

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN2010 PSoC 1 Best Practices and Recommendations.pdf

		
				 AN2010
PSoC® 1 Best Practices and Recommendations
Author: Jeff Dahlin, Rajiv Badiger
Associated Project: No
Associated Part Family: CY8C29x66, CY8C28xxx, CY8C27x43, CY8C24x94, CY8C24x23,
CY8C24x33, CY8C23x33, CY8C22x45, CY8C21x45, CY8C21x34, CY8C21x23
Software Version: PSoC Designer™
Related Application Notes: AN75320, AN32200
AN2010 provides the guidelines on best practices for developing PSoC 1 systems, and it exposes some common
mistakes designers make. It also contains a brief introduction to the PSoC 1 devices, software, and support collateral.
Contents
Introduction
Introduction ... 1
Getting Started .. 1
Understanding PSoC 1 device 1
Install PSoC Designer .. 1
Examine Example Projects... 1
Download Latest Documentation 2
Explore Other Resources ... 2
Best Practices ... 2
CPU and Clocks ... 2
Digital Blocks .. 3
Analog Blocks... 4
GPIOs... 5
Flash .. 6
Firmware .. 7
Debug and Test .. 10
Common Mistakes .. 10
Summary ... 11
Related Application Notes ... 11
Appendix A .. 12
Worldwide Sales and Design Support 14
This application note is organized into sections according
to the earliest and most likely period of development
during which it will be needed: getting started, user
module placement, interconnection and pin-out, software
implementation, testing, and debug.
Each of these
sections may contain information that is also applicable to
other sections, so care should be taken to read and
understand the document as a whole.
Getting Started
Understanding PSoC 1 device
For PSoC 1 beginners, it is recommended to read
application note Getting Started with PSoC® 1 – AN75320.
This application note provides the first level basic
information on the PSoC 1 device.
Install PSoC Designer
PSoC 1 projects are created using PSoC Designer IDE
tool. Ensure that you have the most recent version of
PSoC Designer software installed on your PC. You can
check
for
the
latest
revision
at
www.cypress.com/psocdesigner.
Examine Example Projects
After installing PSoC Designer, go through the example
projects included with the software. These projects can be
accessed from Start Page of PSoC Designer as Figure 1
shows. Along with their associated documentation,
working through them provides the best method for
becoming familiar with PSoC 1 devices and the PSoC
Designer software.
www.cypress.com
Document No. 001-40401 Rev. *E
1
®
PSoC 1 Best Practices and Recommendations
Figure 1. Example Projects in PSoC Designer
Download Latest Documentation
The PSoC Designer Documentation Suite, the PSoC 1
product data sheets, and other valuable files are available
under the …\Documentation directory where the
installation of PSoC Designer resides.
When working with the PSoC 1 family of devices,
download the latest family data sheets, silicon errata,
software release notes, and software errata from PSoC 1
landing Page.
Best Practices
This
section
presents
best
practices
and
recommendations for some of the important sections in
the PSoC device and the IDE.
CPU and
Clocks
Explore Other Resources
Digital
Blocks

Latest releases of PSoC Designer software
Analog
Blocks

An online technical support system
Firmware
GPIOs
Flash
User forums enabling free information exchange
between Cypress PSoC users
CPU and Clocks
Knowledge base articles
Application notes
Technical Reference Manuals
You can also refer to www.cypress.com/support for more
details.
www.cypress.com
Debug and Test
CPU Clock Speed Considerations
Maximum CPU clock frequency limit is depended on the
operating voltage (VDD). Figure 2 shows the operating
region of CY8C29x66 device (CPU clock frequency Vs
VDD). If the required CPU clock frequency is greater than
24 MHz, VDD should always be between 4.75 V to 5.25 V.
For 12 MHz and lower CPU frequencies, VDD can be as
low as 3.0 V. For similar graph for other PSoC 1 devices,
refer device datasheets.
Document No. 001-40401 Rev. *E
2
®
PSoC 1 Best Practices and Recommendations
If there are chances of VDD getting below 4.75 V, operate
the CPU with 12 MHz clock or below.
Figure 2. CPU Frequency Vs VDD
As Figure 3 shows, PWM8_1 output is routed to broadcast
bus 0, which is taken by PWM8_2 as clock input.
Broadcast bus 0 and bus 1 are connected to facilitate
signal routing to PWM8_3 which is placed in next row.
Figure 3. Broadcast Bus
External Clock as SYSCLK Source
When an external clock source is used as a source for
SysClk (system clock), ensure that –

Clock is glitch free; there is no glitch protection in
PSoC 1 for external clock. The duty cycle / pulse
width (high and low) of the external clock should
adhere to the external clock specifications given in the
device datasheet.

IMO is always enabled; reserved bit OSC_CR2[1]
should always be 0.
These two conditions are necessary for proper operation
of the device when using an external clock.
Global Bus Clock Rate Limitations
The Global Input and Global Output busses are not
guaranteed to operate properly above 12 MHz. This
includes pulses at a width equivalent to 12 MHz. Beware
of digital blocks configured as timers, counters or PWMs
with a terminal count (TC) output. The TC output is simply
the input clock gated to the output. Therefore, if a timer
has 48 MHz as the clock source, the TC output is a single
pulse from the 48 MHz clock, and must not be routed to a
Global Output bus.
Clock Routing
In the PSoC device, there is a broadcast bus for each
digital block row. Any block in a row can take the input
from its broadcast bus or connect the output line. A
broadcast bus can also take input from the broadcast bus
of another row.
www.cypress.com
Digital Clocks
In most of the PSoC device families, there are several
clock sources derived from system clock – VC1, VC2 and
VC3. It is always recommended to judiciously configure
these sources (configured in global resources of PSoC
Designer) so as to eliminate use of digital blocks for
generating particular clock frequencies. This is particularly
useful for configuring communication user modules such
as UART and SPI.
For more details on Clocks, you can refer Application Note
Clocks and Global Resources – AN32200.
Digital Blocks
User Module Clock Limitations
Digital blocks have the following clocking limitations:

Counter user modules that use the enable function
cannot operate above 24 MHz.

Timer user modules that use the capture function
cannot operate above 24 MHz.

The CRC user module cannot operate above 24 MHz.
Digital-block based serial communication
modules cannot operate above 24 MHz.
user
Note Legacy PSoC users (25/26xxx parts) refer to
Appendix A for additional information.
Document No. 001-40401 Rev. *E
3
®
PSoC 1 Best Practices and Recommendations
N+1 Based Digital Clocks
All timing parameters (period and pulse width) for digital
user modules are n+1 values. Therefore, the value
entered as the parameter or passed to software APIs must
be 1 less than the desired value. This is rooted in the fact
that the counter and timers count down to zero.
Figure 5. ADC Analog Column Clock Selection
F a l s e “ S t a r t s ” w i t h U AR T s
Before the UART or RX8 user modules are started, it is
important to ensure that the RxD line is in the mark state
(1). The UART start bit detector is level sensitive.
Therefore, if it is started with a 0 on the input, it repeatedly
detects start bits with data of 0x00 (and detect a framing
error) until the input is set to 1.
SPI ~SS Enable
When set to mode 0 or mode 1, the SPI slave requires the
SS_ signal to be toggled at least once to correctly receive
data. For modes 2 and 3, the ~SS signal does not need to
be toggled and can be tied low. For details of SPI
communication, you can refer application note Getting
Started with SPI in PSoC® 1 – AN51234.
Analog Blocks
Clocking Multi-Block User Modules
Some multi-block user modules require individual input
clocks to be set to the same clock source. A specific
example is the ADCINC. The ADCINC requires that the
same clock be routed to the user module’s analog block
and to the digital blocks associated with the ADCINC.
The clock for the digital blocks is selected in the User
Module Parameters (see Figure 4) and the clock for the
analog block is set as the analog column clock (Figure 5).
This requirement is called out in the user module data
sheet, but is sometimes overlooked.
An a l o g C o l u m n C l o c k S p e e d
The maximum analog column clock frequency can be
8 MHz. Review each analog user module data sheet to
make sure that the analog column clock selection meets
the clock requirements for the user module. A very fast
clock frequency can result in the internal capacitors not
fully charging and a very slow clock frequency can result
in a voltage droop on the capacitor.
The faster the clock to an analog block, the higher the
power setting must be. The power setting affects the drive
current limit for the operational amplifier inside the analog
block. With a higher drive current, the capacitors are
charged more quickly and the clock frequency is higher.
Figure 4. ADC Digital Block Clock Selection
An a l o g O u t p u t B u f f e r s
When routing analog outputs make sure that the output
buffer associated with the analog column is turned on. To
do this, click the symbol for the analog output buffer at the
bottom of the Module Placement view of PSoC Designer
(see Figure 6).
Figure 6. Enabling analog output buffer 0
www.cypress.com
Document No. 001-40401 Rev. *E
4
®
PSoC 1 Best Practices and Recommendations
An a l o g P o w e r S e t t i n g
The power setting for the analog references must be set to
the highest power setting used in the placed analog user
modules (see Figure 7). For example, if there are two
PGAs set to low power and a DAC set to high power, then
the reference setting selected should be “SC On/Ref
High.” The number of user modules does not impact the
power setting because the issue is not total current
supplied, but rather the charging rate of the switched
capacitors. The capacitor must be fully charged or
discharged at the time the switch is closed.
Figure 7. Setting the Analog Reference Power
D AC C l o c k R a t e s a n d R i p p l e
If a ripple is observed on the output of a DAC, it is possible
that the clock for the analog column in which the DAC is
placed is either too fast or too slow. A clock that is too fast
causes the capacitors in the block to not fully charge, and
a clock that is too slow can cause the voltage on the caps
to droop. See the DAC User Module Data Sheet for the
limitations of the clock rates.
For more on the analog section, you can refer following
application notes:
GPIOs
Pin Types
There are eight types of configurable pins in the
21/22/24/27/28/29xxx PSoC families:
-
Digital I/O Only – These pins are the most plentiful
and all other configurable pins can become digital
I/O pins. The digital I/O pins are connected to the
Global Input and Global Output busses. They can
also act as GPIO (General Purpose Input Output)
pins by using the StdCPU configuration.
-
Digital I/O or Analog Input – These pins can act as
digital I/O pins or can be connected to the analog
input muxes.
-
Digital I/O or Analog I/O – These pins can act as
digital I/O pins, analog inputs, or analog outputs.
These should be used last among the choices for
analog inputs. The number of pins available for
analog output is less than that for analog inputs and
should be valued.
-
Digital I/O or Direct Analog Input – These pins can
act as digital I/O pins or as inputs directly into
switched capacitor (SC) analog blocks. These inputs
do not route through the analog muxes but route
directly to specific SC analog blocks. These
connections can be used to get additional analog
inputs, or can be used to bypass the continuous time
analog blocks.
-
Digital I/O or External Reference – These pins can
act as digital I/O pins or can be used as inputs for an
external AGND reference voltage, and for an
external VREF reference voltage. These external
references provide added flexibility for analog
designs.
-
Digital I/O or I2C – These pins can act as digital I/O
pins or can be used for I2C communication. These
pins are the preferred location for I2C connection
2
because the alternate I C pins are also used for
ISSP
programming,
which
without
proper
precautions can interfere with I2C communication.
-
Digital I/O or External System Clock – These pins
are used as digital I/O pins or can be used as the
input from an external clock source (EXTCLK). The
external clock sources the CPU system clock and all
other external and internal signals are synchronized
to this signal.
-
Digital I/O, External Crystal I/O or Alternate I2C –
These pins can act as digital I/O pins, used to
connect a 32.678 kHz crystal to the External Crystal
Oscillator (ECO), or can be used as alternate I2C
communication pins in PSoC 1. The ECO is used to
generate a highly accurate timing source. These pins
are also used for ISSP programming.
PSoC® 1 Selecting Analog Ground and Reference –
AN2219
PSoC® 1 Using Correlated Double Sampling to Reduce
Offset, Drift and Low Frequency Noise – AN2226.
www.cypress.com
Document No. 001-40401 Rev. *E
5
®
PSoC 1 Best Practices and Recommendations
Table 1 lists the port and pin numbers and the available
functionality and suggested order of allocation for the
22/24/27/28/29xxx family of parts.
CY8C27xxx,
I2C comm
Ext. Crystal
Dir Analog In
External Ref.
Digital I/O
Analog In
Analog Out
Table 1.
CY8C22xxx,
CY8C24xxx,
CY8C28xxx, and CY8C29xxx Pin Types
Port1[2:3]
Port1[6]
Port2[5]
Port2[7]
Port3[0:7]
Port4[0:7]
Port5[0:3]
Port1[4]
Port1[5]
Port1[7]
Digital I/O only, use these pins first
for GPIO, Global In and Global Out
signals.
Digital I/O or External System Clock
Digital I/O or I2C
Port0[0:1]
Port0[6:7]
Digital I/O or Analog Input, use these
analog in's first
Port0[2:5]
Port2[0:3]
Digital I/O or Analog I/O
Port2[4]
Port2[6]
Port1[0:1]
Digital I/O or Direct Analog Inputs
Digital I/O or External references
Digital I/O, External Crystal
connection or alternate I2C
P i n Al l o c a t i o n B e s t P r a c t i c e s
The best approach for allocating pins is to first assign
analog pins to functions that require their use. After the
analog pins have been allocated, assign digital functions
to pins that are digital I/O only. Pins with multiple functions
must be allocated as digital pins last, so they can be used
for extra functions if there is an additional requirement
later in the design.
GPIO Interrupts
The interrupt request signals for all GPIO pins are ORed
together to create one GPIO interrupt signal. This can lead
to some unexpected behavior. The interrupt controller
generates an interrupt when it detects a rising edge on the
GPIO interrupt signal. The interrupt request signal for each
pin uses combinatorial logic and can output a constant
high if the input to the pin matches the interrupt case.
Because the interrupt request signals of all the pins are
ORed together, a continuous interrupt request from one
pin can mask an interrupt request from anther pin. The
most common case is when a pin that is set to detect a
rising edge interrupt has a signal that goes high and stays
high. In this case, no future GPIO interrupts are
recognized. The equivalent condition can occur with falling
edge interrupts and a signal that stays low. A less obvious
condition can occur when one GPIO pin has a signal that
goes high and a second GPIO pin’s signal goes high
before the first one goes low. In this case, the overlapping
high on the first pin blocks the second pin’s interrupt from
being recognized.
One obvious solution is to make sure that signals that
generate interrupts do not remain at a level that blocks
interrupts. Another workaround is to use the Change-fromPrevious-Read interrupt selection and read the pin in the
ISR. Reading the pin changes the interrupt level. If this is
done, then extra interrupts from the opposite edge of the
signal must be ignored.
Another less obvious workaround is to route signals to
unused digital blocks and analog comparator buses to
generate interrupts. The digital block can be configured as
a timer with a period of 0. With its interrupt enabled, it
generates an interrupt on each rising edge.
An analog CT block can be loaded with a comparator and
routed to the analog comparator bus, which can be used
to generate an interrupt.
Flash
E C O P i n D r i ve M o d e s
The drive modes for the crystal oscillator pins must be set
to High Z if the ECO is used.
For more on GPIOs of PSoC 1, you can refer application
note PSoC® 1 Getting Started with GPIO – AN2094.
www.cypress.com
Endurance
Flash Endurance is measured in terms of the maximum
write/erase cycles guaranteed for the flash memory.
Endurance of PSoC 1 flash is limited to 50K cycles. It
should be ensured in the system that the number of flash
writes, occurring in a particular block, should be less than
50K. If there is a possibility of exceeding 50K write cycles,
it is recommended to switch over to a different flash block
when the cycle count reaches 50K. User needs to
maintain a counter which needs to be stored in the flash
block along with other data, to retain the cycle count
information even if the device power is turned off.
Document No. 001-40401 Rev. *E
6
®
PSoC 1 Best Practices and Recommendations
Voltage Setting
PSoC 1 device uses calibration values stored in hidden
flash memory to calculate the pulse width for writing the
data into flash. The pulse width is depended on voltage
setting, temperature and the device characteristics itself.
Pulse width is more if voltage is less and temperature is
more and vice versa. PSoC device doesn’t measure the
VDD voltage for calculating the pulse width. It needs to be
set during project stage itself. PSoC Designer has a
setting related to VDD in Global Resources.
It is recommended that the LVD threshold is as close to
the VDD as possible. On LVD interrupt, CPU is halted.
Halt instruction is written in vector table which can be
found in boot.asm file. LVD interrupt is enabled by writing
'1' into bit 0 of INT_MSK0 register.
Several options are provided in the Power Setting
depending on the device selected. User needs to select
the setting depending on the voltage VDD in the system.
POR setting
PSoC 1 device gets reset if VDD drops below a particular
voltage known as POR (power on reset) voltage. The code
located in boot.asm (an automatically generated file)
properly sets the correct POR level based on the CPU’s
operating frequency and the VDD. For example, the POR
level is set to 4.55 V when CPU clock is set to 24 MHz and
VDD to 5.0 V. Please refer device datasheets for POR
levels for other voltage and CPU clock settings It is
possible to change the POR level in firmware, but it is not
recommended.
VDD Ramp
If the VDD ramp is slower, then it is recommended not to
initiate flash write in the beginning of main.c. Provide
sufficient delay in the beginning of main.c to allow supply
voltage to stabilize and then initiate flash write. Boot.asm
code and device POR circuit will, however, block the entry
to main.c till supply reaches POR voltage by causing
multiple device resets. User must avoid the flash write till
voltage ramps from POR level to the final value. This is
important as a lower voltage flash programming can cause
retention problems.
L ow V o l t a g e D e t e c t (L V D) i n t e r r u p t
PSoC 1 has LVD circuitry which halts the CPU when
voltage drops below the circuitry. This helps to avoid low
voltage flash programming and wrong CPU execution.
VDD threshold for LVD interrupt can be set in PSoC
Designer using “Trip Voltage” setting in Global Resources.
www.cypress.com
Flash Security setting
Four security modes are provided for flash. Full protection
mode (W) should be put for the flash blocks which are not
written during run time. This is to avoid unintentional
writes, resulting in program corruption.
Firmware
This section is focused on the basics of placing and
configuring user modules. It also discusses issues with
user module parameterization and Global Resources
settings, which are usually set at the same time as user
modules are placed.
Initial User Module Parameter Selection
It is recommended that an initial value be chosen for all
parameters associated with a user module. Even if
particular parameters don’t seem to apply (for example:
the Interrupt Type in a Counter8 that is not using
interrupts), or if parameters are later established using
software APIs, the parameter should be set to something
other than the initial “?” value set by PSoC Designer.
All Global Resources should be reviewed, understood,
and configured in a manner that makes sense in the
context of the project.
Design Rule Checker (DRC)
PSoC Designer provides a DRC tool that should be run to
check for common placement and configuration mistakes.
G e n e r a t e d C o d e C o n ve n t i o n s
A number of software conventions are followed in the code
generated by the PSoC Designer tools. These are
summarized in this section.
Document No. 001-40401 Rev. *E
7
®
PSoC 1 Best Practices and Recommendations
Register vs. Memory Access in Assembly
A fairly common mistake when accessing a register in
assembly is to use the memory mnemonic instead of the
register mnemonic. When accessing the INT_MSK0
register, for example, the following instruction should be
used:
mov A, reg[INT_MSK0]
Therefore, Bank 0 is selected at the beginning of an ISR.
When RETI is executed to return from the interrupt, the
Flag register is restored by popping it off the stack, which
restores the register bank selection to the state before the
interrupt was processed.
When changing Register banks, selection should be done
through the M8C_SetBank0 and M8C_SetBank1 macros
provided by Cypress in m8c.inc and m8c.h.
It is easy to accidentally type the following instead:
mov A, [INT_MSK0]
Both instructions compile without error. The difference is
that the first command loads A with the content of the
register at address 0xE0, whereas the second instruction
loads A with the content of the memory at 0xE0.
Register Bank Selection
The PSoC 1 I/O registers are located in two different
address banks. The design of the PSoC 1 intentionally
places registers that might commonly be modified during
operation in Register Bank 0. However, it is sometimes
necessary to access registers in Register Bank 1.
Because it takes time and code space to continually
switch banks for each register access, Cypress follows a
convention aimed at reducing the number of required bank
switches. User module APIs, library functions, and C code
generated by PSoC Designer assume that Register Bank
0 is selected when functions are called and leave Register
Bank 0 selected when the function is exited.
For this coding convention to work, programs that call
Cypress APIs and Library functions must guarantee that
Register Bank 0 is selected before they are called. You
can ensure this by following the same convention and
immediately setting the Register Bank back to 0 after
every Register Bank 1 access.
The C compilers that accompany PSoC Designer use the
address of the register to determine in which bank that
register is located. The register definitions found in m8c.h
have 0x100 added to the address for all Bank 1 registers.
Because there are only 256 addresses per bank, the C
compiler drops the 0x100 from the addresses and
generates the correct address for the register. But the
0x100 tells the compiler that it is a Bank 1 register and
before accessing the register, the compiler automatically
switches to Bank 1 and switches back to Bank 0 after the
access. Therefore, it is not necessary to switch banks
when writing in C.
Interrupt Service Routines (ISRs) automatically follow this
convention because of the nature of the interrupt
hardware. The bit that controls the register bank selection
is contained in the Flag register. When an interrupt is
serviced, the content of the Flag register is pushed on the
stack and the register is cleared. Clearing the Flag register
selects Register Bank 0.
www.cypress.com
Address Equates in M8C.INC and M8C.H
An include file for assembly language programming and a
header file for C programming are provided by PSoC
Designer. They provide equates for all the register
addresses. Common mask values and some system
macros are also provided. These assignments should be
used whenever possible. The M8C files also contain
macros that should be used.
CPU Register Contents
The CPU registers A and X should be treated as volatile
and may not contain the same value after a function call
as it did before the call. It is the responsibility of the
designer to preserve any important register contents
through a call to an API or library function. Any register
may be changed within an API or library function and the
designer should not assume that the contrary is true.
In fact, even if A and/or X are currently preserved through
a function call, there is no guarantee that they will continue
to be preserved in future versions of the function that are
distributed as part of PSoC Designer.
Because the A and X registers are volatile, they are not
pushed and popped within a standard assembly function
(however, they need to be pushed and popped if they are
used within an ISR). This leads to more efficient code.
The A and X registers are only pushed and popped (by the
designer’s code) if they need to be preserved, rather than
pushing and popping every time.
Reserved and Unused bits
In some of the PSoC 1 control registers there are bits that
have reserved values or are unused. When writing to
registers that contain reserved or unused bits, the value of
those bits should be set to 0. This enables the designer’s
code to be backward compatible. Cypress internal best
practices are to designate the default state of any new
function or feature that currently use reserved bits to be 0.
This is a design goal, and not a guarantee of future
implementations, but it should be assumed to be true
when dealing with reserved or unused bits.
Currently, all reserved bits read 0, so read-modify-write
functions should use the following masks when dealing
with reserved or unused bits.

XOR – use 0 in the reserved bit position
Document No. 001-40401 Rev. *E
8
®
PSoC 1 Best Practices and Recommendations

OR – use 0 in the reserved bit position
TST – use 0 in the reserved bit position
AND – use 1 in the reserved bit position
The AND mask setting may be unexpected. The initial
state of the bit is 0, so ANDing it with 1 results in 0.
However, if a new feature is added and the designer
wants to take advantage of the new feature, making it a 1
in the AND mask enables the bit to stay on when the AND
is executed. The designer does not have to hunt down all
the places where the register is being ANDed.
All Char are Unsigned in PSoC Designer
PSoC Designer’s C compiler defines “char” as “unsigned
char.” This is opposed to some other conventions like
Microsoft C, and can confuse first time PSoC users.
User Module Start Functions are Required
All user module APIs include a _Start function. The
usermodulename_Start() API function must be called
to start the PSoC 1 blocks used by the user module.
Analog user modules must be called with a power setting
passed to the Start function.
User Module Starting Sequence
It is recommended that user modules connected in a chain
of functions have the user module at the end of the chain
started first and the user module at the start of the chain
started last. This leads to more predictable behavior.
This is a requirement for a chain of user modules that use
the 48 MHz clock (SysClk *2) as the source for the first
block in the chain.
Interrupt Latency
When using interrupts, interrupt latency (the time from an
event that triggers an interrupt to when the code in the ISR
starts execution), is a factor that must be looked at
carefully.
The interrupt latency for PSoC 1 is made of three
components; interrupt recognition, instruction completion,
and interrupt response.
Interrupt Recognition: Interrupts are not recognized
when globally disabled (M8C_DisableGInt). All interrupts
that occur when Global Interrupts are disabled, are
queued up as pending interrupts and the highest priority
interrupt is serviced first when interrupts are globally
enabled (M8C_EnableGInt). Therefore, if the foreground
program disables interrupts for a period of time, this time
adds to the interrupt latency. Interrupts are also
automatically disabled within interrupt routines. So, any
time spent in interrupt routines adds to interrupt latency.
(M8C_EnableGInt can be used within an interrupt routine
to decrease latency if the design enables it).
www.cypress.com
Instruction Completion: When an interrupt occurs, the
instruction currently being executed is completed before
the interrupt is serviced. The longest instruction in the
PSoC 1 instruction set is 13 CPU cycles. If an interrupt
occurs just as one such instruction began execution,
12+ CPU cycles are added to the interrupt latency.
Because you cannot tell when an interrupt occurs,
consider the worst-case instruction when reviewing
interrupt latency.
Interrupt Response: The time to “execute” the interrupt is
13 CPU clocks. After 13 CPU clocks, the program is at the
interrupt vector in boot.asm where a LJMP instruction
(7 CPU clocks) takes control to the ISR. This results in a
total of 20 CPU clocks to reach the ISR where the
designer’s code is located.
If interrupts occur at a rate that is faster than the interrupts
can be serviced, no foreground instructions are executed.
This is because global interrupts are enabled by the RETI
instruction and the next interrupt is serviced when the
RETI instruction has been completed.
Because the timing of the interrupt enables and disables,
enabling global interrupts and immediately disabling
interrupts results in only the highest priority interrupt being
executed. However, if an instruction is inserted between
the enable and disable, it results in all pending interrupts
being serviced.
Interrupt Errata
There are two conditions associated with interrupts that
can lead to unexpected resets. Both conditions are
through the same mechanism.
Clearing pending interrupts by writing to the INT_VC
register, just as an interrupt occurs, results in the interrupt
process being started. But when it is time to jump to the
interrupt vector, it is zero (the boot vector) because the
INT_VC register now contains 0x00.
The other case is when an individual interrupt is disabled
just as that interrupt occurs and there are no other
pending interrupts. This too, results in the interrupt
process being started with 0x00 in the INT_VC register.
Both these cases are listed in the Silicon Errata document.
The second case is avoided by using the macro provided
in M8C.inc and M8C.h to disable individual interrupts. The
macro contains a workaround.
Changing boot.asm through boot.tpl
There are times when boot.asm must be modified.
Cypress’s goal is to architect PSoC Designer so that users
do not have to edit boot.asm. But in some cases it cannot
be avoided. If boot.asm must be edited, it is important to
know that boot.asm is a generated file that is overwritten
every time “Generate Application” is executed. The
boot.asm file is generated from a template called boot.tpl.
Therefore, it is necessary to edit boot.tpl when changes to
boot.asm are wanted.
Document No. 001-40401 Rev. *E
9
®
PSoC 1 Best Practices and Recommendations
Ar c h i vi n g P r o j e c t s
When a project is completed, it is common to archive the
source files. With PSoC Designer, it is important to also
archive the version of PSoC Designer used to create the
project. Each new version of PSoC Designer can have
changes in the template files, user modules, and in the
compiler. All these prevent recreating the original project if
that is needed.
Dynamic Reconfiguration
When using the dynamic reconfiguration capability of
PSoC Designer, it is important to stop all the user modules
in a configuration before it is unloaded. In the process of
unloading a configuration, unexpected conditions and/or
glitches could occur, as different parts of the configuration
are unloaded. It is also recommended to globally disable
interrupts (M8C_DisableGInt) before unloading a
configuration.
There are a number of ways to check the ADC data in the
Debugger. One way is to store data in an array so that
multiple samples can be viewed at once. Another way is to
make a loop to collect multiple samples per loop and then
halt outside that loop. This causes the most recent data to
be “good” and the corrupted data to not be seen. A third
method is to use Events to halt every other time an
address is executed. This is the same as looping multiple
times, but does not require the project code to be
changed. This condition holds true for all the ADC User
Modules in PSoC Designer.
Missed Break Points
If there is a breakpoint in the foreground code of a
program and it is not hit by the Debugger (even though
there are no branches and it appears that there is no way
to miss it), then it is possible that there is a problem with
interrupts. If there is an ISR that takes too long to execute,
then there is likely another interrupt pending before the
ISR has been completed. In this case, the CPU would
spend all its time in the ISR and will not execute any
foreground code.
Watch Dog Timer (WDT) Duration
The Watch Dog Timer duration is not three times the
Sleep Timer period. The WDT times out after the Sleep
Timer reaches Terminal Count three times between WDT
refreshes. This means, that if the WDT is refreshed just
one 32 k clock tick before the Sleep Timer reaches TC,
then the WDT can expire two sleep periods plus one 32 k
clock period later. This must be taken into account when
designing with the WDT. If the period of the Sleep Timer is
not critical (for example, there is no real time clock running
from the Sleep Timer), then use the ClearWDTandSleep
function to refresh the WDT. This results in some Sleep
Timer periods being shortened, but also results in the
WDT duration at three times the Sleep Timer period.

Set VC1 and VC2 both to 16 if they are not used. If
they are used, set them to the largest values that can
be used, starting with VC1.
Debug and Test

Set the CPU clock speed as slow as possible for the
project. From experience, 3 MHz seems to be the
speed where the most benefit is found. Going slower
than 3 MHz does not save as much power as
changing from 6 MHz to 3 MHz.

Be sure not to let the analog output buffers float. The
analog output buffers (P0[2], P0[3], P0[4] and P0[5])
should not be enabled without a source to drive them.
If this is done, it can lead to a large current drain (10s
of milliamps).
P ow e r S e t t i n g s f o r An a l o g U s e r M o d u l e s
For analog user modules, begin testing by setting them to
Full_Power. After the initial functionality is confirmed,
changes can be made to reduce power consumption, if
needed, and the performance compared. This helps avoid
dealing with the effects of an underpowered user module
when first bringing the project up.
H a l t i n g AD C s d u r i n g D e b u g
Halting the PSoC 1 in the Debugger stops the M8C CPU.
It does not stop the digital clocks and it does not “pause”
the analog. Therefore, when “Run” is pressed, the state of
the user modules may be unpredictable. A specific case of
this is the ADCINC. When the CPU is halted, the counter
(which accumulates data from that analog portion)
continues to run. This means that when the Debugger is
started again, the counter probably rolled over many times
and contains numbers that are not related to the input to
the ADC. Therefore, if a designer halts the CPU every
time through a loop that collects ADC data, then that data
gets corrupted.
www.cypress.com
Control Register Writes
If writing to a Control register does not seem to have the
expected effect, make sure that the correct bank is
selected at the time the register write occurs.
Reducing Pow er Use
A few simple things can be done to reduce power
consumption, as described below:
Common Mistakes
Remember these points to avoid some simple mistakes:

VC1 divides the 24 MHz clock, not the CPU clock.
VC1 and VC2 do not have 50 percent duty cycle
outputs. The outputs are pulses that are half cycles
from the 24 MHz clock.
Document No. 001-40401 Rev. *E
10
®
PSoC 1 Best Practices and Recommendations

Supervisor calls use RAM locations 0xF8-0xFF.
Therefore, if supervisor functions are used
(FlashWriteBlock and the E2PROM User Module use
supervisor functions), those memory locations must
be left unused.
The ICE can only supply 5 V power. If 3.3 V is
needed, then the power must be supplied from the
target board.
The C compiler generates big endian code – the Most
Significant Byte (MSB) comes first in RAM.
In the loadable configurations for dynamic
reconfiguration, each overlay must contain the items
that are different from the base configuration. PSoC
Designer generates load and unload routines based
on the differences between the configuration and the
base configuration.
ClockSync parameter in Digital block based user
modules should be configured with a clock whose
frequency is at least double as compared to clock
input to the digital block. Use SysClk Direct option
overrides the setting for Clock source and instead
uses SysClk directly as the input clock to the user
module.
www.cypress.com
Summary
This application note provided guidelines to avoid the
issues and to simplify creation and debugging of PSoC
Designer projects.
Related Application Notes
Getting Started with PSoC® 1 – AN75320
PSoC® 1 Getting Started with GPIO – AN2094
PSoC® 1 Interrupts – AN90833
PSoC® Designer Boot Process, from Reset to Main –
AN73617
®
Debugging with PSoC 1 – AN73212
About the Author
Name:
Jeffrey Dahlin
Title:
Applications Engineer Principal
Name:
Rajiv Vasanth Badiger
Title:
Applications Engineer Staff
Document No. 001-40401 Rev. *E
11
®
PSoC 1 Best Practices and Recommendations
Appendix A
This appendix contains all relevant information from this document that pertains to the legacy 25/26xxx PSoC 1 parts.
Although the 25/26xxx PSoC part family is now obsolete, the information contained in this appendix may prove useful for
designers still using this part.
User Module Clock Limitations
In addition to the user module clock limitations listed previously in this document, Digital blocks in the legacy 25xxx/26xxx
PSoC family of parts have additional limitations on their maximum clock frequencies:

User modules greater than 16 bits in length have a maximum frequency of 24 MHz.
At 3.3 V, the maximum digital block frequency is also 24 MHz.
Clock Routing
Unlike the 22/24/27/29xxx part families, which have a broadcast bus for each digital block row, the legacy 25/26xxx parts only
have Digital Block DCA03 as a broadcast block that can be used as a clock source for any of the other blocks.
P i n Al l o c a t i o n
In the legacy 25xxx/26xxx PSoC family of parts, there are fewer pin types and configuration options, as shown in Table 2.
Ext. Crystal
Dir Analog In
External Ref.
Digital I/O
Analog In
Analog Out
Table 2. CY8C25xxx and CY8C26xxx Pin Types
Port1[2:7]
Port2[5]
Port2[7]
Port3[0:7]
Digital I/O only, use these pins first
for GPIO, Global In and Global Out
signals.
Port4[0:7]
Port5[0:3]
Port0[0:1]
Port0[6:7]
Port0[2:5]
Digital I/O or Analog Input, use these
analog in's first
Digital I/O or Analog I/O
Port2[0:3]
Digital I/O or Direct Analog Inputs
Port2[4]
Port2[6]
Digital I/O or External references
Port1[0:1]
www.cypress.com
Digital I/O or External Crystal
connection
Document No. 001-40401 Rev. *E
12
®
PSoC 1 Best Practices and Recommendations
Document History
Document Title: PSoC® 1 Best Practices and Recommendations - AN2010
Document Number: 001-40401
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
1532004
JVY
10/02/07
1. New publication of existing application note.
*A
2642011
JVY
01/21/09
1. Added Appendix A
2. Added CY8C25xxx and CY8C26xxx Pin Table
3. Removed CY8C25xxx and CY8C26xxx and added CY8C29xxx in Associated
Part Family
*B
3172764
GIR
02/14/11
1. Updated title.
2. Updated abstract.
3. Extensive formatting and content update throughout every section of the
document.
*C
3232507
GIR
04/18/11
1. Added associated application notes
2. Minor template updates
3. Minor updates in Register Bank Selection, and Changing boot.asm through
boot.tpl section
*D
3276246
GIR
06/07/11
No change.
*E
4463968
RJVB
08/02/2014
Categorized the sections.
Added section on flash.
Updated Summary.
Updated in new template.
Completing Sunset Review.
www.cypress.com
Document No. 001-40401 Rev. *E
13
®
PSoC 1 Best Practices and Recommendations
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
Products
PSoC® Solutions
Automotive
cypress.com/go/automotive
Clocks & Buffers
cypress.com/go/clocks
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
cypress.com/go/plc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
Technical Support
USB Controllers
cypress.com/go/usb
cypress.com/go/support
Wireless/RF
cypress.com/go/wireless
psoc.cypress.com/solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Community | Forums | Blogs | Video | Training
PSoC is a registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2007-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-40401 Rev. *E
14

				

 Open as PDF

 	Similar pages
	

										AN75320 Getting Started with PSoC® 1.pdf

	

										V - Cypress

	

										CYPRESS CY8C24094

	

										AN73617 PSoC Designer Boot Process, from Reset to Main.pdf

	

										AN47310 PSoC 1 Power Savings Using Sleep Mode.pdf

	

										AN2155 PSoC EMI Design Considerations.pdf

	

										CYPRESS CY8C24633

	

										AN2226 PSoC 1 - Using Correlated Double Sampling to Reduce Offset, Drift, and Low Frequency Noise.pdf

	

										AN56384 PSoC 1 Segment LCD Direct Drive.pdf

	

										AN2219 PSoC 1 Selecting Analog Ground and Reference.pdf

	

										AN52927 PSoC 3 and PSoC 5LP - Segment LCD Direct Drive.pdf

	

										CYPRESS CY8C24633_12

	

										CY8C24894-A:Automotive PSoC® Programmable System-on-Chip™

	

										AN90833 PSoC 1 Interrupts.pdf

	

										AN2094 PSoC® 1 Getting Started with GPIO (Japanese).pdf

	

										CY8C24094, CY8C24794, CY8C24894, CY8C24994:PSoC® Programmable System-on-Chip™

	

										AN2094 PSoC® 1 Getting Started with GPIO.pdf

	

										AN13666 PSoC 1 Driving Analog Buffer Output to the Rail.pdf

	

										AN60639 PSoC® 1 Piezo Keypad Implementation.pdf

	

										MR10086

	

										AN2034 PSoC 1 - Reading Matrix and Common Bus Keypads.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

