VISHAY SA54

SA5.0 THRU SA170CA
TRANSZORB™ TRANSIENT VOLTAGE SUPPRESSOR
Stand-off Voltage - 5.0 to 170 Volts
Peak Pulse Power - 500 Watts
FEATURES
DO-204AC
0.034 (0.86)
1.0
(25.4)
MIN.
0.028 (0.71)
DIA.
0.300 (7.6)
0.230 (5.8)
0.140 (3.6)
0.104 (2.6)
DIA.
1.0
(25.4)
MIN.
♦ Plastic package has Underwriters Laboratory
Flammability Classification 94V-0
♦ Glass passivated junction
♦ 500W peak pulse power surge capability with a
10/1000µs waveform, repetition rate (duty cycle): 0.01%
♦ Excellent clamping capability
♦ Low incremental surge resistance
♦ Fast response time: typically less
than 1.0ps from 0 Volts to V(BR) for uni-directional and
5.0ns for bi-directional types
♦ For devices with V(BR)≥10V, ID are typically less than
1.0µA
♦ High temperature soldering guaranteed:
265°C/10 seconds 0.375” (9.5mm) lead length,
5lbs (2.3 kg) tension
MECHANICAL DATA
Dimensions in inches and (millimeters)
Case: JEDEC DO-204AC molded plastic body over
passivated junction
Terminals: Solder plated axial leads, solderable per
MIL-STD-750, Method 2026
Polarity: For uni-directional types the color band denotes
the cathode, which is positive with respect to the anode
under normal TVS operation
Mounting Position: Any
Weight: 0.015 ounce, 0.4 gram
DEVICES FOR BIDIRECTIONAL APPLICATIONS
For bi-directional use C or CA Suffix. (e.g. SA5.0C, SA170CA).
Electrical characteristics apply in both directions.
MAXIMUM RATINGS AND CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified
SYMBOL
VALUE
UNITS
PPPM
Minimum 500
Watts
IPPM
SEE TABLE 1
Amps
PM(AV)
3.0
Watts
IFSM
70
Amps
Maximum instantaneous forward voltage at 35A for
unidirectional only
VF
3.5
Volts
Operating junction and storage temperature range
TJ, TSTG
-55 to +175
°C
Peak pulse power dissipation with a 10/1000µs waveform
(NOTE 1, FIG. 1)
Peak pulse current with a 10/1000µs waveform
(NOTE 1)
Steady state power dissipation at TL=75°C
lead lengths 0.375" (9.5mm) (NOTE 2)
Peak forward surge current, 8.3ms single half
sine-wave superimposed on rated load, unidirectional only
(JEDEC Method) (NOTE 3)
NOTES
(1) Non-repetitive current pulse, per Fig. 3 and derated above TA=25°C per Fig. 2
(2) Mounted on copper pad area of 1.6 x 1.6” (40 x 40mm) per Fig. 5
(3) 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minute maximum
1/25/99
ELECTRICAL CHARACTERISTICS at (TA=25°C unless otherwise noted) TABLE 1
Breakdown Voltage
V(BR)
(Volts) (NOTE 1)
Test
Current
at IT
(mA)
Stand-off
Voltage
VWM
(Volts)
Maximum
Reverse
Leakage
at VWM
ID (NOTE3) (µA)
Maximum
Peak Pulse
Current
IPPM
(Amps)
Maximum
Clamping
Voltage at
IPPM
VC (Volts)
Maximum
Temperature
Coefficient
of V(BR)
(mV / °C)
(NOTE 2)
Device Type
MIN
MAX
SA5.0
6.40
7.30
10
5.0
600
52.1
9.6
5.0
SA5.0A
6.40
7.00
10
5.0
600
54.3
9.2
5.0
SA6.0
6.67
8.15
10
6.0
600
43.9
11.4
5.0
SA6.0A
6.67
7.37
10
6.0
600
48.5
10.3
5.0
SA6.5
7.22
8.82
10
6.5
400
40.7
12.3
5.0
SA6.5A
7.22
7.98
10
6.5
400
44.7
11.2
5.0
SA7.0
7.78
9.51
10
7.0
150
37.6
13.3
6.0
SA7.0A
7.78
8.60
10
7.0
150
41.7
12.0
6.0
SA7.5
8.33
10.2
1.0
7.5
50
35.0
14.3
7.0
SA7.5A
8.33
9.21
1.0
7.5
50
38.8
12.9
7.0
SA8.0
8.89
10.9
1.0
8.0
25
33.3
15.0
7.0
SA8.0A
8.89
9.83
1.0
8.0
25
36.8
13.6
7.0
SA8.5
9.44
11.5
1.0
8.5
10
31.4
15.9
8.0
SA8.5A
9.44
10.4
1.0
8.5
10
34.7
14.4
8.0
SA9.0
10.0
12.2
1.0
9.0
5.0
29.6
16.9
9.0
SA9.0A
10.0
11.1
1.0
9.0
5.0
32.5
15.4
9.0
SA10
11.1
13.6
1.0
10.0
1.0
26.6
18.8
10.0
SA10A
11.1
12.3
1.0
10.0
1.0
29.4
17.0
10.0
SA11
12.2
14.9
1.0
11.0
1.0
24.9
20.1
11.0
SA11A
12.2
13.5
1.0
11.0
1.0
27.5
18.2
11.0
SA12
13.3
16.3
1.0
12.0
1.0
22.7
22.0
12.0
SA12A
13.3
14.7
1.0
12.0
1.0
25.1
19.9
12.0
SA13
14.4
17.6
1.0
13.0
1.0
21.0
23.8
13.0
SA13A
14.4
15.9
1.0
13.0
1.0
23.3
21.5
13.0
SA14
15.6
19.1
1.0
14.0
1.0
19.4
25.8
14.0
SA14A
15.6
17.2
1.0
14.0
1.0
21.6
23.2
14.0
SA15
16.7
20.4
1.0
15.0
1.0
18.6
26.9
16.0
SA15A
16.7
18.5
1.0
15.0
1.0
20.5
24.4
16.0
SA16
17.8
21.8
1.0
16.0
1.0
17.4
28.8
19.0
SA16A
17.8
19.7
1.0
16.0
1.0
19.2
26.0
17.0
SA17
18.9
23.1
1.0
17.0
1.0
16.4
30.5
20.0
SA17A
18.9
20.9
1.0
17.0
1.0
18.1
27.6
19.0
SA18
20.0
24.4
1.0
18.0
1.0
15.5
32.2
21.0
SA18A
20.0
22.1
1.0
18.0
1.0
17.1
29.2
20.0
SA20
22.2
27.1
1.0
20.0
1.0
14.0
35.8
25.0
SA20A
22.2
24.5
1.0
20.0
1.0
15.4
32.4
23.0
SA22
24.4
29.8
1.0
22.0
1.0
22.7
39.4
28.0
SA22A
24.4
26.9
1.0
22.0
1.0
14.1
35.5
25.0
SA24
26.7
32.6
1.0
24.0
1.0
11.6
43.0
31.0
SA24A
26.7
29.5
1.0
24.0
1.0
12.9
38.9
28.0
SA26
28.9
35.3
1.0
26.0
1.0
10.7
46.6
31.0
SA26A
28.9
31.9
1.0
26.0
1.0
11.9
42.1
30.0
SA28
31.1
38.0
1.0
28.0
1.0
10.0
50.1
35.0
SA28A
31.1
34.4
1.0
28.0
1.0
11.0
45.4
31.0
SA30
33.3
40.7
1.0
30.0
1.0
9.3
53.5
39.0
SA30A
33.3
36.8
1.0
30.0
1.0
10
48.4
36.0
SA33
36.7
44.9
1.0
33.0
1.0
8.5
59.0
42.0
SA33A
36.7
40.6
1.0
33.0
1.0
9.4
53.3
39.0
SA36
40.0
48.9
1.0
36.0
1.0
7.8
64.3
46.0
SA36A
40.0
44.2
1.0
36.0
1.0
8.6
58.1
41.0
SA40
44.4
54.3
1.0
40.0
1.0
7.0
71.4
51.0
SA40A
44.4
49.1
1.0
40.0
1.0
7.8
64.5
46.0
ELECTRICAL CHARACTERISTICS at (TA=25°C unless otherwise noted) TABLE 1 (Cont’d)
Breakdown Voltage
V(BR)
Volts (NOTE 1)
Stand-off
Voltage
VWM
(Volts)
Maximum
Reverse
Leakage
at VWM
ID (NOTE3) (µA)
Maximum
Peak Pulse
Current
IPPM
(Amps)
Maximum
Clamping
Voltage at
IPPM
VC (Volts)
Maximum
Temperature
Coefficient
of V(BR)
(mV / °C)
55.0
Device Type
MIN
MAX
Test
Current
at IT
(mA)
SA43
47.8
58.4
1.0
43.0
1.0
6.5
76.7
SA43A
47.8
52.8
1.0
43.0
1.0
7.2
69.4
SA45
50.0
61.1
1.0
45.0
1.0
6.2
80.3
58.0
SA45A
50.0
55.3
1.0
45.0
1.0
6.9
72.7
52.0
SA48
53.3
65.2
1.0
48.0
1.0
5.8
85.5
63.0
SA48A
53.3
58.9
1.0
48.0
1.0
6.5
77.4
56.0
SA51
56.7
69.3
1.0
51.0
1.0
5.5
91.1
66.0
SA51A
56.7
62.7
1.0
51.0
1.0
6.1
82.4
61.0
SA54
60.0
73.3
1.0
54.0
1.0
5.2
96.3
71.0
SA54A
60.0
66.3
1.0
54.0
1.0
5.7
87.1
65.0
SA58
64.4
78.7
1.0
58.0
1.0
4.9
103
78.0
SA58A
64.4
71.2
1.0
58.0
1.0
5.3
93.6
70.0
SA60
66.7
81.5
1.0
60.0
1.0
4.7
107
80.0
SA60A
66.7
73.7
1.0
60.0
1.0
5.2
96.8
71.0
SA64
71.1
86.9
1.0
64.0
1.0
4.4
114
86.0
SA64A
71.1
78.6
1.0
64.0
1.0
4.9
103
76.0
SA70
77.8
95.1
1.0
70.0
1.0
4.0
125
94.0
SA70A
77.8
86.0
1.0
70.0
1.0
4.4
113
85.0
SA75
83.3
102
1.0
75.0
1.0
3.7
134
101
SA75A
83.3
92.1
1.0
75.0
1.0
4.1
121
91.0
SA78
86.7
106
1.0
78.0
1.0
3.6
139
105
SA78A
86.7
95.8
1.0
78.0
1.0
4.0
126
95.0
SA85
94.4
115
1.0
85.0
1.0
3.3
151
114
SA85A
94.4
104
1.0
85.0
1.0
3.6
137
103
SA90
100
122
1.0
90.0
1.0
3.1
160
121
SA90A
100
111
1.0
90.0
1.0
3.4
146
110
SA100
111
136
1.0
100
1.0
2.8
179
135
SA100A
111
123
1.0
100
1.0
3.1
162
123
SA110
122
149
1.0
110
1.0
2.6
196
148
SA110A
122
135
1.0
110
1.0
2.8
177
133
SA120
133
163
1.0
120
1.0
2.3
214
162
SA120A
133
147
1.0
120
1.0
2.6
193
146
SA130
144
176
1.0
130
1.0
2.2
230
175
SA130A
144
159
1.0
130
1.0
2.4
209
158
SA150
167
204
1.0
150
1.0
1.9
268
203
SA150A
167
185
1.0
150
1.0
2.1
243
184
SA160
178
218
1.0
160
1.0
1.7
257
217
SA160A
178
197
1.0
160
1.0
1.9
259
196
SA170
189
231
1.0
170
1.0
1.6
304
230
SA170A
189
209
1.0
170
1.0
1.8
275
208
NOTES
(1) V(BR) measured after IT applied for 300µs. IT=square wave pulse or equivalent
(2) Surge current waveform per Fig. 3 and derate per Fig. 2
(3) For bidirectional types with VWM of 10 Volts and less, the ID limit is doubled.
(4) All terms and symbols are consistent with ANSI/IEEE C62.35
(NOTE 2)
50.0
RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA170CA
FIG. 2 - PULSE DERATING CURVE
100
PPPM, PEAK PULSE POWER, kW
NON-REPETITIVE
PULSE WAVEFORM
SHOWN in FIG. 3
TA=25°C
10
IMPULSE
EXPONENTIAL
DECAY
PPK”.5”
td
1.0
HALF SINE
PPK
td
td = 7tp
SQUARE
PPK
td
0.1
0.1µs
CURRENT WAVEFORMS
1,000µs
100µs
10µs
1µs
10,000µs
PEAK PULSE POWER (Ppp) or CURRENT (IPP)
DERATING IN PERCENTAGE, %
FIG. 1 - PEAK PULSE POWER RATING CURVE
30
75
50
25
0
td, PULSE WIDTH, sec.
25
0
50
75
100
125 150
175 200
TA, AMBIENT TEMPERATURE, °C
FIG. 4 - MAXIMUM NON-REPETITIVE PEAK FORWARD
SURGE CURRENT UNIDIRECTIONAL ONLY
FIG. 3 - PULSE WAVEFORM
PULSE WIDTH (td) is DEFINED
as the POINT WHERE the PEAK
CURRENT DECAYS to 50% of IPP
tr=10µsec.
IPPM PEAK PULSE CURRENT, %
PEAK FORWARD SURGE CURRENT,
AMPERES
150
PEAK VALUE
IPPM
100
HALF VALUE - IPP
2
50
10/1000µsec. WAVEFORM
as DEFINED by R.E.A.
200
8.3ms SINGLE HALF SINE-WAVE
(JEDEC Method)
100
10
100
10
1
NUMBER OF CYCLES AT 60 Hz
0
td
4.0
3.0
2.0
1.0
0
t, TIME, ms
FIG. 5 - STEADY STATE POWER DERATING
CURVE
FIG. 6 - CAPACITANCE
10,000
UNIDIRECTIONAL
BIDIRECTIONAL
3.5
C - CAPACITANCE, pF
PM(AV), STEADY STATE POWER DISSIPATION,
WATTS
4.0
3.0
2.5
2.0
L =0.375”(9.5mm)
1.5
LEAD LENGTHS
1,000
VR = 0
100
VR = RATED
STAND-OFF VOLTAGE
1.0
10
0.5
0
1.6 x 1.6 x 0.040” (40 x 40 x 1mm)
COPPER HEAT SINKS
0
25
50
75
100
5
100
REVERSE VOLTAGE, VOLTS
125
150
TL, LEAD TEMPERATURE,°C
175
200
500
RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA170CA
FIG. 7 - INCREMENTAL CLAMPING VOLTAGE CURVE
UNIDIRECTIONAL
WAVEFORM:
8 X 20 IMPULSE
∆VC=VC-V(BR)
100
SA170
SA110
SA70
SA54
SA40
10
SA30
SA24
SA18
SA15
1.0
SA12
SA5.0
SA9.0
0.1
0.5
SA110
SA70
SA24
SA15
SA9.0
1.0
SA5.0
IPP, PEAK PULSE CURRENT, AMPS
50
10
1
IPP, PEAK PULSE CURRENT, AMPS
FIG. 9 - INCREMENTAL CLAMPING VOLTAGE CURVE
BIDIRECTIONAL
FIG. 10 - INCREMENTAL CLAMPING VOLTAGE CURVE
BIDIRECTIONAL
100
100
WAVEFORM:
8 X 20 IMPULSE
∆VC=VC-V(BR)
SA110C
SA170C
SA70C
SA60C
10
SA40C
SA30C
SA24C
SA15C
SA9.0C
1.0
0.1
0.5
SA6.5C
1
WAVEFORM:
10 X 1000 IMPULSE
∆VC=VC-V(BR)
SA170C
10
IPP, PEAK PULSE CURRENT, AMPS
50
∆Vc, INCREMENTAL CLAMPING VOLTAGE
∆Vc, INCREMENTAL CLAMPING VOLTAGE
SA40
10
0.1
0.5
50
10
1
WAVEFORM:
10 X 1000 IMPULSE
∆VC=VC-V(BR)
SA170
∆Vc, INCREMENTAL CLAMPING VOLTAGE
∆Vc, INCREMENTAL CLAMPING VOLTAGE
100
FIG. 8 - INCREMENTAL CLAMPING VOLTAGE CURVE
UNIDIRECTIONAL
SA110C
SA70C
10
SA40C
SA24C
SA15C
SA9.0C
SA6.5C
1.0
0.1
0.5
1
10
IPP, PEAK PULSE CURRENT, AMPS
50
RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA170CA
FIG. 11 - TYPICAL INSTANTANEOUS FORWARD
VOLTAGE CHARACTERISTICS CURVE
100
IF, FORWARD CURRENT, AMPS
TJ=25°C
PULSE WIDTH=300µs
1% DUTY CYCLE
20
10
2
1
UNIDIRECTIONAL (ONLY)
0.2
0.1
0
0.5
1
2
1.5
2.5
VF, FORWARD VOLTAGE, VOLTS
Θv, TEMPERATURE COEFFICIENT, mV/°C
FIG. 12 - BREAKDOWN VOLTAGE TEMPERATURE
COEFFICIENT CURVE
200
100
UNIDIRECTIONAL
BIDIRECTIONAL
10
1.0
5.0
10
100
500
VWM, RATED STAND-OFF VOLTAGE, VOLTS
APPLICATIONS
This TVS series is a low cost, 500 watt commercial and industrial product for use in applications where space is a premium and
where large voltage transients can permanently damage voltage-sensitive components.
The response time of TVS clamping action is 1.0ns for uni-directional and 5.0ns for bi-directional; therefore, they can protect
integrated circuits, MOS devices, hybrids, and other voltage-sensitive semiconductor components.