IRF IRF6798MTRPBF

PD - 97433B
IRF6798MPbF
IRF6798MTRPbF
HEXFET® Power MOSFET plus Schottky Diode ‚
Typical values (unless otherwise specified)
RoHs Compliant Containing No Lead and Bromide 
VDSS
VGS
RDS(on)
RDS(on)
l Integrated Monolithic Schottky Diode
25V max ±20V max 0.95mΩ@ 10V 1.6mΩ@ 4.5V
l Low Profile (<0.7 mm)
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
l Dual Sided Cooling Compatible 
l Low Package Inductance
50nC
16nC
6.8nC
64nC
38nC
1.8V
l Optimized for High Frequency Switching 
l Ideal for CPU Core DC-DC Converters
l Optimized for Sync. FET socket of Sync. Buck Converter
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques 
l 100% Rg tested
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
l
SQ
SX
ST
MQ
MT
MX
MP
Description
The IRF6798MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6798MPbF balances industry leading on-state resistance while minimizing gate charge along with low gate resistance to reduce both
conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing
the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters
that power high current loads such as the latest generation of microprocessors. The IRF6798MPbF has been optimized for parameters that
are critical in synchronous buck converter’s Sync FET sockets.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
Typical RDS(on) (mΩ)
5
ID = 37A
4
3
2
T J = 125°C
1
T J = 25°C
0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
25
±20
37
30
197
300
220
30
V
A
mJ
A
14.0
ID= 30A
12.0
10.0
VDS= 20V
VDS= 13V
8.0
6.0
4.0
2.0
0.0
0
25
50
75
100
125
150
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.50mH, RG = 25Ω, IAS = 30A.
1
12/10/09
IRF6798MTRPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
VGS(th)
∆VGS(th)/∆TJ
IDSS
IGSS
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Min.
Typ. Max. Units
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
25
–––
–––
3.1
–––
–––
Static Drain-to-Source On-Resistance
–––
–––
0.95
1.6
1.3
2.1
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
1.35
–––
1.8
-5.4
Drain-to-Source Leakage Current
–––
–––
–––
–––
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
Forward Transconductance
Total Gate Charge
Conditions
V VGS = 0V, ID = 1.0mA
mV/°C Reference to 25°C, ID = 10mA
mΩ VGS = 10V, ID = 37A
i
= 30A i
VGS = 4.5V, ID
2.35
V VDS = VGS, ID = 150µA
––– mV/°C VDS = VGS, ID = 10mA
500
µA VDS = 20V, VGS = 0V
5.0
mA
–––
–––
100
-100
nA
VDS = 20V, VGS = 0V, TJ = 125°C
VGS = 20V
100
–––
–––
50
–––
75
S
VGS = -20V
VDS = 13V, ID = 30A
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
13
6.8
–––
–––
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
16
14
–––
–––
Output Charge
–––
–––
22.8
38
–––
–––
Gate Resistance
Turn-On Delay Time
–––
–––
0.30
15
–––
–––
Ω
Rise Time
Turn-Off Delay Time
–––
–––
31
20
–––
–––
ns
Fall Time
Input Capacitance
–––
–––
16
6560
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
1800
695
–––
–––
VDS = 13V
nC
VGS = 4.5V
ID = 30A
See Fig. 15
nC
VDS = 16V, VGS = 0V
i
VDD = 13V, VGS = 4.5V
ID = 30A
RG = 1.8Ω
pF
See Fig. 17
VGS = 0V
VDS = 13V
ƒ = 1.0MHz
Diode Characteristics
Min.
Typ. Max. Units
IS
Continuous Source Current
(Body Diode)
Parameter
–––
–––
37
ISM
Pulsed Source Current
(Body Diode)
–––
–––
300
VSD
Diode Forward Voltage
–––
–––
trr
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
30
64
Qrr
g
Conditions
A
MOSFET symbol
showing the
0.75
V
integral reverse
p-n junction diode.
TJ = 25°C, IS = 30A, VGS = 0V
45
96
ns
nC
TJ = 25°C, IF = 30A
di/dt = 385A/µs
i
i
Notes:
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6798MTRPbF
Absolute Maximum Ratings
e
e
f
Max.
Units
2.8
1.8
78
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.6
–––
°C/W
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
0.022
W/°C
Thermal Response ( Z thJA )
100
10
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
R1
R1
τJ
0.1
0.01
0.001
1E-006
τJ
τ1
R2
R2
τ2
τ1
R3
R3
R4
R4
R5
R5
Ri (°C/W)
τi (sec)
0.0171
0.000002
0.3038
0.000716
0.4527
0.004783
R6
R6
τA
τA
τ2
τ3
τ3
τ4
τ4
τ5
τ5
Ci= τi/Ri
Ci= τi/Ri
0.0001
0.001
0.011657
22.7953
1.045430
18.1987
46.99450
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
3.2257
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ
(At lower pulse widths ZthJA & ZTHJC are combined)
Notes:
Š Rθ is measured at TJ of approximately 90°C.
ˆ Used double sided cooling , mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6798MTRPbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.3V
3.5V
3.3V
3.0V
2.8V
2.5V
100
10
2.5V
1
BOTTOM
2.5V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
0.1
0.1
1
10
Tj = 150°C
1
100
0.1
Fig 4. Typical Output Characteristics
10
100
Fig 5. Typical Output Characteristics
1000
1.6
VDS = 15V
≤60µs PULSE WIDTH
ID = 37A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
100
T J = 150°C
T J = 25°C
T J = -40°C
10
1
0.1
V GS = 10V
V GS = 4.5V
1.4
1.2
1.0
0.8
0.6
1
2
3
4
-60 -40 -20 0
Fig 6. Typical Transfer Characteristics
100000
Fig 7. Normalized On-Resistance vs. Temperature
10
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T J = 25°C
Typical RDS(on) ( mΩ)
Ciss
Coss
1000
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
8
C oss = C ds + C gd
10000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
VGS
10V
5.0V
4.3V
3.5V
3.3V
3.0V
2.8V
2.5V
Crss
6
4
2
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
25
50
75
100 125 150 175 200
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6798MTRPbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100µsec
100
100
10
T J = 150°C
T J = 25°C
1
T J = -40°C
1msec
10
10msec
DC
1
TA = 25°C
TJ = 150°C
0.1
VGS = 0V
Single Pulse
0
0.01
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.01
VSD, Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
1.00
10.00
100.00
Fig11. Maximum Safe Operating Area
200
2.5
Typical VGS(th) Gate threshold Voltage (V)
ID, Drain Current (A)
0.10
VDS, Drain-to-Source Voltage (V)
150
100
50
2.0
ID = 10mA
1.5
0
1.0
25
50
75
100
125
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
900
ID
8.8A
19A
BOTTOM 30A
800
TOP
700
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6798MTRPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 15a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
D.U.T
V
RGSG
20V
DRIVER
L
VDS
tp
+
- VDD
IAS
A
I AS
0.01Ω
tp
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
10%
VGS
td(on)
Fig 17a. Switching Time Test Circuit
6
tr
t d(off) tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6798MTRPbF
Driver Gate Drive
D.U.T
P.W.
+
ƒ
+
-
-

RG
*
•
•
•
•
„
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
V DD
**
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
-
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
ISD
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET™ Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6798MTRPbF
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
MIN
6.25
4.80
3.85
0.35
0.68
0.68
1.38
0.80
0.38
0.88
2.28
0.616
0.020
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
1.42
0.84
0.42
1.01
2.41
0.676
0.080
0.17
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.0235
0.0008
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.0274
0.0031
0.007
DirectFET™ Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
8
www.irf.com
IRF6798MTRPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6798MTRPBF). For 1000 parts on 7"
reel, order IRF6798MTR1PBF
REEL DIMENSIONS
TR1 OPTION (QTY 1000)
STANDARD OPTION (QTY 4800)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MAX
MIN
CODE
MAX
MAX
MAX
MIN
MIN
6.9
N.C
12.992
A
N.C
N.C
N.C
177.77
330.0
0.75
N.C
0.795
B
N.C
N.C
N.C
19.06
20.2
0.53
0.50
0.504
C
13.2
0.520
12.8
13.5
12.8
0.059
N.C
0.059
D
N.C
1.5
1.5
N.C
N.C
2.31
3.937
E
N.C
58.72
100.0
N.C
N.C
N.C
F
N.C
0.53
N.C
0.724
N.C
N.C
18.4
13.50
0.47
0.488
G
N.C
11.9
12.4
14.4
12.01
0.567
0.47
0.469
H
11.9
11.9
15.4
12.01
N.C
0.606
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311
7.90
0.319
8.10
0.154
3.90
0.161
4.10
0.469
11.90
0.484
12.30
0.215
5.45
0.219
5.55
0.201
5.10
0.209
5.30
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/09
www.irf.com
9