

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN73617 PSoC Designer Boot Process, from Reset to Main.pdf

		
				 AN73617
PSoC® Designer Boot Process, from Reset to Main
Author: Chris Keeser
Associated Project: No
Associated Part Family: 29x66, 28xxx, 27x43, 24x94, 24x23A, 22x45, 21x45, 21x43, 21x23, 20xxx
®
Software Version: PSoC Designer™ 5.4
Related Application Notes: For a complete list of the application notes, click here.
®
AN73617 describes the PSoC Designer initialization process of PSoC 1, from the release of reset to the start of C code
execution in main. The application note includes instructions on how to modify the interrupt vector table to execute
custom interrupt service routines.
Contents
Introduction ...2
Boot Process Overview ...2
Boot Process Details ...4
Reset (Four Scenarios) [1] ..4
IPOR (Device Power-up) ..4
PPOR (Power Brownout Detect)4
XRES (External Reset) ...4
WDR (Watchdog Reset) ...5
SROM Boot [2] ..5
Execution Begins at 0x0000 [3] ...5
Interrupt Vector Table..5
Start of Execution ..5
Switch Mode Pump (SMP) Initialization [4]........................5
Related Configuration Options6
FLASH Bank Initialization [5] ..6
Watchdog Enable [6] ...6
Related Configuration Options6
Unlock / Lock ECO Operation [7]6
Related Configuration Options6
Trim the IMO and VBG Based on the Selected Operating
Condition and Enable AGndBypass [8]7
Related Configuration Options7
www.cypress.com
Initialize the 32-kHz Xtal [9] ... 7
Related Configuration Options 7
PLL Lock [10] .. 7
Related Configuration Options 8
External Clock Pin Configuration [11] 8
Related Configuration Options 8
Close the CT Leakage Path [12] 8
Large Memory Model Initialization [13].............................. 8
Related Configuration Options 8
Load the Base Device Configuration [14] 9
Related Configuration Options 9
Initialize the C Run-Time Environment [15] 9
Voltage Stabilization for the SMP [16] 9
Related Configuration Options 9
Set the Power-On Reset (POR) Level [17] 10
Related Configuration Options 10
Wrap Up and Invoke Main [18] [19] 10
Glossary of Terms ... 11
Summary ... 12
Related Application Notes ... 12
Appendix: Example Boot.asm for CY8C29xxx Devices .. 13
Worldwide Sales and Design Support 27
Document No. 001-73617 Rev. *B
1
PSoC® Designer Boot Process, from Reset to Main
Introduction
Because PSoC 1 offers billions of configuration options,
the PSoC device must be properly initialized after reset to
fulfill its potential. The PSoC Designer boot process
performs these necessary initialization tasks before
entering main to provide an optimal working environment.
This application note explains the device initialization
procedure, but this document is not required reading for
users of PSoC 1 or the PSoC Designer integrated
development environment (IDE). The information is for
users seeking a deeper understanding of PSoC and
PSoC Designer initialization before main is executed.
Most of this application note applies to all PSoC 1 device
families, with allowances for small variations between
device capabilities. Examples of such differences include
devices with only 256 bytes of RAM, devices with USB, or
devices without a switch mode pump. Boot time cannot be
specified because it varies depending on the device family
and PSoC Designer project configuration.
Boot Process Overview
Figure 1 shows the sequence of events before the boot
process is initiated. The reset system holds the device in
reset while the power supply ramps up (IPOR Reset,
PPOR Reset). After the supply is stable, the CPU is held
in reset for an additional period depending on the reset
source (CPU Holdoff). After the CPU reset is released, the
device performs an initial hardware controlled trim of vital
systems (SROM Boot), and then instructs the CPU to start
executing code.
Figure 1. Simple Timing Diagram of Reset Behavior
SROM
Boot
www.cypress.com
Document No. 001-73617 Rev. *B
2
PSoC® Designer Boot Process, from Reset to Main
Once reset is released, the boot process can begin. For a
simplified flow chart of the process, see Figure 2.
From a high level, the boot process must perform these
key tasks:

Trim key features, such as the IMO and VBG for the
operating voltage set in Global Resources.

Wait for peripherals, such as the ECO, to stabilize
after initialization

Configure analog and digital hardware, such as
Amplifiers, ADCs, PWMs and UARTs, based on your
design settings

Prepare the device to execute C or assembly code
The rest of the application note describes the boot process
in more detail, elaborating on each step, and directing you
to related documentation.
Figure 2. Simplified Overview of Key Tasks Performed
during Boot
Reset
Trimming
Initialization and
Stabilization
Boot
Peripheral
Configuration
Code Prep
main()
www.cypress.com
Document No. 001-73617 Rev. *B
3
PSoC® Designer Boot Process, from Reset to Main
However, for all devices in the PSoC 1 family, the flow and
intent will follow the outline above.
Boot Process Details
This section divides the boot process into steps in the
order of execution. A numbered list details each step of
the boot code. The numbers of each step correspond to
information later in the app note, and to locations in an
example boot.asm file in the appendix that gives more
details of the code. An asterisk (*) indicates an optional
step and may be skipped depending on the configuration
options selected in PSoC Designer.
1.
Device reset, which has four possible sources, is
released. The device delays for a variable time after
the device reset is released and before CPU reset is
released.
2.
The hardwired supervisory ROM (SROM) code
automatically loads trim for critical systems.
3.
The CPU begins to execute code beginning at
address 0x0000.
4.
*The SMP is enabled and the desired output voltage
is set.
5.
The FLASH bank initialization is performed
6.
*The watchdog timer is enabled.
7.
The option to allow 32-kHz crystal for sleep timer is
applied.
8.
*Specific trims are loaded for the IMO and the VBG
based on the operating parameters specified in PSoC
Designer. The AGND bypass option is applied
9.
*The 32 kHz crystal is initialized, with a 1-second wait.
10. *The PLL option is initialized, with a 16-ms wait.
11. *If the external bus clock option is
initialization of external clock pin occurs.
enabled,
12. The continuous time (CT) analog block leakage path
is removed.
13. *Preparation is made for the Large Memory Model.
14. The configuration registers are loaded with the
configuration data based on the global settings and
placed user modules.
Reset (Four Scenarios) [1]
IPOR (Device Power-up)
When the device first receives power, the imprecise
power-on reset (IPOR) holds the system in reset until the
voltage reaches a level (~2.2 volts) at which the precise
1
power-on reset (PPOR) can function . The PPOR then
holds the system in reset until the voltage reaches a safe
2
3
operating value , ~2.9 volts .
After the PPOR is released, the CPU is kept in reset for
4
512 untrimmed ILO clocks . The worst-case untrimmed
5
ILO frequency is 5 kHz . As a result, the CPU can be held
in reset for a maximum of ~100 ms before it begins the
6
SROM boot process .
During this hold-off time, pins P1[0] and P1[1] change from
7
the default state of Hi-Z . These pins will toggle between
strong high (1) and resistive low (0). The pin toggles are
used to synchronize a device programmer with the PSoC
immediately after a reset event.
After the CPU reset has been deasserted, the SROM boot
function begins to execute (skip to SROM Boot).
PPOR (Power Brownout Detect)
If the device is already running and a voltage dip causes a
3
PPOR, when the PPOR releases , the CPU is held in
4
reset for 1 untrimmed ILO clock before beginning the
6
SROM boot .
After the CPU reset has been deasserted, the SROM boot
function begins to execute (skip to SROM Boot).
XRES (External Reset)
When the XRES pin is deasserted, the CPU is held in
4
reset for 8 untrimmed ILO clocks before beginning the
6
SROM boot process .
After the CPU reset has been deasserted, the SROM boot
function begins to execute (skip to SROM Boot).
15. C environment and variable initialization occurs.
16. *SMP voltage stabilization. Before enabling the
PPOR, the PSoC waits for 2 ms to ensure that the
SMP has reached the desired final voltage.
17. The PPOR voltage is set to the desired value.
18. Set the final values for the sleep timer source, sleep
timer interval, PLL mode, and CPU clock speed.
1
TRM Section 29.4.1 Power On Reset
2
TRM Section 31.1 POR and LVD
3
Refer to the device datasheet, DC Electrical Characteristics, DC
POR specification for your device’s specific PPOR release
voltage
4
19. Jump to main.
Small variations exist among the devices in the PSoC 1
family. Some devices may have a section removed or
added (that is, no SMP code for devices that do not have
an SMP, or added USB config for devices with USB).
www.cypress.com
TRM section 29.4.4 Reset Details
5
Refer to the device datasheet, AC Electrical Characteristics,
F32k_u for your device’s specific minimum untrimmed ILO
frequency
6
TRM Section 3.1.2.1 SWBootReset Function
7
TRM section 29.2.1 GPIO behavior on Power Up
Document No. 001-73617 Rev. *B
4
PSoC® Designer Boot Process, from Reset to Main
WDR (Watchdog Reset)
8
When the watchdog reset occurs , the system reset
asserts for 1 ILO clock, and then the CPU is held in reset
4
for 1 untrimmed ILO clock before beginning the SROM
6
boot .
After the CPU reset has been deasserted, the SROM boot
function begins to execute (skip to SROM Boot).
SROM Boot [2]
When the CPU reset is deasserted, the SROM function
6
SWBootReset executes, loading trim for the ECO, ILO,
IMO (5 volts), and VBG (5 volts). RAM locations in page
zero also are cleared based on table 3-4 (SRAM Map Post
SWBootReset) in the TRM under section 3.1.2.1
SWBootReset Function. The execution time of the SROM
boot is ~2.2 ms, after which the CPU begins to execute
4
code beginning at address 0x0000 .
In the majority of designs, you do not have to modify the
interrupt table directly. Typically, user modules in your
design change the table for you. However, if you want to
write your own interrupt handler, modify the interrupt
vector table to ljmp to your custom interrupt handler
code. In the ImageCraft compiler, a pragma keyword
11
identifies a function as an interrupt handler . Here is an
example of declaring a function as an interrupt handler:
#pragma interrupt_handler FooHandler
…
void FooHandler()
{
…
}
In boot.tpl, you would add an ljmp to _FooHandler
(note the underscore) at the appropriate interrupt vector
location. Let’s say you intend to handle the sleep timer
interrupt with your FooHandler:
org
64h ;Sleep Timer Interrupt Vector
ljmp _FooHandler
Execution Begins at 0x0000 [3]
reti
This is the point where PSoC Designer takes over and
begins the next phase of the boot. Code for this process
resides in boot.asm.
The compiler automatically adds a reti at the end of your
ISR function (FooHandler in this example) and handles the
stack appropriately
Note In PSoC Designer, the file boot.tpl (boot template) is
used to generate the boot.asm file whenever the project is
generated. Since boot.asm is regenerated every time the
PSoC Designer project is generated, any changes that
you want to preserve in the boot.asm file need to be made
in the boot.tpl file. If you make changes directly to
boot.asm, your changes will be lost the next time you
generate your application.
At the beginning of the executable portion of boot.asm, the
linker places a “jump to __Start” instruction at instruction
address 0x0000. The jump is needed because the
interrupt vector table begins at instruction address
0x0004. If you did not jump away, you would have only 4
bytes of memory from address 0x0000 to 0x0003 before
you need to worry about overlap with the interrupt vector
table. Once you jump away from the interrupt vector table,
you have as much room as you need for boot code.
Start of Execution
After the interrupt vector table, the linker is told to locate
“__Start” at an address away from the interrupt vector
table. At this point, device initialization begins.
Switch Mode Pump (SMP)
Initialization [4]
Out of reset, the SMP is enabled by default and maintains
a voltage of ~3 volts. If you decide not to use the SMP
through the switch mode pump configuration (Figure 3),
then the SMP is disabled here. If you use the SMP, it
remains enabled, and your desired output voltage (Figure
3) is set here. The PPOR voltage is left at its lowest trip
voltage to allow time for the SMP to stabilize.
Interrupt Vector Table
The interrupt vector table, located at the beginning of flash
9
memory , provides 4 instruction bytes for each interrupt
10
vector. This table allows different interrupt sources to
vector directly to different interrupt service routines.
8
TRM Section 12 Sleep and Watchdog
9
Refer to your device’s boot.tpl to determine the exact addresses
and the number of interrupt vectors for your device.
10
TRM Section 5 Interrupt Controller
www.cypress.com
11
C Language Compiler User Guide section 6.6 Interrupts
Document No. 001-73617 Rev. *B
5
PSoC® Designer Boot Process, from Reset to Main
Related Configuration Options
Related Configuration Options
Figure 3. Switch Mode Pump Enable and Drive Voltage
Setting
Figure 4. Watchdog Enable
FLASH Bank Initialization 12 [5]
Figure 5. Sleep Timer Configuration
For devices with more than one flash bank, the first read
from a flash bank other than bank 0 could return corrupt
the data. The initialization performs a dummy read on all
the flash banks and waits at least 5 µs for the system to
stabilize before trying to make a valid read from a bank
other than bank 0.
The boot.asm code does not explicitly wait for 5 µs when
initializing the flash banks, because the rest of boot.asm
takes significantly longer than 5 µs to execute, and all of
the instructions for boot.asm reside in bank 0 of the flash.
Watchdog Enable [6]
If you enable the watchdog timer (Figure 4), it will be
initialized here. The watchdog timer generates a system
reset if it is not “fed” before three rollover events of the
13
sleep timer . The watchdog period is determined by
setting the sleep timer period (Figure 5). To “feed” the
watchdog, write any value to the RES_WDT register. If you
write a value of 0x38 to the RES_WDT register, it will reset
both the sleep timer and the watchdog timer14 in one
instruction.
Unlock / Lock ECO Operation [7]
If the external 32-kHz option is enabled (Figure 6), this
section will write a 1 to the CPU_SCR1_ECO_ALLOWED bit
in the CPU_SCR1 register. If the Internal 32-kHz option is
selected, a 0 will be written to this bit. Writing to this bit
with either a 1 or a 0 will lock out any further writes to this
15
bit . Note that this code does not enable the ECO; the
code merely indicates to the PSoC if an external 32-kHz
crystal can be used in the system. The code is written
early in the boot process to prevent a spurious command
from accidentally enabling or disabling this feature.
Related Configuration Options
Figure 6. External 32-kHz Crystal Enable
12
This erratum applies to the CY8C29x66 parts. Check your
specific device’s errata for workarounds related to your device, if
applicable.
13
TRM Section 12.3.5 OSC_CR0 Register table 12-1 Seep
Interval Selections
14
TRM section 12.3.2 RES_WDT Register
www.cypress.com
15
TRM Section 10.3.1 CPU_SCR1 Register
Document No. 001-73617 Rev. *B
6
PSoC® Designer Boot Process, from Reset to Main
Trim the IMO and VBG Based on the
Selected Operating Condition and
Enable AGndBypass [8]
After Reset, the SROM automatically trims the IMO and
VBG for 5-volt / 24-MHz operation. This code trims the
device based on your specific settings (Figure 7) and sets
16
the AGNDBYP bit if it is enabled (Figure 8).
Here is a general overview of the device trimming
procedure:
Initialize the 32-kHz Xtal [9]
If you enable the 32-kHz crystal operation (see Figure 9),
18
then the crystal needs about 1 second to stabilize before
you can us it effectively.
This code is responsible for enabling the 32-kHz Xtal and
waiting for 1 second to ensure the crystal has started up
properly. You can bypass the 1-second delay by changing
the WAIT_FOR_32K equate at the beginning of the boot.tpl
file from ‘1’ to ‘0’. However, that change is not
recommended unless you plan to initialize the crystal
yourself later in the main code. The 1-second delay blocks
all code execution until that time has elapsed. Therefore
this feature significantly delays the startup of your device.
1.
The supervisory command to read the manufacturing
trim tables is issued to read one of four, 8-byte trim
17
tables .
2.
The 8 bytes of the specified trim table are loaded into
RAM.
Related Configuration Options
3.
The relevant trim is read from RAM and stored in the
appropriate trim register.
WAIT_FOR_32K: equ 1
The bootup code adds logic for trimming the IMO and
VBG and for setting the AGNDBYP bit based on your
settings in the Global Resources if those settings differ
from those in the default.
Near the beginning of Boot.tpl:
Figure 9. External 32 kHz Crystal Enable
Related Configuration Options
Figure 7. System Voltage and IMO Speed Configuration
PLL Lock [10]
If you enable the PLL (Figure 10), it needs about 16 ms to
stabilize before it can be used to drive the system clock.
This code is responsible for enabling the PLL and waiting
for 16 ms to allow the PLL to stabilize. The external
32-kHz Xtal must be enabled (Figure 11) for the PLL to
lock on to, and you must leave WAIT_FOR_32K at its
default of ‘1’ to ensure that the 32-kHz XTAL is stable
before the PLL tries to lock.
Figure 8. Analog Ground Bypass Enable Option
Because the PLL requires that the 32-kHz Xtal is stable
before enabling the PLL, you will generate an error if you
bypass the WAIT_FOR_32K delay and have the PLL
enabled.
16
TRM Section 13.3.41 BDG_TR, AN2219 – PsoC 1 Selecting
Analog Ground and Reference
17
TRM Section 3.1.2.6, TableRead Function
www.cypress.com
18
Refer to the device datasheet, AC Electrical Characteristics,
Toscacc for your device’s specific maximum 32-kHz Xtal startup
time, if applicable.
Document No. 001-73617 Rev. *B
7
PSoC® Designer Boot Process, from Reset to Main
Related Configuration Options
Related Configuration Options
Near the beginning of Boot.asm:
Figure 12. External Clock Enable
WAIT_FOR_32K: equ 1
Figure 10. PLL Enable
Close the CT Leakage Path [12]
This code resets a high-resistance path between Vdd and
the bottom of a resistor matrix for adjacent CT blocks.
After Reset, the default configuration of unused CT blocks
could affect the performance of adjacent CT blocks.
Specifically, a high-resistance leakage path goes from Vdd
to the bottom of the resistor matrix for the adjacent CT
blocks. This code eliminates that potential leakage path.
Figure 11. External 32-kHz Crystal Enable
Large Memory Model Initialization
[13]
External Clock Pin Configuration [11]
Out of Reset, the default drive mode for every GPIO is
19
Analog Hi-Z . If the system clock (SYSCLK) is set to be
sourced from an external signal, then you must change
the drive mode for pin 1[4] from the default Analog Hi-Z to
a digital input (Digital Hi-Z). This code configures the drive
mode of pin 1[4] to be a digital input (Digital Hi-Z mode).
At this point, the PSoC is still running off the internal clock
source (IMO or PLL). The switch to the external clock
source occurs in the “load base device configuration”
section (the LoadConfigInit call). Pin 1[4] is configured
at this point in the boot process because the switch from
internal to external clock occurs before the pins are
configured in the LoadConfigInit function.
Some PSoC devices have more than one page of RAM.
Each RAM page has 256 bytes and can be used to store
variables, static data, and the processor’s stack. Many
instructions in the m8c can operate on multiple RAM
pages. These instructions use page pointer registers to
indicate which RAM page they will use. For example, the
stack page pointer (STK_PP) sets the page on which the
stack operations occur. PSoC has a variety of paging
modes that affect how page pointer registers work. This
section of code initializes those page pointer registers
based on your chosen configuration (Figure 13, Figure 14)
to allow the code to take advantage of all the RAM in your
device.
For more information on the large memory model and how
it can affect your code, refer to the C users guide and the
Assembly users guide.
Related Configuration Options
Figure 13. Menu Location for Enabling / Disabling the
LMM
19
TRM Sections 13.3.1 PRTxDM0, 13.3.2 PRTxDM1, 13.2.4
PRTxDM2. Reset state of these registers. Table 6-1 under
Section 6, General Purpose IO (GPIO)
www.cypress.com
Document No. 001-73617 Rev. *B
8
PSoC® Designer Boot Process, from Reset to Main
Figure 14. RAM Paging Enable
Figure 16. Device Configuration Storage Method
Load the Base Device Configuration
[14]
Initialize the C Run-Time
Environment [15]
This code loads all of the configuration registers with their
initial values. The values are based on the placed user
modules and global settings (for example, GPIO drive
modes, initial states, digital and analog routing, user
module configuration, and clock divider values).
This code sets up and initializes variables in the C
environment.
All of the configuration information is stored in the
PSoCConfigTBL.asm file. The data can be stored in one
of two ways. The first method uses a flash-efficient table of
addresses and values that are unpacked and written into
the corresponding registers by LoadConfigInit. The
second method, a faster direct-write table, is composed of
individual mov instructions for each register. To choose
one of these two methods, refer to Figure 15 and Figure
16.
This code is responsible for waiting 2 ms to allow the SMP
to settle to 5 volts before setting the PPOR level.
Voltage Stabilization for the SMP [16]
Related Configuration Options
Figure 17. System Voltage Setting
Related Configuration Options
Figure 15. Menu Location for Configuring Device
Configuration Data Storage
Figure 18. PPOR Voltage Level
www.cypress.com
Document No. 001-73617 Rev. *B
9
PSoC® Designer Boot Process, from Reset to Main
Set the Power-On Reset (POR) Level
[17]
Related Configuration Options
Figure 20. SysClk Setting
In this code, the PPOR level is set to its highest voltage to
protect operation of the m8c core. This protection is only
required if you set the device to run at 5 volts with the 24MHz IMO and SysClk is set to run at SysClk/1 (24 MHz)
(Figure 19). The m8c core cannot operate at 24 MHz if the
20
voltage dips below 5 V .
Related Configuration Options
Figure 19. System Voltage, IMO and SysClk Setting
Figure 21. Sleep Timer Period
Wrap Up and Invoke Main [18] [19]
This step is the final one before main is called. Because
the sleep interrupt was used as a timer for certain boot
tasks, the sleep timer interrupt mask is cleared. Then, your
final selections for CPU speed (Figure 20) and sleep timer
period (Figure 21) are written. All pending interrupts are
cleared, and, finally, the jump to main is executed.
20
Device Datasheet, Electrical Specifications, Figure 9, Voltage
versus CPU Frequency
www.cypress.com
Document No. 001-73617 Rev. *B
10
PSoC® Designer Boot Process, from Reset to Main
Glossary of Terms

AGND: Analog Ground is an internal voltage used as
a ground reference for analog resources.

CT Blocks (continuous time analog blocks): refers
analog resources with configuration options for
continuous time operation.

ECO (external crystal oscillator): a different term for
XTAL.

ILO (internal low-speed oscillator): an internal lowpower and low-accuracy 32-kHz oscillator.

IMO (internal main oscillator): an internal highfrequency oscillator for clocking the entire device.

IPOR (imprecise power-on reset): holds the device in
reset from power up until the Precise Power on Reset
is functional (~2.2 volts).

LMM (Large Memory Model): a RAM paging structure
for devices with more than 256 bytes of RAM.

PLL (phase-locked loop): an internal frequency
multiplier that can drive the device clock if an external
32-kHz crystal is used.

PPOR (precision power-on reset): resets the device if
the voltage falls below an adjustable threshold.

Sleep Timer: a timer driven from either the XTAL or
the ILO.

SMP (switch mode pump): a voltage boost circuit that
can drive the PSoC from sources as low as 1 volt.

SROM (Supervisory ROM): dedicated functionality
built into the PSoC device to perform key hardwarerelated tasks.

VBG (Bandgap Voltage Reference): an internal
temperature-compensated voltage reference.

WDR (watchdog reset): generates a device reset if the
watchdog timer is not reset within a specific time.

WDT (watchdog timer): responsible for generating a
WDR.

XRES (external reset): resets the device when the
signal on the XRES pin is driven to a logic high.

XTAL (external crystal): an optional external 32-kHz
crystal.
www.cypress.com
Document No. 001-73617 Rev. *B
11
PSoC® Designer Boot Process, from Reset to Main
Summary
Related Application Notes
From the moment reset is released to the beginning of
main(), the PSoC boot process automatically handles a
variety of initialization and configuration tasks to simplify
programming.

Technical Reference Manual - TRM
C Language Compiler User Guide
M8C Assembly guide
CY8C29x66 Device Datasheet
About the Author
www.cypress.com
Name:
Christopher Keeser
Title:
Applications Engineer Staff
Contact:

Document No. 001-73617 Rev. *B
12
PSoC® Designer Boot Process, from Reset to Main
Appendix: Example Boot.asm for CY8C29xxx Devices
; Generated by PSoC Designer 5.1.2309
;
;@Id: boot.tpl#897 @
;===
; FILENAME:
boot.asm
; Version:
4.21
;
; DESCRIPTION:
; M8C Boot Code for CY8C29xxx microcontroller family.
;
; Copyright (c) Cypress Semiconductor 2011. All Rights Reserved.
;
; NOTES:
; PSoC Designer's Device Editor uses a template file, BOOT.TPL, located in
; the project's root directory to create BOOT.ASM. Any changes made to
; BOOT.ASM will be overwritten every time the project is generated; therefore,
; changes should be made to BOOT.TPL, not BOOT.ASM. Care must be taken when
; modifying BOOT.TPL so that replacement strings (such as @PROJECT_NAME)
; are not accidentally modified.
;
;===
include
include
include
include
".\lib\GlobalParams.inc" ;File generated by PSoC Designer (Project dependent)
"m8c.inc"
;Part specific file
"m8ssc.inc"
;Part specific file
"memory.inc"
;File generated by PSoC Designer (Project dependent)
;-------------------------------------; Export Declarations
;-------------------------------------export
IF
ELSE
export
export
export
export
export
ENDIF
export
export
__Start
(TOOLCHAIN & HITECH)
__bss_start
__data_start
__idata_start
__func_lit_start
__text_start
_bGetPowerSetting
bGetPowerSetting
;-------------------------------------; Optimization flags
;-------------------------------------;
; To change the value of these flags, modify the file boot.tpl, not
; boot.asm. See the notes in the banner comment at the beginning of
; this file.
; Optimization for Assembly
; that do not depend on the
;
Set to 1: Support for C
;
Set to 0: Support for C
;
www.cypress.com
language (only) projects and C-language projects
C compiler to initialize the values of RAM variables.
Run-time Environment initialization
not included. Faster start up, smaller code space.
Document No. 001-73617 Rev. *B
13
PSoC® Designer Boot Process, from Reset to Main
IF
(TOOLCHAIN & HITECH)
; The C compiler will customize the startup code - it's not required here
C_LANGUAGE_SUPPORT:
ELSE
C_LANGUAGE_SUPPORT:
ENDIF
equ 0
equ 1
; The following equate is required for proper operation. Resetting its value
; is discouraged. WAIT_FOR_32K is effective only if the crystal oscillator is
; selected. If the designer chooses not to wait, then stabilization of the ECO
; and PLL_Lock must take place within user code. See the family data sheet for
; the requirements of starting the ECO and PLL lock mode.
;
;
Set to 1: Wait for XTAL (and PLL if selected) to stabilize before
;
invoking main.
;
Set to 0: Boot code does not wait; clock may not have stabilized by
;
the time code in main starts executing.
;
WAIT_FOR_32K:
equ 1
; For historical reasons, by default the boot code uses an lcall instruction
; to invoke the user's _main code. If _main executes a return instruction,
; boot provides an infinite loop. By changing the following equate from zero
; to 1, boot's lcall will be replaced by a ljmp instruction, saving two
; bytes on the stack that are otherwise required for the return address. If
; this option is enabled, _main must not return. (Beginning with the 4.2
; release, the C compiler automatically places an infinite loop at the end
; of main, rather than a return instruction.)
;
ENABLE_LJMP_TO_MAIN:
equ 0
;--; Interrupt Vector Table
;--;
; Interrupt vector table entries are 4 bytes long. Each one contains
; a jump instruction to an ISR (interrupt service routine), although
; very short ISRs could be encoded within the table itself. Normally,
; vector jump targets are modified automatically according to the user
; modules selected. This occurs when the 'Generate Application' opera; tion is run, causing PSoC Designer to create boot.asm and the other
; configuration files. If you need to hard-code a vector, update the
; file boot.tpl, not boot.asm. See the banner comment at the beginning
; of this file.
;---
[3]
AREA TOP (ROM, ABS, CON)
org
0
IF
(TOOLCHAIN & HITECH)
;
jmp
__Start
ELSE
jmp
__Start
ENDIF
www.cypress.com
;Reset Interrupt Vector
;C compiler fills in this vector
;First instruction executed following a Reset
Document No. 001-73617 Rev. *B
14
PSoC® Designer Boot Process, from Reset to Main
[Interrupt Vector Table]
org
halt
04h
org
ljmp
reti
08h
;Low-Voltage Detect (LVD) Interrupt Vector
;Stop execution if power falls too low
;Analog Column 0 Interrupt Vector
_COMP_1_ISR
org
0Ch
// call void_handler
reti
;Analog Column 1 Interrupt Vector
org
10h
// call void_handler
reti
;Analog Column 2 Interrupt Vector
org
14h
// call void_handler
reti
;Analog Column 3 Interrupt Vector
org
18h
// call void_handler
reti
;VC3 Interrupt Vector
org
1Ch
// call void_handler
reti
;GPIO Interrupt Vector
org
20h
// call void_handler
reti
;PSoC Block DBB00 Interrupt Vector
org
24h
// call void_handler
reti
;PSoC Block DBB01 Interrupt Vector
org
28h
// call void_handler
reti
;PSoC Block DCB02 Interrupt Vector
org
2Ch
// call void_handler
reti
;PSoC Block DCB03 Interrupt Vector
org
30h
// call void_handler
reti
;PSoC Block DBB10 Interrupt Vector
org
34h
// call void_handler
reti
;PSoC Block DBB11 Interrupt Vector
org
38h
// call void_handler
reti
;PSoC Block DCB12 Interrupt Vector
org
3Ch
// call void_handler
reti
;PSoC Block DCB13 Interrupt Vector
www.cypress.com
Document No. 001-73617 Rev. *B
15
PSoC® Designer Boot Process, from Reset to Main
org
40h
// call void_handler
reti
;PSoC Block DBB20 Interrupt Vector
org
44h
// call void_handler
reti
;PSoC Block DBB21 Interrupt Vector
org
48h
// call void_handler
reti
;PSoC Block DCB22 Interrupt Vector
org
4Ch
// call void_handler
reti
;PSoC Block DCB23 Interrupt Vector
org
50h
// call void_handler
reti
;PSoC Block DBB30 Interrupt Vector
org
54h
// call void_handler
reti
;PSoC Block DBB31 Interrupt Vector
org
58h
// call void_handler
reti
;PSoC Block DCB32 Interrupt Vector
org
5Ch
// call void_handler
reti
;PSoC Block DCB33 Interrupt Vector
org
60h
// call void_handler
reti
;PSoC I2C Interrupt Vector
org
64h
// call void_handler
reti
;Sleep Timer Interrupt Vector
;--; Start of Execution.
;--; The Supervisory ROM SWBootReset function has already completed the
; calibrate1 process, loading trim values for 5-volt operation.
;
IF
(TOOLCHAIN & HITECH)
AREA PD_startup(CODE, REL, CON)
ELSE
org 68h
ENDIF
__Start:
[4]
; initialize SMP values for voltage stabilization, if required,
; leaving power-on reset (POR) level at the default (low) level, at
www.cypress.com
Document No. 001-73617 Rev. *B
16
PSoC® Designer Boot Process, from Reset to Main
; least for now.
;
M8C_SetBank1
mov reg[0FAh], 0
;Reset flash location
mov
reg[VLT_CR], SWITCH_MODE_PUMP_JUST | LVD_TBEN_JUST | TRIP_VOLTAGE_JUST
M8C_SetBank0
[5]
; %53%20%46%46% Apply Erratum 001-05137 workaround
mov
A, 20h
romx
mov
A, 40h
romx
mov
A, 60h
romx
; %45%20%46%46% End workaround
[6]
M8C_ClearWDTAndSleep
IF (WATCHDOG_ENABLE)
M8C_EnableWatchDog
ENDIF
; Clear WDT before enabling it.
; WDT selected in Global Params
[7]
IF (SELECT_32K)
or
reg[CPU_SCR1], CPU_SCR1_ECO_ALLOWED
ELSE
and reg[CPU_SCR1], ~CPU_SCR1_ECO_ALLOWED
ENDIF
; ECO will be used in this project
; Prevent ECO from being enabled
;--------------------------; Set up the Temporary stack
;--------------------------; A temporary stack is set up for the SSC instructions.
; The real stack start will be assigned later.
;
_stack_start:
equ 80h
mov
A, _stack_start
; Set top of stack to end of used RAM
swap SP, A
; This is only temporary if going to LMM
[8]
;--; Set Power-related Trim & the AGND Bypass bit.
;--M8C_ClearWDTAndSleep ; Clear WDT before enabling it.
IF (POWER_SETTING & POWER_SET_5V0)
; *** 5.0-Volt operation

IF (POWER_SETTING & POWER_SET_SLOW_IMO)
; *** 6-MHZ Main Oscillator ***
or reg[CPU_SCR1], CPU_SCR1_SLIMO
M8SSC_Set2TableTrims 2, SSCTBL2_TRIM_IMO_5V_6MHZ, 1, SSCTBL1_TRIM_BGR_5V,
AGND_BYPASS_JUST
ELSE
; *** 12-MHZ Main Oscillator ***
IF (AGND_BYPASS)
www.cypress.com
Document No. 001-73617 Rev. *B
17
PSoC® Designer Boot Process, from Reset to Main
;- ; The 5-V trim has already been set, but we need to update the AGNDBYP
; bit in the write-only BDG_TR register. Recalculate the register
; value using the proper trim values.
;- M8SSC_SetTableVoltageTrim 1, SSCTBL1_TRIM_BGR_5V, AGND_BYPASS_JUST
ENDIF
ENDIF
ENDIF ; 5.0-V Operation
IF (POWER_SETTING & POWER_SET_3V3)
; *** 3.3-Volt operation

IF (POWER_SETTING & POWER_SET_SLOW_IMO)
; *** 6-MHZ Main Oscillator ***
or reg[CPU_SCR1], CPU_SCR1_SLIMO
M8SSC_Set2TableTrims 2, SSCTBL2_TRIM_IMO_3V_6MHZ, 1, SSCTBL1_TRIM_BGR_3V,
AGND_BYPASS_JUST
ELSE
; *** 12-MHZ Main Oscillator ***
M8SSC_SetTableTrims 1, SSCTBL1_TRIM_IMO_3V_24MHZ, SSCTBL1_TRIM_BGR_3V, AGND_BYPASS_JUST
ENDIF
ENDIF ; 3.3-Volt Operation
mov
mov
[bSSC_KEY1], 0
[bSSC_KEYSP], 0
; Lock out Flash and Supervisory operations
[9]
;--------------------------------------; Initialize Crystal Oscillator and PLL
;--------------------------------------IF (SELECT_32K & WAIT_FOR_32K)
; If the user has requested the External Crystal Oscillator (ECO), then turn it
; on and wait for it to stabilize and the system to switch over to it. The PLL
; is left off. Set the SleepTimer period set to 1 sec to time the wait for
; the ECO to stabilize.
;
M8C_SetBank1
mov
reg[OSC_CR0], (SELECT_32K_JUST | OSC_CR0_SLEEP_1Hz | OSC_CR0_CPU_12MHz)
M8C_SetBank0
M8C_ClearWDTAndSleep
; Reset the sleep timer to get a full second
or
reg[INT_MSK0], INT_MSK0_SLEEP
; Enable latching of SleepTimer interrupt
mov
reg[INT_VC],
0
; Clear all pending interrupts
.WaitFor1s:
tst
reg[INT_CLR0], INT_MSK0_SLEEP
; Test the SleepTimer Interrupt Status
jz
.WaitFor1s
; Interrupt will latch but will not dispatch
;
since interrupts are not globally enabled
ELSE ; !(SELECT_32K & WAIT_FOR_32K)
; Either no ECO, or waiting for stable clock is to be done in main
M8C_SetBank1
mov
reg[OSC_CR0], (SELECT_32K_JUST | PLL_MODE_JUST | SLEEP_TIMER_JUST |
OSC_CR0_CPU_12MHz)
M8C_SetBank0
M8C_ClearWDTAndSleep
; Reset the watch dog
ENDIF ;(SELECT_32K & WAIT_FOR_32K)
[10]
IF (PLL_MODE)
www.cypress.com
Document No. 001-73617 Rev. *B
18
PSoC® Designer Boot Process, from Reset to Main
; Crystal is now fully operational (assuming WAIT_FOR_32K was enabled).
; Now startup PLL if selected, and wait 16 ms for it to stabilize.
;
M8C_SetBank1
mov
reg[OSC_CR0], (SELECT_32K_JUST | PLL_MODE_JUST | OSC_CR0_SLEEP_64Hz |
OSC_CR0_CPU_3MHz)
M8C_SetBank0
M8C_ClearWDTAndSleep
; Reset the sleep timer to get full period
mov
reg[INT_VC], 0
; Clear all pending interrupts
.WaitFor16ms:
tst
reg[INT_CLR0],INT_MSK0_SLEEP
; Test the SleepTimer Interrupt Status
jz
.WaitFor16ms
M8C_SetBank1
; continue boot at CPU Speed of SYSCLK/2
mov
reg[OSC_CR0], (SELECT_32K_JUST | PLL_MODE_JUST | OSC_CR0_SLEEP_64Hz |
OSC_CR0_CPU_12MHz)
M8C_SetBank0
IF
(WAIT_FOR_32K)
ELSE ; !(WAIT_FOR_32K)
; Option settings (PLL-Yes, ECO-No) are incompatible - force a syntax error
ERROR_PSoC Disabling WAIT_FOR_32K requires that the PLL_Lock must be enabled in user
code.
ENDIF ;(WAIT_FOR_32K)
ENDIF ;(PLL_MODE)
[11]
;--; Initialize Proper Drive Mode for External Clock Pin
;--; Change EXTCLK pin from Hi-Z Analog (110b) drive mode to Hi-Z (010b) drive mode
IF (SYSCLK_SOURCE)
and reg[PRT1DM2], ~0x10
; Clear bit 4 of EXTCLK pin's DM2 register
ENDIF
; EXTCLK pin is now in proper drive mode to input the external clock signal
[12]
;-----------------------; Close CT leakage path.
;-----------------------mov
reg[ACB00CR0], 05h
mov
reg[ACB01CR0], 05h
mov
reg[ACB02CR0], 05h
mov
reg[ACB03CR0], 05h
[13]
IF
(TOOLCHAIN & HITECH)
;--; HI-TECH initialization: Enter the Large Memory Model, if applicable
;--global
__Lstackps
mov
a,low __Lstackps
swap
a,sp
www.cypress.com
Document No. 001-73617 Rev. *B
19
PSoC® Designer Boot Process, from Reset to Main
IF (SYSTEM_LARGE_MEMORY_MODEL)
RAM_SETPAGE_STK SYSTEM_STACK_PAGE
; relocate stack page ...
RAM_SETPAGE_IDX2STK
; initialize other page pointers
RAM_SETPAGE_CUR 0
RAM_SETPAGE_MVW 0
RAM_SETPAGE_MVR 0
IF (SYSTEM_IDXPG_TRACKS_STK_PP); Now enable paging:
or
F, FLAG_PGMODE_11b
; LMM w/ IndexPage<==>StackPage
ELSE
or
F, FLAG_PGMODE_10b
; LMM w/ independent IndexPage
ENDIF ; SYSTEM_IDXPG_TRACKS_STK_PP
ENDIF ; SYSTEM_LARGE_MEMORY_MODEL
ELSE
;--; ImageCraft Enter the Large Memory Model, if applicable
;--IF (SYSTEM_LARGE_MEMORY_MODEL)
RAM_SETPAGE_STK SYSTEM_STACK_PAGE
; relocate stack page ...
mov
A, SYSTEM_STACK_BASE_ADDR
;
and offset, if any
swap A, SP
RAM_SETPAGE_IDX2STK
; initialize other page pointers
RAM_SETPAGE_CUR 0
RAM_SETPAGE_MVW 0
RAM_SETPAGE_MVR 0
IF (SYSTEM_IDXPG_TRACKS_STK_PP); Now
or
F, FLAG_PGMODE_11b
; LMM
ELSE
or
F, FLAG_PGMODE_10b
; LMM
ENDIF ; SYSTEM_IDXPG_TRACKS_STK_PP
ELSE
mov
A, __ramareas_end
; Set
swap SP, A
ENDIF ; SYSTEM_LARGE_MEMORY_MODEL
ENDIF ;
TOOLCHAIN
enable paging:
w/ IndexPage<==>StackPage
w/ independent IndexPage
top of stack to end of used RAM
[14]
;------------------------; Load Base Configuration
;------------------------; Load global parameter settings and load the user modules in the
; base configuration. Exceptions: (1) Leave CPU speed as fast as possible
; to minimize startup time; (2) You might still need to play with the
; sleep timer.
;
lcall LoadConfigInit
[15]
;----------------------------------; Initialize C Run-Time Environment
;----------------------------------IF (C_LANGUAGE_SUPPORT)
IF (SYSTEM_SMALL_MEMORY_MODEL)
mov A,0
; clear the 'bss' segment to zero
mov [__r0],<__bss_start
BssLoop:
www.cypress.com
Document No. 001-73617 Rev. *B
20
PSoC® Designer Boot Process, from Reset to Main
cmp [__r0],<__bss_end
jz
BssDone
mvi [__r0],A
jmp BssLoop
BssDone:
mov A,>__idata_start
mov X,<__idata_start
mov [__r0],<__data_start
IDataLoop:
cmp [__r0],<__data_end
jz
C_RTE_Done
push A
romx
mvi [__r0],A
pop A
inc X
adc A,0
jmp IDataLoop
; copy idata to data segment
ENDIF ; SYSTEM_SMALL_MEMORY_MODEL
IF (SYSTEM_LARGE_MEMORY_MODEL)
mov
reg[CUR_PP], >__r0
; force direct addr mode instructions
; to use the Virtual Register page.
; Dereference the constant (flash) pointer pXIData to access the start
; of the extended idata area, "xidata." Xidata follows the end of the
; text segment and may have been relocated by the Code Compressor.
;
mov
A, >__pXIData
; Get the address of the flash
mov
X, <__pXIData
;
pointer to the xidata area.
push A
romx
; Get the MSB of xidata's address.
mov
[__r0], A
pop
A
inc
X
adc
A, 0
romx
; Get the LSB of xidata's address
swap A, X
mov
A, [__r0]
; pXIData (in [A,X]) points to the
;
XIData structure list in flash
jmp
.AccessStruct
;
;
;
;
;
;
;
;
;
;
;
;
;
;
Unpack one element in the xidata "structure list" that specifies the
values of C variables. Each structure contains 3 member elements.
The first is a pointer to a contiguous block of RAM to be initialized. Blocks are always 255 bytes or less in length, and they never cross
RAM page boundaries. The list terminates when the MSB of the pointer
contains 0xFF. There are two formats for the struct, depending on the
value in the second member element, an unsigned byte:
(1) If the value of the second element is non-zero, it represents
the 'size' of the block of RAM to be initialized. In this case, the
third member of the struct is an array of bytes of length 'size' and
the bytes are copied to the block of RAM.
(2) If the value of the second element is zero, the block of RAM is
to be cleared to zero. In this case, the third member of the struct
is an unsigned byte containing the number of bytes to clear.
.AccessNextStructLoop:
inc
X
www.cypress.com
; pXIData++
Document No. 001-73617 Rev. *B
21
PSoC® Designer Boot Process, from Reset to Main
adc
A, 0
.AccessStruct:
; Entry point for first block
;
; Assert: pXIData in [A,X] points to the beginning of an XIData struct.
;
M8C_ClearWDT
; Clear the watchdog for long inits
push A
romx
; MSB of RAM addr (CPU.A <- *pXIData)
mov
reg[MVW_PP], A
;
for use with MVI write operations
inc
A
; End of Struct List? (MSB==0xFF?)
jz
.C_RTE_WrapUp
;
Yes, C runtime environment complete
pop
A
; restore pXIData to [A,X]
inc
X
; pXIData++
adc
A, 0
push A
romx
; LSB of RAM addr (CPU.A <- *pXIData)
mov
[__r0], A
; RAM Addr now in [reg[MVW_PP],[__r0]]
pop
A
; restore pXIData to [A,X]
inc
X
; pXIData++ (point to size)
adc
A, 0
push A
romx
; Get the size (CPU.A <- *pXIData)
jz
.ClearRAMBlockToZero
; If Size==0, then go clear RAM
mov
[__r1], A
;
else downcount in __r1
pop
A
; restore pXIData to [A,X]
.CopyNextByteLoop:
; For each byte in the structure's array member, copy from flash to RAM.
; Assert: pXIData in [A,X] points to previous byte of flash source;
;
[reg[MVW_PP],[__r0]] points to next RAM destination;
;
__r1 holds a non-zero count of the number of bytes remaining.
;
inc
X
; pXIData++ (point to next data byte)
adc
A, 0
push A
romx
; Get the data value (CPU.A <- *pXIData)
mvi
[__r0], A
; Transfer the data to RAM
tst
[__r0], 0xff
; Check for page crossing
jnz
.CopyLoopTail
;
No crossing, keep going
mov
A, reg[MVW_PP]
;
If crossing, bump MVW page reg
inc
A
mov
reg[MVW_PP], A
.CopyLoopTail:
pop
A
; restore pXIData to [A,X]
dec
[__r1]
; End of this array in flash?
jnz
.CopyNextByteLoop
;
No, more bytes to copy
jmp
.AccessNextStructLoop
;
Yes, initialize another RAM block
.ClearRAMBlockToZero:
pop
A
inc
X
adc
A, 0
push A
romx
mov
[__r1], A
mov
A, 0
; restore pXIData to [A,X]
; pXIData++ (point to next data byte)
; Get the run length (CPU.A <- *pXIData)
; Initialize downcounter
; Initialize source data
.ClearRAMBlockLoop:
; Assert: [reg[MVW_PP],[__r0]] points to next RAM destination and
;
__r1 holds a non-zero count of the number of bytes remaining.
www.cypress.com
Document No. 001-73617 Rev. *B
22
PSoC® Designer Boot Process, from Reset to Main
;
mvi
[__r0], A
tst
[__r0], 0xff
jnz
.ClearLoopTail
mov
A, reg[MVW_PP]
inc
A
mov
reg[MVW_PP], A
mov
A, 0
.ClearLoopTail:
dec
[__r1]
jnz
.ClearRAMBlockLoop
pop
A
jmp
.AccessNextStructLoop
; Clear a byte
; Check for page crossing
;
No crossing, keep going
;
If crossing, bump MVW page reg
; Restore the zero used for clearing
; Was this the last byte?
;
No, continue
;
Yes, restore pXIData to [A,X] and
;
initialize another RAM block
.C_RTE_WrapUp:
pop
A
; balance stack
ENDIF ; SYSTEM_LARGE_MEMORY_MODEL
C_RTE_Done:
ENDIF ; C_LANGUAGE_SUPPORT
[16]
;------------------------------; Voltage Stabilization for SMP
;------------------------------IF (POWER_SETTING & POWER_SET_5V0)
; 5.0V Operation
IF (SWITCH_MODE_PUMP ^ 1)
; SMP is operational
;- ; When using the SMP at 5 V, please wait for Vdd to slew from 3.1 V to
; 5 V before enabling the Precision Power-On Reset (PPOR).
;- or
reg[INT_MSK0],INT_MSK0_SLEEP
M8C_SetBank1
and
reg[OSC_CR0], ~OSC_CR0_SLEEP
or
reg[OSC_CR0], OSC_CR0_SLEEP_512Hz
M8C_SetBank0
M8C_ClearWDTAndSleep
; Restart the sleep timer
mov
reg[INT_VC], 0
; Clear all pending interrupts
.WaitFor2ms:
tst
reg[INT_CLR0], INT_MSK0_SLEEP
; Test the SleepTimer Interrupt Status
jz
.WaitFor2ms
; Branch fails when 2 ms has passed
ENDIF ; SMP is operational
ENDIF ; 5.0-V Operation
[17]
;------------------------------; Set Power-On Reset (POR) Level
;------------------------------; The writes to the VLT_CR register below include setting the POR to VLT_CR_POR_HIGH,
; VLT_CR_POR_MID, or VLT_CR_POR_LOW. Correctly setting this value is critical to the
proper
; operation of the PSoC. The POR protects the M8C from misexecuting when Vdd falls low.
These
www.cypress.com
Document No. 001-73617 Rev. *B
23
PSoC® Designer Boot Process, from Reset to Main
; values should not be changed from the settings here. Failure to follow this
instruction could
; lead to corruption of PSoC flash.
M8C_SetBank1
IF (POWER_SETTING & POWER_SET_5V0)
IF (POWER_SETTING & POWER_SET_SLOW_IMO)
ELSE
IF (CPU_CLOCK_JUST ^ OSC_CR0_CPU_24MHz)
desired
ELSE ; 2 MHz
or
reg[VLT_CR], VLT_CR_POR_HIGH
ENDIF ; 24 MHz
ENDIF ; Slow Mode
ENDIF ; 5.0-V Operation
; 5.0-V Operation?
; and Slow Mode?
;
No, fast mode
;
As fast as 24 MHz?
;
No, set midpoint POR in user code, if
;
;
yes, highest POR trip point required
M8C_SetBank0
[18]
;---------------------------; Wrap up and invoke "main"
;---------------------------; Disable the sleep interrupt used for timing above. In fact,
; no interrupts should be enabled now; therefore, clear the register.
;
mov reg[INT_MSK0],0
; Everything has started OK. Now select requested CPU and sleep frequency.
; And put decimator in full mode so that it does not consume too much current.
;
M8C_SetBank1
mov reg[OSC_CR0],(SELECT_32K_JUST | PLL_MODE_JUST | SLEEP_TIMER_JUST | CPU_CLOCK_JUST)
or
reg[DEC_CR2],80h
; Put decimator in full mode.
M8C_SetBank0
[19]
IF
; Global Interruptsare NOT enabled; this should be done in main().
; LVD is set but will not occur unless global interrupts are enabled.
; Global interrupts should be enabled as soon as possible in main().
;
mov reg[INT_VC],0
; Clear any pending interrupts that may
; have been set during the boot process.
(TOOLCHAIN & HITECH)
ljmp startup
; Jump to C compiler startup code.
ELSE
IF ENABLE_LJMP_TO_MAIN
ljmp _main
ELSE
lcall _main
.Exit:
jmp .Exit
ENDIF
ENDIF ; TOOLCHAIN
www.cypress.com
; Go to main (no return).
; Call main.
; Wait here after return till power off or reset.
Document No. 001-73617 Rev. *B
24
PSoC® Designer Boot Process, from Reset to Main
;--------------------------------; Library Access to Global Params
;--------------------------------;
bGetPowerSetting:
_bGetPowerSetting:
; Returns value of POWER_SETTING in the A register.
; No inputs. No side effects.
;
mov
A, POWER_SETTING
ret
IF
ELSE
(TOOLCHAIN & HITECH)
;--------------------------------; Order Critical RAM and ROM AREAs
;--------------------------------; 'TOP' is all that has been defined so far...
; ROM AREAs for C CONST, static & global items
;
AREA lit
(ROM, REL, CON)
; 'const' definitions
AREA idata
(ROM, REL, CON)
; Constants for initializing RAM
__idata_start:
AREA func_lit
__func_lit_start:
(ROM, REL, CON)
; Function Pointers
IF (SYSTEM_LARGE_MEMORY_MODEL)
; We use the func_lit area to store a pointer to extended initialized
; data (xidata) area that follows the text area. Func_lit isn't
; relocated by the code compressor, but the text area may shrink, and
; that moves xidata around.
;
__pXIData:
word __text_end
; ptr to extended idata
ENDIF
AREA psoc_config
AREA UserModules
(ROM, REL, CON)
(ROM, REL, CON)
; Configuration Load and Unload
; User Module APIs
; CODE segment for general use
;
AREA text (ROM, REL, CON)
__text_start:
; RAM area usage
;
AREA data
__data_start:
(RAM, REL, CON)
AREA virtual_registers (RAM, REL, CON)
AREA InterruptRAM
(RAM, REL, CON)
AREA bss
(RAM, REL, CON)
__bss_start:
; initialized RAM
; Temp vars of C compiler
; Interrupts, on Page 0
; general use
ENDIF ; TOOLCHAIN
; end of file boot.asm
www.cypress.com
Document No. 001-73617 Rev. *B
25
PSoC® Designer Boot Process, from Reset to Main
Document History
®
Document Title: PSoC Designer Boot Process, from Reset to Main – AN73617
Document Number: 001-73617
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
3473512
KEES
12/22/2011
New Application Note
*A
3807180
KEES
11/09/2012
Updated in new template.
*B
4605712
GRAA
12/23/2014
Updated the overview section, with reference to the sequence of events shown in
Figure 1.
www.cypress.com
Document No. 001-73617 Rev. *B
26
PSoC® Designer Boot Process, from Reset to Main
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Cypress Developer Community
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
xx and xx are registered trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property
of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2011-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-73617 Rev. *B
27

				

 Open as PDF

 	Similar pages
	

										PSoC 3 CY8C38 Programmable System-on-Chip Datasheet.pdf

	

										CYPRESS CY8C22545

	

										CYPRESS CY8C21323

	

										CYPRESS CY8C5246AXI-038

	

										CY8C21334, CY8C21534:汽车 PSoC® 可编程片上系统

	

										Automotive PSoC 4 PSoC 4000 Family Datasheet.pdf

	

										CYPRESS CY8C21334_11

	

										PSoC 5LP CY8C58LP Family Datasheet Programmable System-on-Chip (PSoC) Datasheet.pdf

	

										CYPRESS CY8C5486AXI-039

	

										PSoC® 3 CY8C36 Programmable System-on-Chip Datasheet.pdf

	

										AN2010 PSoC 1 Best Practices and Recommendations.pdf

	

										AN62510 Implementing State Machines with PSoC 3, PSoC 4, and PSoC 5LP.pdf

	

										AN60305 Using PSoC® 3 and PSoC 5LP IDACs to Build a Better VDAC.pdf

	

										AN2100 Bootloader PSoC 1.pdf

	

										AN62792 Updating Field Firmware With PLC.pdf

	

										MR10086

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

