)
None
2
Rd(n+1)
Rd(0)
C
←
←
←
Rd(n),
0,
Rd(7)
Z,C,N,V,H
1
Rd(n)
Rd(7)
C
←
←
←
Rd(n+1),
0,
Rd(0)
Z,C,N,V
1
Rd(0)
Rd(n+1)
C
←
←
←
C,
Rd(n),
Rd(7)
Z,C,N,V,H
1
Bit and bit-test instructions
LSL
Rd
Logical Shift Left
LSR
Rd
Logical Shift Right
ROL
Rd
Rotate Left Through Carry
ROR
Rd
Rotate Right Through Carry
Rd(7)
Rd(n)
C
←
←
←
C,
Rd(n+1),
Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n)
←
Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)
↔
Rd(7..4)
None
1
BSET
s
Flag Set
SREG(s)
←
1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s)
←
0
SREG(s)
1
SBI
A, b
Set Bit in I/O Register
I/O(A, b)
←
1
None
1
CBI
A, b
Clear Bit in I/O Register
I/O(A, b)
←
0
None
1
BST
Rr, b
Bit Store from Register to T
T
←
Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b)
←
T
None
1
SEC
Set Carry
C
←
1
C
1
CLC
Clear Carry
C
←
0
C
1
SEN
Set Negative Flag
N
←
1
N
1
CLN
Clear Negative Flag
N
←
0
N
1
SEZ
Set Zero Flag
Z
←
1
Z
1
CLZ
Clear Zero Flag
Z
←
0
Z
1
SEI
Global Interrupt Enable
I
←
1
I
1
CLI
Global Interrupt Disable
I
←
0
I
1
SES
Set Signed Test Flag
S
←
1
S
1
CLS
Clear Signed Test Flag
S
←
0
S
1
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
69
Mnemonics
Operands
Description
Operation
Flags
#Clocks
SEV
Set Two’s Complement Overflow
V
←
1
V
1
CLV
Clear Two’s Complement Overflow
V
←
0
V
1
SET
Set T in SREG
T
←
1
T
1
CLT
Clear T in SREG
T
←
0
T
1
SEH
Set Half Carry Flag in SREG
H
←
1
H
1
CLH
Clear Half Carry Flag in SREG
H
←
0
H
1
None
1
None
1
MCU control instructions
BREAK
Break
NOP
No Operation
SLEEP
Sleep
(see specific descr. for Sleep)
None
1
WDR
Watchdog Reset
(see specific descr. for WDR)
None
1
Notes:
1.
2.
(See specific descr. for BREAK)
Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.
One extra cycle must be added when accessing Internal SRAM.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
70
35.
Packaging information
35.1
64A
PIN 1
B
e
PIN 1 IDENTIFIER
E1
E
D1
D
C
0°~7°
A1
A2
A
L
COMMON DIMENSIONS
(Unit of measure = mm)
SYMBOL
Notes:
1.This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion.
Allowable
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10mm maximum.
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
15.75
16.00
16.25
D1
13.90
14.00
14.10
E
15.75
16.00
16.25
13.90
14.00
14.10
E1
B
0.30 –
Note 2
Note 2
0.45
C
0.09
–
0.20
L
0.45
–
0.75
e
NOTE
0.80 TYP
2010-10-20
2325 Orchard Parkway
San Jose, CA 95131
DRAWING NO.
TITLE
64A, 64-lead, 14 x 14mm Body Size, 1.0mm Body Thickness,
0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
64A
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
REV.
C
71
35.2
64M2
D
Marked Pin# 1 ID
E
C
SEATING PLANE
A1
TOP VIEW
A3
A
K
0.08 C
L
Pin #1 Corner
D2
1
2
3
SIDE VIEW
Pin #1
Triangle
Option A
COMMON DIMENSIONS
(Unit of Measure = mm)
E2
Option B
Pin #1
Chamfer
(C 0.30)
SYMBOL
MIN
NOM
MAX
A
0.80
0.90
1.00
A1
–
0.02
0.05
A3
K
Option C
b
e
Pin #1
Notch
(0.20 R)
BOTTOM VIEW
0.20 REF
b
0.18
0.25
0.30
D
8.90
9.00
9.10
D2
7.50
7.65
7.80
E
8.90
9.00
9.10
E2
7.50
7.65
7.80
e
Notes: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
2. Dimension and tolerance conform to ASMEY14.5M-1994.
NOTE
0.50 BSC
L
0.35
0.40
0.45
K
0.20
0.27
0.40
2014-05-30
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64M2, 64-pad, 9 x 9 x 1.0mm Bod y, Lead Pitch 0.50mm ,
7.65mm Exposed Pad, Quad Flat No Lead Package (QFN)
DRAWING NO.
64M2
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
REV.
F
72
36.
Electrical Characteristics
All typical values are measured at T = 25°C unless other temperature condition is given. All minimum and
maximum values are valid across operating temperature and voltage unless other conditions are given.
Note:
36.1
For devices that are not available yet, preliminary values in this datasheet are based on simulations, and/or
characterization of similar AVR XMEGA microcontrollers. After the device is characterized the final values will be
available, hence existing values can change. Missing minimum and maximum values will be available after the
device is characterized.
ATxmega64A3U
36.1.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 36-1 under may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or other conditions beyond those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 36-1.
Symbol
Absolute maximum ratings.
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power Supply Voltage
IVCC
Current into a VCC pin
200
mA
IGND
Current out of a Gnd pin
200
mA
VPIN
Pin voltage with respect to
Gnd and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
°C
Tj
Junction temperature
150
°C
36.1.2 General Operating Ratings
The device must operate within the ratings listed in Table 36-2 in order for all other electrical characteristics and
typical characteristics of the device to be valid.
Table 36-2.
Symbol
General operating conditions.
Parameter
Condition
Min.
Typ.
Max.
Units
VCC
Power Supply Voltage
1.60
3.6
V
AVCC
Analog Supply Voltage
1.60
3.6
V
85 °C
-40
85
105 °C
-40
105
85°C
-40
105
105°C
-40
125
TA
Temperature range
Tj
Junction temperature
°C
°C
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
73
Table 36-3.
Operating voltage and frequency.
Symbol
Parameter
ClkCPU
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
Units
MHz
The maximum CPU clock frequency depends on VCC. As shown in Figure 36-1 the Frequency vs. VCC curve is
linear between 1.8V < VCC < 2.7V.
Figure 36-1.
Maximum Frequency vs. VCC.
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
74
36.1.3 Current consumption
Table 36-4.
Symbol
Current consumption for active mode and sleep modes.
Parameter
Condition
32kHz, Ext. Clk
Active Power
consumption (1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
VCC = 1.8V
50
VCC = 3.0V
125
VCC = 1.8V
250
VCC = 3.0V
520
VCC = 1.8V
450
550
0.9
1.4
9.5
15
VCC = 3.0V
4.8
VCC = 1.8V
75
VCC = 3.0V
140
VCC = 1.8V
145
250
275
450
4.4
7.0
0.1
1.0
1.6
5.0
T = 105°C
1.6
7
WDT and Sampled BOD enabled,
T = 25°C
1.3
3.0
2.5
7.0
2.5
8
1MHz, Ext. Clk
VCC = 3.0V
T = 25°C
T = 85°C
WDT and Sampled BOD enabled,
T = 85°C
VCC = 3.0V
VCC = 3.0V
WDT and Sampled BOD enabled,
T = 105°C
Power-save power
consumption (2)
Reset power consumption
Notes:
1.
2.
mA
µA
RTC from ULP clock, WDT and
sampled BOD enabled, T = 25°C
VCC = 1.8V
1.2
VCC = 3.0V
1.3
RTC from 1.024kHz low power
32.768kHz TOSC, T = 25°C
VCC = 1.8V
0.6
2
VCC = 3.0V
0.7
2
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.8
3
VCC = 3.0V
1.0
3
VCC = 3.0V
150
Current through RESET pin
substracted
Units
µA
VCC = 3.0V
32MHz, Ext. Clk
Power-down power
consumption
Max.
3.0
2MHz, Ext. Clk
ICC
Typ.
VCC = 1.8V
32kHz, Ext. Clk
Idle Power
consumption (1)
Min.
mA
µA
µA
µA
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
75
Table 36-5.
Symbol
Current consumption for modules and peripherals.
Parameter
Condition(1)
Min.
Max.
Units
ULP oscillator
1.0
µA
32.768kHz int. oscillator
26
µA
2MHz int. oscillator
32MHz int. oscillator
PLL
85
DFLL enabled with 32.768kHz int. osc. as reference
BOD
115
270
DFLL enabled with 32.768kHz int. osc. as reference
20x multiplication factor,
32MHz int. osc. DIV4 as reference
Watchdog Timer
ICC
Typ.
460
µA
µA
220
µA
1
µA
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
µA
Internal 1.0V reference
100
µA
Temperature sensor
95
µA
3.0
ADC
DAC
AC
DMA
250ksps
CURRLIMIT = LOW
2.6
VREF = Ext ref
CURRLIMIT = MEDIUM
2.1
CURRLIMIT = HIGH
1.6
Normal mode
1.9
Low Power mode
1.1
250ksps
VREF = Ext ref
No load
330
Low Power Mode
130
615KBps between I/O registers and SRAM
115
µA
16
µA
2.5
µA
4
mA
Rx and Tx enabled, 9600 BAUD
Flash memory and EEPROM programming
Note:
1.
mA
High Speed Mode
Timer/Counter
USART
mA
µA
All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external
clock without prescaling, T = 25°C unless other conditions are given.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
76
36.1.4 Wake-up time from sleep modes
Table 36-6.
Symbol
Device wake-up time from sleep modes with various system clock sources.
Parameter
Condition
External 2MHz clock
Wake-up time from Idle,
Standby, and Extended Standby
mode
twakeup
Wake-up time from Power-save
and Power-down mode
Note:
1.
32.768kHz internal oscillator
Min.
Typ. (1)
Max.
Units
2
120
2MHz internal oscillator
2
32MHz internal oscillator
0.2
External 2MHz clock
4.5
32.768kHz internal oscillator
320
2MHz internal oscillator
9
32MHz internal oscillator
5
µs
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-2. All peripherals and modules
start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 36-2.
Wake-up time definition.
Wakeup time
Wakeup request
Clock output
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
77
36.1.5 I/O Pin Characteristics
The I/O pins comply with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and
output voltage limits reflect or exceed this specification.
Table 36-7.
Symbol
IOH
(1)
IOL
(2)
/
I/O pin characteristics.
Parameter
Condition
Max.
Units
-20
20
mA
VCC = 2.7 - 3.6V
2
VCC+0.3
VCC = 2.0 - 2.7V
0.7*VCC
VCC+0.3
VCC = 1.6 - 2.0V
0.8*VCC
VCC+0.3
VCC = 2.7- 3.6V
-0.3
0.8
VCC = 2.0 - 2.7V
-0.3
0.3*VCC
VCC = 1.6 - 2.0V
-0.3
0.2*VCC
I/O pin source/sink current
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VCC = 3.0 - 3.6V
VOH
High Level Output Voltage
2.4
0.94*VCC
IOH = -1mA
2.0
0.96*VCC
IOH = -2mA
1.7
0.92*VCC
VCC = 3.3V
IOH = -8mA
2.6
2.9
VCC = 3.0V
IOH = -6mA
2.1
2.6
VCC = 1.8V
IOH = -2mA
1.4
1.6
VCC = 3.0 - 3.6V
IOL = 2mA
0.05*VCC
0.4
IOL = 1mA
0.03*VCC
0.4
IOL = 2mA
0.06*VCC
0.7
VCC = 3.3V
IOL = 15mA
0.4
0.76
VCC = 3.0V
IOL = 10mA
0.3
0.64
VCC = 1.8V
IOL = 5mA
0.3
0.46
<0.01
0.1
VCC = 2.3 - 2.7V
VOL
Low Level Output Voltage
IIN
Input Leakage Current
RP
Pull/Buss keeper Resistor
tr
Rise time
1.
2.
Typ.
IOH = -2mA
VCC = 2.3 - 2.7V
Notes:
Min.
T = 25°C
4
slew rate limitation
V
V
27
No load
V
7
V
µA
kΩ
ns
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
78
36.1.6 ADC characteristics
Table 36-8.
Symbol
Power supply, reference and input range.
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Rin
Condition
Min.
Typ.
Max.
Units
VCC- 0.3
VCC+ 0.3
V
1
AVCC- 0.6
V
Input resistance
Switched
5.0
kΩ
Csample
Input capacitance
Switched
5.0
pF
RAREF
Reference input resistance
(leakage only)
>10
MΩ
CAREF
Reference input capacitance
Static load
7
pF
VIN
Input range
Conversion range
Differential mode, Vinp - Vinn
VIN
Conversion range
Single ended unsigned mode, Vinp
∆V
Fixed offset voltage
Table 36-9.
Symbol
ClkADC
fADC
-0.1
AVCC+0.1
V
-VREF
VREF
V
-ΔV
VREF-ΔV
V
190
LSB
Clock and timing.
Parameter
Condition
Min.
Typ.
Max.
Units
Maximum is 1/4 of Peripheral clock
frequency
100
2000
Measuring internal signals
100
125
Current limitation (CURRLIMIT) off
100
2000
CURRLIMIT = LOW
100
1500
CURRLIMIT = MEDIUM
100
1000
CURRLIMIT = HIGH
100
500
Sampling Time
1/2 ClkADC cycle
0.25
5
µs
Conversion time (latency)
(RES+2)/2+(GAIN !=0)
RES (Resolution) = 8 or 12
5
8
ClkADC
cycles
Start-up time
ADC clock cycles
12
24
ClkADC
cycles
After changing reference or input mode
7
7
ClkADC
After ADC flush
1
1
cycles
ADC Clock frequency
Sample rate
ADC settling time
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
kHz
ksps
79
Table 36-10.
Accuracy characteristics.
Symbol
Parameter
Condition (2)
RES
Resolution
Programmable to 8 or 12 bit
Min.
Typ.
Max.
Units
8
12
12
Bits
VCC-1.0V < VREF< VCC-0.6V
±1.2
±2
All VREF
±1.5
±3
VCC-1.0V < VREF< VCC-0.6V
±1.0
±2
All VREF
±1.5
±3
guaranteed monotonic
<±0.8
<±1
500ksps
INL (1)
Integral non-linearity
2000ksps
DNL (1)
Differential non-linearity
Offset Error
mV
Temperature drift
<0.01
mV/K
Operating voltage drift
<0.6
mV/V
External reference
-1
AVCC/1.6
10
AVCC/2.0
8
Bandgap
±5
Gain Error
Notes:
1.
2.
mV
Temperature drift
<0.02
mV/K
Operating voltage drift
<0.5
mV/V
Differential mode, shorted input
2msps, VCC = 3.6V, ClkPER = 16MHz
0.4
mV
rms
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
Table 36-11.
Symbol
lsb
-1
Differential
mode
Noise
lsb
Gain stage characteristics.
Parameter
Condition
Min.
Typ.
Max.
Units
Rin
Input resistance
Switched in normal mode
4.0
kΩ
Csample
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
Sample rate
Same as ADC
INL (1)
Integral Non-Linearity
Gain Error
500ksps
0
VCC- 0.6
ClkADC
cycles
1
100
All gain
settings
±1.5
1x gain, normal mode
-0.8
8x gain, normal mode
-2.5
64x gain, normal mode
-3.5
V
1000
kHz
±4
lsb
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
%
80
Symbol
Parameter
Condition
Offset Error,
input referred
Min.
1x gain, normal mode
-2
8x gain, normal mode
-5
64x gain, normal mode
-4
1x gain, normal mode
Noise
1.
Max.
Units
mV
0.5
VCC = 3.6V
8x gain, normal mode
64x gain, normal mode
Note:
Typ.
mV
rms
1.5
Ext. VREF
11
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
36.1.7 DAC Characteristics
Table 36-12.
Symbol
Power supply, reference and output range.
Parameter
Condition
AVCC
Analog supply voltage
AVREF
External reference voltage
Rchannel
DC output impedance
Linear output voltage range
RAREF
CAREF
Maximum capacitance load
Table 36-13.
fDAC
Units
VCC+ 0.3
1.0
VCC- 0.6
V
50
Ω
AVCC-0.15
V
Static load
>10
MΩ
7
pF
1
kΩ
1000Ω serial resistance
Operating within accuracy specification
Output sink/source
Max.
VCC- 0.3
Reference input resistance
Reference input capacitance
Typ.
0.15
Minimum Resistance load
Symbol
Min.
100
pF
1
nF
AVCC/1000
Safe operation
10
mA
Clock and timing.
Parameter
Conversion rate
Condition
Cload=100pF,
maximum step size
Min.
Typ.
Max.
Normal mode
0
1000
Low power mode
0
500
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Units
ksps
81
Table 36-14.
Symbol
RES
Accuracy characteristics.
Parameter
Condition
Min.
Input Resolution
VREF= Ext 1.0V
INL (1)
Integral non-linearity
VREF=AVCC
VREF=INT1V
VREF=Ext 1.0V
DNL (1)
Differential non-linearity
VREF=AVCC
VREF=INT1V
Gain error
Units
12
Bits
±2.0
±3
VCC = 3.6V
±1.5
±2.5
VCC = 1.6V
±2.0
±4
VCC = 3.6V
±1.5
±4
VCC = 1.6V
±5.0
VCC = 3.6V
±5.0
VCC = 1.6V
±1.5
3
VCC = 3.6V
±0.6
1.5
VCC = 1.6V
±1.0
3.5
VCC = 3.6V
±0.6
1.5
VCC = 1.6V
±4.5
VCC = 3.6V
±4.5
After calibration
lsb
lsb
<4
lsb
4
lsb
Gain calibration drift
VREF= Ext 1.0V
<0.2
mV/K
Offset error
After calibration
<1
lsb
Offset calibration step size
1.
Max.
VCC = 1.6V
Gain calibration step size
Note:
Typ.
1
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.
36.1.8 Analog Comparator Characteristics
Table 36-15.
Symbol
Voff
Ilk
Analog Comparator characteristics.
Parameter
Condition
Min.
Input Offset Voltage
Input Leakage Current
Input voltage range
Hysteresis, None
Vhys2
Hysteresis, Small
Vhys3
Hysteresis, Large
Max.
Units
<±10
mV
<1
nA
-0.1
AC startup time
Vhys1
Typ.
AVCC
V
100
µs
0
mV
mode = High Speed (HS)
13
mode = Low Power (LP)
30
mode = HS
30
mode = LP
60
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
mV
mV
82
Symbol
tdelay
Parameter
Condition
Propagation delay
VCC = 3.0V,
T= 85°C
mode = HS
Typ.
Max.
60
90
Units
ns
30
VCC = 1.6V - 3.6V
mode = LP
64-Level Voltage Scaler
Min.
160
Integral non-linearity (INL)
0.3
0.5
lsb
36.1.9 Bandgap and Internal 1.0V Reference Characteristics
Table 36-16.
Symbol
Bandgap and Internal 1.0V reference characteristics.
Parameter
Condition
Min.
As reference for ADC or DAC
Startup time
Max.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.1
Internal 1.00V reference
T= 85°C, after calibration
0.99
Variation over voltage and temperature
Relative to T= 85°C, VCC = 3.0V
1
Units
µs
1.5
Bandgap voltage
INT1V
Typ.
V
1.01
±1.0
V
%
36.1.10 Brownout Detection Characteristics
Table 36-17.
Symbol
Brownout detection characteristics.
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
VHYST
Min.
Typ.
Max.
1.60
1.62
1.72
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
Hysteresis
Continuous mode
Sampled mode
0.4
1000
1.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Units
V
µs
%
83
36.1.11 External Reset Characteristics
Table 36-18.
Symbol
tEXT
External reset characteristics.
Parameter
Condition
Min.
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Typ.
Max.
Units
95
1000
ns
VCC = 2.7 - 3.6V
0.60*VCC
VCC = 1.6 - 2.7V
0.70*VCC
VCC = 2.7 - 3.6V
0.40*VCC
VCC = 1.6 - 2.7V
0.30*VCC
Reset pin Pull-up Resistor
V
25
kΩ
36.1.12 Power-on Reset Characteristics
Table 36-19.
Power-on reset characteristics.
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.0
Max.
Units
V
1.3
1.59
V
Typ.
Max.
Units
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
36.1.13 Flash and EEPROM Memory Characteristics
Table 36-20.
Symbol
Parameter
Endurance and data retention.
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Cycle
Year
Cycle
Year
84
Table 36-21.
Symbol
Programming time.
Parameter
Condition
Chip Erase
64KB Flash, EEPROM
(2)
Application Erase
Flash
EEPROM
Notes:
1.
2.
Min.
and SRAM Erase
Typ. (1)
Max.
Units
55
ms
Section erase
6
ms
Page Erase
4
Page Write
4
Atomic Page Erase and Write
8
Page Erase
4
Page Write
4
Atomic Page Erase and Write
8
ms
ms
Programming is timed from the 2MHz internal oscillator.
EEPROM is not erased if the EESAVE fuse is programmed.
36.1.14 Clock and Oscillator Characteristics
36.1.14.1 Calibrated 32.768kHz Internal Oscillator characteristics
Table 36-22.
Symbol
32.768kHz internal oscillator characteristics.
Parameter
Condition
Min.
Frequency
Typ.
Max.
32.768
Factory calibration accuracy
T = 85°C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
%
-0.5
0.5
%
Max.
Units
2.2
MHz
36.1.14.2 Calibrated 2MHz RC Internal Oscillator characteristics
Table 36-23.
Symbol
2MHz internal oscillator characteristics.
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
User calibration accuracy
DFLL calibration stepsize
Typ.
2.0
T = 85°C, VCC= 3.0V
MHz
-1.5
1.5
%
-0.2
0.2
%
0.22
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
%
85
36.1.14.3 Calibrated and tunable 32MHz internal oscillator characteristics
Table 36-24.
Symbol
32MHz internal oscillator characteristics.
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
30
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
Units
55
MHz
32
T = 85°C, VCC= 3.0V
User calibration accuracy
MHz
-1.5
1.5
%
-0.2
0.2
%
DFLL calibration step size
0.23
%
36.1.14.4 32kHz Internal ULP Oscillator characteristics
Table 36-25.
Symbol
32kHz internal ULP oscillator characteristics.
Parameter
Condition
Min.
Output frequency
Typ.
Max.
32
Accuracy
-30
Units
kHz
30
%
Max.
Units
MHz
36.1.14.5 Internal Phase Locked Loop (PLL) characteristics
Table 36-26.
Symbo
l
fIN
Parameter
Input Frequency
Output frequency (1)
fOUT
Note:
Internal PLL characteristics.
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
MHz
Start-up time
25
µs
Re-lock time
25
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
86
36.1.14.6 External clock characteristics
Figure 36-3.
External clock drive waveform
tCH
tCH
tCR
tCF
VIH1
VIL1
tCL
tCK
Table 36-27.
Symbol
Parameter
Clock Frequency (1)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
ΔtCK
Note:
External clock used as system clock without prescaling.
Change in period from one clock cycle to the next
1.
Condition
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
12
VCC = 2.7 - 3.6V
0
32
VCC = 1.6 - 1.8V
83.3
VCC = 2.7 - 3.6V
31.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
Units
MHz
ns
ns
ns
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
10
ns
ns
%
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
87
Table 36-28.
Symbol
External clock with prescaler (1)for system clock.
Parameter
Condition
Clock Frequency (2)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
ΔtCK
Notes:
Min.
Typ.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Units
MHz
ns
ns
ns
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
Change in period from one clock cycle to the next
1.
2.
Max.
10
ns
ns
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
36.1.14.7 External 16MHz crystal oscillator and XOSC characteristics
Table 36-29.
Symbol
External 16MHz crystal oscillator and XOSC characteristics.
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
Long term jitter
<10
FRQRANGE=1, 2, or 3
<1
XOSCPWR=0
FRQRANGE=0
FRQRANGE=1, 2, or 3
XOSCPWR=0
XOSCPWR=1
Units
ns
<6
<0.5
ns
<0.5
FRQRANGE=0
<0.1
FRQRANGE=1
<0.05
FRQRANGE=2 or 3
<0.005
XOSCPWR=1
Duty cycle
Max.
<1
XOSCPWR=1
Frequency error
Typ.
FRQRANGE=0
XOSCPWR=1
XOSCPWR=0
.
%
<0.005
FRQRANGE=0
40
FRQRANGE=1
42
FRQRANGE=2 or 3
45
%
48
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
88
Symbol
Parameter
Condition
0.4MHz resonator,
CL=100pF
2.4k
1MHz crystal, CL=20pF
8.7k
2MHz crystal, CL=20pF
2.1k
2MHz crystal
4.2k
8MHz crystal
250
9MHz crystal
195
8MHz crystal
360
9MHz crystal
285
12MHz crystal
155
9MHz crystal
365
12MHz crystal
200
16MHz crystal
105
9MHz crystal
435
12MHz crystal
235
16MHz crystal
125
9MHz crystal
495
12MHz crystal
270
16MHz crystal
145
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
305
16MHz crystal
160
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
380
16MHz crystal
205
XOSCPWR=0,
FRQRANGE=0
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
Negative impedance
RQ
(1)
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
ESR
Min.
Typ.
Max.
Units
Ω
SF = Safety factor
min(RQ)/SF
kΩ
CXTAL1
Parasitic
capacitance XTAL1
pin
5.2
pF
CXTAL2
Parasitic
capacitance XTAL2
pin
6.8
pF
CLOAD
Parasitic
capacitance load
2.95
pF
Note:
1.
Numbers for negative impedance are not tested in production but guaranteed from design and characterization.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
89
36.1.14.8 External 32.768kHz crystal oscillator and TOSC characteristics
Table 36-30.
External 32.768kHz crystal oscillator and TOSC characteristics.
Symbol
Parameter
Condition
ESR/R1
Recommended crystal equivalent
series resistance (ESR)
CTOSC1
Parasitic capacitance TOSC1 pin
4.2
pF
CTOSC2
Parasitic capacitance TOSC2 pin
4.3
pF
1.
Typ.
Max.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
capacitance load matched to
crystal specification
Recommended safety factor
Note:
Min.
Units
kΩ
3
See Figure 36-4 for definition.
Figure 36-4.
TOSC input capacitance.
CL1
TOSC1
CL2
Device internal
External
TOSC2
32.768kHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when
oscillating without external capacitors.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
90
36.1.15 SPI Characteristics
Figure 36-5.
SPI timing requirements in master mode.
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
Figure 36-6.
MSB
LSB
SPI timing requirements in slave mode.
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
91
Table 36-31.
SPI timing characteristics and requirements.
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK Period
Master
(See Table 21-4 in
XMEGA AU Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK Rise time
Master
2.7
tSCKF
SCK Fall time
Master
2.7
tMIS
MISO setup to SCK
Master
11
tMIH
MISO hold after SCK
Master
0
tMOS
MOSI setup SCK
Master
0.5*tSCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK Period
Slave
4*t ClkPER
tSSCKW
SCK high/low width
Slave
2*t ClkPER
tSSCKR
SCK Rise time
Slave
1600
tSSCKF
SCK Fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
tsck
tSSS
SS setup to SCK
Slave
20
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8
tSOH
MISO hold after SCK
Slave
13
tSOSS
MISO setup after SS low
Slave
11
tSOSH
MISO hold after SS high
Slave
8
Units
ns
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
92
36.1.16 Two-Wire Interface Characteristics
Table 36-32 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR
XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols
refer to Figure 36-7.
Figure 36-7.
Two-wire interface bus timing.
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tSU;STO
tSU;DAT
tHD;STA
SDA
tBUF
Table 36-32.
Symbol
Two-wire interface characteristics.
Parameter
Condition
Min.
Typ.
Max.
Units
VIH
Input High Voltage
0.7*VCC
VCC+0.5
V
VIL
Input Low Voltage
-0.5
0.3*VCC
V
Vhys
Hysteresis of Schmitt Trigger Inputs
0.05*VCC (1)
0
V
VOL
Output Low Voltage
0
0.4
V
20+0.1Cb (1)(2)
0
ns
20+0.1Cb (1)(2)
300
ns
0
50
ns
-10
10
µA
10
pF
400
kHz
tr
Rise Time for both SDA and SCL
tof
Output Fall Time from VIHmin to VILmax
tSP
Spikes Suppressed by Input Filter
II
Input Current for each I/O Pin
CI
Capacitance for each I/O Pin
fSCL
SCL Clock Frequency
3mA, sink current
10pF < Cb < 400pF (2)
0.1VCC < VI < 0.9VCC
fPER (3)>max(10fSCL, 250kHz)
0
fSCL ≤ 100kHz
RP
tHD;STA
Value of Pull-up resistor
Hold Time (repeated) START condition
tLOW
Low Period of SCL Clock
tHIGH
High Period of SCL Clock
fSCL > 100kHz
V CC – 0.4V
---------------------------3mA
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
1.3
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
100ns
--------------Cb
300ns
--------------Cb
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Ω
µs
µs
µs
93
Symbol
Parameter
tSU;STA
Set-up time for a repeated START
condition
tHD;DAT
Data hold time
tSU;DAT
Data setup time
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Condition
Min.
Typ.
Max.
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
0
3.45
fSCL > 100kHz
0
0.9
fSCL ≤ 100kHz
250
fSCL > 100kHz
100
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
1.3
Units
µs
µs
ns
µs
µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
94
36.2
ATxmega128A3U
36.2.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 36-1 under may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or other conditions beyond those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 36-33.
Symbol
Absolute maximum ratings.
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power Supply Voltage
IVCC
Current into a VCC pin
200
mA
IGND
Current out of a Gnd pin
200
mA
VPIN
Pin voltage with respect to
Gnd and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
°C
Tj
Junction temperature
150
°C
36.2.2 General Operating Ratings
The device must operate within the ratings listed in Table 36-2 in order for all other electrical characteristics and
typical characteristics of the device to be valid.
Table 36-34.
Symbol
General operating conditions.
Parameter
Condition
Min.
Typ.
Max.
Units
VCC
Power Supply Voltage
1.60
3.6
V
AVCC
Analog Supply Voltage
1.60
3.6
V
85 °C
-40
85
105 °C
-40
105
85°C
-40
105
105°C
-40
125
TA
Temperature range
Tj
Junction temperature
Table 36-35.
Symbol
ClkCPU
°C
°C
Operating voltage and frequency.
Parameter
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
Units
MHz
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
95
The maximum CPU clock frequency depends on VCC. As shown in Figure 36-1 the Frequency vs. VCC curve is
linear between 1.8V < VCC < 2.7V.
Figure 36-8.
Maximum Frequency vs. VCC.
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
96
36.2.3 Current consumption
Table 36-36.
Symbol
Current consumption for active mode and sleep modes.
Parameter
Condition
32kHz, Ext. Clk
Active Power
consumption (1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
32kHz, Ext. Clk
Idle Power
consumption (1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
Min.
T = 85°C
60
VCC = 3.0V
140
VCC = 1.8V
280
VCC = 3.0V
600
VCC = 1.8V
510
600
1.1
1.5
10.5
15
VCC = 3.0V
4.3
VCC = 3.0V
4.8
VCC = 1.8V
78
VCC = 3.0V
147
VCC = 1.8V
156
250
293
600
4.7
7
0.1
1.0
1.75
5.0
4
8
1.2
3.0
3.1
7
5.3
10
VCC = 3.0V
VCC = 3.0V
WDT and Sampled BOD enabled,
T = 25°C
WDT and Sampled BOD enabled,
T = 85°C
VCC = 3.0V
WDT and Sampled BOD enabled,
T = 105°C
Power-save power
consumption (2)
Reset power consumption
Notes:
1.
2.
mA
µA
RTC from ULP clock, WDT and
sampled BOD enabled, T = 25°C
VCC = 1.8V
1.2
VCC = 3.0V
1.3
RTC from 1.024kHz low power
32.768kHz TOSC, T = 25°C
VCC = 1.8V
0.5
2
VCC = 3.0V
0.7
2
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.9
3
VCC = 3.0V
1.2
3.5
VCC = 3.0V
150
Current through RESET pin
substracted
Units
µA
VCC = 1.8V
T= 105°C
Power-down power
consumption
Max.
VCC = 1.8V
T = 25°C
ICC
Typ.
mA
µA
µA
µA
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
97
Table 36-37.
Symbol
Current consumption for modules and peripherals.
Parameter
Condition(1)
Min.
Max.
Units
ULP oscillator
1.0
µA
32.768kHz int. oscillator
27
µA
2MHz int. oscillator
32MHz int. oscillator
PLL
85
DFLL enabled with 32.768kHz int. osc. as reference
BOD
µA
115
270
DFLL enabled with 32.768kHz int. osc. as reference
20x multiplication factor,
32MHz int. osc. DIV4 as reference
Watchdog Timer
ICC
Typ.
µA
460
220
µA
1
µA
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
µA
Internal 1.0V reference
100
µA
Temperature sensor
95
µA
3.0
ADC
DAC
AC
DMA
250ksps
CURRLIMIT = LOW
2.6
VREF = Ext ref
CURRLIMIT = MEDIUM
2.1
CURRLIMIT = HIGH
1.6
Normal mode
1.9
Low Power mode
1.1
250ksps
VREF = Ext ref
No load
330
Low Power Mode
130
615KBps between I/O registers and SRAM
115
µA
16
µA
2.5
µA
4
mA
Rx and Tx enabled, 9600 BAUD
Flash memory and EEPROM programming
Note:
1.
mA
High Speed Mode
Timer/Counter
USART
mA
µA
All parameters measured as the difference in current consumption between module enabled and disabled. All data at
VCC = 3.0V, ClkSYS = 1MHz external clock without prescaling, T = 25°C unless other conditions are givenAll parameters
measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock without
prescaling, T = 25°C unless other conditions are given.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
98
36.2.4 Wake-up time from sleep modes
Table 36-38.
Symbol
Device wake-up time from sleep modes with various system clock sources.
Parameter
Condition
External 2MHz clock
Wake-up time from Idle,
Standby, and Extended Standby
mode
twakeup
Wake-up time from Power-save
and Power-down mode
Note:
1.
32.768kHz internal oscillator
Min.
Typ. (1)
Max.
Units
2
120
2MHz internal oscillator
2
32MHz internal oscillator
0.2
External 2MHz clock
4.5
32.768kHz internal oscillator
320
2MHz internal oscillator
9
32MHz internal oscillator
5
µs
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-2. All peripherals and modules
start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 36-9.
Wake-up time definition.
Wakeup time
Wakeup request
Clock output
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
99
36.2.5 I/O Pin Characteristics
The I/O pins comply with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and
output voltage limits reflect or exceed this specification.
Table 36-39.
Symbol
IOH
(1)
IOL
(2)
/
I/O pin characteristics.
Parameter
Condition
Max.
Units
-20
20
mA
VCC = 2.7 - 3.6V
2
VCC+0.3
VCC = 2.0 - 2.7V
0.7*VCC
VCC+0.3
VCC = 1.6 - 2.0V
0.8*VCC
VCC+0.3
VCC = 2.7- 3.6V
-0.3
0.8
VCC = 2.0 - 2.7V
-0.3
0.2*VCC
VCC = 1.6 - 2.0V
-0.3
0.2*VCC
I/O pin source/sink current
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VCC = 3.0 - 3.6V
VOH
High Level Output Voltage
2.4
0.19
IOH = -1mA
2.0
2.44
IOH = -2mA
1.7
2.37
VCC = 3.3V
IOH = -8mA
2.6
2.9
VCC = 3.0V
IOH = -6mA
2.1
2.6
VCC = 1.8V
IOH = -2mA
1.4
1.6
VCC = 3.0 - 3.6V
IOL = 2mA
0.05
0.4
IOL = 1mA
0.03
0.4
IOL = 2mA
0.05
0.7
VCC = 3.3V
IOL = 15mA
0.4
0.76
VCC = 3.0V
IOL = 10mA
0.3
0.64
VCC = 1.8V
IOL = 5mA
0.2
0.46
<0.01
0.1
VCC = 2.3 - 2.7V
VOL
Low Level Output Voltage
IIN
Input Leakage Current
RP
Pull/Buss keeper Resistor
tr
Rise time
1.
2.
Typ.
IOH = -2mA
VCC = 2.3 - 2.7V
Notes:
Min.
T = 25°C
4
slew rate limitation
V
V
27
No load
V
7
V
µA
kΩ
ns
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
100
36.2.6 ADC characteristics
Table 36-40.
Symbol
Power supply, reference and input range.
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Condition
Min.
Typ.
Max.
Units
VCC- 0.3
VCC+ 0.3
V
1
AVCC- 0.6
V
Rin
Input resistance
Switched
5.0
kΩ
Csample
Input capacitance
Switched
5.0
pF
RAREF
Reference input resistance
(leakage only)
>10
MΩ
CAREF
Reference input capacitance
Static load
7
pF
VIN
Input range
Conversion range
Differential mode, Vinp - Vinn
VIN
Conversion range
Single ended unsigned mode, Vinp
∆V
Fixed offset voltage
Table 36-41.
Symbol
ClkADC
fADC
-0.1
AVCC+0.1
V
-VREF
VREF
V
-ΔV
VREF-ΔV
V
190
LSB
Clock and timing.
Parameter
Condition
Min.
Typ.
Max.
Units
Maximum is 1/4 of Peripheral clock
frequency
100
2000
Measuring internal signals
100
125
Current limitation (CURRLIMIT) off
100
2000
CURRLIMIT = LOW
100
1500
CURRLIMIT = MEDIUM
100
1000
CURRLIMIT = HIGH
100
500
Sampling Time
1/2 ClkADC cycle
0.25
5
µs
Conversion time (latency)
(RES+2)/2+(GAIN !=0)
RES (Resolution) = 8 or 12
5
8
ClkADC
cycles
Start-up time
ADC clock cycles
12
24
ClkADC
cycles
After changing reference or input mode
7
7
ClkADC
After ADC flush
1
1
cycles
ADC Clock frequency
Sample rate
ADC settling time
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
kHz
ksps
101
Table 36-42.
Accuracy characteristics.
Symbol
Parameter
Condition (2)
RES
Resolution
Programmable to 8 or 12 bit
Min.
Typ.
Max.
Units
8
12
12
Bits
VCC-1.0V < VREF< VCC-0.6V
±1.2
±2
All VREF
±1.5
±3
VCC-1.0V < VREF< VCC-0.6V
±1.0
±2
All VREF
±1.5
±3
guaranteed monotonic
<±0.8
<±1
500ksps
INL (1)
Integral non-linearity
2000ksps
DNL (1)
Differential non-linearity
Offset Error
mV
Temperature drift
<0.01
mV/K
Operating voltage drift
<0.6
mV/V
External reference
-1
AVCC/1.6
10
AVCC/2.0
8
Bandgap
±5
Gain Error
Notes:
1.
2.
mV
Temperature drift
<0.02
mV/K
Operating voltage drift
<0.5
mV/V
Differential mode, shorted input
2msps, VCC = 3.6V, ClkPER = 16MHz
0.4
mV
rms
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
Table 36-43.
Symbol
lsb
-1
Differential
mode
Noise
lsb
Gain stage characteristics.
Parameter
Condition
Min.
Typ.
Max.
Units
Rin
Input resistance
Switched in normal mode
4.0
kΩ
Csample
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
Sample rate
Same as ADC
INL (1)
Integral Non-Linearity
Gain Error
500ksps
0
VCC- 0.6
ClkADC
cycles
1
100
All gain
settings
±1.5
1x gain, normal mode
-0.8
8x gain, normal mode
-2.5
64x gain, normal mode
-3.5
V
1000
kHz
±4
lsb
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
%
102
Symbol
Parameter
Condition
Offset Error,
input referred
Min.
1x gain, normal mode
-2
8x gain, normal mode
-5
64x gain, normal mode
-4
1x gain, normal mode
Noise
1.
Max.
Units
mV
0.5
VCC = 3.6V
8x gain, normal mode
64x gain, normal mode
Note:
Typ.
mV
rms
1.5
Ext. VREF
11
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
36.2.7 DAC Characteristics
Table 36-44.
Symbol
Power supply, reference and output range.
Parameter
Condition
AVCC
Analog supply voltage
AVREF
External reference voltage
Rchannel
DC output impedance
Linear output voltage range
RAREF
CAREF
Maximum capacitance load
Table 36-45.
fDAC
Units
VCC+ 0.3
1.0
VCC- 0.6
V
50
Ω
AVCC-0.15
V
Static load
>10
MΩ
7
pF
1
kΩ
1000Ω serial resistance
Operating within accuracy specification
Output sink/source
Max.
VCC- 0.3
Reference input resistance
Reference input capacitance
Typ.
0.15
Minimum Resistance load
Symbol
Min.
100
pF
1
nF
AVCC/1000
Safe operation
10
mA
Clock and timing.
Parameter
Conversion rate
Condition
Cload=100pF,
maximum step size
Min.
Typ.
Max.
Normal mode
0
1000
Low power mode
0
500
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Units
ksps
103
Table 36-46.
Symbol
RES
Accuracy characteristics.
Parameter
Condition
Min.
Input Resolution
VREF= Ext 1.0V
INL (1)
Integral non-linearity
VREF=AVCC
VREF=INT1V
VREF=Ext 1.0V
DNL (1)
Differential non-linearity
VREF=AVCC
VREF=INT1V
Gain error
Units
12
Bits
±2.0
±3
VCC = 3.6V
±1.5
±2.5
VCC = 1.6V
±2.0
±4
VCC = 3.6V
±1.5
±4
VCC = 1.6V
±5.0
VCC = 3.6V
±5.0
VCC = 1.6V
±1.5
3
VCC = 3.6V
±0.6
1.5
VCC = 1.6V
±1.0
3.5
VCC = 3.6V
±0.6
1.5
VCC = 1.6V
±4.5
VCC = 3.6V
±4.5
After calibration
lsb
lsb
<4
lsb
4
lsb
Gain calibration drift
VREF= Ext 1.0V
<0.2
mV/K
Offset error
After calibration
<1
lsb
Offset calibration step size
1.
Max.
VCC = 1.6V
Gain calibration step size
Note:
Typ.
1
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.
36.2.8 Analog Comparator Characteristics
Table 36-47.
Symbol
Voff
Ilk
Analog Comparator characteristics.
Parameter
Condition
Min.
Input Offset Voltage
Input Leakage Current
Input voltage range
Hysteresis, None
Vhys2
Hysteresis, Small
Vhys3
Hysteresis, Large
Max.
Units
<±10
mV
<1
nA
-0.1
AC startup time
Vhys1
Typ.
AVCC
V
100
µs
0
mV
mode = High Speed (HS)
13
mode = Low Power (LP)
30
mode = HS
30
mode = LP
60
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
mV
mV
104
Symbol
tdelay
Parameter
Condition
Propagation delay
mode = HS
mode = LP
64-Level Voltage Scaler
Min.
VCC = 3.0V, T= 85°C
Typ.
Max.
90
100
95
VCC = 1.6V - 3.6V
Integral non-linearity (INL)
Units
ns
200
500
0.5
1.0
lsb
36.2.9 Bandgap and Internal 1.0V Reference Characteristics
Table 36-48.
Symbol
Bandgap and Internal 1.0V reference characteristics.
Parameter
Condition
Min.
As reference for ADC or DAC
Startup time
Max.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.1
Internal 1.00V reference
T= 85°C, after calibration
0.99
Variation over voltage and temperature
Relative to T= 85°C, VCC = 3.0V
1
Units
µs
1.5
Bandgap voltage
INT1V
Typ.
V
1.01
±1.0
%
36.2.10 Brownout Detection Characteristics
Table 36-49.
Symbol
Brownout detection characteristics.
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
VHYST
Min.
Typ.
Max.
1.60
1.62
1.72
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
Hysteresis
Continuous mode
Sampled mode
0.4
1000
1.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Units
V
µs
%
105
36.2.11 External Reset Characteristics
Table 36-50.
Symbol
tEXT
External reset characteristics.
Parameter
Condition
Min.
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Typ.
Max.
Units
95
1000
ns
VCC = 3.0 - 3.6V
0.50*VCC
VCC = 2.3 - 2.7V
0.40*VCC
VCC = 3.0 - 3.6V
0.50*VCC
VCC = 2.3 - 2.7V
0.40*VCC
Reset pin Pull-up Resistor
V
25
kΩ
36.2.12 Power-on Reset Characteristics
Table 36-51.
Power-on reset characteristics.
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.3
Max.
Units
V
1.3
1.59
V
Typ.
Max.
Units
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
36.2.13 Flash and EEPROM Memory Characteristics
Table 36-52.
Symbol
Parameter
Endurance and data retention.
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Cycle
Year
Cycle
Year
106
Table 36-53.
Symbol
Programming time.
Parameter
Condition
Max.
Units
128KB Flash, EEPROM (2) and SRAM Erase
75
ms
Application Erase
Section erase
6
ms
Page Erase
4
Page Write
4
Atomic Page Erase and Write
8
Page Erase
4
Page Write
4
Atomic Page Erase and Write
8
EEPROM
1.
2.
Typ. (1)
Chip Erase
Flash
Notes:
Min.
ms
ms
Programming is timed from the 2MHz internal oscillator.
EEPROM is not erased if the EESAVE fuse is programmed.
36.2.14 Clock and Oscillator Characteristics
36.2.14.1 Calibrated 32.768kHz Internal Oscillator characteristics
Table 36-54.
Symbol
32.768kHz internal oscillator characteristics.
Parameter
Condition
Min.
Frequency
Typ.
Max.
32.768
Factory calibration accuracy
T = 85°C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
%
-0.5
0.5
%
Max.
Units
2.2
MHz
36.2.14.2 Calibrated 2MHz RC Internal Oscillator characteristics
Table 36-55.
Symbol
2MHz internal oscillator characteristics.
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
User calibration accuracy
DFLL calibration stepsize
Typ.
2.0
T = 85°C, VCC= 3.0V
MHz
-1.5
1.5
%
-0.2
0.2
%
0.22
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
%
107
36.2.14.3 Calibrated and tunable 32MHz internal oscillator characteristics
Table 36-56.
Symbol
32MHz internal oscillator characteristics.
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
30
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
Units
55
MHz
32
T = 85°C, VCC= 3.0V
User calibration accuracy
MHz
-1.5
1.5
%
-0.2
0.2
%
DFLL calibration step size
0.23
%
36.2.14.4 32kHz Internal ULP Oscillator characteristics
Table 36-57.
Symbol
32kHz internal ULP oscillator characteristics.
Parameter
Condition
Min.
Output frequency
Typ.
Max.
32
Accuracy
-30
Units
kHz
30
%
Max.
Units
MHz
36.2.14.5 Internal Phase Locked Loop (PLL) characteristics
Table 36-58.
Symbo
l
fIN
Parameter
Input Frequency
Output frequency (1)
fOUT
Note:
Internal PLL characteristics.
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
MHz
Start-up time
25
µs
Re-lock time
25
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
108
36.2.14.6 External clock characteristics
Figure 36-10. External clock drive waveform
tCH
tCH
tCR
tCF
VIH1
VIL1
tCL
tCK
Table 36-59.
Symbol
Parameter
Clock Frequency (1)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
ΔtCK
Note:
External clock used as system clock without prescaling.
Change in period from one clock cycle to the next
1.
Condition
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
12
VCC = 2.7 - 3.6V
0
32
VCC = 1.6 - 1.8V
83.3
VCC = 2.7 - 3.6V
31.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
Units
MHz
ns
ns
ns
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
10
ns
ns
%
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
109
Table 36-60.
Symbol
External clock with prescaler (1)for system clock.
Parameter
Condition
Clock Frequency (2)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
ΔtCK
Notes:
Min.
Typ.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Units
MHz
ns
ns
ns
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
Change in period from one clock cycle to the next
1.
2.
Max.
10
ns
ns
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
36.2.14.7 External 16MHz crystal oscillator and XOSC characteristics
Table 36-61.
Symbol
External 16MHz crystal oscillator and XOSC characteristics.
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
Long term jitter
<10
FRQRANGE=1, 2, or 3
<1
XOSCPWR=0
FRQRANGE=0
FRQRANGE=1, 2, or 3
XOSCPWR=0
XOSCPWR=1
Units
ns
<6
<0.5
ns
<0.5
FRQRANGE=0
<0.1
FRQRANGE=1
<0.05
FRQRANGE=2 or 3
<0.005
XOSCPWR=1
Duty cycle
Max.
<1
XOSCPWR=1
Frequency error
Typ.
FRQRANGE=0
XOSCPWR=1
XOSCPWR=0
.
%
<0.005
FRQRANGE=0
40
FRQRANGE=1
42
FRQRANGE=2 or 3
45
%
48
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
110
Symbol
Parameter
Condition
0.4MHz resonator,
CL=100pF
2.4k
1MHz crystal, CL=20pF
8.7k
2MHz crystal, CL=20pF
2.1k
2MHz crystal
4.2k
8MHz crystal
250
9MHz crystal
195
8MHz crystal
360
9MHz crystal
285
12MHz crystal
155
9MHz crystal
365
12MHz crystal
200
16MHz crystal
105
9MHz crystal
435
12MHz crystal
235
16MHz crystal
125
9MHz crystal
495
12MHz crystal
270
16MHz crystal
145
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
305
16MHz crystal
160
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
380
16MHz crystal
205
XOSCPWR=0,
FRQRANGE=0
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
Negative
impedance (1)
RQ
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
ESR
Min.
Typ.
Max.
Units
Ω
SF = Safety factor
min(RQ)/SF
kΩ
CXTAL1
Parasitic
capacitance XTAL1
pin
5.2
pF
CXTAL2
Parasitic
capacitance XTAL2
pin
6.8
pF
CLOAD
Parasitic
capacitance load
2.95
pF
Note:
1.
Numbers for negative impedance are not tested in production but guaranteed from design and characterization.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
111
36.2.14.8 External 32.768kHz crystal oscillator and TOSC characteristics
Table 36-62.
External 32.768kHz crystal oscillator and TOSC characteristics.
Symbol
Parameter
Condition
ESR/R1
Recommended crystal equivalent
series resistance (ESR)
CTOSC1
Parasitic capacitance TOSC1 pin
4.2
pF
CTOSC2
Parasitic capacitance TOSC2 pin
4.3
pF
1.
Typ.
Max.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
capacitance load matched to
crystal specification
Recommended safety factor
Note:
Min.
Units
kΩ
3
See Figure 36-4 for definition.
Figure 36-11. TOSC input capacitance.
CL1
TOSC1
CL2
Device internal
External
TOSC2
32.768kHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when
oscillating without external capacitors.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
112
36.2.15 SPI Characteristics
Figure 36-12. SPI timing requirements in master mode.
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
MSB
LSB
Figure 36-13. SPI timing requirements in slave mode.
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
113
Table 36-63.
SPI timing characteristics and requirements.
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK Period
Master
(See Table 21-4 in
XMEGA AU Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK Rise time
Master
2.7
tSCKF
SCK Fall time
Master
2.7
tMIS
MISO setup to SCK
Master
11
tMIH
MISO hold after SCK
Master
0
tMOS
MOSI setup SCK
Master
0.5*tSCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK Period
Slave
>4*t ClkPER
tSSCKW
SCK high/low width
Slave
>2*t ClkPER
tSSCKR
SCK Rise time
Slave
1600
tSSCKF
SCK Fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
tSCK
tSSS
SS setup to SCK
Slave
20
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8
tSOH
MISO hold after SCK
Slave
13
tSOSS
MISO setup after SS low
Slave
11
tSOSH
MISO hold after SS high
Slave
8
Units
ns
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
114
36.2.16 Two-Wire Interface Characteristics
Table 36-32 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR
XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols
refer to Figure 36-7.
Figure 36-14. Two-wire interface bus timing.
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tSU;STO
tSU;DAT
tHD;STA
SDA
tBUF
Table 36-64.
Symbol
Two-wire interface characteristics.
Parameter
Condition
Min.
Typ.
Max.
Units
VIH
Input High Voltage
0.7*VCC
VCC+0.5
V
VIL
Input Low Voltage
-0.5
0.3*VCC
V
Vhys
Hysteresis of Schmitt Trigger Inputs
0.05*VCC (1)
0
V
0
0.4
V
20+0.1Cb (1)(2)
0
ns
20+0.1Cb (1)(2)
300
ns
0
50
ns
-10
10
µA
10
pF
400
kHz
VOL
Output Low Voltage
tr
Rise Time for both SDA and SCL
tof
Output Fall Time from VIHmin to VILmax
tSP
Spikes Suppressed by Input Filter
II
Input Current for each I/O Pin
CI
Capacitance for each I/O Pin
fSCL
SCL Clock Frequency
3mA, sink current
10pF < Cb < 400pF (2)
0.1VCC < VI < 0.9VCC
fPER (3)>max(10fSCL, 250kHz)
0
fSCL ≤ 100kHz
RP
tHD;STA
Value of Pull-up resistor
Hold Time (repeated) START condition
tLOW
Low Period of SCL Clock
tHIGH
High Period of SCL Clock
fSCL > 100kHz
V CC – 0.4V
---------------------------3mA
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
1.3
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
100ns
--------------Cb
300ns
--------------Cb
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Ω
µs
µs
µs
115
Symbol
Parameter
tSU;STA
Set-up time for a repeated START
condition
tHD;DAT
Data hold time
tSU;DAT
Data setup time
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Condition
Min.
Typ.
Max.
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
0
3.5
fSCL > 100kHz
0
0.9
fSCL ≤ 100kHz
250
fSCL > 100kHz
100
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
1.3
Units
µs
µs
ns
µs
µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
116
36.3
ATxmega192A3U
36.3.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 36-1 under may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or other conditions beyond those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 36-65.
Symbol
Absolute maximum ratings.
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power Supply Voltage
IVCC
Current into a VCC pin
200
mA
IGND
Current out of a Gnd pin
200
mA
VPIN
Pin voltage with respect to
Gnd and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
°C
Tj
Junction temperature
150
°C
36.3.2 General Operating Ratings
The device must operate within the ratings listed in Table 36-2 in order for all other electrical characteristics and
typical characteristics of the device to be valid.
Table 36-66.
Symbol
General operating conditions.
Parameter
Condition
Min.
Typ.
Max.
Units
VCC
Power Supply Voltage
1.60
3.6
V
AVCC
Analog Supply Voltage
1.60
3.6
V
85 °C
-40
85
105 °C
-40
105
85°C
-40
105
105°C
-40
125
TA
Temperature range
Tj
Junction temperature
Table 36-67.
Symbol
ClkCPU
°C
°C
Operating voltage and frequency.
Parameter
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
Units
MHz
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
117
The maximum CPU clock frequency depends on VCC. As shown in Figure 36-1 the Frequency vs. VCC curve is
linear between 1.8V < VCC < 2.7V.
Figure 36-15. Maximum Frequency vs. VCC.
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
118
36.3.3 Current consumption
Table 36-68.
Symbol
Current consumption for active mode and sleep modes.
Parameter
Condition
32kHz, Ext. Clk
Active Power
consumption (1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
VCC = 1.8V
60
VCC = 3.0V
140
VCC = 1.8V
260
VCC = 3.0V
600
VCC = 1.8V
510
600
1.1
1.5
10.6
15
VCC = 3.0V
4.8
VCC = 1.8V
78
VCC = 3.0V
150
VCC = 1.8V
150
350
290
600
4.7
7.0
0.1
1.0
1.8
5.0
T = 105°C
6.5
17
WDT and Sampled BOD enabled,
T = 25°C
1.3
3.0
3.1
7.0
7.3
20
1MHz, Ext. Clk
VCC = 3.0V
T = 25°C
T = 85°C
WDT and Sampled BOD enabled,
T = 85°C
VCC = 3.0V
VCC = 3.0V
WDT and Sampled BOD enabled,
T = 105°C
Power-save power
consumption (2)
Reset power consumption
Notes:
1.
2.
mA
µA
RTC from ULP clock, WDT and
sampled BOD enabled, T = 25°C
VCC = 1.8V
1.2
VCC = 3.0V
1.3
RTC from 1.024kHz low power
32.768kHz TOSC, T = 25°C
VCC = 1.8V
0.6
2
VCC = 3.0V
0.7
2
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.8
3
VCC = 3.0V
1.0
3
VCC = 3.0V
250
Current through RESET pin
substracted
Units
µA
VCC = 3.0V
32MHz, Ext. Clk
Power-down power
consumption
Max.
4.3
2MHz, Ext. Clk
ICC
Typ.
VCC = 1.8V
32kHz, Ext. Clk
Idle Power
consumption (1)
Min.
mA
µA
µA
µA
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
119
Table 36-69.
Symbol
Current consumption for modules and peripherals.
Parameter
Condition(1)
Min.
Max.
Units
ULP oscillator
1.0
µA
32.768kHz int. oscillator
27
µA
2MHz int. oscillator
32MHz int. oscillator
PLL
85
DFLL enabled with 32.768kHz int. osc. as reference
BOD
µA
115
270
DFLL enabled with 32.768kHz int. osc. as reference
20x multiplication factor,
32MHz int. osc. DIV4 as reference
Watchdog Timer
ICC
Typ.
µA
460
220
µA
1
µA
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
µA
Internal 1.0V reference
100
µA
Temperature sensor
95
µA
3.0
ADC
DAC
AC
DMA
250ksps
CURRLIMIT = LOW
2.6
VREF = Ext ref
CURRLIMIT = MEDIUM
2.1
CURRLIMIT = HIGH
1.6
Normal mode
1.9
Low Power mode
1.1
250ksps
VREF = Ext ref
No load
330
Low Power Mode
130
615KBps between I/O registers and SRAM
115
µA
16
µA
2.5
µA
4
mA
Rx and Tx enabled, 9600 BAUD
Flash memory and EEPROM programming
Note:
1.
mA
High Speed Mode
Timer/Counter
USART
mA
µA
All parameters measured as the difference in current consumption between module enabled and disabled. All data at
VCC = 3.0V, ClkSYS = 1MHz external clock without prescaling, T = 25°C unless other conditions are givenAll parameters
measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock without
prescaling, T = 25°C unless other conditions are given.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
120
36.3.4 Wake-up time from sleep modes
Table 36-70.
Symbol
Device wake-up time from sleep modes with various system clock sources.
Parameter
Condition
External 2MHz clock
Wake-up time from Idle,
Standby, and Extended Standby
mode
twakeup
Wake-up time from Power-save
and Power-down mode
Note:
1.
32.768kHz internal oscillator
Min.
Typ. (1)
Max.
Units
2
120
2MHz internal oscillator
2
32MHz internal oscillator
0.2
External 2MHz clock
4.5
32.768kHz internal oscillator
320
2MHz internal oscillator
9
32MHz internal oscillator
5
µs
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-2. All peripherals and modules
start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 36-16. Wake-up time definition.
Wakeup time
Wakeup request
Clock output
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
121
36.3.5 I/O Pin Characteristics
The I/O pins comply with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and
output voltage limits reflect or exceed this specification.
Table 36-71.
Symbol
IOH
(1)
IOL
(2)
/
I/O pin characteristics.
Parameter
Condition
Max.
Units
-20
20
mA
VCC = 2.7 - 3.6V
2
VCC+0.3
VCC = 2.0 - 2.7V
0.7*VCC
VCC+0.3
VCC = 1.6 - 2.0V
0.8*VCC
VCC+0.3
VCC = 2.7- 3.6V
-0.3
0.8
VCC = 2.0 - 2.7V
-0.3
0.3*VCC
VCC = 1.6 - 2.0V
-0.3
0.2*VCC
I/O pin source/sink current
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VCC = 3.0 - 3.6V
VOH
High Level Output Voltage
2.4
0.94*VCC
IOH = -1mA
2.0
0.96*VCC
IOH = -2mA
1.7
0.92*VCC
VCC = 3.3V
IOH = -8mA
2.6
2.9
VCC = 3.0V
IOH = -6mA
2.1
2.6
VCC = 1.8V
IOH = -2mA
1.4
1.6
VCC = 3.0 - 3.6V
IOL = 2mA
0.05*VCC
0.4
IOL = 1mA
0.03*VCC
0.4
IOL = 2mA
0.06*VCC
0.7
VCC = 3.3V
IOL = 15mA
0.4
0.76
VCC = 3.0V
IOL = 10mA
0.3
0.64
VCC = 1.8V
IOL = 5mA
0.3
0.46
<0.001
0.1
VCC = 2.3 - 2.7V
VOL
Low Level Output Voltage
IIN
Input Leakage Current
RP
Pull/Buss keeper Resistor
tr
Rise time
1.
2.
Typ.
IOH = -2mA
VCC = 2.3 - 2.7V
Notes:
Min.
T = 25°C
4
slew rate limitation
V
V
27
No load
V
7
V
µA
kΩ
ns
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
122
36.3.6 ADC characteristics
Table 36-72.
Symbol
Power supply, reference and input range.
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Condition
Min.
Typ.
Max.
Units
VCC- 0.3
VCC+ 0.3
V
1
AVCC- 0.6
V
Rin
Input resistance
Switched
4.0
kΩ
Csample
Input capacitance
Switched
4.4
pF
RAREF
Reference input resistance
(leakage only)
>10
MΩ
CAREF
Reference input capacitance
Static load
7
pF
VIN
Input range
Conversion range
Differential mode, Vinp - Vinn
VIN
Conversion range
Single ended unsigned mode, Vinp
∆V
Fixed offset voltage
Table 36-73.
Symbol
ClkADC
fADC
-0.1
AVCC+0.1
V
-VREF
VREF
V
-ΔV
VREF-ΔV
V
190
LSB
Clock and timing.
Parameter
Condition
Min.
Typ.
Max.
Units
Maximum is 1/4 of Peripheral clock
frequency
100
2000
Measuring internal signals
100
125
Current limitation (CURRLIMIT) off
100
2000
CURRLIMIT = LOW
100
1500
CURRLIMIT = MEDIUM
100
1000
CURRLIMIT = HIGH
100
500
Sampling Time
1/2 ClkADC cycle
0.25
5
µs
Conversion time (latency)
(RES+2)/2+(GAIN !=0)
RES (Resolution) = 8 or 12
5
8
ClkADC
cycles
Start-up time
ADC clock cycles
12
24
ClkADC
cycles
After changing reference or input mode
7
7
ClkADC
After ADC flush
1
1
cycles
ADC Clock frequency
Sample rate
ADC settling time
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
kHz
ksps
123
Table 36-74.
Accuracy characteristics.
Symbol
Parameter
Condition (2)
RES
Resolution
Programmable to 8 or 12 bit
Min.
Typ.
Max.
Units
8
12
12
Bits
VCC-1.0V < VREF< VCC-0.6V
±1.2
±2
All VREF
±1.5
±3
VCC-1.0V < VREF< VCC-0.6V
±1.0
±2
All VREF
±1.5
±3
guaranteed monotonic
<±0.8
<±1
500ksps
INL (1)
Integral non-linearity
2000ksps
DNL (1)
Differential non-linearity
Offset Error
mV
Temperature drift
<0.01
mV/K
Operating voltage drift
<0.6
mV/V
External reference
-1
AVCC/1.6
10
AVCC/2.0
8
Bandgap
±5
Gain Error
Notes:
1.
2.
mV
Temperature drift
<0.02
mV/K
Operating voltage drift
<0.5
mV/V
Differential mode, shorted input
2msps, VCC = 3.6V, ClkPER = 16MHz
0.4
mV
rms
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
Table 36-75.
Symbol
lsb
-1
Differential
mode
Noise
lsb
Gain stage characteristics.
Parameter
Condition
Min.
Typ.
Max.
Units
Rin
Input resistance
Switched in normal mode
4.0
kΩ
Csample
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
Sample rate
Same as ADC
INL (1)
Integral Non-Linearity
Gain Error
500ksps
0
VCC- 0.6
ClkADC
cycles
1
100
All gain
settings
±1.5
1x gain, normal mode
-0.8
8x gain, normal mode
-2.5
64x gain, normal mode
-3.5
V
1000
kHz
±4
lsb
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
%
124
Symbol
Parameter
Condition
Offset Error,
input referred
Min.
1x gain, normal mode
-2
8x gain, normal mode
-5
64x gain, normal mode
-4
1x gain, normal mode
Noise
1.
Max.
Units
mV
0.5
VCC = 3.6V
8x gain, normal mode
64x gain, normal mode
Note:
Typ.
mV
rms
1.5
Ext. VREF
11
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
36.3.7 DAC Characteristics
Table 36-76.
Symbol
Power supply, reference and output range.
Parameter
Condition
AVCC
Analog supply voltage
AVREF
External reference voltage
Rchannel
DC output impedance
Linear output voltage range
RAREF
CAREF
Maximum capacitance load
Table 36-77.
fDAC
Units
VCC+ 0.3
1.0
VCC- 0.6
V
50
Ω
AVCC-0.15
V
Static load
>10
MΩ
7
pF
1
kΩ
1000Ω serial resistance
Operating within accuracy specification
Output sink/source
Max.
VCC- 0.3
Reference input resistance
Reference input capacitance
Typ.
0.15
Minimum Resistance load
Symbol
Min.
100
pF
1
nF
AVCC/1000
Safe operation
10
mA
Clock and timing.
Parameter
Conversion rate
Condition
Cload=100pF,
maximum step size
Min.
Typ.
Max.
Normal mode
0
1000
Low power mode
0
500
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Units
ksps
125
Table 36-78.
Symbol
RES
Accuracy characteristics.
Parameter
Condition
Min.
Input Resolution
VREF= Ext 1.0V
INL (1)
Integral non-linearity
VREF=AVCC
VREF=INT1V
VREF=Ext 1.0V
DNL (1)
Differential non-linearity
VREF=AVCC
VREF=INT1V
Gain error
Units
12
Bits
±2.0
±3
VCC = 3.6V
±1.5
±2.5
VCC = 1.6V
±2.0
±4
VCC = 3.6V
±1.5
±4
VCC = 1.6V
±5.0
VCC = 3.6V
±5.0
VCC = 1.6V
±1.5
3
VCC = 3.6V
±0.6
1.5
VCC = 1.6V
±1.0
3.5
VCC = 3.6V
±0.6
1.5
VCC = 1.6V
±4.5
VCC = 3.6V
±4.5
After calibration
lsb
lsb
<4
lsb
4
lsb
Gain calibration drift
VREF= Ext 1.0V
<0.2
mV/K
Offset error
After calibration
<1
lsb
Offset calibration step size
1.
Max.
VCC = 1.6V
Gain calibration step size
Note:
Typ.
1
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.
36.3.8 Analog Comparator Characteristics
Table 36-79.
Symbol
Voff
Ilk
Analog Comparator characteristics.
Parameter
Condition
Min.
Input Offset Voltage
Input Leakage Current
Input voltage range
Hysteresis, None
Vhys2
Hysteresis, Small
Vhys3
Hysteresis, Large
Max.
Units
<±10
mV
<1
nA
-0.1
AC startup time
Vhys1
Typ.
AVCC
V
100
µs
0
mV
mode = High Speed (HS)
13
mode = Low Power (LP)
30
mode = HS
30
mode = LP
60
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
mV
mV
126
Symbol
Parameter
Condition
VCC = 3.0V, T= 85°C
tdelay
Propagation delay
Min.
mode = HS
mode = HS
VCC = 3.0V, T= 85°C
Max.
30
90
30
mode = LP
130
mode = LP
64-Level Voltage Scaler
Typ.
500
Units
ns
130
Integral non-linearity (INL)
0.3
0.5
lsb
36.3.9 Bandgap and Internal 1.0V Reference Characteristics
Table 36-80.
Symbol
Bandgap and Internal 1.0V reference characteristics.
Parameter
Condition
Min.
As reference for ADC or DAC
Startup time
Max.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.1
Internal 1.00V reference
T= 85°C, after calibration
0.99
Variation over voltage and temperature
Relative to T= 85°C, VCC = 3.0V
1
Units
µs
1.5
Bandgap voltage
INT1V
Typ.
V
1.01
±1.0
mV
%
36.3.10 Brownout Detection Characteristics
Table 36-81.
Symbol
Brownout detection characteristics.
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
VHYST
Min.
Typ.
Max.
1.60
1.62
1.72
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
Hysteresis
Continuous mode
Sampled mode
0.4
1000
1.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Units
V
µs
%
127
36.3.11 External Reset Characteristics
Table 36-82.
Symbol
tEXT
External reset characteristics.
Parameter
Condition
Min.
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Typ.
Max.
Units
95
1000
ns
VCC = 2.7 - 3.6V
0.60*VCC
VCC = 1.6 - 2.7V
0.70*VCC
VCC = 2.7 - 3.6V
0.40*VCC
VCC = 1.6 - 2.7V
0.30*VCC
Reset pin Pull-up Resistor
V
25
kΩ
36.3.12 Power-on Reset Characteristics
Table 36-83.
Power-on reset characteristics.
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.0
Max.
Units
V
1.3
1.59
V
Typ.
Max.
Units
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
36.3.13 Flash and EEPROM Memory Characteristics
Table 36-84.
Symbol
Parameter
Endurance and data retention.
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Cycle
Year
Cycle
Year
128
Table 36-85.
Symbol
Programming time.
Parameter
Condition
Max.
Units
192KB Flash, EEPROM (2) and SRAM Erase
90
ms
Application Erase
Section erase
6
ms
Page Erase
4
Page Write
4
Atomic Page Erase and Write
8
Page Erase
4
Page Write
4
Atomic Page Erase and Write
8
EEPROM
1.
2.
Typ. (1)
Chip Erase
Flash
Notes:
Min.
ms
ms
Programming is timed from the 2MHz internal oscillator.
EEPROM is not erased if the EESAVE fuse is programmed.
36.3.14 Clock and Oscillator Characteristics
36.3.14.1 Calibrated 32.768kHz Internal Oscillator characteristics
Table 36-86.
Symbol
32.768kHz internal oscillator characteristics.
Parameter
Condition
Min.
Frequency
Typ.
Max.
32.768
Factory calibration accuracy
T = 85°C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
%
-0.5
0.5
%
Max.
Units
2.2
MHz
36.3.14.2 Calibrated 2MHz RC Internal Oscillator characteristics
Table 36-87.
Symbol
2MHz internal oscillator characteristics.
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
User calibration accuracy
DFLL calibration stepsize
Typ.
2.0
T = 85°C, VCC= 3.0V
MHz
-1.5
1.5
%
-0.2
0.2
%
0.22
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
%
129
36.3.14.3 Calibrated and tunable 32MHz internal oscillator characteristics
Table 36-88.
Symbol
32MHz internal oscillator characteristics.
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
30
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
Units
55
MHz
32
T = 85°C, VCC= 3.0V
User calibration accuracy
MHz
-1.5
1.5
%
-0.2
0.2
%
DFLL calibration step size
0.23
%
36.3.14.4 32kHz Internal ULP Oscillator characteristics
Table 36-89.
Symbol
32kHz internal ULP oscillator characteristics.
Parameter
Condition
Min.
Output frequency
Typ.
Max.
32
Accuracy
-30
Units
kHz
30
%
Max.
Units
MHz
36.3.14.5 Internal Phase Locked Loop (PLL) characteristics
Table 36-90.
Symbo
l
fIN
Parameter
Input Frequency
Output frequency (1)
fOUT
Note:
Internal PLL characteristics.
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
MHz
Start-up time
25
µs
Re-lock time
25
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
130
36.3.14.6 External clock characteristics
Figure 36-17. External clock drive waveform
tCH
tCH
tCR
tCF
VIH1
VIL1
tCL
tCK
Table 36-91.
Symbol
Parameter
Clock Frequency (1)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
ΔtCK
Note:
External clock used as system clock without prescaling.
Change in period from one clock cycle to the next
1.
Condition
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
12
VCC = 2.7 - 3.6V
0
32
VCC = 1.6 - 1.8V
83.3
VCC = 2.7 - 3.6V
31.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
Units
MHz
ns
ns
ns
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
10
ns
ns
%
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
131
Table 36-92.
Symbol
External clock with prescaler (1)for system clock.
Parameter
Condition
Clock Frequency (2)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
ΔtCK
Notes:
Min.
Typ.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Units
MHz
ns
ns
ns
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
Change in period from one clock cycle to the next
1.
2.
Max.
10
ns
ns
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
36.3.14.7 External 16MHz crystal oscillator and XOSC characteristics
Table 36-93.
Symbol
External 16MHz crystal oscillator and XOSC characteristics.
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
Long term jitter
<10
FRQRANGE=1, 2, or 3
<1
XOSCPWR=0
FRQRANGE=0
FRQRANGE=1, 2, or 3
XOSCPWR=0
XOSCPWR=1
Units
ns
<6
<0.5
ns
<0.5
FRQRANGE=0
<0.1
FRQRANGE=1
<0.05
FRQRANGE=2 or 3
<0.005
XOSCPWR=1
Duty cycle
Max.
<1
XOSCPWR=1
Frequency error
Typ.
FRQRANGE=0
XOSCPWR=1
XOSCPWR=0
.
%
<0.005
FRQRANGE=0
40
FRQRANGE=1
42
FRQRANGE=2 or 3
45
%
48
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
132
Symbol
Parameter
Condition
0.4MHz resonator,
CL=100pF
2.4k
1MHz crystal, CL=20pF
8.7k
2MHz crystal, CL=20pF
2.1k
2MHz crystal
4.2k
8MHz crystal
250
9MHz crystal
195
8MHz crystal
360
9MHz crystal
285
12MHz crystal
155
9MHz crystal
365
12MHz crystal
200
16MHz crystal
105
9MHz crystal
435
12MHz crystal
235
16MHz crystal
125
9MHz crystal
495
12MHz crystal
270
16MHz crystal
145
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
305
16MHz crystal
160
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
380
16MHz crystal
205
XOSCPWR=0,
FRQRANGE=0
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
Negative
impedance (1)
RQ
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
ESR
Min.
Typ.
Max.
Units
Ω
SF = Safety factor
min(RQ)/SF
kΩ
CXTAL1
Parasitic
capacitance XTAL1
pin
5.2
pF
CXTAL2
Parasitic
capacitance XTAL2
pin
6.8
pF
CLOAD
Parasitic
capacitance load
2.95
pF
Note:
1.
Numbers for negative impedance are not tested in production but guaranteed from design and characterization.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
133
36.3.14.8 External 32.768kHz crystal oscillator and TOSC characteristics
Table 36-94.
External 32.768kHz crystal oscillator and TOSC characteristics.
Symbol
Parameter
Condition
ESR/R1
Recommended crystal equivalent
series resistance (ESR)
CTOSC1
Parasitic capacitance TOSC1 pin
4.2
pF
CTOSC2
Parasitic capacitance TOSC2 pin
4.3
pF
1.
Typ.
Max.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
capacitance load matched to
crystal specification
Recommended safety factor
Note:
Min.
Units
kΩ
3
See Figure 36-4 for definition.
Figure 36-18. TOSC input capacitance.
CL1
TOSC1
CL2
Device internal
External
TOSC2
32.768kHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when
oscillating without external capacitors.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
134
36.3.15 SPI Characteristics
Figure 36-19. SPI timing requirements in master mode.
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
MSB
LSB
Figure 36-20. SPI timing requirements in slave mode.
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
135
Table 36-95.
SPI timing characteristics and requirements.
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK Period
Master
(See Table 21-4 in
XMEGA AU Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK Rise time
Master
2.7
tSCKF
SCK Fall time
Master
2.7
tMIS
MISO setup to SCK
Master
10
tMIH
MISO hold after SCK
Master
10
tMOS
MOSI setup SCK
Master
0.5*SCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK Period
Slave
4*t ClkPER
tSSCKW
SCK high/low width
Slave
2*t ClkPER
tSSCKR
SCK Rise time
Slave
1600
tSSCKF
SCK Fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
t ClkPER
tSSS
SS setup to SCK
Slave
21
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8
tSOH
MISO hold after SCK
Slave
13
tSOSS
MISO setup after SS low
Slave
11
tSOSH
MISO hold after SS high
Slave
8
Units
ns
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
136
36.3.16 Two-Wire Interface Characteristics
Table 36-32 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR
XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols
refer to Figure 36-7.
Figure 36-21. Two-wire interface bus timing.
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tSU;STO
tSU;DAT
tHD;STA
SDA
tBUF
Table 36-96.
Symbol
Two-wire interface characteristics.
Parameter
Condition
Min.
Typ.
Max.
Units
VIH
Input High Voltage
0.7*VCC
VCC+0.5
V
VIL
Input Low Voltage
-0.5
0.3*VCC
V
Vhys
Hysteresis of Schmitt Trigger Inputs
VOL
Output Low Voltage
tr
Rise Time for both SDA and SCL
tof
Output Fall Time from VIHmin to VILmax
tSP
Spikes Suppressed by Input Filter
II
Input Current for each I/O Pin
CI
Capacitance for each I/O Pin
fSCL
SCL Clock Frequency
0.05*VCC (1)
3mA, sink current
10pF < Cb < 400pF (2)
0.1VCC < VI < 0.9VCC
fPER (3)>max(10fSCL, 250kHz)
0
0.4
V
20+0.1Cb (1)(2)
300
ns
20+0.1Cb (1)(2)
250
ns
0
50
ns
-10
10
µA
10
pF
400
kHz
0
fSCL ≤ 100kHz
RP
tHD;STA
Value of Pull-up resistor
Hold Time (repeated) START condition
tLOW
Low Period of SCL Clock
tHIGH
High Period of SCL Clock
fSCL > 100kHz
V
V CC – 0.4V
---------------------------3mA
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
1.3
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
100ns
--------------Cb
300ns
--------------Cb
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Ω
µs
µs
µs
137
Symbol
Parameter
tSU;STA
Set-up time for a repeated START
condition
tHD;DAT
Data hold time
tSU;DAT
Data setup time
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Condition
Min.
Typ.
Max.
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
0
3.45
fSCL > 100kHz
0
0.9
fSCL ≤ 100kHz
250
fSCL > 100kHz
100
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
1.3
Units
µs
µs
ns
µs
µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
138
36.4
ATxmega256A3U
36.4.1 Absolute Maximum Ratings
Stresses beyond those listed in Table 36-1 under may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or other conditions beyond those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 36-97.
Symbol
Absolute maximum ratings.
Parameter
Condition
Min.
Typ.
-0.3
Max.
Units
4
V
VCC
Power Supply Voltage
IVCC
Current into a VCC pin
200
mA
IGND
Current out of a Gnd pin
200
mA
VPIN
Pin voltage with respect to
Gnd and VCC
-0.5
VCC+0.5
V
IPIN
I/O pin sink/source current
-25
25
mA
TA
Storage temperature
-65
150
°C
Tj
Junction temperature
150
°C
36.4.2 General Operating Ratings
The device must operate within the ratings listed in Table 36-2 in order for all other electrical characteristics and
typical characteristics of the device to be valid.
Table 36-98.
Symbol
General operating conditions.
Parameter
Condition
Min.
Typ.
Max.
Units
VCC
Power Supply Voltage
1.60
3.6
V
AVCC
Analog Supply Voltage
1.60
3.6
V
85 °C
-40
85
105 °C
-40
105
85°C
-40
105
105°C
-40
125
TA
Temperature range
Tj
Junction temperature
Table 36-99.
Symbol
ClkCPU
°C
°C
Operating voltage and frequency.
Parameter
CPU clock frequency
Condition
Min.
Typ.
Max.
VCC = 1.6V
0
12
VCC = 1.8V
0
12
VCC = 2.7V
0
32
VCC = 3.6V
0
32
Units
MHz
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
139
The maximum CPU clock frequency depends on VCC. As shown in Figure 36-1 the Frequency vs. VCC curve is
linear between 1.8V < VCC < 2.7V.
Figure 36-22. Maximum Frequency vs. VCC.
MHz
32
Safe Operating Area
12
1.6 1.8
2.7
3.6
V
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
140
36.4.3 Current consumption
Table 36-100. Current consumption for active mode and sleep modes.
Symbol
Parameter
Condition
32kHz, Ext. Clk
Active Power
consumption (1)
1MHz, Ext. Clk
2MHz, Ext. Clk
32MHz, Ext. Clk
VCC = 1.8V
60
VCC = 3.0V
140
VCC = 1.8V
280
VCC = 3.0V
600
VCC = 1.8V
510
500
1.1
1.5
10.6
15
VCC = 3.0V
4.8
VCC = 1.8V
78
VCC = 3.0V
150
VCC = 1.8V
150
350
290
600
4.7
7.0
0.1
1.0
1.8
5.0
T = 105°C
6.5
17
WDT and Sampled BOD enabled,
T = 25°C
1.3
3.0
3.1
7.0
7.3
20
1MHz, Ext. Clk
VCC = 3.0V
T = 25°C
T = 85°C
WDT and Sampled BOD enabled,
T = 85°C
VCC = 3.0V
VCC = 3.0V
WDT and Sampled BOD enabled,
T = 105°C
Power-save power
consumption (2)
Reset power consumption
Notes:
1.
2.
mA
µA
RTC from ULP clock, WDT and
sampled BOD enabled, T = 25°C
VCC = 1.8V
1.2
VCC = 3.0V
1.3
RTC from 1.024kHz low power
32.768kHz TOSC, T = 25°C
VCC = 1.8V
0.6
2
VCC = 3.0V
0.7
2
RTC from low power 32.768kHz
TOSC, T = 25°C
VCC = 1.8V
0.8
3
VCC = 3.0V
1.0
3
VCC = 3.0V
250
Current through RESET pin
substracted
Units
µA
VCC = 3.0V
32MHz, Ext. Clk
Power-down power
consumption
Max.
4.3
2MHz, Ext. Clk
ICC
Typ.
VCC = 1.8V
32kHz, Ext. Clk
Idle Power
consumption (1)
Min.
mA
µA
µA
µA
All Power Reduction Registers set.
Maximum limits are based on characterization, and not tested in production.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
141
Table 36-101. Current consumption for modules and peripherals.
Symbol
Parameter
Condition(1)
Min.
Max.
Units
ULP oscillator
1.0
µA
32.768kHz int. oscillator
27
µA
2MHz int. oscillator
32MHz int. oscillator
PLL
85
DFLL enabled with 32.768kHz int. osc. as reference
BOD
µA
115
270
DFLL enabled with 32.768kHz int. osc. as reference
20x multiplication factor,
32MHz int. osc. DIV4 as reference
Watchdog Timer
ICC
Typ.
µA
460
220
µA
1
µA
Continuous mode
138
Sampled mode, includes ULP oscillator
1.2
µA
Internal 1.0V reference
100
µA
Temperature sensor
95
µA
3.0
ADC
DAC
AC
DMA
250ksps
CURRLIMIT = LOW
2.6
VREF = Ext ref
CURRLIMIT = MEDIUM
2.1
CURRLIMIT = HIGH
1.6
Normal mode
1.9
Low Power mode
1.1
250ksps
VREF = Ext ref
No load
330
Low Power Mode
130
615KBps between I/O registers and SRAM
115
µA
16
µA
2.5
µA
4
mA
Rx and Tx enabled, 9600 BAUD
Flash memory and EEPROM programming
Note:
1.
mA
High Speed Mode
Timer/Counter
USART
mA
µA
All parameters measured as the difference in current consumption between module enabled and disabled. All data at
VCC = 3.0V, ClkSYS = 1MHz external clock without prescaling, T = 25°C unless other conditions are givenAll parameters
measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock without
prescaling, T = 25°C unless other conditions are given.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
142
36.4.4 Wake-up time from sleep modes
Table 36-102. Device wake-up time from sleep modes with various system clock sources.
Symbol
Parameter
Condition
External 2MHz clock
Wake-up time from Idle,
Standby, and Extended Standby
mode
twakeup
Wake-up time from Power-save
and Power-down mode
Note:
1.
32.768kHz internal oscillator
Min.
Typ. (1)
Max.
Units
2
120
2MHz internal oscillator
2
32MHz internal oscillator
0.2
External 2MHz clock
4.5
32.768kHz internal oscillator
320
2MHz internal oscillator
9
32MHz internal oscillator
5
µs
µs
The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-2. All peripherals and modules
start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.
Figure 36-23. Wake-up time definition.
Wakeup time
Wakeup request
Clock output
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
143
36.4.5 I/O Pin Characteristics
The I/O pins comply with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and
output voltage limits reflect or exceed this specification.
Table 36-103. I/O pin characteristics.
Symbol
IOH
(1)
IOL
(2)
/
Parameter
Condition
Max.
Units
-20
20
mA
VCC = 2.7 - 3.6V
2
VCC+0.3
VCC = 2.0 - 2.7V
0.7*VCC
VCC+0.3
VCC = 1.6 - 2.0V
0.8*VCC
VCC+0.3
VCC = 2.7- 3.6V
-0.3
0.8
VCC = 2.0 - 2.7V
-0.3
0.3*VCC
VCC = 1.6 - 2.0V
-0.3
0.2*VCC
I/O pin source/sink current
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VCC = 3.0 - 3.6V
VOH
High Level Output Voltage
2.4
0.94*VCC
IOH = -1mA
2.0
0.96*VCC
IOH = -2mA
1.7
0.92*VCC
VCC = 3.3V
IOH = -8mA
2.6
2.9
VCC = 3.0V
IOH = -6mA
2.1
2.6
VCC = 1.8V
IOH = -2mA
1.4
1.6
VCC = 3.0 - 3.6V
IOL = 2mA
0.05*VCC
0.4
IOL = 1mA
0.03*VCC
0.4
IOL = 2mA
0.06*VCC
0.7
VCC = 3.3V
IOL = 15mA
0.4
0.76
VCC = 3.0V
IOL = 10mA
0.3
0.64
VCC = 1.8V
IOL = 5mA
0.3
0.46
<0.001
0.1
VCC = 2.3 - 2.7V
VOL
Low Level Output Voltage
IIN
Input Leakage Current
RP
Pull/Buss keeper Resistor
tr
Rise time
1.
2.
Typ.
IOH = -2mA
VCC = 2.3 - 2.7V
Notes:
Min.
T = 25°C
4
slew rate limitation
V
V
27
No load
V
7
V
µA
kΩ
ns
The sum of all IOH for PORTA and PORTB must not exceed 100mA.
The sum of all IOH for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOH for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
The sum of all IOL for PORTA and PORTB must not exceed 100mA.
The sum of all IOL for PORTC, PORTD, PORTE must for each port not exceed 200mA.
The sum of all IOL for pins PF[0-5] on PORTF must not exceed 200mA.
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
144
36.4.6 ADC characteristics
Table 36-104.
Symbol
Power supply, reference and input range.
Parameter
AVCC
Analog supply voltage
VREF
Reference voltage
Condition
Min.
Typ.
Max.
Units
VCC- 0.3
VCC+ 0.3
V
1
AVCC- 0.6
V
Rin
Input resistance
Switched
4.0
kΩ
Csample
Input capacitance
Switched
4.4
pF
RAREF
Reference input resistance
(leakage only)
>10
MΩ
CAREF
Reference input capacitance
Static load
7
pF
VIN
Input range
Conversion range
Differential mode, Vinp - Vinn
VIN
Conversion range
Single ended unsigned mode, Vinp
∆V
Fixed offset voltage
-0.1
AVCC+0.1
V
-VREF
VREF
V
-ΔV
VREF-ΔV
V
190
LSB
Table 36-105. Clock and timing.
Symbol
ClkADC
fADC
Parameter
Condition
Min.
Typ.
Max.
Units
Maximum is 1/4 of Peripheral clock
frequency
100
2000
Measuring internal signals
100
125
Current limitation (CURRLIMIT) off
100
2000
CURRLIMIT = LOW
100
1500
CURRLIMIT = MEDIUM
100
1000
CURRLIMIT = HIGH
100
500
Sampling Time
1/2 ClkADC cycle
0.25
5
µs
Conversion time (latency)
(RES+2)/2+(GAIN !=0)
RES (Resolution) = 8 or 12
5
8
ClkADC
cycles
Start-up time
ADC clock cycles
12
24
ClkADC
cycles
After changing reference or input mode
7
7
ClkADC
After ADC flush
1
1
cycles
ADC Clock frequency
Sample rate
ADC settling time
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
kHz
ksps
145
Table 36-106. Accuracy characteristics.
Symbol
Parameter
Condition (2)
RES
Resolution
Programmable to 8 or 12 bit
Min.
Typ.
Max.
Units
8
12
12
Bits
VCC-1.0V < VREF< VCC-0.6V
±1.2
±2
All VREF
±1.5
±3
VCC-1.0V < VREF< VCC-0.6V
±1.0
±2
All VREF
±1.5
±3
guaranteed monotonic
<±0.8
<±1
500ksps
INL (1)
Integral non-linearity
2000ksps
DNL (1)
Differential non-linearity
Offset Error
mV
Temperature drift
<0.01
mV/K
Operating voltage drift
<0.6
mV/V
External reference
-1
AVCC/1.6
10
AVCC/2.0
8
Bandgap
±5
Gain Error
Notes:
1.
2.
lsb
-1
Differential
mode
Noise
lsb
mV
Temperature drift
<0.02
mV/K
Operating voltage drift
<0.5
mV/V
Differential mode, shorted input
2msps, VCC = 3.6V, ClkPER = 16MHz
0.4
mV
rms
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.
Table 36-107. Gain stage characteristics.
Symbol
Parameter
Condition
Min.
Typ.
Max.
Units
Rin
Input resistance
Switched in normal mode
4.0
kΩ
Csample
Input capacitance
Switched in normal mode
4.4
pF
Signal range
Gain stage output
Propagation delay
ADC conversion rate
Sample rate
Same as ADC
INL (1)
Integral Non-Linearity
Gain Error
500ksps
0
VCC- 0.6
ClkADC
cycles
1
100
All gain
settings
±1.5
1x gain, normal mode
-0.8
8x gain, normal mode
-2.5
64x gain, normal mode
-3.5
V
1000
kHz
±4
lsb
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
%
146
Symbol
Parameter
Condition
Offset Error,
input referred
Min.
1x gain, normal mode
-2
8x gain, normal mode
-5
64x gain, normal mode
-4
1x gain, normal mode
Noise
1.
Max.
Units
mV
0.5
VCC = 3.6V
8x gain, normal mode
64x gain, normal mode
Note:
Typ.
mV
rms
1.5
Ext. VREF
11
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.
36.4.7 DAC Characteristics
Table 36-108. Power supply, reference and output range.
Symbol
Parameter
Condition
AVCC
Analog supply voltage
AVREF
External reference voltage
Rchannel
DC output impedance
Linear output voltage range
RAREF
CAREF
Min.
Maximum capacitance load
1.0
VCC- 0.6
V
50
Ω
AVCC-0.15
V
Static load
>10
MΩ
7
pF
1
kΩ
1000Ω serial resistance
Operating within accuracy specification
Output sink/source
Units
VCC+ 0.3
0.15
Minimum Resistance load
Max.
VCC- 0.3
Reference input resistance
Reference input capacitance
Typ.
100
pF
1
nF
AVCC/1000
Safe operation
10
mA
Table 36-109. Clock and timing.
Symbol
fDAC
Parameter
Conversion rate
Condition
Cload=100pF,
maximum step size
Min.
Typ.
Max.
Normal mode
0
1000
Low power mode
0
500
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Units
ksps
147
Table 36-110. Accuracy characteristics.
Symbol
RES
Parameter
Condition
Min.
Input Resolution
VREF= Ext 1.0V
INL (1)
Integral non-linearity
VREF=AVCC
VREF=INT1V
VREF=Ext 1.0V
DNL (1)
Differential non-linearity
VREF=AVCC
VREF=INT1V
Gain error
Units
12
Bits
±2.0
±3
VCC = 3.6V
±1.5
±2.5
VCC = 1.6V
±2.0
±4
VCC = 3.6V
±1.5
±4
VCC = 1.6V
±5.0
VCC = 3.6V
±5.0
VCC = 1.6V
±1.5
3
VCC = 3.6V
±0.6
1.5
VCC = 1.6V
±1.0
3.5
VCC = 3.6V
±0.6
1.5
VCC = 1.6V
±4.5
VCC = 3.6V
±4.5
After calibration
lsb
lsb
<4
lsb
4
lsb
Gain calibration drift
VREF= Ext 1.0V
<0.2
mV/K
Offset error
After calibration
<1
lsb
Offset calibration step size
1.
Max.
VCC = 1.6V
Gain calibration step size
Note:
Typ.
1
Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.
36.4.8 Analog Comparator Characteristics
Table 36-111.
Symbol
Voff
Ilk
Analog Comparator characteristics.
Parameter
Condition
Min.
Input Offset Voltage
Input Leakage Current
Input voltage range
Hysteresis, None
Vhys2
Hysteresis, Small
Vhys3
Hysteresis, Large
Max.
Units
<±10
mV
<1
nA
-0.1
AC startup time
Vhys1
Typ.
AVCC
V
100
µs
0
mV
mode = High Speed (HS)
13
mode = Low Power (LP)
30
mode = HS
30
mode = LP
60
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
mV
mV
148
Symbol
Parameter
Condition
VCC = 3.0V, T= 85°C
tdelay
Propagation delay
Min.
mode = HS
mode = HS
VCC = 3.0V, T= 85°C
Max.
30
90
30
mode = LP
130
mode = LP
64-Level Voltage Scaler
Typ.
500
Units
ns
130
Integral non-linearity (INL)
0.3
0.5
lsb
36.4.9 Bandgap and Internal 1.0V Reference Characteristics
Table 36-112.
Symbol
Bandgap and Internal 1.0V reference characteristics.
Parameter
Condition
Min.
As reference for ADC or DAC
Startup time
Max.
1 ClkPER + 2.5µs
As input voltage to ADC and AC
1.1
Internal 1.00V reference
T= 85°C, after calibration
0.99
Variation over voltage and temperature
Relative to T= 85°C, VCC = 3.0V
1
Units
µs
1.5
Bandgap voltage
INT1V
Typ.
V
1.01
±1.0
V
%
36.4.10 Brownout Detection Characteristics
Table 36-113.
Symbol
Brownout detection characteristics.
Parameter
Condition
BOD level 0 falling VCC
VBOT
tBOD
VHYST
Min.
Typ.
Max.
1.60
1.62
1.72
BOD level 1 falling VCC
1.8
BOD level 2 falling VCC
2.0
BOD level 3 falling VCC
2.2
BOD level 4 falling VCC
2.4
BOD level 5 falling VCC
2.6
BOD level 6 falling VCC
2.8
BOD level 7 falling VCC
3.0
Detection time
Hysteresis
Continuous mode
Sampled mode
0.4
1000
1.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Units
V
µs
%
149
36.4.11 External Reset Characteristics
Table 36-114. External reset characteristics.
Symbol
tEXT
Parameter
Condition
Min.
Minimum reset pulse width
Reset threshold voltage (VIH)
VRST
Reset threshold voltage (VIL)
RRST
Typ.
Max.
Units
95
1000
ns
VCC = 2.7 - 3.6V
0.60*VCC
VCC = 1.6 - 2.7V
0.70*VCC
VCC = 2.7 - 3.6V
0.40*VCC
VCC = 1.6 - 2.7V
0.30*VCC
Reset pin Pull-up Resistor
V
25
kΩ
36.4.12 Power-on Reset Characteristics
Table 36-115. Power-on reset characteristics.
Symbol
Parameter
VPOT- (1)
POR threshold voltage falling VCC
VPOT+
POR threshold voltage rising VCC
Note:
1.
Condition
Min.
Typ.
VCC falls faster than 1V/ms
0.4
1.0
VCC falls at 1V/ms or slower
0.8
1.0
Max.
Units
V
1.3
1.59
V
Typ.
Max.
Units
VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.
36.4.13 Flash and EEPROM Memory Characteristics
Table 36-116. Endurance and data retention.
Symbol
Parameter
Condition
Write/Erase cycles
Flash
Data retention
Write/Erase cycles
EEPROM
Data retention
Min.
25°C
10K
85°C
10K
105°C
2K
25°C
100
85°C
25
105°C
10
25°C
100K
85°C
100K
105°C
30K
25°C
100
85°C
25
105°C
10
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Cycle
Year
Cycle
Year
150
Table 36-117. Programming time.
Symbol
Parameter
Condition
Chip Erase
256KB Flash, EEPROM
Application Erase
Flash
EEPROM
Notes:
1.
2.
(2)
Min.
and SRAM Erase
Typ. (1)
Max.
Units
105
ms
Section erase
6
ms
Page Erase
4
Page Write
4
Atomic Page Erase and Write
8
Page Erase
4
Page Write
4
Atomic Page Erase and Write
8
ms
ms
Programming is timed from the 2MHz internal oscillator.
EEPROM is not erased if the EESAVE fuse is programmed.
36.4.14 Clock and Oscillator Characteristics
36.4.14.1 Calibrated 32.768kHz Internal Oscillator characteristics
Table 36-118.
Symbol
32.768kHz internal oscillator characteristics.
Parameter
Condition
Min.
Frequency
Typ.
Max.
32.768
Factory calibration accuracy
T = 85°C, VCC = 3.0V
User calibration accuracy
Units
kHz
-0.5
0.5
%
-0.5
0.5
ms
Max.
Units
2.2
MHz
36.4.14.2 Calibrated 2MHz RC Internal Oscillator characteristics
Table 36-119.
Symbol
2MHz internal oscillator characteristics.
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
1.8
Factory calibrated frequency
Factory calibration accuracy
User calibration accuracy
DFLL calibration stepsize
Typ.
2.0
T = 85°C, VCC= 3.0V
MHz
-1.5
1.5
%
-0.2
0.2
%
0.22
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
%
151
36.4.14.3 Calibrated and tunable 32MHz internal oscillator characteristics
Table 36-120.
Symbol
32MHz internal oscillator characteristics.
Parameter
Frequency range
Condition
Min.
DFLL can tune to this frequency over
voltage and temperature
30
Factory calibrated frequency
Factory calibration accuracy
Typ.
Max.
Units
55
MHz
32
T = 85°C, VCC= 3.0V
User calibration accuracy
MHz
-1.5
1.5
%
-0.2
0.2
%
DFLL calibration step size
0.23
%
36.4.14.4 32kHz Internal ULP Oscillator characteristics
Table 36-121. 32kHz internal ULP oscillator characteristics.
Symbol
Parameter
Condition
Min.
Output frequency
Typ.
Max.
32
Accuracy
-30
Units
kHz
30
%
Max.
Units
MHz
36.4.14.5 Internal Phase Locked Loop (PLL) characteristics
Table 36-122. Internal PLL characteristics.
Symbo
l
fIN
Input Frequency
Output frequency (1)
fOUT
Note:
Parameter
1.
Condition
Min.
Typ.
Output frequency must be within fOUT
0.4
64
VCC= 1.6 - 1.8V
20
48
VCC= 2.7 - 3.6V
20
128
MHz
Start-up time
25
µs
Re-lock time
25
µs
The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
152
36.4.14.6 External clock characteristics
Figure 36-24. External clock drive waveform
tCH
tCH
tCR
tCF
VIH1
VIL1
tCL
tCK
Table 36-123. External clock used as system clock without prescaling.
Symbol
Clock Frequency (1)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
ΔtCK
Note:
Parameter
Change in period from one clock cycle to the next
1.
Condition
Min.
Typ.
Max.
VCC = 1.6 - 1.8V
0
12
VCC = 2.7 - 3.6V
0
32
VCC = 1.6 - 1.8V
83.3
VCC = 2.7 - 3.6V
31.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
VCC = 1.6 - 1.8V
30.0
VCC = 2.7 - 3.6V
12.5
Units
MHz
ns
ns
ns
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
VCC = 1.6 - 1.8V
10
VCC = 2.7 - 3.6V
3
10
ns
ns
%
The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
153
Table 36-124. External clock with prescaler (1)for system clock.
Symbol
Parameter
Condition
Clock Frequency (2)
1/tCK
tCK
Clock Period
tCH
Clock High Time
tCL
Clock Low Time
tCR
Rise Time (for maximum frequency)
tCF
Fall Time (for maximum frequency)
ΔtCK
Notes:
Min.
Typ.
VCC = 1.6 - 1.8V
0
90
VCC = 2.7 - 3.6V
0
142
VCC = 1.6 - 1.8V
11
VCC = 2.7 - 3.6V
7
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
VCC = 1.6 - 1.8V
4.5
VCC = 2.7 - 3.6V
2.4
Units
MHz
ns
ns
ns
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
VCC = 1.6 - 1.8V
1.5
VCC = 2.7 - 3.6V
1.0
Change in period from one clock cycle to the next
1.
2.
Max.
10
ns
ns
%
System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.
The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.
36.4.14.7 External 16MHz crystal oscillator and XOSC characteristics
Table 36-125. External 16MHz crystal oscillator and XOSC characteristics.
.
Symbol
Parameter
Cycle to cycle jitter
Condition
XOSCPWR=0
Min.
FRQRANGE=0
<10
FRQRANGE=1, 2, or 3
<1
XOSCPWR=1
Long term jitter
XOSCPWR=0
XOSCPWR=0
FRQRANGE=0
FRQRANGE=1, 2, or 3
XOSCPWR=0
XOSCPWR=1
Units
ns
<6
<0.5
ns
<0.5
FRQRANGE=0
<0.1
FRQRANGE=1
<0.05
FRQRANGE=2 or 3
<0.005
XOSCPWR=1
Duty cycle
Max.
<1
XOSCPWR=1
Frequency error
Typ.
%
<0.005
FRQRANGE=0
40
FRQRANGE=1
42
FRQRANGE=2 or 3
45
%
48
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
154
Symbol
Parameter
Condition
0.4MHz resonator,
CL=100pF
2.4k
1MHz crystal, CL=20pF
8.7k
2MHz crystal, CL=20pF
2.1k
2MHz crystal
4.2k
8MHz crystal
250
9MHz crystal
195
8MHz crystal
360
9MHz crystal
285
12MHz crystal
155
9MHz crystal
365
12MHz crystal
200
16MHz crystal
105
9MHz crystal
435
12MHz crystal
235
16MHz crystal
125
9MHz crystal
495
12MHz crystal
270
16MHz crystal
145
XOSCPWR=1,
FRQRANGE=2,
CL=20pF
12MHz crystal
305
16MHz crystal
160
XOSCPWR=1,
FRQRANGE=3,
CL=20pF
12MHz crystal
380
16MHz crystal
205
XOSCPWR=0,
FRQRANGE=0
XOSCPWR=0,
FRQRANGE=1,
CL=20pF
XOSCPWR=0,
FRQRANGE=2,
CL=20pF
Negative impedance
RQ
(1)
XOSCPWR=0,
FRQRANGE=3,
CL=20pF
XOSCPWR=1,
FRQRANGE=0,
CL=20pF
XOSCPWR=1,
FRQRANGE=1,
CL=20pF
ESR
Min.
Typ.
Max.
Units
Ω
SF = Safety factor
min(RQ)/SF
kΩ
CXTAL1
Parasitic
capacitance XTAL1
pin
5.2
pF
CXTAL2
Parasitic
capacitance XTAL2
pin
6.8
pF
CLOAD
Parasitic
capacitance load
2.95
pF
Note:
1.
Numbers for negative impedance are not tested in production but guaranteed from design and characterization.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
155
36.4.14.8 External 32.768kHz crystal oscillator and TOSC characteristics
Table 36-126. External 32.768kHz crystal oscillator and TOSC characteristics.
Symbol
Parameter
Condition
ESR/R1
Recommended crystal equivalent
series resistance (ESR)
CTOSC1
Parasitic capacitance TOSC1 pin
4.2
pF
CTOSC2
Parasitic capacitance TOSC2 pin
4.3
pF
1.
Typ.
Max.
Crystal load capacitance 6.5pF
60
Crystal load capacitance 9.0pF
35
capacitance load matched to
crystal specification
Recommended safety factor
Note:
Min.
Units
kΩ
3
See Figure 36-4 for definition.
Figure 36-25. TOSC input capacitance.
CL1
TOSC1
CL2
Device internal
External
TOSC2
32.768kHz crystal
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when
oscillating without external capacitors.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
156
36.4.15 SPI Characteristics
Figure 36-26. SPI timing requirements in master mode.
SS
tSCKR
tMOS
tSCKF
SCK
(CPOL = 0)
tSCKW
SCK
(CPOL = 1)
tSCKW
tMIS
MISO
(Data Input)
tMIH
tSCK
MSB
LSB
tMOH
tMOH
MOSI
(Data Output)
MSB
LSB
Figure 36-27. SPI timing requirements in slave mode.
SS
tSSS
tSCKR
tSCKF
tSSH
SCK
(CPOL = 0)
tSSCKW
SCK
(CPOL = 1)
tSSCKW
tSIS
MOSI
(Data Input)
tSIH
MSB
tSOSSS
MISO
(Data Output)
tSSCK
LSB
tSOS
MSB
tSOSSH
LSB
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
157
Table 36-127. SPI timing characteristics and requirements.
Symbol
Parameter
Condition
Min.
Typ.
Max.
tSCK
SCK Period
Master
(See Table 21-4 in
XMEGA AU Manual)
tSCKW
SCK high/low width
Master
0.5*SCK
tSCKR
SCK Rise time
Master
2.7
tSCKF
SCK Fall time
Master
2.7
tMIS
MISO setup to SCK
Master
10
tMIH
MISO hold after SCK
Master
10
tMOS
MOSI setup SCK
Master
0.5*SCK
tMOH
MOSI hold after SCK
Master
1
tSSCK
Slave SCK Period
Slave
4*t ClkPER
tSSCKW
SCK high/low width
Slave
2*t ClkPER
tSSCKR
SCK Rise time
Slave
1600
tSSCKF
SCK Fall time
Slave
1600
tSIS
MOSI setup to SCK
Slave
3
tSIH
MOSI hold after SCK
Slave
t ClkPER
tSSS
SS setup to SCK
Slave
21
tSSH
SS hold after SCK
Slave
20
tSOS
MISO setup SCK
Slave
8
tSOH
MISO hold after SCK
Slave
13
tSOSS
MISO setup after SS low
Slave
11
tSOSH
MISO hold after SS high
Slave
8
Units
ns
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
158
36.4.16 Two-Wire Interface Characteristics
Table 36-32 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR
XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols
refer to Figure 36-7.
Figure 36-28. Two-wire interface bus timing.
tof
tHIGH
tLOW
tr
SCL
tSU;STA
tHD;DAT
tSU;STO
tSU;DAT
tHD;STA
SDA
tBUF
Table 36-128. Two-wire interface characteristics.
Symbol
Parameter
Condition
Min.
Typ.
Max.
Units
VIH
Input High Voltage
0.7*VCC
VCC+0.5
V
VIL
Input Low Voltage
-0.5
0.3*VCC
V
Vhys
Hysteresis of Schmitt Trigger Inputs
VOL
Output Low Voltage
tr
Rise Time for both SDA and SCL
tof
Output Fall Time from VIHmin to VILmax
tSP
Spikes Suppressed by Input Filter
II
Input Current for each I/O Pin
CI
Capacitance for each I/O Pin
fSCL
SCL Clock Frequency
0.05*VCC (1)
3mA, sink current
10pF < Cb < 400pF (2)
0.1VCC < VI < 0.9VCC
fPER (3)>max(10fSCL, 250kHz)
0
0.4
V
20+0.1Cb (1)(2)
300
ns
20+0.1Cb (1)(2)
250
ns
0
50
ns
-10
10
µA
10
pF
400
kHz
0
fSCL ≤ 100kHz
RP
tHD;STA
Value of Pull-up resistor
Hold Time (repeated) START condition
tLOW
Low Period of SCL Clock
tHIGH
High Period of SCL Clock
fSCL > 100kHz
V
V CC – 0.4V
---------------------------3mA
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
1.3
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
100ns
--------------Cb
300ns
--------------Cb
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
Ω
µs
µs
µs
159
Symbol
Parameter
tSU;STA
Set-up time for a repeated START
condition
tHD;DAT
Data hold time
tSU;DAT
Data setup time
tSU;STO
Setup time for STOP condition
Bus free time between a STOP and
START condition
tBUF
Notes:
1.
2.
3.
Condition
Min.
Typ.
Max.
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
0
3.45
fSCL > 100kHz
0
0.9
fSCL ≤ 100kHz
250
fSCL > 100kHz
100
fSCL ≤ 100kHz
4.0
fSCL > 100kHz
0.6
fSCL ≤ 100kHz
4.7
fSCL > 100kHz
1.3
Units
µs
µs
ns
µs
µs
Required only for fSCL > 100kHz.
Cb = Capacitance of one bus line in pF.
fPER = Peripheral clock frequency.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
160
37.
Typical Characteristics
37.1
ATxmega64A3U
37.1.1 Current consumption
37.1.1.1 Active mode supply current
Figure 37-1.
Active supply current vs. frequency.
fSYS = 0 - 1MHz external clock, T = 25°C.
700
3.6 V
600
3.0 V
500
ICC [µA]
2.7 V
400
2.2 V
300
1.8 V
1.6 V
200
100
0
0
0.2
0.4
0.6
0.8
1
Frequency [MHz]
Figure 37-2.
Active supply current vs. frequency.
fSYS = 1 - 32MHz external clock, T = 25°C.
14
3.6 V
12
ICC [mA]
10
3.0 V
2.7 V
8
6
2.2 V
4
2
1.8 V
1.6 V
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
161
Figure 37-3.
Active mode supply current vs. VCC.
fSYS = 32.768kHz internal oscillator.
250
Temp [°C]
- 40
230
210
25
85
105
IC C [µA]
190
170
150
130
110
90
70
50
1.6
Figure 37-4.
1.8
2
2.2
2.4
2.6
VC C [V ]
2.8
3
3.2
3.4
3.6
Active mode supply current vs. VCC.
fSYS = 1MHz external clock.
760
- 40°C
25°C
85°C
105°C
690
IC C [µA]
620
550
480
410
340
270
200
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
162
Figure 37-5.
Active mode supply current vs. VCC.
fSYS = 2MHz internal oscillator.
1525
- 40°C
25°C
85°C
105°C
1400
1275
IC C [µA]
1150
1025
900
775
650
525
400
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-6.
Active mode supply current vs. VCC.
fSYS = 32MHz internal oscillator prescaled to 8MHz.
5900
- 40°C
25°C
85°C
105°C
5400
4900
IC C [µA]
4400
3900
3400
2900
2400
1900
1400
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
163
Figure 37-7.
Active mode supply current vs. VCC.
fSYS = 32MHz internal oscillator.
14300
- 40°C
13600
12900
25°C
85°C
105°C
IC C [μA]
12200
11500
10800
10100
9400
8700
8000
2.7
2.8
2.9
3
3,1
3.2
3.3
3.4
3.5
3.6
V C C [V ]
37.1.1.2 Idle mode supply current
Figure 37-8.
Idle mode supply current vs. frequency.
fSYS = 0 - 1MHz external clock, T = 25°C.
180
3.6 V
ICC [µA]
160
140
3.0 V
120
2.7 V
100
2.2 V
80
1.8 V
1.6 V
60
40
20
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Frequency [MHz]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
164
Figure 37-9.
Idle mode supply current vs. frequency.
fSYS = 1 - 32MHz external clock, T = 25°C.
6
3.6 V
5
3.0 V
ICC [mA]
4
2.7 V
3
2.2 V
2
1
1.8 V
1.6 V
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
Figure 37-10.
Idle mode supply current vs. VCC.
fSYS = 32.768kHz internal oscillator.
36
105 °C
35
IC C[μA]
34
33
-40 °C
85 °C
32
25 °C
31
30
29
28
27
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
V C C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
165
Figure 37-11.
Idle mode supply current vs. VCC.
fSYS = 1MHz external clock.
195
105°C
85°C
25°C
- 40°C
180
165
IC C [μA]
150
135
120
105
90
75
60
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
V C C [V ]
Figure 37-12.
Idle mode supply current vs. VCC.
fSYS = 2MHz internal oscillator.
460
- 40°C
25°C
85°C
105°C
420
IC C [μA]
380
340
300
260
220
180
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
V C C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
166
Figure 37-13.
Idle mode supply current vs. VCC.
fSYS = 32MHz internal oscillator prescaled to 8MHz.
2300
- 40°C
25°C
85°C
105°C
2100
1900
IC C [μA]
1700
1500
1300
1100
900
700
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
V C C [V ]
Figure 37-14.
Idle mode current vs. VCC.
fSYS = 32MHz internal oscillator.
6300
- 40°C
6050
25°C
85°C
105°C
5800
IC C [μA]
5550
5300
5050
4800
4550
4300
4050
3800
2.7
2.8
2.9
3
3.1
3.2
V C C [V ]
3.3
3.4
3.5
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
167
37.1.1.3 Power-down mode supply current
Figure 37-15.
Power-down mode supply current vs. VCC.
All functions disabled.
4.00
105
3.50
3.00
Temp [°C]
IC C [μA]
2.50
2.00
1.50
85
1.00
0.50
25
- 40
0.00
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
V C C [V ]
Figure 37-16.
Power-down mode supply current vs. VCC.
Watchdog and sampled BOD enabled.
5.5
105
5.0
4.5
Temp [°C]
IC C [µA]
4.0
3.5
3.0
85
2.5
2.0
25
- 40
1.5
1.0
1.6
1.8
2
2.2
2.4
2..6
2.8
3
3.2
3.4
3.6
V C C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
168
37.1.1.4 Power-save mode supply current
Figure 37-17.
Power-save mode supply current vs. VCC.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.
RTC from 1kHz output of 32.768kHz TOSC
0.90
0.85
Normal Mode
0.80
Icc [µA]
0.75
0.70
Low-Power Mode
0.65
0.60
0.55
0.50
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
3.8
Vcc [V]
37.1.1.5 Standby mode supply current
Figure 37-18.
Standby supply current vs. VCC.
Standby, fSYS = 1MHz.
12.5
105°C
11.5
10.5
9.5
85°C
ICC [uA]
8.5
25°C
-40°C
7.5
6.5
5.5
4.5
3.5
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
169
Figure 37-19.
Standby supply current vs. VCC.
25°C, running from different crystal,oscillators
y .
480
16MHz
440
12MHz
400
Icc [µA]
360
8MHz
320
280
2MHz
240
0.454MHz
200
160
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vcc [V]
37.1.2 I/O Pin Characteristics
37.1.2.1 Pull-up
Figure 37-20.
I/O pin pull-up resistor current vs. input voltage.
VCC = 1.8V.
72
Temp [°C]
IPIN [µA]
64
56
85
48
105
25
-40
40
32
24
16
8
0
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
VPIN [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
170
Figure 37-21.
I/O pin pull-up resistor current vs. input voltage.
VCC = 3.0V.
120
Temp [°C]
105
-40
85
25
IPIN [µA]
90
105
75
60
45
30
15
0
0.1
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
V P IN [V ]
Figure 37-22.
I/O pin pull-up resistor current vs. input voltage.
VCC = 3.3V.
135
Temp [°C]
120
- 40
85
105
25
105
IPIN [µA]
90
75
60
45
30
15
0
0.1
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
3.4
V P IN [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
171
37.1.2.2 Output Voltage vs. Sink/Source Current
Figure 37-23.
I/O pin output voltage vs. source current.
VCC = 1.8V.
1.9
Temp [°C]
1.7
VP I N [V ]
1.5
1.3
1.1
0.9
25
0.7
-40
105
85
0.5
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
IP IN [mA]
Figure 37-24.
I/O pin output voltage vs. source current.
VCC = 3.0V.
3.2
Temp [°C]
2.9
2.6
VP I N [V ]
2.3
2.0
1.7
1.4
-40
1.1
85
25
0.8
105
0.5
-30
-27
-24
-21
-18
-15
-12
-9
-6
-3
0
IP IN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
172
Figure 37-25.
I/O pin output voltage vs. source current.
VCC = 3.3V.
3.5
Temp [°C]
3.2
2.9
VP I N [V ]
2.6
2.3
2.0
-40
1.7
1.4
25
85
1.1
105
0.8
0.5
-30
-27
-24
-21
-18
-15
-12
-9
-6
-3
0
IP IN [mA]
Figure 37-26.
I/O pin output voltage vs. source current.
3.7
3.6 V
3.3
3.3 V
3.0 V
2.9
2.7 V
VPIN [V]
2.5
2.1
1.8 V
1.6 V
1.7
1.3
0.9
0.5
-24
-21
-18
-15
-12
-9
-6
-3
0
IPIN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
173
Figure 37-27.
I/O pin output voltage vs. sink current.
VCC = 1.8V.
1.0
85
105
0.9
25
Temp [°C]
-40
0.8
VP IN [V ]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
2
4
6
8
10
12
14
16
18
20
IP IN [mA]
Figure 37-28.
I/O pin output voltage vs. sink current.
VCC = 3.0V.
1.0
105
85
0.9
25
- 40
Temp [°C]
0.8
VP IN [V ]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
3
6
9
12
15
18
21
24
27
30
IP IN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
174
Figure 37-29.
I/O pin output voltage vs. sink current.
VCC = 3.3V.
1.0
105
85
25
- 40
Temp [°C]
0.9
0.8
VP IN [V ]
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
3
6
9
12
15
18
21
24
27
30
IP IN [mA]
Figure 37-30.
I/O pin output voltage vs. sink current.
1.5
1.8 V
1.6 V
1.4
1.2
VPIN [V]
1.1
2.7 V
3.0 V
3.3 V
3.6 V
0.9
0.8
0.6
0.5
0.3
0.2
0.0
0
3
6
9
12
15
18
21
24
27
30
IPIN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
175
37.1.2.3 Thresholds and Hysteresis
Figure 37-31.
I/O pin input threshold voltage vs. VCC.
T = 25°C.
VTHRESHOLD [V]
1.85
1.70
VIH
1.55
VIL
1.40
1.25
1.10
0.95
0.80
0.65
0.50
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 37-32.
I/O pin input threshold voltage vs. VCC.
VIH I/O pin read as “1”.
1.8
Temp [°C]
VTH R E S H OLD [V ]
1.7
1.6
1.5
1.4
1.3
1.2
1.1
40
1.0
0.9
25
0.8
1.6
85 105
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
176
Figure 37-33.
I/O pin input threshold voltage vs. VCC.
VIL I/O pin read as “0”.
Temp [°C]
-40
25
85
105
VTH R E S H OLD [V ]
1.70
1.55
1.40
1.25
1.10
0.95
0.80
0.65
0.50
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-34.
I/O pin input hysteresis vs. VCC.
VH Y S TE R E S IS [V ]
0.36
-40
0.33
0.3
0.27
25
0.24
0.21
85
0.18
105
0.15
Temp [°C]
0.12
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
177
37.1.3 ADC Characteristics
Figure 37-35.
INL error vs. external VREF.
T = 25°C, VCC = 3.6V, external reference.
3.0
Single-ended unsigned mode
2.5
INL[LSB]
2.0
1.5
Single-ended signed mode
1.0
Dif f erential mode
0.5
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
Figure 37-36.
INL error vs. sample rate.
T = 25°C, VCC = 2.7V, VREF = 1.0V external.
2.0
1.8
Single-ended unsigned mode
1.6
INL[LSB]
1.4
1.2
Single-ended signed mode
1.0
0.8
Dif f erential mode
0.6
0.4
500
650
800
950
1100
1250
1400
1550
1700
1850
2000
ADC sample rate [ksps]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
178
Figure 37-37.
INL error vs. input code.
2.0
1.5
1.0
INL [LSB]
0.5
0.0
-0.5
-0.1
-1.5
-2.0
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
Figure 37-38.
DNL error vs. external VREF.
T = 25°C, VCC = 3.6V, external reference.
1.1
1.0
Single_ended unsigned mode
0.9
DNL [LSB]
0.8
0.7
0.6
Single-ended signed mode
0.5
0.4
Dif f erential mode
0.3
0.2
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
179
Figure 37-39.
DNL error vs. sample rate.
T = 25°C, VCC = 2.7V, VREF = 1.0V external.
0.5
0.5
Single-ended unsigned mode
DNL [LSB]
0.4
Dif f erential mode
0.4
0.3
Single-ended signed mode
0.3
0.2
500
650
800
950
1100
1250
1400
1550
1700
1850
2000
ADC sample rate [ksps]
Figure 37-40.
DNL error vs. input code.
1.0
0.8
0.6
0.4
DNL [LSB]
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
180
Figure 37-41.
Gain error vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
10
9
Single-ended signed mode
8
Gain Error [mV]
7
Single-ended unsigned mode
6
5
4
3
Dif f erential mode
2
1
0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
30
3.2
3.4
3.6
VREF [V]
Figure 37-42.
Gain error vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
0.7
Single-ended signed mode
0.6
Noise [mV RMS]
0.5
Single-ended unsigned mode
0.4
0.3
Dif f erential mode
0.2
0.1
0.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vcc [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
181
Figure 37-43.
Offset error vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
-0.80
-0.85
Offset Error [mV]
-0.90
-0.95
-1.00
Differential mode
-1.05
-1.10
-1.15
-1.20
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
Figure 37-44.
Gain error vs. temperature.
VCC = 2.7V, VREF = external 1.0V.
8
S ingle E nded S igned
G ain E rror [mV]
7
6
S ingle E nded
Uns igned
5
4
D ifferential S igned
3
2
1
0
-60
-40
-20
0
20
40
60
80
100
120
T emperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
182
Figure 37-45.
Offset error vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
0.2
Offset Error [mV]
0.0
-0.2
Dif f erential mode
-0.4
-0.6
-0.8
-1.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
Figure 37-46.
Noise vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
0.9
Single-ended signed mode
0.8
Noise [mV RMS]
0.7
0.6
Single-ended unsigned mode
0.5
0.4
0.3
Dif f erential mode
0.2
0.1
0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
183
Figure 37-47.
Noise vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
0.7
Single-ended signed mode
0.6
Noise [mV RMS]
0.5
Single-ended unsigned mode
0.4
0.3
Dif f erential mode
0.2
0.1
0.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
37.1.4 DAC Characteristics
Figure 37-48.
DAC INL error vs. VREF.
VCC = 3.6V.
2.5
DAC INL [LS B]
2
1.5
Temp [°C]
- 40
25
85
105
1
0.5
0
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
V REF [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
184
Figure 37-49.
DNL error vs. VREF.
T = 25°C, VCC = 3.6V.
1.6
1.4
DAC DNL [LS B]
1.2
1
0.8
Temp [°C]
0.6
-40
25
85
105
0.4
0.2
0
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
V REF [V]
Figure 37-50.
DAC noise vs. temperature.
VCC = 3.3V, VREF = 2.0V.
0.200
Nois e[mV R MS ]
0.195
0.190
0.185
0.180
0.175
0.170
0.165
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
T emperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
185
37.1.5 Analog Comparator Characteristics
Figure 37-51.
Analog comparator hysteresis vs. VCC
High-speed, small hysteresis.
25
Temp [°C]
105
24
VH Y S T [mV]
23
85
22
25
21
20
19
- 40
18
17
16
15
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VC C [V ]
Figure 37-52.
Analog comparator hysteresis vs. VCC.
Low power, small hysteresis.
36
Temp [°C]
105
85
34
VH Y S T [mV ]
32
30
25
28
- 40
26
24
22
20
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
186
Figure 37-53.
Analog comparator hysteresis vs. VCC.
High-speed mode, large hysteresis.
47
Temp [°C]
105
85
45
VH Y S T [mV ]
43
25
41
39
- 40
37
35
33
31
29
27
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-54.
Analog comparator hysteresis vs. VCC.
Low power, large hysteresis.
76
Temp [°C]
105
85
73
VH Y S T [mV ]
70
67
64
25
61
58
55
- 40
52
49
46
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
187
Figure 37-55.
Analog comparator current source vs. calibration value.
Temperature = 25°C.
8
ICURRENTSOURCE [µA]
7
6
5
3.6 V
4
3.0 V
2.7 V
3
2.2 V
1.8 V
1.6 V
2
1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CURRCALIBA[3..0]
Figure 37-56.
Analog comparator current source vs. calibration value.
VCC = 3.0V.
I C U R R E N TS OU R CE [µA]
6.7
6.3
5.9
5.5
5.1
4.7
4.3
Temp [°C]
-40
25
105 85
3.9
3.5
0
2
4
6
8
10
12
14
16
C UR R C ALIB A[3. ..0]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
188
Figure 37-57.
Voltage scaler INL vs. SCALEFAC.
T = 25°C, VCC = 3.0V.
0.06
0.05
0.04
INL [LSB]
0.03
0.02
0.01
0
-0.01
-0.02
-0.03
-0.04
0
8
16
24
32
40
48
56
64
SCALEFAC
37.1.6 Internal 1.0V reference Characteristics
Figure 37-58.
ADC/DAC Internal 1.0V reference vs. temperature.
1.011
B andgap V oltage [V ]
1.010
1.008
1.007
1.005
1.004
1.002
1.001
0.999
-45
-30
-15
0
15
30
45
60
75
90
1.6
1.8
2.2
2.7
3.0
3.6
105
V
V
V
V
V
V
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
189
37.1.7 BOD Characteristics
Figure 37-59.
BOD thresholds vs. temperature.
BOD level = 1.6V.
p
B OD Level = 1.6V
1.653
1.650
VB OT [V ]
1.647
1.644
1.641
R is ing V cc
1.638
1.635
1.632
1.629
F alling V cc
1.626
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
Figure 37-60.
BOD thresholds vs. temperature.
BOD level = 3.0V.
3.08
3.07
R is ing V cc
VB OT [V ]
3.06
3.05
3.04
3.03
3.02
F alling V cc
3.01
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
190
37.1.8 External Reset Characteristics
Figure 37-61.
135
Minimum Reset pin pulse width vs. VCC.
130
125
tR S T [ns ]
120
115
110
Temp [°C]
105
105
100
85
95
25
- 40
90
85
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
V C C [V ]
Figure 37-62.
Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 1.8V.
72
- 40
64
IR E S E T [µA]
56
85
48
25
105
40
32
24
16
8
Temp [°C]
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VR E S E T [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
191
Figure 37-63.
Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 3.0V.
120
IR E S E T [µA]
90
-40
25
105
85
105
75
60
45
30
15
Temp [°C]
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
V R E S E T [V ]
Figure 37-64.
Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 3.3V.
135
- 40
120
25
85
IR E S E T[µA]
105
105
90
75
60
45
30
15
Temp [°C
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
3.3
VR E S E T [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
192
Figure 37-65.
Reset pin input threshold voltage vs. VCC.
VIH - Reset pin read as “1”.
VTH R E S H OLD [V ]
2.20
- 40
25
85
105
Temp [°C]
2.05
1.90
1.75
1.60
1.45
1.30
1.15
1.00
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
V C C [V ]
Figure 37-66.
Reset pin input threshold voltage vs. VCC.
VIL - Reset pin read as “0”.
VTH R E S H OLD [V ]
1.8
- 40
25
85
105
1.6
1.4
Temp [°C]
1.2
1
0.8
0.6
0.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
193
37.1.9 Power-on Reset Characteristics
Figure 37-67.
Power-on reset current consumption vs. VCC.
BOD level = 3.0V, enabled in continuous mode.
600
- 40
25
85
105
Temp [°C]
525
IC C [uA]
450
375
300
225
150
75
0
0
0.3
0.6
0.9
1.2
1.5
V C C [V ]
1.8
2.1
2.4
2.7
3
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
194
37.1.10 Oscillator Characteristics
37.1.10.1 Ultra Low-Power internal oscillator
Figure 37-68.
34.5
Ultra Low-Power internal oscillator frequency vs. temperature.
34.0
F requency [kHz]
33.5
33.0
32.5
32.0
3.6
3.0
2.7
2.2
1.8
1.6
31.5
31.0
V
V
V
V
V
V
30.5
-45
-30
-15
0
15
30
45
60
75
90
105
T emperature [ °C ]
37.1.10.2 32.768kHz Internal Oscillator
Figure 37-69.
32.768kHz internal oscillator frequency vs. temperature.
33.0
3.6
3.0
2.7
2.2
1.8
1.6
32.9
F requency [kHz]
32.8
32,7
32.6
V
V
V
V
V
V
32.5
32.4
32.3
32.2
32.1
32.0
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
195
Figure 37-70.
32.768kHz internal oscillator frequency vs. calibration value.
VCC = 3.0V, T = 25°C.
49
46
Frequency [kHz]
43
40
37
34
31
28
25
22
0
26
52
78
104
130
156
182
208
234
260
RC32KCAL[7..0]
37.1.10.3 2MHz Internal Oscillator
Figure 37-71.
2MHz internal oscillator frequency vs. temperature.
DFLL disabled.
2.16
2.14
F requency [MHz]
2.12
2.10
2.08
2.06
2.04
3.6 V
3.0 V
2.7 V
2.2 V
1.8 V
1.6 V
2.02
2.00
1.98
1.96
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
196
Figure 37-72.
2MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
2.010
3.6
3.0
2.7
2.2
1.8
1.6
2.005
F requency [MHz]
2.000
1.995
V
V
V
V
V
V
1.990
1.985
1.980
1.975
1.970
1.965
1.960
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
Figure 37-73.
2MHz internal oscillator CALA calibration step size.
VCC = 3V.
0.33
F requency S tep s ize [% ]
0.31
0.29
0.27
0.25
0.23
Temp [°C]
25
0.21
0.19
-40
85
105
0.17
0.15
0
16
32
48
64
80
96
112
128
C ALA
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
197
37.1.10.4 32MHz Internal Oscillator
Figure 37-74.
32MHz internal oscillator frequency vs. temperature.
DFLL disabled.
36.0
35.5
F requency [MHz]
35.0
34.5
34.0
33.5
33.0
3. 6
3. 0
2. 7
2. 2
1. 8
1. 6
32.5
32.0
31.5
V
V
V
V
V
V
31.0
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
Figure 37-75.
32MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
32.25
3. 6
3. 0
2. 7
1. 8
1. 6
32.15
F requency [MHz]
32.05
31.95
V
V
V
V
V
31.85
31.75
31.65
31.55
31.45
31.35
31.25
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
198
Figure 37-76.
32MHz internal oscillator CALA calibration step size.
VCC = 3.0V.
F requency S tep S ize [% ]
0.48
0.43
0.38
0.33
0.28
0.23
- 40
25
85
105
Temp [°C]
0.18
0.13
0.08
0
16
32
48
64
80
96
112
128
C ALA
Figure 37-77.
32MHz internal oscillator frequency vs. CALB calibration value.
VCC = 3.0V.
2.80
F requency S tep s ize [% ]
2.60
2.40
2.20
2.00
1.80
1.60
1.40
Temp [°C]
1.20
- 40
25
85
105
1.00
0.80
0
8
16
24
32
40
48
56
64
C ALB
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
199
37.1.10.5 32MHz internal oscillator calibrated to 48MHz
Figure 37-78.
48MHz internal oscillator frequency vs. temperature.
DFLL disabled.
53.6
52.8
F requency [MHz]
52.0
51.2
50.4
49.6
3.6
3.0
2.7
2.2
1.8
1.6
48.8
48.0
47.2
46.4
-45
-30
-15
0
15
30
45
60
75
90
V
V
V
V
V
V
105
Temperature [°C ]
Figure 37-79.
48MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
48.400
3. 6
3. 0
2. 7
2. 2
1. 8
1. 6
48,250
F requency [MHz]
48.100
47.950
47.800
V
V
V
V
V
V
47.650
47.500
47.350
47.200
47.050
46.900
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
200
Figure 37-80.
48MHz internal oscillator CALA calibration step size.
VCC = 3.0V.
F requency S tep s ize [% ]
0.36
0.33
0.30
0.27
0.24
0.21
- 40
105
25
85
Temp [°C]
0.18
0.15
0.12
0
16
32
48
64
80
96
112
128
C ALA
37.1.11 Two-Wire Interface characteristics
Figure 37-81.
SDA hold time vs. Vcc.
300
295
Holdtime [ns ]
290
Temp [°C]
285
105
280
85
275
270
25
265
- 40
260
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
V cc [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
201
Figure 37-82.
SDA hold time vs. supply voltage.
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC[V]
37.1.12 PDI characteristics
Figure 37-83.
Maximum PDI frequency vs. VCC.
Maximum F requency [MHz]
42
-40
38
25
34
85
105
Temp [°C]
30
26
22
18
14
10
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
202
37.2
ATxmega128A3U
37.2.1 Current consumption
37.2.1.1 Active mode supply current
Figure 37-84.
Active supply current vs. frequency.
fSYS = 0 - 1MHz external clock, T = 25°C.
1000
3.6 V
900
ICC [µA]
800
700
3.0 V
600
2.7 V
500
2.2 V
400
1.8 V
1.6 V
300
200
100
0
0
0.2
0.4
0.6
0.8
1
Frequency [MHz]
Figure 37-85.
Active supply current vs. frequency.
fSYS = 1 - 32MHz external clock, T = 25°C.
14
3.6 V
12
3.0 V
ICC [mA]
10
2.7 V
8
6
2.2 V
4
1.8 V
1.6 V
2
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
203
Figure 37-86.
Active mode supply current vs. VCC.
fSYS = 32.768kHz internal oscillator.
460
- 40
420
IC C [µA]
380
25
340
85
105
Temp [°C]
300
260
220
180
140
100
1.6
1.8
2
2.2
2, 4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-87.
Active mode supply current vs. VCC.
IC C [µA]
fSYS = 1MHz external clock.
980
-40
900
820
25
85
105
740
Temp [°C]
660
580
500
420
340
260
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
204
Figure 37-88.
Active mode supply current vs. VCC.
fSYS = 2MHz internal oscillator.
1750
- 40
1625
25
85
105
1500
IC C [µA]
1375
Temp [°C]
1250
1125
1000
875
750
625
500
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-89.
Active mode supply current vs. VCC.
fSYS = 32MHz internal oscillator prescaled to 8MHz.
6500
6000
- 40
25
85
105
Temp [°C]
5500
IC C [µA]
5000
4500
4000
3500
3000
2500
2000
1500
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
205
Figure 37-90.
Active mode supply current vs. VCC.
fSYS = 32MHz internal oscillator.
15300
-40
14600
25
13900
85
105
Temp [°C]
IC C [µA]
13200
12500
11800
11100
10400
9700
9000
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VC C [V ]
37.2.1.2 Idle mode supply current
Figure 37-91.
Idle mode supply current vs. frequency.
fSYS = 0 - 1MHz external clock, T = 25°C.
180
3.6 V
150
ICC [µA]
3.0 V
120
2.7 V
90
2.2 V
1.8 V
1.6 V
60
30
0
0
0.2
0.4
0.6
0.8
1
Frequency [MHz]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
206
Figure 37-92.
Idle mode supply current vs. frequency.
fSYS = 1 - 32MHz external clock, T = 25°C.
6
3.6 V
5
3.0 V
ICC [mA]
4
2.7 V
3
2.2 V
2
1
1.8 V
1.6 V
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
Figure 37-93.
Idle mode supply current vs. VCC.
fSYS = 32.768kHz internal oscillator.
36
105
35
34
- 40
85
25
Temp [°C]
IC C [µA]
33
32
31
30
29
28
27
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
207
Figure 37-94.
Idle mode supply current vs. VCC.
fSYS = 1MHz external clock.
185
105
85
25
- 40
173
161
IC C [µA]
149
Temp [°C]
137
125
113
101
89
77
65
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-95.
Idle mode supply current vs. VCC.
fSYS = 2MHz internal oscillator.
450
-40
25
85
105
Temp [°C]
420
390
IC C [µA]
360
330
300
270
240
210
180
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
208
Figure 37-96.
Idle mode supply current vs. VCC.
fSYS = 32MHz internal oscillator prescaled to 8MHz.
2140
- 40
25
85
105
1960
IC C [µA]
1780
1600
Temp [°C]
1420
1240
1060
880
700
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-97.
Idle mode current vs. VCC.
fSYS = 32MHz internal oscillator.
6150
-40
5900
25
85
105
Temp [°C]
5650
IC C [µA]
5400
5150
4900
4650
4400
4150
3900
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
209
37.2.1.3 Power-down mode supply current
Figure 37-98.
Power-down mode supply current vs. VCC.
All functions disabled.
4.5
105
4
3.5
IC C [µA]
3
2.5
Temp [°C]
2
1.5
85
1
0.5
0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
25
- 40
3.6
VC C [V ]
Figure 37-99.
Power-down mode supply current vs. VCC.
Watchdog and sampled BOD enabled.
6.00
5.50
105
5.00
IC C [μA]
4.50
Temp [°C]
4.00
3.50
3.00
85
2.50
2.00
1.50
- 40
25
1.00
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
V C C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
210
37.2.1.4 Power-save mode supply current
Figure 37-100. Power-save mode supply current vs. VCC.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.
0.90
0.85
Normal mode
ICC [µA]
0.80
0.75
0.70
0.65
Low-power mode
0.60
0.55
0.50
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
37.2.1.5 Standby mode supply current
Figure 37-101. Standby supply current vs. VCC.
Standby, fSYS = 1MHz.
12.5
105°C
11.5
10.5
9.5
85°C
ICC [uA]
8.5
25°C
-40°C
7.5
6.5
5.5
4.5
3.5
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
211
Figure 37-102. Standby supply current vs. VCC.
25°C, running from different crystal oscillators.
500
16MHz
12MHz
450
ICC [μA]
400
350
8MHz
2MHz
300
250
0.454MHz
200
150
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
V CC [V]
37.2.2 I/O Pin Characteristics
37.2.2.1 Pull-up
Figure 37-103. I/O pin pull-up resistor current vs. input voltage.
VCC = 1.8V.
72
-40
64
25
85
56
105
IP IN [µA]
48
40
32
24
16
8
Temp [°C]
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VP IN [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
212
Figure 37-104. I/O pin pull-up resistor current vs. input voltage.
VCC = 3.0V.
120
- 40
25
105
85
90
IP IN [µA]
105
75
60
45
30
15
Temp [°C]
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
VP IN [V ]
Figure 37-105. I/O pin pull-up resistor current vs. input voltage.
VCC = 3.3V.
140
-40
25
120
IP IN [µA]
100
85
105
80
60
40
20
Temp [°C]
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
3.3
VP IN [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
213
37.2.2.2 Output Voltage vs. Sink/Source Current
Figure 37-106. I/O pin output voltage vs. source current.
VCC = 1.8V.
1.85
Temp [°C]
1.70
1.55
VP IN [V ]
1.40
1.25
1.10
0.95
0.80
25
-40
85
105
0.65
0.50
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
IP IN [mA]
Figure 37-107. I/O pin output voltage vs. source current.
VCC = 3.0V.
3.2
Temp [°C]
2.9
2.6
VP IN [V ]
2.3
2.0
1.7
1.4
1.1
-40
25
85
105
0.8
0.5
-30
-27
-24
-21
-18
-15
-12
-9
-6
-3
0
IP IN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
214
Figure 37-108. I/O pin output voltage vs. source current.
VCC = 3.3V.
3.5
Temp [°C]
3.2
2.9
VP IN [V ]
2.6
2.3
2.0
1.7
1.4
-40
1.1
25
85
105
-30
-27
-24
0.8
0.5
-33
-21
-18
-15
-12
-9
-6
-3
0
IP IN [mA]
Figure 37-109. I/O pin output voltage vs. source current.
VPIN [V]
4.0
3.5
3.6 V
3.0
3.0 V
2.7 V
2.5
2.0
1.8 V
1.6 V
1.5
1.0
-20
-15
-10
-5
0
IPIN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
215
Figure 37-110. I/O pin output voltage vs. sink current.
VCC = 1.8V.
1.0
105
0.9
85
VP IN [V ]
0.8
0.7
25
0.6
-40
0.5
Temp [°C]
0.4
0.3
0.2
0.1
0.0
0
2
4
6
8
10
12
14
16
I P IN [mA]
Figure 37-111. I/O pin output voltage vs. sink current.
VCC = 3.0V.
1.08
105
85
0.96
25
0.84
-40
VP IN [V ]
0.72
Temp [°C]
0.60
0.48
0.36
0.24
0.12
0.00
0
3
6
9
12
15
18
21
24
27
30
33
I P IN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
216
Figure 37-112. I/O pin output voltage vs. sink current.
VCC = 3.3V.
1.08
105
85
0.96
0.84
25
- 40
VP IN [V ]
0.72
Temp [°C]
0.60
0.48
0.36
0.24
0.12
0.00
0
3
6
9
12
15
18
21
24
27
33
30
I P IN [mA]
Figure 37-113. I/O pin output voltage vs. sink current.
1.50
1.6 V
1.8 V
1.35
1.20
VPIN [V]
1.05
2.7 V
3.0 V
3.3 V
3.6 V
0.90
0.75
0.60
0.45
0.30
0.15
0.00
0
3
6
9
12
15
18
21
24
27
30
IPIN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
217
37.2.2.3 Thresholds and Hysteresis
Figure 37-114. I/O pin input threshold voltage vs. VCC.
T = 25°C.
1.70
VIH
1.55
VIL
VTHRESHOLD [V]
1.40
1.25
1.10
0.95
0.80
0.65
0.50
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 37-115. I/O pin input threshold voltage vs. VCC.
VIH I/O pin read as “1”.
1.8
Temp [°C]
VTH R E S H OLD [V ]
1.7
1.6
1.5
1.4
1.3
1.2
-40
1.1
1.0
0.9
25
0.8
1.6
85 105
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
218
Figure 37-116. I/O pin input threshold voltage vs. VCC.
VIL I/O pin read as “0”.
1.70
105
85
25
- 40
VTH R E S H OLD [V ]
1.55
1.40
Temp [°C]
1.25
1.10
0.95
0.80
0.65
0.50
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-117. I/O pin input hysteresis vs. VCC.
0.350
0.325
-40
0.300
VH Y S T [V ]
0.275
0.250
25
0.225
0.200
85
0.175
105
0.150
Temp [°C]
0.125
0.100
1.6
1.8
2
2.2
2.4
2.6
VC C [V ]
2.8
3
3.2
3.4
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
219
37.2.3 ADC Characteristics
Figure 37-118. INL error vs. external VREF.
T = 25°C, VCC = 3.6V, external reference.
3.0
Single-ended unsigned mode
2.5
INL [LSB]
2.0
Dif f erential mode
1.5
1.0
Single-ended signed mode
0.5
0.0
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vref [V]
Figure 37-119. INL error vs. sample rate.
T = 25°C, VCC = 3.6V, VREF = 3.0V external.
3
Single-ended unsigned mode
2.5
INL[LSB]
2
1.5
Dif f erential mode
1
Single-ended signed mode
0.5
0
500
650
800
950
1100
1250
1400
1550
1700
1850
2000
ADC sample rate [ksps]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
220
Figure 37-120. INL error vs. input code.
2.0
1.5
1.0
INL [LSB]
0.5
0.0
-0.5
-0.1
-1.5
-2.0
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
Figure 37-121. DNL error vs. external VREF.
T = 25°C, VCC = 3.6V, external reference.
1.15
1.05
Single-ended unsigned mode
0.95
DNL [LSB]
0.85
0.75
Dif f erential mode
0.65
0.55
Single-ended signed mode
0.45
0.35
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vref [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
221
Figure 37-122. DNL error vs. sample rate.
T = 25°C, VCC = 3.6V, VREF = 3.0V external.
1.00
0.95
Single-ended unsigned mode
0.90
0.85
DNL [LSB]
Dif f erential mode
0.80
0.75
0.70
0.65
Single-ended signed mode
0.60
0.55
0.50
500
650
800
950
1100
1250
1400
1550
1700
1850
2000
ADC sampling rate [kSps]
Figure 37-123. DNL error vs. input code.
1.0
0.8
0.6
0.4
DNL [LSB]
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
0
512
1024
1536
2048
2560
3072
3584
4096
ADC input code
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
222
Figure 37-124. Gain error vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
3
Single-ended signed mode
2
Gain Error [mV]
1
Single-ended unsigned mode
0
-1
-2
-3
Dif f erential mode
-4
-5
1.0
1.2
1.4
1.6
1.8
2.0
Vref [V]
2.2
2.4
2.6
2.8
3.0
Figure 37-125. Gain error vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
1.5
Gain Error [mV]
1.0
Single-ended signed mode
0.5
0.0
-0.5
Single-ended unsigned mode
-1.0
Dif f erential mode
-1.5
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Vcc [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
223
Figure 37-126. Offset error vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
-1.1
Offset[mV]
-1.2
-1.3
Dif f erential mode
-1.4
-1.5
-1.6
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
Vref[V]
Figure 37-127. Gain error vs. temperature.
VCC = 2.7V, VREF = external 1.0V.
6
S ingle E nded Signed
G ain E rror [mV]
5
4
3
2
D ifferential Signed
1
0
-160
-40
-20
0
20
40
60
T emperature [ºC ]
80
100
120
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
224
Figure 37-128. Offset error vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
-0.2
Offset Error [mV]
-0.4
-0.6
Dif f erential mode
-0.8
-1.0
-1.2
-1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
2.4
2.6
2.8
3.0
Vcc [V]
Figure 37-129. Noise vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
0.6
Single-ended unsigned mode
0.6
Noise [mV RMS]
0.5
0.5
Single-ended signed mode
0.4
0.4
Dif f erential mode
0.3
0.3
0.2
1.0
1.2
1.4
1.6
1.8
2.0
2.2
Vref [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
225
Figure 37-130. Noise vs. VCC.
T = 25°C, VREFRoom
= external
1.0V, Vref
ADCExternal
sampling
= 500ksps
. 500kS/s
temperature,
1.0V,speed
ADC sampling
speed
0.6
Single-ended unsigned mode
0.6
Noise [mV RMS]
0.5
0.5
0.4
Single-ended signed mode
0.4
0.3
Dif f erential signed
0.3
0.2
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vcc [V]
37.2.4 DAC Characteristics
Figure 37-131. DAC INL error vs. VREF.
VCC = 3.6V.
3
INL [LS B]
2.5
2
1.5
-40
25
85
105
1
0.5
Temp [°C]
0
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
V REF [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
226
Figure 37-132. DNL error vs. VREF.
T = 25°C, VCC = 3.6V.
5
4.5
DAC DNL [LS B]
4
3.5
3
2.5
2
1.5
1
- 40
25
85
105
0.5
0
1
1.5
2
2.5
Temp [°C]
3
3.5
V REF [V]
Figure 37-133. DAC noise vs. temperature.
VCC = 3.0V, VREF = 2.0V.
0.2
Nois e[mV R MS ]
0.195
0.19
0.185
0.18
0.175
0.17
0.165
0.16
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105
T emperature [ºC ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
227
37.2.5 Analog Comparator Characteristics
Figure 37-134. Analog comparator hysteresis vs. VCC.
High-speed, small hysteresis.
VHYST [mV]
14
13
105°C
12
85°C
11
10
25°C
9
8
7
-40°C
6
5
4
1.6
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
3.2
3.4
3.6
Figure 37-135. Analog comparator hysteresis vs. VCC.
Low power, small hysteresis.
30
28
105°C
85°C
VHYST[mV]
26
24
25°C
22
-40°C
20
18
16
14
12
1.6
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
3.2
3.4
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
228
Figure 37-136. Analog comparator hysteresis vs. VCC
High-speed mode, large hysteresis.
32
105°C
85°C
30
VHYST [mV]
28
26
25°C
24
22
-40°C
20
18
16
14
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
Figure 37-137. Analog comparator hysteresis vs. VCC.
Low power, large hysteresis.
68
64
105°C
85°C
VHYST [mV]
60
56
25°C
52
48
-40°C
44
40
36
32
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
229
Figure 37-138. Analog comparator current source vs. calibration value.
Temperature = 25°C.
8.2
ICURRENTSOURCE [µA]
7.4
6.6
5.8
5
3.6 V
4.2
3.0 V
2.7 V
3.4
2.2 V
1.8 V
1.6 V
2.6
1.8
0
2
4
6
8
10
12
14
16
CURRCALIBA[3..0]
Figure 37-139. Analog comparator current source vs. calibration value.
VCC = 3.0V.
6.5
IC U R R E N TS OU R CE [µA]
6.2
5.9
5.6
5.3
5
4.7
4.4
- 40
25 Temp [°C]
85
105
4.1
3.8
3.5
0
2
4
6
8
10
12
14
16
C UR R C ALIB A[3...0]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
230
Figure 37-140. Voltage scaler INL vs. SCALEFAC.
T = 25°C, VCC = 3.0V.
p
0.15
0.12
INL [LSB]
0.09
0.06
0.03
0
-0.03
-0.06
-0.09
0
8
16
24
32
40
48
56
64
SCALEFAC
37.2.6 Internal 1.0V reference Characteristics
Figure 37-141. ADC/DAC Internal 1.0V reference vs. temperature.
1.0046
B andgap V oltage [V ]
1.0040
1.0034
1.0028
1.0022
1.0016
1.0010
1.0004
0.9998
0.9992
0.9986
-45
-30
-15
0
15
30
45
60
75
90
1.6
1.8
2.2
2.7
3.0
3.6
105
V
V
V
V
V
V
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
231
37.2.7 BOD Characteristics
Figure 37-142. BOD thresholds vs. temperature.
BOD level = 1.6V.
1.644
R is ing V cc
1.643
1.641
VB OT [V ]
1.640
1.638
1.637
1.635
1.634
1.632
F alling V cc
1.631
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
Figure 37-143. BOD thresholds vs. temperature.
BOD level = 3.0V.
3.090
3.080
VB OT [V ]
3.070
R is ing V cc
3.060
3.050
3.040
3.030
3.020
F alling V cc
3.010
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
232
37.2.8 External Reset Characteristics
Figure 37-144. Minimum Reset pin pulse width vs. VCC.
136
129
tR S T [ns ]
122
115
108
101
105
85
94
87
25
- 40
80
Temp [°C]
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-145. Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 1.8V.
80
-40
25
85
70
IR E S E T [µA]
60
105
50
40
30
20
10
Temp [°C]
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
V R E S E T [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
233
Figure 37-146. Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 3.0V.
135
-40
120
25
IR E S E T[µA]
105
85
105
90
75
60
45
30
15
Temp [°C]
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
VR E S E T [V ]
Figure 37-147. Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 3.3V.
144
- 40
126
25
108
85
IR E S E T [µA]
105
90
72
54
36
18
Temp [°C]
0
0.00
0.35
0.70
1.05
1.40
1.75
2.10
2.45
2.80
3.15
3.50
VR E S E T [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
234
Figure 37-148. Reset pin input threshold voltage vs. VCC.
VIH - Reset pin read as “1”.
2.20
- 40
25
85
105
2.05
VTHRESHOLD [V]
1.90
Temp [°C]
1.75
1.60
1.45
1.30
1.15
1.00
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
Figure 37-149. Reset pin input threshold voltage vs. VCC.
VIL - Reset pin read as “0”.
1.70
105
85
25
40
-
VTH R E S H OLD [V ]
1.55
1.40
Temp [°C]
1.25
1.10
0.95
0.80
0.65
0.50
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
235
37.2.9 Power-on Reset Characteristics
Figure 37-150. Power-on reset current consumption vs. VCC.
BOD level = 3.0V, enabled in continuous mode.
1.095
1.090
1.085
VP OT- [V ]
1.080
1.075
1.070
Falling Vcc
1.065
1.060
1.055
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
236
37.2.10 Oscillator Characteristics
37.2.10.1 Ultra Low-Power internal oscillator
Figure 37-151. Ultra Low-Power internal oscillator frequency vs. temperature.
43.5
43.0
F requency [kHz]
42.5
42.0
41.5
41.0
40.5
3.3 V
40.0
3.0 V
39.5
2.7 V
2.2 V
1.8 V
39.0
38.5
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
37.2.10.2 32.768kHz Internal Oscillator
Figure 37-152. 32.768kHz internal oscillator frequency vs. temperature.
32.95
1.6
1.8
2.2
2.7
3.0
3.6
32.89
F requency [MHz]
32.83
32.77
V
V
V
V
V
V
32.71
32.65
32.59
32.53
32.47
32.41
32.35
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
237
Figure 37-153. 32.768kHz internal oscillator frequency vs. calibration value.
VCC = 3.0V, T = 25°C.
49
46
Frequency [kHz]
43
40
37
34
31
28
25
22
0
30
60
90
120
150
180
210
240
270
RC32KCAL[7..0]
37.2.10.3 2MHz Internal Oscillator
Figure 37-154. 2MHz internal oscillator frequency vs. temperature.
DFLL disabled.
2.125
2.110
F requency [MHz]
2.095
2.080
2.065
2.050
2.035
2.020
1.6 V
2.005
1.990
1.975
-45
-30
-15
0
15
30
45
60
75
90
3.6
3.0
2.7
2.2
1.8
105
V
V
V
V
V
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
238
Figure 37-155. 2MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
2.018
1.6
1.8
2.2
2.7
3.0
3.6
2.014
F requency [MHz]
2.010
2.006
2.002
V
V
V
V
V
V
1.998
1.994
1.990
1.986
1.982
1.978
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
Figure 37-156. 2MHz internal oscillator CALA calibration step size.
VCC = 3V.
F requency S tep S ize [% ]
0.29
0.27
0.25
0.23
0.21
Temp [°C]
0.19
-40
0.17
85
105
25
0.15
0.13
0
15
30
45
60
75
90
105
120
135
C ALA
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
239
37.2.10.4 32MHz Internal Oscillator
Figure 37-157. 32MHz internal oscillator frequency vs. temperature.
DFLL disabled.
35.0
34.6
F requency [MHz]
34.2
33.8
33.4
33.0
32.6
3.6
3.0
2.7
2.2
1.8
1.6
32.2
31.8
31.4
-45
-30
-15
0
15
30
45
60
75
90
V
V
V
V
V
V
105
Temperature [°C ]
Figure 37-158. 32MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
1.6
2.2
1.8
2.7
3.6
3.0
32.10
F requency [MHz]
32.05
32.00
V
V
V
V
V
V
31.95
31.90
31.85
31.80
31.75
31.70
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
240
F requency S tep S ize [% ]
Figure 37-159. 32MHz internal oscillator CALA calibration step size.
VCC = 3.0V.
0.34
0.31
0.28
0.25
Temp [°C]
0.22
105
25
0.19
0.16
85
0.13
-40
0.10
0.07
0
15
30
45
60
75
90
105
120
135
C ALA
F requency S tep S ize [% ]
Figure 37-160. 32MHz internal oscillator frequency vs. CALB calibration value.
VCC = 3.0V.
2.80
2.55
2.30
2.05
1.80
1.55
Temp [°C]
1.30
-40
25
85
105
1.05
0.80
0
8
16
24
32
40
48
56
64
C ALB
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
241
37.2.10.5 32MHz internal oscillator calibrated to 48MHz
Figure 37-161. 48MHz internal oscillator frequency vs. temperature.
DFLL disabled.
52.2
51.6
F requency [MHz]
51.0
50.4
49.8
49.2
48.6
3.6
3.0
2.7
2.2
1.8
1.6
48.0
47.4
46.8
-45
-30
-15
0
15
30
45
60
75
90
V
V
V
V
V
V
105
Temperature [°C ]
Figure 37-162. 48MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
48.3
1.6
1.8
2.2
2.7
3.0
3.6
48.2
F requency [MHz]
48.1
V
V
V
V
V
V
48
47.9
47.8
47.7
47.6
47.5
47.4
-45
-30
-15
0
15
30
45
60
75
90
105
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
242
F requency S tep S ize [% ]
Figure 37-163. 48MHz internal oscillator CALA calibration step size.
VCC = 3.0V.
0.34
0.31
0.28
Temp [°C]
0.25
0.22
-40
105
25
0.19
0.16
85
0.13
0.10
0.07
0
15
30
45
60
75
90
105
120
135
C ALA
37.2.11 Two-Wire Interface characteristics
Figure 37-164. SDA hold time vs. Vcc.
300
295
290
Temp [°C]
Holdtime [ns ]
285
105
280
85
275
270
25
265
- 40
260
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
V cc [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
243
Figure 37-165. SDA hold time vs. supply voltage.
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
37.2.12 PDI characteristics
Maximum F requency [MHz]
Figure 37-166. Maximum PDI frequency vs. VCC.
34.5
- 40
25
85
105
32.0
29.5
27.0
Temp [°C]
24.5
22.0
19.5
17.0
14.5
12.0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
244
37.3
ATxmega192A3U
37.3.1 Current consumption
37.3.1.1 Active mode supply current
ICC [µA]
Figure 37-167. Active supply current vs. frequency.
fSYS = 0 - 1MHz external clock, T = 25°C.
800
3.3V
700
3.0V
600
2.7V
500
2.2V
400
1.8V
300
200
100
0
0.1
0.2
0.3
0.4
0.5
0.6
Frequency [MHz]
0.7
0.8
0.9
1.0
Figure 37-168. Active supply current vs. frequency.
fSYS = 1 - 32MHz external clock, T = 25°C.
14
3.3V
12
3.0V
10
ICC [mA]
2.7V
8
6
2.2V
4
1.8V
2
0
0
4
8
12
16
Frequency [MHz]
20
24
28
32
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
245
Figure 37-169. Active mode supply current vs. VCC.
fSYS = 32.768kHz internal oscillator.
250
-40°C
225
25°C
85°C
105°C
IC C [µA]
200
175
150
125
100
75
50
1.6
2.1
2.6
3.1
3.6
VC C [V]
Figure 37-170. Active mode supply current vs. VCC.
fSYS = 1MHz external clock.
800
-40°C
25°C
85°C
105°C
740
680
IC C [µA]
620
560
500
440
380
320
260
200
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
246
Figure 37-171. Active mode supply current vs. VCC.
fSYS = 2MHz internal oscillator.
1650
- 40°C
25°C
85°C
105°C
1500
IC C [µA]
1350
1200
1050
900
750
600
450
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-172. Active mode supply current vs. VCC.
fSYS = 32MHz internal oscillator prescaled to 8MHz.
6000
-40°C
25°C
85°C
105°C
5500
5000
IC C [µA]
4500
4000
3500
3000
2500
2000
1500
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
247
Figure 37-173. Active mode supply current vs. VCC.
fSYS = 32MHz internal oscillator.
15200
-40°C
14400
25°C
IC C [µA]
13600
85°C
105°C
12800
12000
11200
10400
9600
8800
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VC C [V ]
37.3.1.2 Idle mode supply current
Figure 37-174. Idle mode supply current vs. frequency.
fSYS = 0 - 1MHz external clock, T = 25°C.
180
3.3V
160
3.0V
140
2.7V
ICC [µA]
120
100
2.2V
80
1.8V
60
40
20
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Frequency [MHz]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
248
Figure 37-175. Idle mode supply current vs. frequency.
fSYS = 1 - 32MHz external clock, T = 25°C.
6
3.3V
5
3.0V
2.7V
ICC [mA]
4
3
2.2V
2
1
1.8V
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
Figure 37-176. Idle mode supply current vs. VCC.
fSYS = 32.768kHz internal oscillator.
39
105°C
38
37
IC C [µA]
36
35
34
85°C
-40°C
33
25°C
32
31
30
29
28
1.6
1.8
2
2.2
2.4
2.6
2.8
VC C [V]
3
3.2
3.4
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
249
Figure 37-177. Idle mode supply current vs. VCC.
fSYS = 1MHz external clock.
205
105°C
85°C
25°C
- 40°C
185
IC C [µA]
165
145
125
105
85
65
1.6
.
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V]
Figure 37-178. Idle mode supply current vs. VCC.
fSYS = 2MHz internal oscillator.
490
- 40°C
25°C
85°C
105°C
440
IC C [µA]
390
340
290
240
190
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
250
Figure 37-179. Idle mode supply current vs. VCC.
fSYS = 32MHz internal oscillator
prescaled to 8MHz
p.
SYS
2300
-40°C
25°C
85°C
105°C
2100
IC C [µA]
1900
1700
1500
1300
1100
900
700
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V]
Figure 37-180. Idle mode current vs. VCC.
fSYS = 32MHz internal oscillator.
6700
-40°C
6400
25°C
6100
85°C
105°C
IC C [µA]
5800
5500
5200
4900
4600
4300
4000
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VC C [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
251
37.3.1.3 Power-down mode supply current
Figure 37-181. Power-down mode supply current vs. VCC.
All functions disabled.
7
105°C
6
I C C [µA]
5
4
3
85°C
2
1
0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
25°C
-40°C
3.6
VC C
Figure 37-182. Power-down mode supply current vs. VCC.
Watchdog and sampled BOD enabled.
8
105°C
7
IC C [µA]
6
5
4
85°C
3
2
35°C
40°C
1
0
1.6
2.1
2.6
VC C [V ]
3.1
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
252
37.3.1.4 Power-save mode supply current
Figure 37-183. Power-save mode supply current vs. VCC.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.
0.90
0.85
Normal mode
ICC [µA]
0.80
0.75
0.70
0.65
Low-power mode
0.60
0.55
0.50
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
37.3.1.5 Standby mode supply current
Figure 37-184. Standby supply current vs. VCC.
Standby, fSYS = 1MHz.
12.5
105°C
11.5
10.5
9.5
85°C
ICC [uA]
8.5
25°C
-40°C
7.5
6.5
5.5
4.5
3.5
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
253
Figure 37-185. Standby supply current vs. VCC.
25°C, running from different crystal oscillators.
500
16MHz
12MHz
450
ICC [µA]
400
350
8MHz
2MHz
300
250
0.454MHz
200
150
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
V CC [V]
37.3.2 I/O Pin Characteristics
37.3.2.1 Pull-up
Figure 37-186. I/O pin pull-up resistor current vs. input voltage.
VCC = 1.8V.
70
-40°C
63
25°C
85°C
I PIN [µA]
56
49
105°C
42
35
28
21
14
7
0
0
0.2
0.4
0.6
0.8
1
VP IN [V]
1.2
1.4
1.6
1.8
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
254
Figure 37-187. I/O pin pull-up resistor current vs. input voltage.
VCC = 3.0V.
CC
I PIN [µA]
130
117 -40°C
104 25°C
85°C
91
105°C
78
65
52
39
26
13
0
0
0.5
1
1.5
VP IN [V]
2
2.5
3
Figure 37-188. I/O pin pull-up resistor current vs. input voltage.
VCC = 3.3V.
140
126
-40°C
112 85°C
25°C
98
105°C
I PIN [µA]
84
70
56
42
28
14
0
0
0.3
0.6
0.9
1.2
1.5
1.8
VP IN [V]
2.1
2.4
2.7
3
3.3
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
255
37.3.2.2 Output Voltage vs. Sink/Source Current
Figure 37-189. I/O pin output voltage vs. source current.
VCC = 1.8V.
2
1.8
1.6
1.4
VP IN [V]
1.2
1
0.8
0.6
- 40 °C
0.4
25 °C
85 °C
0.2
105°C
0
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
IP IN [mA]
Figure 37-190. I/O pin output voltage vs. source current.
VCC = 3.0V.
3.2
2.8
VP IN [V]
2.4
2
1.6
1.2
0.8
-40°C
25°C
85°C
105°C
0.4
0
-30
-27
-24
-21
-18
-15
-12
-9
-6
-3
0
IP IN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
256
Figure 37-191. I/O pin output voltage vs. source current.
VCC = 3.3V.
3.5
3
VP IN [V]
2.5
2
1.5
1
-40°C 25°C
105°C
0.5
85°C
0
-33
-30
-27
-24
-21
-18
-15
-12
-9
-6
-3
0
IP IN [mA]
Figure 37-192. I/O pin output voltage vs. source current.
4.0
3.6V
3.5
3.3V
V PIN [V]
3.0
2.7V
2.5
2.2V
2.0
1.8V
1.5
1.0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
257
Figure 37-193. I/O pin output voltage vs. sink current.
VCC = 1.8V.
2
105°C
1.8
85°C
1.6
VP IN[V]
1.4
25°C
1.2
1
40°C
0.8
0.6
0.4
0.2
0
0
2
4
6
8
10
IP IN [mA]
12
14
16
18
20
Figure 37-194. I/O pin output voltage vs. sink current.
VCC = 3.0V.
1.2
105°C
85°C
1
25°C
-40°C
VP IN [V
0.8
0.6
0.4
0.2
0
0
3
6
9
12
15
18
21
24
27
30
33
IP IN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
258
Figure 37-195. I/O pin output voltage vs. sink current.
VCC = 3.3V.
VC C 3.3 V
105°C
85°C
25°C
-40°C
1
0.9
0.8
VP IN [V
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
3
6
9
12
15
18
I P IN [mA]
21
24
27
30
33
Figure 37-196. I/O pin output voltage vs. sink current.
1.5
1.8V
VPIN [V]
1.2
2.2V
0.9
2.7V
3.3V
3.6V
0.6
0.3
0
0
5
10
15
20
25
IPIN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
259
37.3.2.3 Thresholds and Hysteresis
Figure 37-197. I/O pin input threshold voltage vs. VCC.
T = 25°C.
1.85
1.70
VIH
1.55
VIL
VThreshold [V]
1.40
1.25
1.10
0.95
0.80
0.65
0.50
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
2.8
3
3.2
3.4
3.6
V CC [V]
Figure 37-198. I/O pin input threshold voltage vs. VCC.
VIH I/O pin read as “1”.
1.7
1.6
V thres hold [V]
1.5
1.4
1.3
1,2
1.1
1
0.9
-40°C
25°C
0.8
85°C
105°C
0.7
1.6
1.8
2
2.2
2.4
2.6
3.2
3.4
3.6
VC C [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
260
Figure 37-199. I/O pin input threshold voltage vs. VCC.
VIL I/O pin read as “0”.
1.7
Vthres hold [V]
1.5
1.3
1,1
0.9
0.7
105°C
85°C
25°C
-40°C
0.5
1.6
.,8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
2.8
3
3.2
3.4
3.6
VC C [V]
Figure 37-200. I/O pin input hysteresis vs. VCC .
0.35
-40°C
Vthres hold [V ]
0.3
0.25
25°C
0.2
85°C
0.15
105°C
0.1
0.05
0
1.6
1.8
2
2.2
2.4
2.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
261
37.3.3 ADC Characteristics
Figure 37-201. INL error vs. external VREF.
T = 25°C, VCC = 3.6V, external reference.
1.7
1.6
1.5
INL [LSB]
1.4
Differential mode
1.3
1.2
Single-ended unsigned mode
1.1
1.0
0.9
Single-ended signed mode
0.8
0.7
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
1550
1700
1850
2000
VREF [V]
Figure 37-202. INL error vs. sample rate.
T = 25°C, VCC = 3.6V, VREF = 3.0V external.
1.4
Differential mode
1.3
Single-ended unsigned mode
INL [LSB]
1.2
1.1
1.0
0.9
Single-ended signed mode
0.8
0.7
500
650
800
950
1100
1250
1400
ADC sample rate [ksps]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
262
Figure 37-203. INL error vs. input code.
2.0
1.5
1.0
INL [LSB]
0.5
0
-0.5
-1.0
-1.5
-2.0
0
512
1024
1536
2048
ADC input code
2560
3072
3584
4096
Figure 37-204. DNL error vs. external VREF.
T = 25°C, VCC = 3.6V, external reference.
0.80
0.75
DNL [LSB]
0.70
Differential mode
0.65
Single-endedsigned mode
0.60
0.55
Single-ended unsigned mode
0.50
0.45
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
263
Figure 37-205. DNL error vs. sample rate.
T = 25°C, VCC = 3.6V, VREF = 3.0V external.
DNL [LSB]
0.70
0.65
Differential mode
0.60
Single-ended signed mode
0.55
0.50
Single-ended unsigned mode
0.45
0.40
0.35
0.50
0.65
0.80
0.95
1.10
1.25
1.40
1.55
1.70
1.85
2.00
Sampling speed [MS/s]
Figure 37-206. DNL error vs. input code.
0.8
0.6
DNL [LSB]
0.4
0.2
0
-0.2
-0.4
-0.6
0
512
1024
1536
2048
2560
ADC Input Code
3072
3584
4096
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
264
Figure 37-207. Gain error vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
4
Gain error [mV]
2
Single-ended signed mode
0
-2
Single-ended unsigned mode
-4
Differential mode
-6
-8
-10
1.0
1.2
1.4
1.6
1.8
2.0
VREF [V]
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Figure 37-208. Gain error vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
3.0
2.5
Gain Error [mV]
2.0
1.5
Single-ended signed mode
1.0
0.5
0
Single-ended unsigned mode
-0.5
-1.0
-1.5
-2.0
1.6
Differential mode
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
265
Figure 37-209. Offset error vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
-1.1
Offset [mV]
-1.2
-1.3
Differential mode
-1.4
-1.5
-1.6
1.0
1.2
1.4
1.6
1.8
2.0
VREF [V]
2.2
2.4
2.6
2.8
3.0
Figure 37-210. Gain error vs. temperature.
VCC = 2.7V, VREF = external 1.0V .
9
S ingle E nded Signed
8
G ain E rror [mV]
7
S ingle Ended
Uns igned
6
5
4
D ifferential Signed
3
2
1
0
-60
-40
-20
0
20
40
60
80
100
120
140
T emperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
266
Figure 37-211. Offset error vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
-0.5
Offset error [mV]
-0.6
-0.7
-0.8
Differential mode
-0.9
-1.0
-1.1
-1.2
1.6
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
3.2
3.4
3.6
Figure 37-212. Noise vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling
p
, speed =,500ksps. p g p
1.30
Single-ended signed mode
Noise [mV RMS]
1.15
Single-ended unsigned mode
1.00
0.85
0.70
0.55
Differential mode
0.40
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
267
Figure 37-213. Noise vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
1.3
Noise [mV RMS]
1.2
Single-ended signed mode
1.1
1.0
0.9
0.8
Single-ended unsigned mode
0.7
0.6
0.5
Differential mode
0.4
0.3
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC[V]
37.3.4 DAC Characteristics
Figure 37-214. DAC INL error vs. VREF.
VCC = 3.6V.
2.5
DAC INL [LS B]
2
1.5
-40°C
25°C
85°C
105°C
1
0.5
0
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
V REF[V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
268
Figure 37-215. DNL error vs. VREF.
T = 25°C, VCC = 3.6V.
1.6
DAC DNL [LS B]
1.4
1.2
1
0.8
-40°C
25°C
85°C
105°C
0.6
0.4
0.2
0
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
V REF [V]
Figure 37-216. DAC noise vs. temperature.
VCC = 3.3V, VREF = 2.0V.
0.2
0.19
Nois e[mV R MS ]
0.18
0.17
D AC _Linearity
0.16
0.15
0.14
0.13
0.12
0.11
0.1
-40
-20
0
20
40
60
80
100
120
140
T emperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
269
37.3.5 Analog Comparator Characteristics
Figure 37-217. Analog comparator hysteresis vs. VCC.
High-speed, small hysteresis.
VHYST [mV]
14
13
105°C
12
85°C
11
10
25°C
9
8
7
40°C
6
5
4
1.6
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
3.2
3.4
3.6
Figure 37-218. Analog comparator hysteresis vs. VCC.
Low power, small hysteresis.
30
28
105°C
85°C
VHYST [mV]
26
24
25°C
22
40°C
20
18
16
14
12
1.6
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
3.2
3.4
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
270
Figure 37-219. Analog comparator hysteresis vs. VCC.
High-speed mode, large hysteresis.
32
105°C
85°C
30
VHYST [mV]
28
26
25°C
24
22
40°C
20
18
16
14
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC[V]
Figure 37-220. Analog comparator hysteresis vs. VCC.
Low power, large hysteresis.
68
64
105°C
85°C
VHYST [mV]
60
56
25°C
52
48
40°C
44
40
36
32
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC[V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
271
Figure 37-221. Analog comparator current source vs. calibration value.
Temperature = 25°C.
8
ICURRENT SOURCE [µA]
7
6
5
3.3V
3.0V
2.7V
4
3
2.2V
1.8V
2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIB[3...0]
Figure 37-222. Analog comparator current source vs. calibration value.
VCC = 3.0V.
7.0
I CURRENT SOURCE [µA]
6.5
6.0
5.5
5.0
4.5
-40°C
25°C
85°C
105°C
4.0
3.5
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
C ALIB[3..0]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
272
Figure 37-223. Voltage scaler INL vs. SCALEFAC.
T = 25°C, VCC = 3.0V.
0.100
0.075
INL [LSB]
0.050
0.025
25°C
0
-0.025
-0.050
-0.075
-0.100
0
10
20
30
40
50
60
70
SCALEFAC
37.3.6 Internal 1.0V reference Characteristics
Figure 37-224. ADC/DAC Internal 1.0V reference vs. temperature.
1.006
B andgap V oltage [V ]
1.005
1.004
1.003
1.002
1.001
2.2
1.6
2.7
3.0
3.6
1.000
0.999
0.998
-40
-25
-10
5
20
35
50
65
80
95
V
V
V
V
V
110
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
273
37.3.7 BOD Characteristics
Figure 37-225. BOD thresholds vs. temperature.
BOD level = 1.6V.
1.632
1.63
R is ing V cc
VB OT [V]
1.628
1.626
1.624
1.622
F alling V cc
1.62
1.618
-40
-25
-10
5
20
35
50
65
80
95
110
T [°C ]
Figure 37-226. BOD thresholds vs. temperature.
BOD level = 3.0V.
3.08
3.07
VB OT [V]
3.06
R is ing V cc
3.05
3.04
3.03
3.02
3.01
-40
F alling V cc
-25
-10
5
20
35
50
65
80
95
110
T emperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
274
37.3.8 External Reset Characteristics
Figure 37-227. Minimum Reset pin pulse width vs. VCC.
147
142
137
tR S T [ns ]
132
127
122
117
112
107
102
97
92
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
105°C
85°C
40°C
25°C
3.6
VC C [V
Figure 37-228. Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 1.8V.
80
-40 °C
70
IR E S E T [µA]
60
25 °C
85 °C
50
105 °C
40
30
20
10
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VR E S E T [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
275
Figure 37-229. Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 3.0V.
130
-40°C
117
25°C
IR E S E T [µA]
104
85°C
91
105°C
78
65
52
39
26
13
0
0
0.5
1
1.5
VR E S E T [V]
2
2.5
3
Figure 37-230. Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 3.3V.
140
126
IR E S E T [µA]
112
-40°C
25°C
85°C
98 105°C
84
70
56
42
28
14
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
VR E S E T [V]
2.4
2.7
3
3.3
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
276
Figure 37-231. Reset pin input threshold voltage vs. VCC
VIH - Reset pin read as “1”.
2.1
2
1.9
Vthres hold [V]
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1
-40°C
25°C
85°C
105°C
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V]
Figure 37-232. Reset pin input threshold voltage vs. VCC.
VIL - Reset pin read as “0”.
1.8
1.6
Vthres hold[V]
1.4
1,2
1
0.8
105°C
85°C
25°C
-40°C
0.6
0.4
1.6
1.8
2
2.2
2.4
2.6
VC C [V]
2.8
3
3.2
3.4
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
277
37.3.9 Power-on Reset Characteristics
Figure 37-233. Power-on reset current consumption vs. VCC.
BOD level = 3.0V, enabled in continuous mode.
1000
-40°C
900
25°C
85°C
105°C
800
IC C [µA]
700
600
500
400
300
200
100
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
278
37.3.10 Oscillator Characteristics
37.3.10.1 Ultra Low-Power internal oscillator
Figure 37-234. Ultra Low-Power internal oscillator frequency vs. temperature.
30.5
F requency [kHz]
30
29.5
29
3.6
3.0
2.7
2.2
1.8
1.6
28.5
28
V
V
V
V
V
V
27.5
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
37.3.10.2 32.768kHz Internal Oscillator
Figure 37-235. 32.768kHz internal oscillator frequency vs. temperature.
32.96
3.6 V
32.90
3.0
2.7
2.2
1.8
1.6
F requency [kHz]
32.84
32.78
V
V
V
V
V
32.72
32.66
32.60
32.54
32.48
32.42
32.36
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
279
Figure 37-236. 32.768kHz internal oscillator frequency vs. calibration value.
VCC = 3.0V, T = 25°C.
50
Frequency [kHz]
45
40
35
30
25
20
0
50
100
150
200
250
300
RC32KCAL[7..0]
37.3.10.3 2MHz Internal Oscillator
Figure 37-237. 2MHz internal oscillator frequency vs. temperature.
DFLL disabled.
2.19
F requency [MHz]
2.16
2.13
2.1
2.07
2.04
3.6
3.0
2.7
2.2
1.8
1.6
2.01
1.98
1.95
-40
-25
-10
5
20
35
50
65
80
95
V
V
V
V
V
V
110
Temperature [ °C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
280
Figure 37-238. 2MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
2.015
3.6
3.0
2.7
2.2
1.8
1.6
F requency [MHz]
2.010
2.005
2.000
V
V
V
V
V
V
1.995
1.990
1.985
1.980
1.975
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
Figure 37-239. 2MHz internal oscillator CALA calibration step size.
VCC = 3V.
0.40
0.37
Step size [%]
0.34
0.31
0.28
0.25
-40°C
0.22
25°C
0.19
105°C
0.16
85°C
0.13
0
20
40
60
80
100
120
140
C ALA
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
281
37.3.10.4 32MHz Internal Oscillator
Figure 37-240. 32MHz internal oscillator frequency vs. temperature.
DFLL disabled.
36.5
F requency [MHz]
35.5
34.5
33.5
3.6
3.0
2.7
2.2
1.8
1.6
32.5
31.5
V
V
V
V
V
V
30.5
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
Figure 37-241. 32MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
3.6
3.0
2.7
2.2
1.8
1.6
32.2
F requency [MHz]
32.1
32.0
V
V
V
V
V
V
31.9
31.8
31.7
31.6
31.5
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
282
Figure 37-242. 32MHz internal oscillator CALA calibration step size.
VCC = 3.0V.
0.42
0.39
S tep s ize %
0.36
0.33
0.30
0.27
0.24
-40°C
25°C
85°C
105°C
0.21
0.18
0.15
0
20
40
60
80
100
120
140
C ALA
Figure 37-243. 32MHz internal oscillator frequency vs. CALB calibration value.
VCC = 3.0V.
2.90
2.60
S tep s ize [%]
2.30
2.00
1.70
1.40
1.10
0.80
0.50
0
8
16
24
32
40
48
56
-40°C
25°C
85°C
105°C
64
DF LLR C 32MC ALB
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
283
37.3.10.5 32MHz internal oscillator calibrated to 48MHz
Figure 37-244. 48MHz internal oscillator frequency vs. temperature.
DFLL disabled.
55
54
F requency [MHz]
53
52
51
50
3.6
3.0
2.7
2.2
1.8
1.6
49
48
47
46
-40
-25
-10
5
20
35
50
65
80
95
V
V
V
V
V
V
110
Temperature [°C ]
Figure 37-245. 48MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
48.4
3. 6 V
3. 0 V
2. 7 V
2. 2 V
1.8 V
1.6 V
48.3
Frequency [MHz]
48.2
48.1
48.0
47.9
47.8
47.7
47.6
47.5
47.4
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
284
Figure 37-246. 48MHz internal oscillator CALA calibration step size.
VCC = 3.0V.
0.42
0.39
S tep s ize %
0.36
0.33
0.30
0.27
0.24
0.21
25°C
105°C
85°C
40°C
0.18
0.15
0.12
0
20
40
60
80
100
120
140
C ALA
37.3.11 Two-Wire Interface characteristics
Figure 37-247. SDA hold time vs. Vcc.
300
295
Holdtime [ns ]
290
Temp [°C]
285
105
280
85
275
270
25
265
-40
260
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
V cc [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
285
Figure 37-248. SDA hold time vs. supply voltage.
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
37.3.12 PDI characteristics
Figure 37-249. Maximum PDI frequency vs. VCC.
fMA X [MHz]
40
35
-40°C
30
25°C
85°C
105°C
25
20
15
10
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
286
37.4
ATxmega256A3U
37.4.1 Current consumption
37.4.1.1 Active mode supply current
Figure 37-250. Active supply current vs. frequency.
fSYS = 0 - 1MHz external clock, T = 25°C.
750
3. 6 V
675
600
3. 0 V
IC C [uA]
525
2. 7 V
450
375
2. 2 V
300
1. 8 V
1. 6 V
225
150
75
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
F requency [MHz]
Figure 37-251. Active supply current vs. frequency.
fSYS = 1 - 32MHz external clock, T = 25°C.
15000
13500
3. 6 V
IC C [uA]
12000
10500
3. 0 V
9000
2. 7 V
7500
6000
2. 2 V
4500
3000
1. 8 V
1. 6 V
1500
0
0
4
8
12
16
20
24
28
32
F requency [MHz]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
287
Figure 37-252. Active mode supply current vs. VCC.
fSYS = 32.768kHz internal oscillator.
250
-40°C
225
25°C
85°C
105°C
IC C [µA]
200
175
150
125
100
75
50
1.6
2.1
2.6
3.1
3.6
VC C [V]
Figure 37-253. Active mode supply current vs. VCC.
fSYS = 1MHz external clock.
800
-40°C
25°C
85°C
105°C
740
680
IC C [µA]
620
560
500
440
380
320
260
200
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
288
Figure 37-254. Active mode supply current vs. VCC.
fSYS = 2MHz internal oscillator.
1650
- 40°C
25°C
85°C
105°C
1500
IC C [µA]
1350
1200
1050
900
750
600
450
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
Figure 37-255. Active mode supply current vs. VCC.
fSYS = 32MHz internal oscillator prescaled to 8MHz.
6000
-40°C
25°C
85°C
105°C
5500
5000
IC C [µA]
4500
4000
3500
3000
2500
2000
1500
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
289
Figure 37-256. Active mode supply current vs. VCC.
fSYS = 32MHz internal oscillator.
15200
-40°C
14400
25°C
IC C [µA]
13600
85°C
105°C
12800
12000
11200
10400
9600
8800
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VC C [V ]
37.4.1.2 Idle mode supply current
Figure 37-257. Idle mode supply current vs. frequency.
fSYS = 0 - 1MHz external clock, T = 25°C.
180
3.3V
160
3.0V
140
2.7V
ICC [µA]
120
100
2.2V
80
1.8V
60
40
20
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Frequency [MHz]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
290
Figure 37-258. Idle mode supply current vs. frequency.
fSYS = 1 - 32MHz external clock, T = 25°C.
6
3.3V
5
3.0V
2.7V
ICC [mA]
4
3
2.2V
2
1
1.8V
0
0
4
8
12
16
20
24
28
32
Frequency [MHz]
Figure 37-259. Idle mode supply current vs. VCC.
fSYS = 32.768kHz internal oscillator.
39
105°C
38
37
IC C [µA]
36
35
34
85°C
-40°C
33
25°C
32
31
30
29
28
1.6
1.8
2
2.2
2.4
2.6
2.8
VC C [V]
3
3.2
3.4
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
291
Figure 37-260. Idle mode supply current vs. VCC.
fSYS = 1MHz external clock.
205
105°C
85°C
25°C
- 40°C
185
IC C [µA]
165
145
125
105
85
65
1.6
.
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V]
Figure 37-261. Idle mode supply current vs. VCC.
fSYS = 2MHz internal oscillator.
1650
- 40°C
25°C
85°C
105°C
1500
IC C [µA]
1350
1200
1050
900
750
600
450
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
292
Figure 37-262. Idle mode supply current vs. VCC.
fSYS = 32MHz internal oscillator prescaled to 8MHz.
2300
-40°C
25°C
85°C
105°C
2100
IC C [µA]
1900
1700
1500
1300
1100
900
700
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V]
Figure 37-263. Idle mode current vs. VCC.
fSYS = 32MHz internal oscillator.
15200
-40°C
14400
25°C
IC C [µA]
13600
85°C
105°C
12800
12000
11200
10400
9600
8800
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
293
37.4.1.3 Power-down mode supply current
Figure 37-264. Power-down mode supply current vs. VCC.
All functions disabled.
7
105°C
6
I C C [µA]
5
4
3
85°C
2
1
0
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
25°C
-40°C
3.6
VC C
Figure 37-265. Power-down mode supply current vs. VCC.
Watchdog and sampled BOD enabled.
8
105°C
7
IC C [µA]
6
5
4
85°C
3
2
35°C
40°C
1
0
1.6
2.1
2.6
VC C [V ]
3.1
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
294
37.4.1.4 Power-save mode supply current
Figure 37-266. Power-save mode supply current vs. VCC.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.
0.90
0.85
Normal mode
ICC [µA]
0.80
0.75
0.70
0.65
Low-power mode
0.60
0.55
0.50
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC [V]
37.4.1.5 Standby mode supply current
Figure 37-267. Standby supply current vs. VCC.
Standby, fSYS = 1MHz.
12.5
105°C
11.5
10.5
9.5
85°C
ICC [uA]
8.5
25°C
-40°C
7.5
6.5
5.5
4.5
3.5
2.5
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VCC [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
295
Figure 37-268. Standby supply current vs. VCC.
25°C, running from different crystal oscillators.
500
16MHz
12MHz
450
ICC [µA]
400
350
8MHz
2MHz
300
250
0.454MHz
200
150
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
1.6
1.8
V CC [V]
37.4.2 I/O Pin Characteristics
37.4.2.1 Pull-up
Figure 37-269. I/O pin pull-up resistor current vs. input voltage.
VCC = 1.8V.
70
-40°C
63
25°C
85°C
I PIN [µA]
56
49
105°C
42
35
28
21
14
7
0
0
0.2
0.4
0.6
0.8
1
VP IN [V]
1.2
1.4
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
296
Figure 37-270. I/O pin pull-up resistor current vs. input voltage.
VCC = 3.0V.
CC
I PIN [µA]
130
117 -40°C
104 25°C
85°C
91
105°C
78
65
52
39
26
13
0
0
0.5
1
1.5
VP IN [V]
2
2.5
3
Figure 37-271. I/O pin pull-up resistor current vs. input voltage.
VCC = 3.3V.
140
126
-40°C
112 85°C
25°C
98
105°C
I PIN [µA]
84
70
56
42
28
14
0
0
0.3
0.6
0.9
1.2
1.5
1.8
VP IN [V]
2.1
2.4
2.7
3
3.3
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
297
37.4.2.2 Output Voltage vs. Sink/Source Current
Figure 37-272. I/O pin output voltage vs. source current.
VCC = 1.8V.
2
1.8
1.6
1.4
VP IN [V]
1.2
1
0.8
0.6
- 40 °C
0.4
25 °C
85 °C
0.2
0
-10
105°C
-9
-8
-7
-6
-5
-4
-3
-2
-1
-12
-9
-6
-3
IP IN [mA]
Figure 37-273. I/O pin output voltage vs. source current.
VCC = 3.0V.
3.2
2.8
VP IN [V]
2.4
2
1.6
1.2
0.8
-40°C
25°C
85°C
105°C
0.4
0
-30
-27
-24
-21
-18
-15
0
IP IN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
298
Figure 37-274. I/O pin output voltage vs. source current.
VCC = 3.3V.
3.5
3
VP IN [V]
2.5
2
1.5
1
-40°C 25°C
105°C
0.5
85°C
0
-33
-30
-27
-24
-21
-18
-15
-12
-9
-6
-3
0
IP IN [mA]
Figure 37-275. I/O pin output voltage vs. source current.
4.0
3.6V
3.5
3.3V
V PIN [V]
3.0
2.7V
2.5
2.2V
2.0
1.8V
1.5
1.0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
IPIN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
299
Figure 37-276. I/O pin output voltage vs. sink current.
VCC = 1.8V.
2
105°C
1.8
85°C
1.6
VP IN[V]
1.4
25°C
1.2
1
40°C
0.8
0.6
0.4
0.2
0
0
2
4
6
8
10
IP IN [mA]
12
14
16
18
20
Figure 37-277. I/O pin output voltage vs. sink current.
VCC = 3.0V.
1.2
105°C
85°C
1
25°C
-40°C
VP IN [V
0.8
0.6
0.4
0.2
0
0
3
6
9
12
15
18
21
24
27
30
33
IP IN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
300
Figure 37-278. I/O pin output voltage vs. sink current.
VCC = 3.3V.
105°C
85°C
25°C
-40°C
1
0.9
0.8
VP IN [V
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
3
6
9
12
15
18
I P IN [mA]
21
24
27
30
33
Figure 37-279. I/O pin output voltage vs. sink current.
1.5
1.8V
VPIN [V]
1.2
2.2V
0.9
2.7V
3.3V
3.6V
0.6
0.3
0
0
5
10
15
20
25
IPIN [mA]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
301
37.4.2.3 Thresholds and Hysteresis
Figure 37-280. I/O pin input threshold voltage vs. VCC.
T = 25°C.
1.85
1.70
VIH
1.55
VIL
VThreshold [V]
1.40
1.25
1.10
0.95
0.80
0.65
0.50
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
2.8
3
3.2
3.4
3.6
V CC [V]
Figure 37-281. I/O pin input threshold voltage vs. VCC.
VIH I/O pin read as “1”.
1.7
1.6
V thres hold [V]
1.5
1.4
1.3
1,2
1.1
1
0.9
-40°C
25°C
0.8
85°C
105°C
0.7
1.6
1.8
2
2.2
2.4
2.6
3.2
3.4
3.6
VC C [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
302
Figure 37-282. I/O pin input threshold voltage vs. VCC.
VIL I/O pin read as “0”.
1.7
Vthres hold [V]
1.5
1.3
1,1
0.9
0.7
105°C
85°C
25°C
-40°C
0.5
1.6
.,8
2
2.2
2.4
2.6
2.8
3
3.2
2.8
3
3.2
3.4
3.6
VC C [V]
Figure 37-283. I/O pin input hysteresis vs. VCC.
0.35
-40°C
Vthres hold [V ]
0.3
0.25
25°C
0.2
85°C
0.15
105°C
0.1
0.05
0
1.6
1.8
2
2.2
2.4
2.6
3.4
3.6
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
303
37.4.3 ADC Characteristics
Figure 37-284. INL error vs. external VREF.
T = 25°C, VCC = 3.6V, external reference.
1.7
1.6
1.5
INL [LSB]
1.4
Differential mode
1.3
1.2
Single-ended unsigned mode
1.1
1.0
0.9
Single-ended signed mode
0.8
0.7
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
1550
1700
1850
2000
VREF [V]
Figure 37-285. INL error vs. sample rate.
T = 25°C, VCC = 3.6V, VREF = 3.0V external.
1.4
Differential mode
1.3
Single-ended unsigned mode
INL [LSB]
1.2
1.1
1.0
0.9
Single-ended signed mode
0.8
0.7
500
650
800
950
1100
1250
1400
ADC sample rate [ksps]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
304
Figure 37-286. INL error vs. input code.
2.0
1.5
1.0
INL [LSB]
0.5
0
-0.5
-1.0
-1.5
-2.0
0
512
1024
1536
2048
ADC input code
2560
3072
3584
4096
Figure 37-287. DNL error vs. external VREF.
T = 25°C, VCC = 3.6V, external reference.
0.80
0.75
DNL [LSB]
0.70
Differential mode
0.65
Single-endedsigned mode
0.60
0.55
Single-ended unsigned mode
0.50
0.45
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
305
Figure 37-288. DNL error vs. sample rate.
T = 25°C, VCC = 3.6V, VREF = 3.0V external.
DNL [LSB]
0.70
0.65
Differential mode
0.60
Single-ended signed mode
0.55
0.50
Single-ended unsigned mode
0.45
0.40
0.35
0.50
0.65
0.80
0.95
1.10
1.25
1.40
1.55
1.70
1.85
2.00
Sampling speed [MS/s]
Figure 37-289. DNL error vs. input code.
0.8
0.6
DNL [LSB]
0.4
0.2
0
-0.2
-0.4
-0.6
0
512
1024
1536
2048
2560
ADC Input Code
3072
3584
4096
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
306
Figure 37-290. Gain error vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
4
Gain error [mV]
2
Single-ended signed mode
0
-2
Single-ended unsigned mode
-4
Differential mode
-6
-8
-10
1.0
1.2
1.4
1.6
1.8
2.0
VREF [V]
2.2
2.4
2.6
2.8
3.0
Figure 37-291. Gain error vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
3.0
2.5
Gain Error [mV]
2.0
1.5
Single-ended signed mode
1.0
0.5
0
Single-ended unsigned mode
-0.5
-1.0
-1.5
-2.0
1.6
Differential mode
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
3.2
3.4
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
307
Figure 37-292. Offset error vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
-1.1
Offset [mV]
-1.2
-1.3
Differential mode
-1.4
-1.5
-1.6
1.0
1.2
1.4
1.6
1.8
2.0
VREF [V]
2.2
2.4
2.6
2.8
3.0
Figure 37-293. Gain error vs. temperature.
VCC = 3.0V, VREF = external 2.0V.
9
S ingle E nded Signed
8
G ain E rror [mV]
7
S ingle Ended
Uns igned
6
5
4
D ifferential Signed
3
2
1
0
-60
-40
-20
0
20
40
60
80
100
120
140
T emperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
308
Figure 37-294. Offset error vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
-0.5
Offset error [mV]
-0.6
-0.7
-0.8
Differential mode
-0.9
-1.0
-1.1
-1.2
1.6
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
3.2
3.4
3.6
Figure 37-295. Noise vs. VREF.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.
1.30
Single-ended signed mode
Noise [mV RMS]
1.15
Single-ended unsigned mode
1.00
0.85
0.70
0.55
Differential mode
0.40
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
309
Figure 37-296. Noise vs. VCC.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.
1.3
Noise [mV RMS]
1.2
Single-ended signed mode
1.1
1.0
0.9
0.8
Single-ended unsigned mode
0.7
0.6
0.5
Differential mode
0.4
0.3
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC[V]
37.4.4 DAC Characteristics
Figure 37-297. DAC INL error vs. VREF.
VCC = 3.6V.
2.5
DAC INL [LS B]
2
1.5
-40°C
25°C
85°C
105°C
1
0.5
0
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
V REF[V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
310
Figure 37-298. DNL error vs. VREF.
T = 25°C, VCC = 3.6V.
1.6
DAC DNL [LS B]
1.4
1.2
1
0.8
-40°C
25°C
85°C
105°C
0.6
0.4
0.2
0
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
V REF [V]
Figure 37-299. DAC noise vs. temperature.
VCC = 3.0V, VREF = 2.4V.
0.2
0.19
Nois e[mV R MS ]
0.18
0.17
D AC _Linearity
0.16
0.15
0.14
0.13
0.12
0.11
0.1
-40
-20
0
20
40
60
80
100
120
140
T emperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
311
37.4.5 Analog Comparator Characteristics
Figure 37-300. Analog comparator hysteresis vs. VCC
High-speed, small hysteresis.
VHYST [mV]
14
13
105°C
12
85°C
11
10
25°C
9
8
7
40°C
6
5
4
1.6
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
3.2
3.4
3.6
Figure 37-301. Analog comparator hysteresis vs. VCC
Low power, small hysteresis.
30
28
105°C
85°C
VHYST [mV]
26
24
25°C
22
40°C
20
18
16
14
12
1.6
1.8
2.0
2.2
2.4
2.6
VCC [V]
2.8
3.0
3.2
3.4
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
312
Figure 37-302. Analog comparator hysteresis vs. VCC.
High-speed mode, large hysteresis.
32
105°C
85°C
30
VHYST [mV]
28
26
25°C
24
22
40°C
20
18
16
14
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC[V]
Figure 37-303. Analog comparator hysteresis vs. VCC.
Low power, large hysteresis.
68
64
105°C
85°C
VHYST [mV]
60
56
25°C
52
48
40°C
44
40
36
32
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
VCC[V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
313
Figure 37-304. Analog comparator current source vs. calibration value.
Temperature = 25°C.
8
ICURRENT SOURCE [µA]
7
6
5
3.3V
3.0V
2.7V
4
3
2.2V
1.8V
2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIB[3...0]
Figure 37-305. Analog comparator current source vs. calibration value.
VCC = 3.0V.
7.0
6.5
I [µA]
6.0
5.5
5.0
4.5
-40°C
25°C
85°C
4.0
3.5
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CALIB[3..0]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
314
Figure 37-306. Voltage scaler INL vs. SCALEFAC.
T = 25°C, VCC = 3.0V.
0.100
0.075
INL [LSB]
0.050
0.025
25°C
0
-0.025
-0.050
-0.075
-0.100
0
10
20
30
40
50
60
70
SCALEFAC
37.4.6 Internal 1.0V reference Characteristics
Figure 37-307. ADC/DAC Internal 1.0V reference vs. temperature
1.006
B andgap V oltage [V ]
1.005
1.004
1.003
1.002
1.001
2.2
1.6
2.7
3.0
3.6
1.000
0.999
0.998
-40
-25
-10
5
20
35
50
65
80
95
V
V
V
V
V
110
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
315
37.4.7 BOD Characteristics
Figure 37-308. BOD thresholds vs. temperature.
BOD level = 1.6V.
1.632
1.63
R is ing V c
VB OT [V]
1.628
1.626
1.624
1.622
F alling V c
1.62
1.618
-40
-25
-10
5
20
35
50
65
80
95
110
T [°C ]
Figure 37-309. BOD thresholds vs. temperature.
BOD level = 3.0V.
3.08
3.07
VB OT [V]
3.06
R is ing V c
3.05
3.04
3.03
3.02
3.01
-40
F alling V c
-25
-10
5
20
35
50
65
80
95
110
T emperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
316
37.4.8 External Reset Characteristics
Figure 37-310. Minimum Reset pin pulse width vs. VCC.
147
142
137
tR S T [ns ]
132
127
122
117
112
107
102
97
92
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
105°C
85°C
40°C
25°C
3.6
VC C [V
Figure 37-311. Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 1.8V.
VC C = 1.8 V
80
-40 °C
70
IR E S E T [µA]
60
25 °C
85 °C
50
105 °C
40
30
20
10
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VR E S E T [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
317
Figure 37-312. Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 3.0V.
130
-40°C
117
25°C
IR E S E T [µA]
104
85°C
91
105°C
78
65
52
39
26
13
0
0
0.5
1
1.5
VR E S E T [V]
2
2.5
3
Figure 37-313. Reset pin pull-up resistor current vs. reset pin voltage.
VCC = 3.3V.
140
126
IR E S E T [µA]
112
-40°C
25°C
85°C
98 105°C
84
70
56
42
28
14
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
VR E S E T [V]
2.4
2.7
3
3.3
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
318
Figure 37-314. Reset pin input threshold voltage vs. VCC.
VIH - Reset pin read as “1”.
2.1
2
1.9
Vthres hold [V]
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1
-40°C
25°C
85°C
105°C
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V]
Figure 37-315. Reset pin input threshold voltage vs. VCC.
VIL - Reset pin read as “0”.
1.8
1.6
Vthres hold[V]
1.4
1,2
1
0.8
105°C
85°C
25°C
-40°C
0.6
0.4
1.6
1.8
2
2.2
2.4
2.6
VC C [V]
2.8
3
3.2
3.4
3.6
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
319
37.4.9 Power-on Reset Characteristics
Figure 37-316. Power-on reset current consumption vs. VCC.
BOD level = 3.0V, enabled in continuous mode.
1000
-40°C
900
25°C
85°C
105°C
800
IC C [µA]
700
600
500
400
300
200
100
0
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
VC C [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
320
37.4.10 Oscillator Characteristics
37.4.10.1 Ultra Low-Power internal oscillator
Figure 37-317. Ultra Low-Power internal oscillator frequency vs. temperature.
30.5
F requency [kHz]
30
29.5
29
3.6
3.0
2.7
2.2
1.8
1.6
28.5
28
V
V
V
V
V
V
27.5
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
37.4.10.2 32.768kHz Internal Oscillator
Figure 37-318. 32.768kHz internal oscillator frequency vs. temperature.
32.96
3.6 V
32.90
3.0
2.7
2.2
1.8
1.6
F requency [kHz]
32.84
32.78
V
V
V
V
V
32.72
32.66
32.60
32.54
32.48
32.42
32.36
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
321
Figure 37-319. 32.768kHz internal oscillator frequency vs. calibration value.
VCC = 3.0V, T = 25°C.
50
Frequency [kHz]
45
40
35
30
25
20
0
50
100
150
200
250
300
RC32KCAL[7..0]
37.4.10.3 2MHz Internal Oscillator
Figure 37-320. 2MHz internal oscillator frequency vs. temperature.
DFLL disabled.
2.19
F requency [MHz]
2.16
2.13
2.1
2.07
2.04
3.6
3.0
2.7
2.2
1.8
1.6
2.01
1.98
1.95
-40
-25
-10
5
20
35
50
65
80
95
V
V
V
V
V
V
110
Temperature [ °C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
322
Figure 37-321. 2MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
2.015
3.6
3.0
2.7
2.2
1.8
1.6
F requency [MHz]
2.010
2.005
2.000
V
V
V
V
V
V
1.995
1.990
1.985
1.980
1.975
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
Figure 37-322. 2MHz internal oscillator CALA calibration step size.
VCC = 3V.
0.40
0.37
Step size [%]
0.34
0.31
0.28
0.25
-40°C
0.22
25°C
0.19
105°C
0.16
85°C
0.13
0
20
40
60
80
100
120
140
C ALA
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
323
37.4.10.4 32MHz Internal Oscillator
Figure 37-323. 32MHz internal oscillator frequency vs. temperature.
DFLL disabled.
36.5
F requency [MHz]
35.5
34.5
33.5
3.6
3.0
2.7
2.2
1.8
1.6
32.5
31.5
V
V
V
V
V
V
30.5
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
Figure 37-324. 32MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
3.6
3.0
2.7
2.2
1.8
1.6
32.2
F requency [MHz]
32.1
32.0
V
V
V
V
V
V
31.9
31.8
31.7
31.6
31.5
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
324
Figure 37-325. 32MHz internal oscillator CALA calibration step size.
VCC = 3.0V.
0.42
0.39
S tep s ize %
0.36
0.33
0.30
0.27
0.24
-40°C
25°C
85°C
105°C
0.21
0.18
0.15
0
20
40
60
80
100
120
140
C ALA
Figure 37-326. 32MHz internal oscillator frequency vs. CALB calibration value.
VCC = 3.0V.
2.90
2.60
S tep s ize [%]
2.30
2.00
1.70
1.40
1.10
0.80
0.50
0
8
16
24
32
40
48
56
-40°C
25°C
85°C
105°C
64
DF LLR C 32MC ALB
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
325
37.4.10.5 32MHz internal oscillator calibrated to 48MHz
Figure 37-327. 48MHz internal oscillator frequency vs. temperature.
DFLL disabled.
55
54
F requency [MHz]
53
52
51
50
3.6
3.0
2.7
2.2
1.8
1.6
49
48
47
46
-40
-25
-10
5
20
35
50
65
80
95
V
V
V
V
V
V
110
Temperature [°C ]
Figure 37-328. 48MHz internal oscillator frequency vs. temperature.
DFLL enabled, from the 32.768kHz internal oscillator.
48.4
3. 6 V
3. 0 V
2. 7 V
2. 2 V
1.8 V
1.6 V
48.3
Frequency [MHz]
48.2
48.1
48.0
47.9
47.8
47.7
47.6
47.5
47.4
-40
-25
-10
5
20
35
50
65
80
95
110
Temperature [°C]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
326
Figure 37-329. 48MHz internal oscillator CALA calibration step size.
VCC = 3.0V.
0.42
0.39
S tep s ize %
0.36
0.33
0.30
0.27
0.24
0.21
25°C
105°C
85°C
40°C
0.18
0.15
0.12
0
20
40
60
80
100
120
140
C ALA
37.4.11 Two-Wire Interface characteristics
Figure 37-330. SDA hold time vs. VCC.
300
295
Holdtime [ns ]
290
Temp [°C]
285
105
280
85
275
270
25
265
-40
260
2.6
2.7
2.8
2.9
3
3.1
3.2
3.3
3.4
3.5
3.6
V cc [V ]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
327
Figure 37-331. SDA hold time vs. supply voltage.
500
450
3
Hold time [ns]
400
350
2
300
250
200
150
100
1
50
0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
VCC [V]
37.4.12 PDI characteristics
Figure 37-332. Maximum PDI frequency vs. VCC.
fMA X [MHz]
40
35
-40°C
30
25°C
85°C
105°C
25
20
15
10
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VC C [V]
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
328
38.
Errata
38.1
ATxmega64A3U, ATxmega128A3U, ATxmega192A3U, ATxmega256A3U
38.1.1 Rev. G
z
The DAC Channel 1 has not been calibrated in the Xmega devices released prior to April 2012.
z
AWeX fault protection restore is not done correct in Pattern Generation Mode.
1. AWeX fault protection restore is not done correct in Pattern Generation Mode
When a fault is detected the OUTOVEN register is cleared, and when fault condition is cleared, OUTOVEN
is restored according to the corresponding enabled DTI channels. For Common Waveform Channel Mode
(CWCM), this has no effect as the OUTOVEN is correct after restoring from fault. For Pattern Generation
Mode (PGM), OUTOVEN should instead have been restored according to the DTLSBUF register.
Problem fix/Workaround
Problem fix/Workaround
For CWCM no workaround is required.
For PGM in latched mode, disable the DTI channels before returning from the fault condition. Then, set correct OUTOVEN value and enable the DTI channels, before the direction (DIR) register is written to enable
the correct outputs again.
For PGM in cycle-by-cycle mode there is no workaround.
38.1.2 Rev. A-F
Not sampled.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
329
39.
Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The referring revision
in this section are referring to the document revision.
39.1
1.
8386E – 09/2014
Updated “Ordering Information” on page 3:
Added Ordering information for ATxmega64A3U/128a3U/192A3U/256A3U @ 105°C
̶
Updated “Electrical Characteristics” on page 73 and onwards concerning “Power Consumption” and
“Endurance and data retention” for ATxmega64A3U/128a3U/192A3U/256A3U @ 105°C
̶
Updated “Typical Characteristics” on page 161 and onwards for
ATxmega64A3U/128a3U/192A3U/256A3U @ 105°C
̶
Corrected values for Active Current Consumption for 192A3U in Table 36-68 on page 119 and for
256A3U in Table 36-100 on page 141.
̶
Updated plots for Active supply current for 192A3U in Figure 37-167 on page 245 and Figure 37-168
on page 245
̶
Updated plots for Active supply current for 256A3U in Figure 37-251 on page 287 and Figure 37-252
on page 288
̶
Corrected values for Bootloader start and end address for 128A3U in Table 7-1 on page 14.
̶
Changed Vcc to AVcc in Section 28. “ADC – 12-bit Analog to Digital Converter” on page 52and in
Section 30.1 “Features” on page 56.
̶
Changed unit notation for parameter tSU;DAT to ns in Table 36-32 on page 93, Table 36-64 on page 115,
Table 36-96 on page 137 and Table 36-128 on page 159.
̶
Added information in Section 38. “Errata” on page 329 on missing calibration of DAC channel 1.
2.
̶
3.
4
5
6.
7.
8.
9.
39.2
1.
2.
39.3
8386D – 03/2014
Updated “Port A - alternate functions.” on page 61:
̶
Removed ACDP POS from the Table 32-1 on page 61
Updated “Port B - alternate functions.” on page 61:
̶
ACDB POS changed to ADCB POS/GAINPOS in the Table 32-2 on page 61
8386C – 02/2013
1.
Updated the datasheet using the Atmel new datasheet template.
2.
Added column for TWI with external driver interface for Port C and E in “Alternate Pin Functions” on page 61.
3.
Removed TWID from Port D and updated pin numbers in“Alternate Pin Functions” on page 61.
4.
Added TOSC and removed AWEXE to/from Port E in “Alternate Pin Functions” on page 61.
5.
Added notes to table for Port D and E in “Alternate Pin Functions” on page 61.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
330
6.
Updated pin numbers for Port D and F in “Alternate Pin Functions” on page 61.
7.
Removed AWEXE from the peripheral module address map in Table 33-1 on page 64.
8.
Updated the “Electrical Characteristics” on page 73 by separating the characteristics for each device.
Updated DAC clock and timing characteristics for all memory:
ATxmega64A3U: Table 36-13 on page 81.
9.
ATxmega128A3U: Table 36-45 on page 103.
ATxmega192A3U: Table 36-77 on page 125.
ATxmega256A3U: Table 36-109 on page 147.
Added ESR parameter to External 16MHz crystal oscillator and XOSC characteristics:
ATxmega64A3U: Table 36-29 on page 88.
10.
ATxmega128A3U: Table 36-61 on page 110
ATxmega192A3U: Table 36-93 on page 132
ATxmega256A3U: Table 36-125 on page 154
11.
Updated the “Typical Characteristics” on page 161 by separating the characteristics for each device.
12.
Added “Electrical Characteristics” and “Typical Characteristics” for both ATxmega64A3U and ATxmega128A3U.
39.4
8386B – 12/2011
1.
Updated the Figure 2-1 on page 5. JTAG written in the white color.
2.
Updated “Overview” on page 13.
3.
Updated Figure 30-1 on page 57.
4.
Updated “Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses
via the external RAM interface.” on page 70.
5.
Updated “Electrical Characteristics” on page 73.
6.
Updated “Typical Characteristics” on page 161.
7.
Several changes in “Typical Characteristics”
39.5
1.
8386A – 07/2011
Initial revision.
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
331
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.
Pinout/Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1
4.
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1
Recommended reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.
Capacitive touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.
AVR CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
7.
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
8.
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fuses and Lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Memory and Bus Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device ID and Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash and EEPROM Page Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
13
14
15
15
16
16
17
17
17
17
17
17
DMAC – Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.1
8.2
9.
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
ALU - Arithmetic Logic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Stack and Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Event System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.1
9.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10. System Clock and Clock options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.1
10.2
10.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
i
11. Power Management and Sleep Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
11.1
11.2
11.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Sleep Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12. System Control and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
12.1
12.2
12.3
12.4
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
27
27
27
13. WDT – Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13.1
13.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
14. Interrupts and Programmable Multilevel Interrupt Controller . . . . . . . . . . . . . . . . . . . . 30
14.1
14.2
14.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Interrupt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
15. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
15.1
15.2
15.3
15.4
15.5
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alternate Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
32
33
35
35
16. TC0/1 – 16-bit Timer/Counter Type 0 and 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
16.1
16.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
17. TC2 - Timer/Counter Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
17.1
17.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
18. AWeX – Advanced Waveform Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
18.1
18.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
19. Hi-Res – High Resolution Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
19.1
19.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
20. RTC – 16-bit Real-Time Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
20.1
20.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
21. USB – Universal Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
21.1
21.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
22. TWI – Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
22.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
ii
22.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
23. SPI – Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
23.1
23.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
24. USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
24.1
24.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
25. IRCOM – IR Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
25.1
25.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
26. AES and DES Crypto Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
26.1
26.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
27. CRC – Cyclic Redundancy Check Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
27.1
27.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
28. ADC – 12-bit Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
28.1
28.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
29. DAC – 12-bit Digital to Analog Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
29.1
29.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
30. AC – Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
30.1
30.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
31. Programming and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
31.1
31.2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
32. Pinout and Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
32.1
32.2
Alternate Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Alternate Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
33. Peripheral Module Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
34. Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
35. Packaging information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
35.1
35.2
64A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
64M2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
36. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
36.1
36.2
36.3
ATxmega64A3U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
ATxmega128A3U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
ATxmega192A3U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
iii
36.4
ATxmega256A3U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
37. Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
37.1
37.2
37.3
37.4
ATxmega64A3U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ATxmega128A3U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ATxmega192A3U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ATxmega256A3U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
161
203
245
287
38. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
38.1
ATxmega64A3U, ATxmega128A3U, ATxmega192A3U, ATxmega256A3U. . . . . . . . . . . . . . . . . . 329
39. Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
39.1
39.2
39.3
39.4
39.5
8386E – 07/2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8386D – 03/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8386C – 02/2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8386B – 12/2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8386A – 07/2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
330
330
330
331
331
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
XMEGA A3U [DATASHEET]
Atmel-8386E-AVR-XMEGA A3U-Datasheet_09/2014
iv
XXXXXX
Atmel Corporation
1600 Technology Drive, San Jose, CA 95110 USA
T: (+1)(408) 441.0311
F: (+1)(408) 436.4200
|
www.atmel.com
© 2014 Atmel Corporation. / Rev.: Atmel-8386E-AVR-ATxmega64A3U-128A3U-192A3U-256A3U-Datasheet_09/2014.
Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM®, ARM Connected®
logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.
Similar pages