Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MW7IC2040N
Rev. 1, 11/2009
RF LDMOS Wideband Integrated
Power Amplifiers
The MW7IC2040N wideband integrated circuit is designed with on - chip
matching that makes it usable from 1805 to 1990 MHz. This multi - stage
structure is rated for 24 to 32 Volt operation and covers all typical cellular base
station modulation formats.
• Typical Single - Carrier W - CDMA Performance: VDD = 28 Volts, IDQ1 =
130 mA, IDQ2 = 330 mA, Pout = 4 Watts Avg., f = 1932.5, Channel
Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability
on CCDF.
Power Gain — 32 dB
Power Added Efficiency — 17.5%
ACPR @ 5 MHz Offset — - 50 dBc in 3.84 MHz Bandwidth
• Capable of Handling 5:1 VSWR, @ 32 Vdc, 1960 MHz, 50 Watts CW
Output Power (3 dB Input Overdrive from Rated Pout)
• Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 100 mW to 40 Watts
CW Pout.
• Typical Pout @ 1 dB Compression Point ' 30 Watts CW
GSM EDGE Application
• Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 90 mA, IDQ2 =
430 mA, Pout = 16 Watts Avg., 1805 - 1880 MHz
Power Gain — 33 dB
Power Added Efficiency — 35%
Spectral Regrowth @ 400 kHz Offset = - 62 dBc
Spectral Regrowth @ 600 kHz Offset = - 77 dBc
EVM — 1.5% rms
GSM Application
• Typical GSM Performance: VDD = 28 Volts, IDQ1 = 90 mA, IDQ2 = 430 mA,
Pout = 40 Watts CW, 1805 - 1880 MHz and 1930 - 1990 MHz
Power Gain — 31 dB
Power Added Efficiency — 50%
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
and Common Source S - Parameters
• On - Chip Matching (50 Ohm Input, DC Blocked, >3 Ohm Output)
• Integrated Quiescent Current Temperature Compensation with Enable/
Disable Function (1)
• Integrated ESD Protection
• 225°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
VDS1
RFin
RFout/VDS2
VGS1
Quiescent Current
Temperature Compensation (1)
VGS2
MW7IC2040NR1
MW7IC2040GNR1
MW7IC2040NBR1
1930 - 1990 MHz, 1805 - 1880 MHz,
4 W AVG., 28 V
SINGLE W - CDMA, GSM EDGE, GSM
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIERS
CASE 1886 - 01
TO - 270 WB - 16
PLASTIC
MW7IC2040NR1
CASE 1887 - 01
TO - 270 WB - 16 GULL
PLASTIC
MW7IC2040GNR1
CASE 1329 - 09
TO - 272 WB - 16
PLASTIC
MW7IC2040NBR1
GND
VDS1
VGS2
VGS1
NC
1
2
3
4
5
16
15
GND
NC
RFin
6
14
RFout/VDS2
NC
VGS1
VGS2
VDS1
GND
7
8
9
10
11
13
12
NC
GND
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
VDS1
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.
© Freescale Semiconductor, Inc., 2009. All rights reserved.
RF Device Data
Freescale Semiconductor
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain - Source Voltage
Rating
VDSS
- 0.5, +65
Vdc
Gate - Source Voltage
VGS
- 0.5, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature (1,2)
TJ
225
°C
Input Power
Pin
25
dBm
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
W - CDMA
(Pout = 4 W Avg., Case Temperature = 73°C)
GSM EDGE
(Pout = 16 W Avg., Case Temperature = 76°C)
GSM
(Pout = 40 W Avg., Case Temperature = 79°C)
RθJC
°C/W
Stage 1, 28 Vdc, IDQ1 = 130 mA
Stage 2, 28 Vdc, IDQ2 = 330 mA
4.0
1.5
Stage 1, 28 Vdc, IDQ1 = 130 mA
Stage 2, 28 Vdc, IDQ2 = 330 mA
4.1
1.4
Stage 1, 28 Vdc, IDQ1 = 130 mA
Stage 2, 28 Vdc, IDQ2 = 330 mA
3.9
1.3
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1B (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
III (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 25 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ1 = 130 mAdc)
VGS(Q)
—
2.7
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ1 = 130 mAdc, Measured in Functional Test)
VGG(Q)
13
14.5
16
Vdc
Stage 1 — Off Characteristics
Stage 1 — On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
(continued)
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
2
RF Device Data
Freescale Semiconductor
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 140 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ2 = 330 mAdc)
VGS(Q)
—
2.8
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ2 = 330 mAdc, Measured in Functional Test)
VGG(Q)
7
8
9
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
0.2
0.39
1.2
Vdc
Coss
—
246
—
pF
Stage 2 — Off Characteristics
Stage 2 — On Characteristics
Stage 2 — Dynamic Characteristics (1)
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Functional Tests (3) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 W Avg.,
f = 1932.5 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 45.2% Clipping, Input Signal PAR = 7.5 dB @ 0.01% Probability on
CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Power Gain
Gps
29.5
32
34.5
dB
Power Added Efficiency
PAE
16
17.5
—
%
ACPR
—
- 50
- 46
dBc
IRL
—
- 15
-8
dB
Adjacent Channel Power Ratio
Input Return Loss
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, 1930 - 1990 MHz
Pout @ 1 dB Compression Point, CW
P1dB
—
30
—
—
60
—
W
IMD Symmetry @ 22 W PEP, Pout where IMD Third Order
Intermodulation ` 30 dBc (Delta IMD Third Order Intermodulation
between Upper and Lower Sidebands > 2 dB)
IMDsym
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
VBWres
—
65
—
MHz
ΔIQT
—
±3
—
%
Gain Flatness in 60 MHz Bandwidth @ Pout = 4 W Avg.
GF
—
1.2
—
dB
Average Deviation from Linear Phase in 60 MHz Bandwidth
@ Pout = 30 W CW
Φ
—
0.5
—
°
Delay
—
2.5
—
ns
Part - to - Part Insertion Phase Variation @ Pout = 30 W CW,
f = 1960 MHz, Six Sigma Window
ΔΦ
—
33
—
°
Gain Variation over Temperature
( - 30°C to +85°C)
ΔG
—
0.029
—
dB/°C
ΔP1dB
—
0.003
—
dBm/°C
Quiescent Current Accuracy over Temperature (2)
with 5.6 kΩ Gate Feed Resistors ( - 30 to 85°C)
Average Group Delay @ Pout = 30 W CW, f = 1960 MHz
Output Power Variation over Temperature
( - 30°C to +85°C)
MHz
1. Part internally matched both on input and output.
2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or
AN1987.
3. Measurement made with device in straight lead configuration before any lead forming operation is applied.
(continued)
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
3
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical W - CDMA Performance — 1800 MHz (In Freescale W - CDMA 1805 - 1880 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc,
IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 W Avg., 1805 - 1880 MHz, Single - Carrier W - CDMA, 3GPP Test Model 1, 64 DPCH, 45.2% Clipping,
Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.
Power Gain
Gps
—
33.5
—
dB
Power Added Efficiency
PAE
—
16.5
—
%
ACPR
—
- 50
—
dBc
IRL
—
-6
—
dB
Adjacent Channel Power Ratio
Input Return Loss
Typical GSM EDGE Performance — 1800 MHz (In Freescale GSM EDGE 1805 - 1880 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc,
Pout = 16 W Avg., IDQ1 = 90 mA, IDQ2 = 430 mA, 1805 - 1880 MHz EDGE Modulation
Power Gain
Gps
—
33
—
dB
Power Added Efficiency
PAE
—
35
—
%
Error Vector Magnitude
EVM
—
1.5
—
% rms
Spectral Regrowth at 400 kHz Offset
SR1
—
- 62
—
dBc
Spectral Regrowth at 600 kHz Offset
SR2
—
- 77
—
dBc
Typical GSM EDGE Performance — 1900 MHz (In Freescale GSM EDGE 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc,
Pout = 16 W Avg., IDQ1 = 90 mA, IDQ2 = 430 mA, 1930 - 1990 MHz EDGE Modulation
Gps
—
Power Added Efficiency
PAE
Error Vector Magnitude
EVM
Spectral Regrowth at 400 kHz Offset
Spectral Regrowth at 600 kHz Offset
Power Gain
30
—
dB
—
33
—
%
—
1.5
—
% rms
SR1
—
- 62
—
dBc
SR2
—
- 80
—
dBc
Typical CW Performance (In Freescale GSM EDGE 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 90 mA,
IDQ2 = 430 mA, Pout = 40 W CW, 1805 - 1880 MHz and 1930 - 1990 MHz
Power Gain
Gps
—
31
—
dB
Power Added Efficiency
PAE
—
50
—
%
Input Return Loss
IRL
—
- 15
—
dB
P1dB
—
45
—
W
Pout @ 1 dB Compression Point
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
4
RF Device Data
Freescale Semiconductor
+
C13
VDD2
Z13
VDD1
C11
Z3
RF
INPUT
Z2
Z1
Z4
Z5
Z6
C1
1
2
G1
3
G2
4
5 NC
DUT
16
NC 15
C3
C17
C6
C7
Z8
C15
Z7
14
Z10
Z11
Z12
Z15
Z16
RF
OUTPUT
6
C14
C16
7 NC
8 G2
9
G1
10
11
VGG1
R1
VGG2
R2
Quiescent Current
Temperature
Compensation
Z9
Z14
NC 13
12
C4
C12
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8, Z9
C10
C5
C18
C8
C9
C2
0.0826″ x 0.5043″
0.0826″ x 0.3639″
0.0826″ x 0.4258″
0.0826″ x 0.3639″
0.0826″ x 0.3060″
0.0826″ x 0.9290″
0.0600″ x 0.1273″
0.0800″ x 1.3684″
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z10
Z11
Z12
Z13, Z14
Z15
Z16
PCB
0.3419″ x 0.1725″ Microstrip
0.3419″ x 0.4671″ Microstrip
0.0830″ x 0.4220″ Microstrip
0.0830″ x 0.2855″ Microstrip
0.0830″ x 0.9030″ Microstrip
0.0830″ x 0.2499″ Microstrip
Rogers RO4350, 0.030″, εr = 3.5
Figure 3. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1930 - 1990 MHz
Table 6. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5
6.8 pF Chip Capacitors
ATC100B6R8CT500XT
ATC
C6, C7, C8, C9, C10, C11
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C12
2.2 μF, 16 V Chip Capacitor
C1206C225K4RAC
Kemet
C13
470 μF, 63 V Electrolytic Capacitor, Radial
MCGPR63V477M13X26 - RH
Multicomp
C14, C16
0.8 pF Chip Capacitors
ATC100B0R8BT500XT
ATC
C15
1 pF Chip Capacitor
ATC100B1R0BT500XT
ATC
C17, C18
1 μF, 50 V Chip Capacitors
GRM21BR71H105KA12L
Murata
R1, R2
5.6 KΩ, 1/4 W Chip Resistors
CRCW12065601FKEA
Vishay
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
5
C13
C3
C17
C11
C6
C7
TO272WB−16
MW7IC2040N
Rev. 2
C14
C2
CUT OUT AREA
C1
C15
C16
C5
C8
C9
C10
R1
C12
C4
C18
R2
Figure 4. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1930 - 1990 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
6
RF Device Data
Freescale Semiconductor
36
17
VDD = 28 Vdc, Pout = 4 W (Avg.), IDQ1 = 130 mA
IDQ2 = 330 mA, Single−Carrier W−CDMA, 3.84 MHz 16
Channel Bandwidth, Input Signal PAR = 7.5 dB
15
@ 0.01% Probability on CCDF
14
Gps, POWER GAIN (dB)
35
Gps
34
33
32
IRL
31
−47
−10
−48
−12
30
−49
29
−50
ACPR
28
27
1880
1900
−51
1920
1940
1960
1980
2000
−52
2040
2020
−14
−16
−18
−20
IRL, INPUT RETURN LOSS (dB)
18
PAE
ACPR (dBc)
37
PAE, POWER ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
f, FREQUENCY (MHz)
Figure 5. Single Carrier W - CDMA Broadband Performance
@ Pout = 4 Watts Avg.
35
35
IDQ2 = 495 mA
IDQ1 = 195 mA
330 mA
34
163 mA
33
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
34
413 mA
248 mA
32
165 mA
31
80 mA
32
98 mA
31
30
65 mA
VDD = 28 Vdc
IDQ1 = 130 mA
f = 1960 MHz
30
33
VDD = 28 Vdc
IDQ2 = 330 mA
f = 1960 MHz
29
29
28
1
10
1
50
10
Pout, OUTPUT POWER (WATTS) CW
Figure 6. Power Gain versus Output Power
@ IDQ1 = 130 mA
Figure 7. Power Gain versus Output Power
@ IDQ2 = 330 mA
IMD, INTERMODULATION DISTORTION (dBc)
Pout, OUTPUT POWER (WATTS) CW
50
−10
VDD = 28 Vdc, Pout = 22 W (PEP), IDQ1 = 130 mA
IDQ2 = 330 mA, Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 1960 MHz
−20
IM3−U
−30
IM3−L
−40
IM5−L
IM5−U
−50
IM7−L
IM7−U
−60
1
10
100
TWO−TONE SPACING (MHz)
Figure 8. Intermodulation Distortion Products
versus Two - Tone Spacing
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
55
32
45
PAE
31
35
30
25
VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, f = 1960 MHz
Single−Carrier W−CDMA, 3.84 MHz Channel Bandwidth
Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF
29
28
1
8
16
24
32
15
PAE, POWER ADDED EFFICIENCY (%)
ACPR
Gps
33
Gps, POWER GAIN (dB)
−10
65
−20
−30
−40
ACPR (dBc)
34
−50
−60
5
−70
50
−10
40
Pout, OUTPUT POWER (WATTS)
25_C
38
Gps, POWER GAIN (dB)
36
−30_C
PAE
TC = −30_C
34
85_C
−30_C
ACPR
25_C
32
Gps
30
28
26
24
22
1
45
40
35
30
85_C
25
20
VDD = 28 Vdc, IDQ1 = 130 mA
IDQ2 = 330 mA, f = 1960 MHz
15
Single−Carrier W−CDMA, 3.84 MHz
Channel Bandwidth, Input Signal
10
PAR = 7.5 dB @ 0.01% Probability on CCDF
5
10
60
−16
−22
−28
−34
−40
ACPR (dBc)
40
PAE, POWER ADDED EFFICIENCY (%)
Figure 9. Power Gain, ACPR and Power Added
Efficiency versus Output Power
−46
−52
−58
−64
Pout, OUTPUT POWER (WATTS) AVG.
Figure 10. Single - Carrier W - CDMA Power Gain, Power
Added Efficiency and ACPR versus Output Power
GAIN (dB)
Gain
35
−4
30
−8
25
−12
IRL
20
VDD = 28 Vdc
Pout = 25 dBm
IDQ1 = 130 mA
IDQ2 = 330 mA
IRL (dB)
0
40
−16
15
−20
1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
f, FREQUENCY (MHz)
Figure 11. Broadband Frequency Response
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
8
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
109
MTTF (HOURS)
108
2nd Stage
1st Stage
107
106
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 28 Vdc, Pout = 4 W Avg., and PAE = 17.5%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 12. MTTF versus Junction Temperature
W - CDMA TEST SIGNAL
100
10
0
−10
3.84 MHz
Channel BW
−20
1
Input Signal
−30
0.1
(dB)
PROBABILITY (%)
10
0.01
W−CDMA. ACPR Measured in 3.84 MHz
Channel Bandwidth @ ±5 MHz Offset.
Input Signal PAR = 7.5 dB @ 0.01%
Probability on CCDF
0.001
0.0001
0
1
2
3
4
5
6
−40
−50
−60
+ACPR in 3.84 MHz
Integrated BW
−ACPR in 3.84 MHz
Integrated BW
−70
−80
7
8
9
10
PEAK−TO−AVERAGE (dB)
Figure 13. CCDF W - CDMA 3GPP, Test Model 1,
64 DPCH, 45.2% Clipping, Single - Carrier Test Signal
−90
−100
−9
−7.2 −5.4 −3.6 −1.8
0
1.8
3.6
5.4
7.2
9
f, FREQUENCY (MHz)
Figure 14. Single - Carrier W - CDMA Spectrum
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
9
Zo = 50 Ω
Zo = 10 Ω
Zin
f = 2040 MHz
f = 2040 MHz
f = 1880 MHz
Zload
f = 1880 MHz
VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA, Pout = 4 W Avg.
f
MHz
Zin
W
Zload
W
1880
42.97 - j25.07
6.10 - j5.01
1900
44.01 - j25.91
5.92 - j4.71
1920
45.14 - j26.72
5.76 - j4.44
1940
46.38 - j27.48
5.62 - j4.21
1960
47.71 - j28.19
5.51 - j4.01
1980
49.16 - j28.83
5.40 - j3.83
2000
50.71 - j29.40
5.27 - j3.71
2020
52.36 - j29.87
5.13 - j3.60
54.12 - j30.23
4.99 - j3.52
2040
Zin
=
Device input impedance as measured from
gate to ground.
Zload =
Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under Test
Z
in
Z
load
Figure 15. Series Equivalent Input and Load Impedance
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
10
RF Device Data
Freescale Semiconductor
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
53
53
P3dB = 47.74 dBm (59 W)
52
Ideal
51
50
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (dBm)
52
P1dB = 47.06 dBm (51 W)
49
48
Actual
47
46
45
VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA
Pulsed CW, 10 μsec(on), 10% Duty Cycle, f = 1930 MHz
44
Ideal
P3dB = 47.88 dBm (61 W)
51
50
P1dB = 47.37 dBm (55 W)
49
48
Actual
47
46
45
VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 330 mA
Pulsed CW, 10 μsec(on), 10% Duty Cycle, f = 1990 MHz
44
43
43
11
12
13
14
15
16
17
18
19
20
21
13
14
15
16
17
18
19
20
21
22
23
Pin, INPUT POWER (dBm)
Pin, INPUT POWER (dBm)
NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
Test Impedances per Compression Level
Test Impedances per Compression Level
P1dB
Zsource
Ω
Zload
Ω
49.30 + j8.40
3.60 - j4.50
Figure 16. Pulsed CW Output Power
versus Input Power @ 28 V @ 1930 MHz
P1dB
Zsource
Ω
Zload
Ω
50.0 - j4.90
3.40 - j5.10
Figure 17. Pulsed CW Output Power
versus Input Power @ 28 V @ 1990 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
11
Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 90 mA, IDQ2 = 430 mA, TC = 25°C, 50 Ohm System)
S11
S21
S12
S22
f
MHz
|S11|
∠φ
|S21|
∠φ
|S12|
∠φ
|S22|
∠φ
1500
0.595
- 118.5
2.110
- 151.3
0.00174
- 71.2
0.888
- 160.3
1550
0.545
- 147.4
3.851
178.9
0.00192
- 86.7
0.876
170.4
1600
0.482
- 176.5
7.415
144.7
0.00294
- 114.0
0.867
137.1
1650
0.398
156.7
15.620
103.6
0.00445
- 149.9
0.872
94.6
1700
0.332
146.1
37.544
45.5
0.00746
177.5
0.884
29.4
1750
0.542
116.5
62.685
- 48.6
0.00940
110.9
0.650
- 93.8
1800
0.488
59.6
50.513
- 124.5
0.00642
67.4
0.454
157.6
1850
0.373
8.7
42.562
- 178.8
0.00497
40.5
0.419
105.4
1900
0.294
- 46.7
38.690
132.3
0.00438
19.1
0.416
75.9
1950
0.269
- 107.0
36.138
85.3
0.00416
- 7.3
0.443
54.0
2000
0.297
- 161.3
33.838
39.7
0.00382
- 28.5
0.497
31.7
2050
0.342
154.0
32.122
- 4.7
0.00350
- 50.7
0.553
8.0
2100
0.389
114.8
30.682
- 48.5
0.00342
- 69.9
0.602
- 16.3
2150
0.420
78.2
29.594
- 92.4
0.00354
- 84.6
0.640
- 41.0
2200
0.424
41.2
28.734
- 137.7
0.00396
- 101.3
0.666
- 65.4
2250
0.388
2.9
27.277
175.2
0.00425
- 125.1
0.689
- 89.2
2300
0.302
- 37.2
24.568
126.4
0.00483
- 153.1
0.720
- 113.5
2350
0.188
- 78.8
20.404
78.5
0.00470
174.4
0.753
- 138.7
2400
0.066
- 123.6
16.281
33.8
0.00415
148.7
0.778
- 163.6
2450
0.034
55.1
12.661
- 8.6
0.00388
124.4
0.806
171.0
2500
0.104
12.1
9.738
- 48.2
0.00368
106.5
0.826
145.2
2550
0.154
- 17.7
7.577
- 85.7
0.00328
77.5
0.842
119.7
2600
0.191
- 44.6
5.905
- 121.7
0.00281
57.2
0.851
94.4
2700
0.250
- 94.4
3.679
169.8
0.00245
37.8
0.856
45.7
2750
0.278
- 118.4
2.921
136.7
0.00271
19.5
0.854
22.1
2800
0.309
- 142.0
2.330
104.5
0.00373
2.2
0.854
- 0.5
2850
0.343
- 165.3
1.874
72.7
0.00250
- 19.6
0.849
- 23.5
2900
0.382
171.0
1.518
41.5
0.00286
- 40.7
0.851
- 46.0
2950
0.420
147.7
1.226
10.6
0.00313
- 71.3
0.850
- 68.4
3000
0.459
124.6
0.985
- 19.8
0.00262
- 98.0
0.851
- 91.1
3050
0.498
102.9
0.782
- 49.0
0.00101
- 108.5
0.847
- 113.4
3100
0.542
79.6
0.641
- 76.9
0.00279
- 84.9
0.850
- 136.3
3150
0.577
56.4
0.531
- 105.1
0.00504
- 110.7
0.856
- 159.8
3200
0.603
33.6
0.439
- 133.3
0.00526
- 152.0
0.857
176.4
3250
0.628
11.0
0.363
- 161.1
0.00587
- 176.6
0.858
152.0
3300
0.654
- 11.9
0.303
171.0
0.00659
160.1
0.857
126.8
3350
0.661
- 35.4
0.250
143.7
0.00909
129.6
0.853
101.4
3400
0.678
- 57.0
0.208
115.4
0.00691
98.1
0.845
74.5
3450
0.692
- 80.2
0.157
88.5
0.00718
80.9
0.745
42.1
3500
0.704
- 103.7
0.158
71.5
0.01000
46.8
0.760
43.7
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
12
RF Device Data
Freescale Semiconductor
W - CDMA — 1805 - 1880 MHz
+
C13
VDD2
VDD1
C11
Z3
RF
INPUT
Z2
Z1
Z4
Z5
Z6
C1
1
2
G1
3
G2
4
5 NC
DUT
16
NC 15
C3
C6
C7
Z8
C15
Z7
14
Z10
Z11
Z12
Z13
Z14
RF
OUTPUT
6
C14
C16
7 NC
8 G2
9
G1
10
11
VGG1
R1
VGG2
R2
Quiescent Current
Temperature
Compensation
Z9
NC 13
12
C4
C12
Z1
Z2
Z3
Z4
Z5
Z6
Z7
C10
C5
C8
C9
C2
0.0826″ x 0.5043″ Microstrip
0.0826″ x 0.3639″ Microstrip
0.0826″ x 0.4258″ Microstrip
0.0826″ x 0.3639″ Microstrip
0.0826″ x 0.3459″ Microstrip
0.0826″ x 0.9115″ Microstrip
0.0600″ x 0.1273″ Microstrip
Z8, Z9
Z10
Z11
Z12
Z13
Z14
PCB
0.0800″ x 1.1139″ Microstrip
0.3419″ x 0.1725″ Microstrip
0.3419″ x 0.4671″ Microstrip
0.0830″ x 0.4220″ Microstrip
0.0830″ x 0.9030″ Microstrip
0.0830″ x 0.2499″ Microstrip
Rogers RO4350, 0.030″, εr = 3.5
Figure 18. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1805 - 1880 MHz
Table 8. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5
6.8 pF Chip Capacitors
ATC100B6R8CT500XT
ATC
C6, C7, C8, C9, C10, C11
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C12
2.2 μF, 16 V Chip Capacitor
C1206C225K4RAC
Kemet
C13
470 μF, 63 V Electrolytic Capacitor, Radial
MCGPR63V477M13X26 - RH
Multicomp
C14, C15, C16
1 pF Chip Capacitors
ATC100B1R0BT500XT
ATC
R1, R2
5.6 KΩ, 1/4 W Chip Resistors
CRCW12065601FKEA
Vishay
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
13
W - CDMA — 1805 - 1880 MHz
C13
C3
C11
C6
C7
TO272WB−16
MW7IC2040N
Rev. 2
R1
C14
C2
CUT OUT AREA
C1
C15
C16
C5
C8
C9
C10
C12
C4
R2
Figure 19. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1805 - 1880 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
14
RF Device Data
Freescale Semiconductor
GSM EDGE — 1805 - 1880 MHz
+
VDD1
C13
C11
VDD2
C1
Z3
Z4
Z2
RF
INPUT
1
2
G1
3
G2
4
5 NC
Z5
C14
Z1
Z6
DUT
16
NC 15
C3
C6
C7
Z8
C15
Z7
14
Z10
Z11
Z12
Z13
Z14
RF
OUTPUT
6
C16
7 NC
8 G2
9
G1
10
11
VGG1
R1
VGG2
R2
Quiescent Current
Temperature
Compensation
Z9
NC 13
12
C4
C12
Z1
Z2
Z3
Z4
Z5
Z6
Z7
C10
C5
C8
C9
C2
0.0826″ x 0.5043″
0.0826″ x 0.3639″
0.0826″ x 0.4258″
0.0826″ x 0.2315″
0.0826″ x 0.1324″
0.0826″ x 1.2574″
0.0600″ x 0.1273″
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z8, Z9
Z10
Z11
Z12
Z13
Z14
PCB
0.0800″ x 1.3354″ Microstrip
0.3419″ x 0.1725″ Microstrip
0.3419″ x 0.4671″ Microstrip
0.0830″ x 0.3575″ Microstrip
0.0830″ x 0.9675″ Microstrip
0.0830″ x 0.2499″ Microstrip
Rogers RO4350, 0.030″, εr = 3.5
Figure 20. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1805 - 1880 MHz
Table 9. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5
6.8 pF Chip Capacitors
ATC100B6R8CT500XT
ATC
C6, C7, C8, C9, C10, C11
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C12
2.2 μF, 16 V Chip Capacitor
C1206C225K4RAC
Kemet
C13
470 μF, 63 V Electrolytic Capacitor, Radial
MCGPR63V477M13X26 - RH
Multicomp
C14
0.8 pF Chip Capacitor
ATC100B0R8BT500XT
ATC
C15
1 pF Chip Capacitor
ATC100B1R0BT500XT
ATC
C16
1.2 pF Chip Capacitor
ATC100B1R2BT500XT
ATC
R1, R2
5.6 KΩ, 1/4 W Chip Resistors
CRCW12065601FKEA
Vishay
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
15
GSM EDGE — 1805 - 1880 MHz
C13
C3
C11
C6
C7
C14
TO272WB−16
MW7IC2040N
Rev. 2
C2
CUT OUT AREA
C1
C15
C16
C5
C8
C9
C10
R1
C12
C4
R2
Figure 21. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1805 - 1880 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
16
RF Device Data
Freescale Semiconductor
GSM EDGE — 1930 - 1990 MHz
+
C13
VDD2
VDD1
C11
Z3
RF
INPUT
Z2
Z1
Z4
Z5
Z6
C1
1
2
G1
3
G2
4
5 NC
DUT
16
NC 15
C3
C6
C7
Z8
C15
Z7
14
Z10
Z11
Z12
Z13
Z14
RF
OUTPUT
6
C14
C16
7 NC
8 G2
9
G1
10
11
VGG1
R1
VGG2
R2
Quiescent Current
Temperature
Compensation
Z9
NC 13
12
C4
C12
Z1
Z2
Z3
Z4
Z5
Z6
Z7
C10
C5
C8
C9
C2
0.0826″ x 0.5043″
0.0826″ x 0.3639″
0.0826″ x 0.4258″
0.0826″ x 0.3639″
0.0826″ x 0.6544″
0.0826″ x 0.6030″
0.0600″ x 0.1273″
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z8, Z9
Z10
Z11
Z12
Z13
Z14
PCB
0.0800″ x 1.6274″ Microstrip
0.3419″ x 0.1725″ Microstrip
0.3419″ x 0.4671″ Microstrip
0.0830″ x 0.4685″ Microstrip
0.0830″ x 0.8565″ Microstrip
0.0830″ x 0.2499″ Microstrip
Rogers RO4350, 0.030″, εr = 3.5
Figure 22. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Schematic — 1930 - 1990 MHz
Table 10. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz
Part
Description
Part Number
Manufacturer
C1, C2, C3, C4, C5
6.8 pF Chip Capacitors
ATC100B6R8CT500XT
ATC
C6, C7, C8, C9, C10, C11
10 μF, 50 V Chip Capacitors
GRM55DR61H106KA88L
Murata
C12
2.2 μF, 16 V Chip Capacitor
C1206C225K4RAC
Kemet
C13
470 μF, 63 V Electrolytic Capacitor, Radial
MCGPR63V477M13X26 - RH
Multicomp
C14
0.5 pF Chip Capacitor
ATC100B0R5BT500XT
ATC
C15, C16
0.8 pF Chip Capacitors
ATC100B0R8BT500XT
ATC
R1, R2
5.6 KΩ, 1/4 W Chip Resistors
CRCW12065601FKEA
Vishay
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
17
GSM EDGE — 1930 - 1990 MHz
C13
C3
C11
C6
C7
TO272WB−16
MW7IC2040N
Rev. 2
C14
C2
CUT OUT AREA
C1
C15
C16
C5
C8
C9
C10
R1
C12
C4
R2
Figure 23. MW7IC2040NR1(GNR1)(NBR1) Test Circuit Component Layout — 1930 - 1990 MHz
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
18
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
19
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
20
RF Device Data
Freescale Semiconductor
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
21
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
22
RF Device Data
Freescale Semiconductor
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
23
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
24
RF Device Data
Freescale Semiconductor
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
25
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
26
RF Device Data
Freescale Semiconductor
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
RF Device Data
Freescale Semiconductor
27
PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
• AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages
• AN3789: Clamping of High Power RF Transistors and RFICs in Over - Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Feb. 2009
• Initial Release of Data Sheet
1
Nov. 2009
• Updated Human Body Model ESD from Class 1C to 1B to reflect Human Body Model actual test data,
p. 2
• Fig. 13, CCDF W - CDMA 3GPP, Test Model 1, 64 DPCH, 45.2% Clipping, Single - Carrier Test Signal and
Fig. 14, Single - Carrier W - CDMA Spectrum updated to show the undistorted input test signal, p. 9
• Added AN3789, Clamping of High Power RF Transistors and RFICs in Over - Molded Plastic Packages to
Product Documentation, Application Notes, p. 28
• Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software,
p. 28
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
28
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140
Fax: +1 - 303 - 675 - 2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.
MW7IC2040NR1 MW7IC2040GNR1 MW7IC2040NBR1
Document
Number:
RF
Device
Data MW7IC2040N
Rev. 1, 11/2009
Freescale
Semiconductor
29