IRF IRF6631

PD - 97183
IRF6631
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
l
l
l
l
l
l
l
l
l
RoHS compliant containing no lead or bromide 
Low Profile (<0.6 mm)
Dual Sided Cooling Compatible 
Ultra Low Package Inductance
Optimized for High Frequency Switching 
Ideal for CPU Core DC-DC Converters
Optimized for Control FET applications 
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques 
VDSS
VGS
RDS(on)
RDS(on)
30V max ±20V max 6.0mΩ@ 10V 8.3mΩ@ 4.5V
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
4.4nC
1.1nC
10nC
7.3nC
1.8V
tot
12nC
DirectFET™ ISOMETRIC
SQ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MP
Description
The IRF6631 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.6 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6631 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6631 has been optimized for parameters that are critical in synchronous buck including Rds(on) and
gate charge to minimize losses in the control FET socket.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
E AS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
Typical RDS(on) (mΩ)
ID = 13A
15
T J = 125°C
5
T J = 25°C
0
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
Units
30
±20
13
10
57
100
13
10
V
h
20
10
Max.
e
e
f
VGS, Gate-to-Source Voltage (V)
V DS
A
mJ
A
12.0
ID= 10A
10.0
8.0
VDS= 24V
VDS= 15V
6.0
4.0
2.0
0.0
0
5
10
15
20
25
30
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.24mH, RG = 25Ω, IAS = 10A.
1
02/09/06
IRF6631
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
VGS(th)
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Output Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
30
–––
–––
–––
1.35
–––
–––
–––
–––
–––
32
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
23
6.0
8.3
1.8
-5.2
–––
–––
–––
–––
–––
12
3.4
1.1
4.4
3.1
5.5
7.3
1.6
15
18
18
4.9
1450
310
170
Conditions
–––
V VGS = 0V, ID = 250µA
––– mV/°C Reference to 25°C, ID = 1mA
7.8
mΩ VGS = 10V, ID = 13A c
VGS = 4.5V, ID = 10A c
10.8
V
2.35
V
DS = VGS, ID = 25µA
––– mV/°C
1.0
µA VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
150
100
nA VGS = 20V
VGS = -20V
-100
–––
S VDS = 15V, ID = 10A
18
–––
–––
–––
–––
–––
–––
3.0
–––
–––
–––
–––
–––
–––
–––
nC
VDS = 15V
VGS = 4.5V
ID = 10A
See Fig. 15
nC
VDS = 16V, VGS = 0V
Ω
VDD = 16V, VGS = 4.5Vc
ID = 10A
ns
pF
Clamped Inductive Load
See Fig. 16 & 17
VGS = 0V
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
ISM
VSD
trr
Qrr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)d
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min. Typ. Max. Units
–––
–––
42
–––
–––
100
–––
–––
–––
–––
11
10
1.2
17
15
A
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 10A, VGS = 0V c
TJ = 25°C, IF = 10A
di/dt = 500A/µs c See Fig. 18
Notes:
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
‚ Repetitive rating; pulse width limited by max. junction temperature.
2
www.irf.com
IRF6631
Absolute Maximum Ratings
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
c
c
f
Thermal Resistance
Parameter
cg
dg
eg
fg
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Max.
Units
2.2
1.4
42
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
c
°C
Typ.
Max.
Units
–––
12.5
20
–––
1.4
58
–––
–––
3.0
–––
°C/W
0.017
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
R2
R2
R3
R3
R4
R4
R5
R5
τA
τ2
τ1
τ2
τ3
τ3
τ4
τ4
τ5
τ5
Ci= τi/Ri
Ci= τi/Ri
0.1
0.01
R1
R1
τJ
τ1
SINGLE PULSE
( THERMAL RESPONSE )
τA
Ri (°C/W)
τi (sec)
1.6195
0.000126
2.14056
0.001354
22.2887
0.375850
20.0457
7.41
11.9144
99
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
 Surface mounted on 1 in. square Cu board, steady state.
‚ Used double sided cooling , mounting pad.
ƒ Mounted on minimum footprint full size board with metalized
„ TC measured with thermocouple incontact with top (Drain) of part.
… Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
 Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
‚ Mounted to a PCB with
small clip heatsink (still air)
ƒ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6631
1000
1000
ID, Drain-to-Source Current (A)
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
1
≤60µs PULSE WIDTH
Tj = 25°C
0.1
100
BOTTOM
10
2.5V
1
≤60µs PULSE WIDTH
2.5V
Tj = 150°C
0.01
0.1
0.1
1
10
100
0.1
10
100
Fig 5. Typical Output Characteristics
1000
2.0
VDS = 10V
≤60µs PULSE WIDTH
ID = 13A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
100
T J = 150°C
T J = 25°C
10
T J = -40°C
1
0.1
V GS = 10V
V GS = 4.5V
1.5
1.0
0.5
1
2
3
4
5
-60 -40 -20 0
Fig 6. Typical Transfer Characteristics
10000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 7. Normalized On-Resistance vs. Temperature
50
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T = 25°C
J
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
40
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
C, Capacitance(pF)
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
Ciss
1000
Coss
30
20
10
Crss
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
20
40
60
80
100
120
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6631
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
T J = 150°C
T J = 25°C
T J = -40°C
100
OPERATION IN THIS AREA
LIMITED BY R DS(on)
10
1
100µsec
1msec
10
10msec
1
VGS = 0V
T A = 25°C
T J = 150°C
Single Pulse
0.1
0
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.0
1.1
Fig 10. Typical Source-Drain Diode Forward Voltage
1.0
10
100
Fig 11. Maximum Safe Operating Area
2.5
Typical VGS(th) Gate threshold Voltage (V)
60
50
ID, Drain Current (A)
0.1
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
40
30
20
10
2.0
ID = 50µA
1.5
1.0
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
60
ID
TOP
3.1A
4.5A
BOTTOM 10A
50
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6631
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6631
D.U.T
Driver Gate Drive
+
ƒ
+
‚
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
RG
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
*

•
•
•
•
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
+
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
G
D
www.irf.com
S
D
7
IRF6631
DirectFET™ Outline Dimension, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
4.85
A
4.75
3.95
B
3.70
2.85
C
2.75
0.45
D
0.35
0.52
E
0.48
0.82
F
0.78
0.92
G
0.88
0.82
H
0.78
N/A
J
N/A
0.97
K
0.93
2.10
L
2.00
0.59
M
0.48
0.08
N
0.03
0.17
P
0.08
IMPERIAL
MIN
0.187
0.146
0.108
0.014
0.019
0.031
0.035
0.031
N/A
0.037
0.079
0.019
0.001
0.003
MAX
0.191
0.156
0.112
0.018
0.020
0.032
0.036
0.032
N/A
0.038
0.083
0.023
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6631
DirectFET™ Tape & Reel Dimension
(Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6631). For 1000 parts on 7" reel,
order IRF6631TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
METRIC
IMPERIAL
METRIC
MAX
CODE
MIN
MIN
MAX
MIN
MIN
MAX
MAX
N.C
A
6.9
12.992
330.0
177.77 N.C
N.C
N.C
B
0.75
0.795
N.C
20.2
19.06
N.C
N.C
N.C
C
0.53
0.504
0.50
12.8
13.5
0.520
12.8
13.2
D
0.059
0.059
N.C
1.5
1.5
N.C
N.C
N.C
E
2.31
3.937
N.C
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
13.50
18.4
G
0.47
0.488
N.C
12.4
11.9
0.567
12.01
14.4
H
0.47
0.469
N.C
11.9
11.9
0.606
12.01
15.4
Loaded Tape Feed Direction
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
11.90
0.484
12.30
0.215
5.45
0.219
5.55
0.158
0.165
4.00
4.20
0.197
0.205
5.00
5.20
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/06
www.irf.com
9