

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 CRC16_V_3.2_13268.pdf

		
				 16-Bit CRC Generator Datasheet CRC16 V 3.2
001-13268 Rev. *H
16-Bit CRC Generator
Copyright © 2002-2014 Cypress Semiconductor Corporation. All Rights Reserved.
PSoC® Blocks
Resources
Digital
Analog CT
API Memory (Bytes)
Analog SC
flash
RAM
Pins (per
External I/O)
CY8C29/27/24/22/21xxx, CY8C23x33, CY8CLED02/04/08/16, CY8CLED0xD, CY8CLED0xG, CY8CTST110,
CY8CTMG110, CY8CTST120, CY8CTMG120, CY8CTMA120, CY8C21x45, CY8C22x45, CY8CTMG300,
CY8CTST300, CY8CTMA300, CY8C28x45, CY8CPLC20, CY8CLED16P01, CY8C28x43, CY8C28x52
CYWUSB6953
2
0
0
54
0
1
2
0
0
54
0
1
Features and Overview
„
„
„
„
„
2 to 16-bit CRC generator
Data input clocking up to 48 MHz
Programmable polynomial
Programmable seed value
Serial data in, parallel result out
The CRC16 User Module computes a 2 to 16-bit cyclical redundancy check (CRC) algorithm on an input
serial data stream. The polynomial can be defined to implement CRC functions, such as the CRC-16 or
CCITT algorithm. A seed value can be specified to initialize the starting data value.
Figure 1.
CRC16 Block Diagram
Cypress Semiconductor Corporation
Document Number: 001-13268 Rev. *H
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised May 21, 2014
16-Bit CRC Generator
Functional Description
The CRC16 User Module computes a 16-bit CRC algorithm with two consecutive digital blocks named
CRC16_LSB and CRC16_MSB. The Polynomial, Shift, Seed, and Control registers of each CRC16 block
correspond to the digital PSoC block registers.
The configuration of the underlying connective hardware of the CRC16 digital PSoC blocks coordinate the
operation of the two PSoC blocks as a single 16-bit CRC User Module. The Polynomial, Shift, and Seed
registers refer to the combined registers from the CRC16_LSB and CRC16_MSB blocks (unless
specifically noted). The CRC16_MSB registers form the most significant byte of the register set and the
CRC16_LSB registers form the least significant byte. For example, the Polynomial register is composed of
the CRC16_MSB Polynomial register and the CRC16_LSB Polynomial register.
The CRC16 User Module is implemented as a linear feedback shift register (LFSR). The Shift register
computes the LFSR function; the Polynomial register holds the polynomial that defines the LFSR
polynomial; and the Seed register enables initialization of the starting data.
This module requires that the Seed and Polynomial registers are initialized prior to setting the start bit in
the CRC16_LSB’s Control register.
Writing the seed value into the Seed register, while the CRC16 is not started, causes the seed value to be
latched into the Shift register, initializing the starting data. Writing the seed value, after the CRC16 is
started, has no effect.
Computation of an N-bit LFSR result is specified by a polynomial with N+1 terms, the last of which is the
X0 term where X0=1. For example, the widely used CRC-CCITT 16-bit polynomial is X16+X12+X5+1. The
CRC algorithm assumes the presence of the X0 term, so that the polynomial for an N-bit result can be
expressed by an N bit rather than N+1-bit specification.
To specify the polynomial specification, write an N+1 bit binary number corresponding to the full
polynomial, with 1’s for each term present. The CRC-CCITT polynomial would be 10001000000100001b.
Then, drop the right-most bit (the X0 term) to obtain the CRC16 polynomial value. To implement the CRCCCITT example, the Polynomial register is loaded with the value of 8810h.
When the seed value and polynomial are initialized, the CRC16 User Module is started. A rising edge of
the input clock shifts each bit, MSB first, of the input data stream through the Shift register, computing the
specified CRC algorithm. Eight clocks are required to compute the CRC for each byte of input data.
Reading the CRC computed result is a two-step process. First, the Shift register is read. This causes the
result data to be latched into the Seed register. Then, the result is read directly from the Seed register.
Note that the initial seed value is lost. This is usually of no consequence since the seed value is only used
to initialize the Shift register once, per data set.
It is advisable to stop the CRC16 User Module before reading the CRC value, to ensure that the data is
not inadvertently clocked in while performing a read.
Document Number: 001-13268 Rev. *H
Page 2 of 10
16-Bit CRC Generator
DC and AC Electrical Characteristics
Table 1.
CRC16 DC and AC Electrical Characteristics
Parameter
Max Input Data Clocking
Conditions and Notes
Typical
121
Limit
48
Units
MHz
Electrical Characteristics Notes
1. If the input data stream or clock is routed using a global bus, then the maximum clock input rate is 12
MHz.
Placement
The CRC16 User Module can be placed in any two consecutive digital PSoC blocks.
Parameters and Resources
InputDataStream
The input data stream can be connected to a low, high, neighboring PSoC block, the analog comparator output bus, or one of the global busses. Using a global bus, the input can be connected to one
of the external pins.
Clock
The CRC16 is clocked by one of 16 possible sources. The Global I/O busses can be used to connect
the clock input to an external pin or a clock function generated by a different PSoC block. When using
an external digital clock for the block, the row input synchronization should be turned off for best accuracy, and sleep operation.The 48 MHz clock, the CPU_32kHz clock, one of the divided clocks, 24V1
or 24V2, or another PSoC block output can be specified as the clock input.
ClockSync
In the PSoC devices, digital blocks may provide clock sources in addition to the system clocks. Digital
clock sources may even be chained in ripple fashion. This introduces skew with respect to the system
clocks. These skews are more critical in the CY8C29/27/24/22/21xxx PSoC device families because
of various data-path optimizations, particularly those applied to the system busses. This parameter
may be used to control clock skew and ensure proper operation when reading and writing PSoC block
register values. Appropriate values for this parameter should be determined from the following table.
Document Number: 001-13268 Rev. *H
Page 3 of 10
16-Bit CRC Generator
ClockSync Value
Use
Sync to SysClk
Use this setting for any 24 MHz (SysClk) derived clock source that is divided by two or more.
Examples include VC1, VC2, VC3 (when VC3 is driven by SysClk), 32 kHz, and digital PSoC
blocks with SysClk-based sources. Externally generated clock sources should also use this
value to ensure that proper synchronization occurs.
Sync to SysClk*2
Use this setting for any 48 MHz (SysClk*2) based clock unless the resulting frequency is 48
MHz (in other words, when the product of all divisors is 1).
Use SysClk Direct
Use when a 24 MHz (SysClk/1) clock is desired. This does not actually perform
synchronization but provides low-skew access to the system clock itself. If selected, this
option overrides the setting of the Clock parameter, above. It should always be used instead
of VC1, VC2, VC3 or Digital Blocks where the net result of all dividers in combination
produces a 24 Mhz output.
Unsynchronized
Use when the 48 MHz (SysClk*2) input is selected.
Use when unsynchronized inputs are desired. In general this use is advisable only when
interrupt generation is the sole application of the Counter.
Invert InputDataStream
This parameter allows you to invert the InputDataStream.
Application Programming Interface
The Application Programming Interface (API) routines are provided as part of the user module to allow the
designer to deal with the module at a higher level. This section specifies the interface to each function
together with related constants provided by the “include” files.
Note
In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X prior to the call if
those values are required after the call. This “registers are volatile” policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must ensure their code observes the policy,
too. Though some user module API function may leave A and X unchanged, there is no guarantee they
will do so in the future.
For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.
Calls to the API function can be made in both assembly and C. The following is the list of CRC16 supplied
API functions.
CRC16_Start
Description:
Enables the CRC16 User Module for operation. Before the CRC16 is started, the polynomial and seed
values should be initialized.
C Prototype:
void
CRC16_Start(void)
Document Number: 001-13268 Rev. *H
Page 4 of 10
16-Bit CRC Generator
Assembler:
lcall
CRC16_Start
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
CRC16_Stop
Description:
Disables the CRC16 User Module.
C Prototype:
void
CRC16_Stop(void)
Assembler:
lcall
CRC16_Stop
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
CRC16_WriteSeed
Description:
Initializes the CRC16 Shift register with an initial seed value. The CRC16 User Module is stopped
while updating the Shift register with the new seed value. Upon exit, the start state is restored.
C Prototype:
void
CRC16_WriteSeed(WORD wSeed)
Assembler:
mov X, [wSeed]
mov A, [wSeed+1]
lcall CRC16_WriteSeed
Parameters:
WORD wSeed: 16-bit seed value. MSB passed in the X register. LSB passed in the A register. For
the CCITT polynomial, use the defined constant CRC_CCITT_SEED, which is set to 0xFFFF.
Return Value:
None
Document Number: 001-13268 Rev. *H
Page 5 of 10
16-Bit CRC Generator
Side Effects:
Writing a value into the Seed register also latches it into the Shift register. The A and X registers may
be altered by this function.
CRC16_WritePolynomial
Description:
Loads the Polynomial register with the CRC function polynomial. The CRC16 User Module is
stopped while the Polynomial register is updated. Upon exit, the start state is restored.
C Prototype:
void
CRC16_WritePolynomial(WORD wPolynomial)
Assembler:
mov X, [wPolynomial]
mov A, [wPolynomial+1]
lcall CRC16_Stop
Parameters:
WORD wPolynomial: 16-bit polynomial value. Reference the CRC16 User Module Functional
Description section for a discussion on how to set the polynomial value. For the CCITT polynomial,
use the defined constant CRC_CCITT_POLYNOMIAL, which is set to 0x8810. MSB is passed in the
X register and LSB is passed in the A register.
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
CRC16_ReadCRC
Description:
Reads the computed CRC resultant data. Calling this function, while data is currently being clocked
in, gives inaccurate results.
C Prototype:
WORD CRC16_wReadCRC(void)
Assembler:
lcall CRC16_wReadCRC
mov reg[wCrcValue+1], A
mov A, X
mov reg[wCrcValue], A
Parameters:
None
Return Value:
WORD wCrcValue: Value read from the Shift register.
Document Number: 001-13268 Rev. *H
Page 6 of 10
16-Bit CRC Generator
Side Effects:
The Seed register is overwritten with the computed CRC value. The A and X registers may be altered
by this function.
Sample Firmware Source Code
;**
; Setup CCITT CRC16
;
; This function initializes a CRC16 user module to compute a CCITT CRC
; algorithm.
;
;**
include
"CRC16.inc"
export
SetupCCITT
SetupCCITT:
; stop the CRC16 user module
call
CRC16_Stop
; load
mov
mov
call
the CCITT polynomial
A, <CRC_CCITT_POLYNOMIAL
X, >CRC_CCITT_POLYNOMIAL
CRC16_WritePolynomial
;LSB
;MSB
; load
mov
mov
call
the CRC16 seed
A, <CRC_CCITT_SEED
X, >CRC_CCITT_SEED
CRC16_WriteSeed
;LSB
;MSB
;start the CRC16
call
CRC16_Start
The same code in C is:
#include "CRC16.h"
void SetupCCITT(void)
{
// stop the CRC16 user module
CRC16_Stop();
// load the CCITT polynomial
CRC16_WritePolynomial(CRC_CCITT_POLYNOMIAL);
// load the CCITT seed
CRC16_WriteSeed(CRC_CCITT_SEED);
// start the CRC16
CRC16_Start();
}
Document Number: 001-13268 Rev. *H
Page 7 of 10
16-Bit CRC Generator
Configuration Registers
The PSoC Digital block registers used to configure a user module are:
Table 2.
CRC16_MSB: Register Function
Bit
Value
Table 3.
7
0
Table 4.
7
0
1
4
0
3
0
2
0
1
1
0
0
6
0
5
0
4
0
3
0
2
0
1
1
0
0
CRC16_MSB: Register Input
Bit
Value
0
5
CRC16_LSB: Register Function
Bit
Value
6
7
0
6
0
5
1
4
1
3
2
1
0
Clock
Clock selects the input clock from one of 16 sources. This parameter is set in the Device Editor.
Table 5.
CRC16_LSB: Register Input
Bit
Value
7
6
5
4
InputDataStream
3
2
1
0
Clock
InputDataStream selects the data input from one of 16 sources. Clock selects the input clock from one of
16 sources. These parameters are set in the Device Editor.
Table 6.
CRC16_MSB: Register Output
Bit
Value
Table 7.
7
0
Table 8.
Bit
Value
0
5
0
4
0
3
0
2
0
1
0
0
0
CRC16_LSB: Register Output
Bit
Value
6
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
CRC16_MSB: Shift Register DR0
7
6
5
4
3
2
1
0
Shift Register (MSB)
Shift Register is the CRC16 MSB Shift register. It is read and configured using the CRC16 API.
Document Number: 001-13268 Rev. *H
Page 8 of 10
16-Bit CRC Generator
Table 9.
CRC16_LSB: Shift Register DR0
Bit
Value
7
6
5
4
3
2
1
0
Shift Register (LSB)
Shift Register is the CRC16 LSB Shift register. It is read and configured using the CRC16 API.
Table 10.
CRC16_MSB: Polynomial Register DR1
Bit
Value
7
6
5
4
3
2
1
0
Polynomial Register (MSB)
Polynomial Register is the CRC16 MSB Polynomial register. It is modified using the CRC16 API.
Table 11.
CRC16_LSB: Polynomial Register DR1
Bit
Value
7
6
5
4
3
2
1
0
Polynomial Register (LSB)
Polynomial Register is the CRC16 LSB Polynomial register. It is modified using the CRC16 API.
Table 12.
CRC16_MSB: Seed Register DR2
Bit
Value
7
6
5
4
3
2
1
0
1
0
1
0
Seed Register (MSB)
Seed Register is the CRC16 MSB Seed register. It is modified using the CRC16 API.
Table 13.
CRC16_LSB: Seed Register DR2
Bit
Value
7
6
5
4
3
2
Seed Register (LSB)
Seed Register is the CRC16 LSB Seed register. It is modified using the CRC16 API.
Table 14.
CRC16_MSB: Control Register CR0
Bit
Value
Table 15.
7
0
0
5
0
4
0
3
0
2
0
0
0
CRC16_LSB: Control Register CR0
Bit
Value
6
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
Start/Stop
Start/Stop indicates that the CRC16 is enabled when set. It is modified using the CRC16 API.
Document Number: 001-13268 Rev. *H
Page 9 of 10
16-Bit CRC Generator
Version History
Version
3.2
Originator
TDU
Description
1. In APIs CRC16_WriteSeed and CRC16_WritePolynomial, changed
CRC16_CCITT_SEED to CRC_CCITT_SEED and CRC16_CCITT_POLYNOMIAL to
CRC_CCITT_POLYNOMIAL.
2. Updated Clock description to include: When using an external digital clock for the
block, the row input synchronization should be turned off for best accuracy, and sleep
operation.
Note
PSoC Designer 5.1 introduces a Version History in all user module datasheets to document high
level descriptions of the differences between the current and previous user module versions.
Document Number: 001-13268 Rev. *H
Revised May 21, 2014
Page 10 of 10
Copyright © 2002-2014 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

				

 Open as PDF

 	Similar pages
	

										ShadowRegs_001-16962.pdf

	

										AMUX8_001-13257.pdf

	

										DigInv_001-13558.pdf

	

										AMUX4_001-13256.pdf

	

										DigBuf_001-13557.pdf

	

										CMPPRG 001-13262.pdf

	

										PWMDB16_001-13582.pdf

	

										PGA_001-13575.pdf

	

										I2Cm_001-13564.pdf

	

										Component - CRC V2.20 Datasheet.pdf

	

										Component - CRC V2.30 Datasheet.pdf

	

										Component - CRC V2.40 Datasheet.pdf

	

										Component - CRC V2.0 Datasheet.pdf

	

										Component - CRC V2.10 Datasheet.pdf

	

										AN2014 Basics of PSoC 1 Programming.pdf

	

										CMPLP_001-13528.pdf

	

										DMX512RX_001-14404.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

