IRF IRF6894MPBF

PD - 97633A
IRF6894MPbF
IRF6894MTRPbF
DirectFET®plus MOSFET with Schottky Diode ‚
RoHs Compliant Containing No Lead and Bromide 
Typical values (unless otherwise specified)
Integrated Monolithic Schottky Diode
VDSS
VGS
RDS(on)
RDS(on)
l Low Profile (<0.7 mm)
25V max ±16V max 0.9mΩ@ 10V 1.4mΩ@ 4.5V
l Dual Sided Cooling Compatible 
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
l Low Package Inductance
26nC
9.8nC 2.8nC
56nC
31nC
1.6V
l Optimized for High Frequency Switching 
l Ideal for CPU Core DC-DC Converters
l Optimized for Sync. FET socket of Sync. Buck Converter
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques 
l 100% Rg tested
ISOMETRIC
MX
l Footprint compatible to DirectFET™
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
l
l
SQ
SX
ST
MQ
MT
MX
MP
Description
The IRF6894MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and less than 0.7 mm profile. The DirectFET package is
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package
allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6894MPbF balances industry leading on-state resistance while minimizing gate charge along with low gate resistance to reduce both
conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing
the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters
that power high current loads such as the latest generation of microprocessors. The IRF6894MPbF has been optimized for parameters that
are critical in synchronous buck converter’s Sync FET sockets.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
e
e
f
h
VGS, Gate-to-Source Voltage (V)
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Typical RDS(on) (mΩ)
4.0
ID = 33A
3.0
TJ = 125°C
2.0
1.0
TJ = 25°C
0.0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
Max.
Units
25
±16
32
25
160
260
410
26
V
A
mJ
A
14.0
ID= 26A
12.0
VDS= 20V
VDS= 13V
VDS= 5V
10.0
8.0
6.0
4.0
2.0
0.0
0
10
20
30
40
50
60
70
80
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 1.18mH, RG = 50Ω, IAS = 26A.
1
8/12/11
IRF6894MTRPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
Drain-to-Source Breakdown Voltage
25
–––
–––
V
ΔΒVDSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.02
–––
V/°C
RDS(on)
Static Drain-to-Source On-Resistance
–––
0.9
1.3
mΩ
–––
1.4
1.8
VGS(th)
Gate Threshold Voltage
1.1
1.6
2.1
ΔVGS(th)/ΔTJ
IDSS
Gate Threshold Voltage Coefficient
–––
-4.3
–––
Drain-to-Source Leakage Current
–––
–––
500
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
255
–––
–––
gfs
Qg
Conditions
Typ. Max. Units
Total Gate Charge
–––
26
39
Qgs1
Pre-Vth Gate-to-Source Charge
–––
6.6
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
2.8
–––
VGS = 0V, ID = 1.0mA
ID = 10mA ( 25°C-125°C)
VGS = 10V, ID = 33A
VGS = 4.5V, ID = 26A
i
i
V VDS = VGS, ID = 100μA
mV/°C VDS = VGS, ID = 10mA
μA VDS = 20V, VGS = 0V
nA
VGS = 16V
VGS = -16V
S
VDS =13V, ID =26A
VDS = 13V
nC
VGS = 4.5V
Qgd
Gate-to-Drain Charge
–––
9.8
–––
ID = 26A
Qgodr
–––
6.8
–––
See Fig.15
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
12.6
–––
Qoss
Output Charge
–––
31
–––
nC
RG
Gate Resistance
–––
0.3
–––
Ω
td(on)
Turn-On Delay Time
–––
16
–––
VDD = 13V, VGS = 4.5V
ID = 26A
tr
Rise Time
–––
42
–––
td(off)
Turn-Off Delay Time
–––
20
–––
tf
Fall Time
–––
14
–––
Ciss
Input Capacitance
–––
4160
–––
Coss
Output Capacitance
–––
1310
–––
Crss
Reverse Transfer Capacitance
–––
290
–––
ns
VDS = 16V, VGS = 0V
i
RG= 1.8Ω
See Fig.17
VGS = 0V
pF
VDS = 13V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
(Body Diode)
VSD
g
Diode Forward Voltage
Min.
Typ. Max. Units
–––
–––
33
–––
–––
260
–––
–––
0.75
Conditions
MOSFET symbol
A
D
showing the
integral reverse
G
V
p-n junction diode.
TJ = 25°C, IS = 26A, VGS = 0V
trr
Reverse Recovery Time
–––
28
42
ns
TJ = 25°C, IF =26A
Qrr
Reverse Recovery Charge
–––
56
84
nC
di/dt = 340A/μs
i
S
i
Notes:
‡ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
IRF6894MTRPbF
Absolute Maximum Ratings
Max.
Units
2.1
1.3
54
270
-40 to + 150
W
Parameter
el
el
f
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
el
jl
kl
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
f
Linear Derating Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.0
60
–––
–––
2.3
–––
°C/W
0.017
W/°C
100
Thermal Response ( ZthJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
0.1
0.01
0.001
1E-006
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ
Notes:
ˆ Used double sided cooling , mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
Š Rθ is measured at TJ of approximately 90°C.
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6894MTRPbF
1000
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
1000
100
10
TOP
2.5V
1
BOTTOM
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.8V
2.5V
100
TOP
2.5V
10
BOTTOM
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 25°C
0.1
Tj = 150°C
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
1
1.6
ID = 33A
TJ = 150°C
TJ = 25°C
TJ = -40°C
100
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
100
Fig 5. Typical Output Characteristics
1000
10
1
VDS = 15V
≤60μs PULSE WIDTH
0.1
1.5
2.0
2.5
3.0
V GS = 4.5V
1.2
1.0
0.8
0.6
3.5
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
Fig 6. Typical Transfer Characteristics
100000
V GS = 10V
1.4
VGS, Gate-to-Source Voltage (V)
Fig 7. Normalized On-Resistance vs. Temperature
5.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
TJ = 25°C
C rss = C gd
4.0
Typical RDS (on) (mΩ)
C oss = C ds + C gd
C, Capacitance(pF)
10
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
10000
Ciss
Coss
1000
Crss
3.0
Vgs = 3.5V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 12V
Vgs = 15V
2.0
1.0
0.0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
VGS
10V
5.0V
4.5V
3.5V
3.3V
3.0V
2.8V
2.5V
0
25
50
75
100 125 150 175 200
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6894MTRPbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
T J = 150°C
10
T J = 25°C
T J = -40°C
1000
VGS = 0V
0.4
0.7
100
10msec
100μsec
10
1
DC
0.1
TA = 25°C
Tj = 150°C
Single Pulse
0.01
1.0
0.1
1
10
100
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig 11. Maximum Safe Operating Area
2.5
Typical VGS(th) Gate threshold Voltage (V)
180
160
140
ID, Drain Current (A)
1msec
0.01
1
0.1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
120
100
80
60
40
20
ID = 10mA
2.0
1.5
1.0
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
TC , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
1600
ID
TOP
1.9A
2.7A
BOTTOM 26A
1200
800
400
0
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6894MTRPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 15a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
D.U.T
V
RGSG
20V
DRIVER
L
VDS
tp
+
- VDD
IAS
A
I AS
0.01Ω
tp
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
10%
VGS
td(on)
Fig 17a. Switching Time Test Circuit
6
tr
t d(off) tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6894MTRPbF
Driver Gate Drive
D.U.T
ƒ
+
‚
RG
*
•
•
•
•
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
V DD
**
P.W.
Period
***
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-

P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
ISD
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET®plus Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET ®plus .
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
S
G
S
D
www.irf.com
D
7
IRF6894MTRPbF
DirectFET®plus Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET®plus. This
includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
MIN
6.25
4.80
3.85
0.35
0.68
0.68
1.38
0.80
0.38
0.88
2.28
0.535
0.020
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
1.42
0.84
0.42
1.01
2.41
0.595
0.080
0.17
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.021
0.001
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.023
0.003
0.007
DirectFET®plus Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
8
www.irf.com
IRF6894MTRPbF
DirectFET®plus Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6894MTRPBF). For 1000 parts on 7"
reel, order IRF6894MTR1PBF
REEL DIMENSIONS
TR1 OPTION (QTY 1000)
STANDARD OPTION (QTY 4800)
METRIC
METRIC
IMPERIAL
IMPERIAL
MAX
MIN
MIN
CODE
MAX
MAX
MAX
MIN
MIN
N.C
6.9
12.992
A
N.C
177.77
330.0
N.C
N.C
N.C
0.75
0.795
B
N.C
N.C
N.C
19.06
20.2
0.50
0.53
0.504
C
0.520
13.5
12.8
13.2
12.8
0.059
0.059
D
N.C
1.5
1.5
N.C
N.C
N.C
2.31
3.937
E
N.C
N.C
58.72
100.0
N.C
N.C
N.C
N.C
F
0.53
N.C
N.C
18.4
13.50
0.724
G
0.47
0.488
0.567
N.C
11.9
12.4
14.4
12.01
0.47
0.469
H
N.C
11.9
11.9
15.4
12.01
0.606
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
8.10
7.90
0.154
3.90
0.161
4.10
0.469
11.90
0.484
12.30
0.215
5.55
5.45
0.219
0.201
0.209
5.30
5.10
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/2011
www.irf.com
9