SEMIKRON SKM200GB124

Absolute Maximum Ratings
Values
Symbol Conditions 1)
VCES
VCGR
IC
ICM
VGES
Ptot
Tj, (Tstg)
Visol
humidity
climate
Units
RGE = 20 kΩ
Tcase = 25/85 °C
Tcase = 25/85 °C; tp = 1 ms
per IGBT, Tcase = 25 °C
AC, 1 min.
DIN 40040
DIN IEC 68 T.1
1200
1200
290 / 200
580 / 400
± 20
1350
–40 ... +150 (125)
2500
Class F
40/125/56
V
V
A
A
V
W
°C
V
195 / 130
580 / 400
1450
10 500
A
A
A
A2s
SEMITRANS® M
Low Loss IGBT Modules
SKM 200 GB 124 D
Inverse Diode
IF = –IC
IFM = –ICM
IFSM
I 2t
Tcase = 25/80 °C
Tcase = 25/80 °C; tp = 1 ms
tp = 10 ms; sin.; Tj = 150 °C
tp = 10 ms; Tj = 150 °C
SEMITRANS 3
Characteristics
Symbol Conditions 1)
V(BR)CES
VGE(th)
ICES
IGES
VCEsat
VCEsat
gfs
CCHC
Cies
Coes
Cres
LCE
td(on)
tr
td(off)
tf
Eon
Eoff
VGE = 0, IC = 4 mA
VGE = VCE, IC = 6 mA
Tj = 25 °C
VGE = 0
VCE = VCES Tj = 125 °C
VGE = 20 V, VCE = 0
IC = 150 A VGE = 15 V;
IC = 200 A Tj = 25 (125) °C
VCE = 20 V, IC = 150 A
per IGBT
VGE = 0
VCE = 25 V
f = 1 MHz
VCC = 600 V
VGE = –15 V / +15 V3)
IC = 150 A, ind. load
RGon = RGoff = 7Ω
Tj = 125 °C
min.
typ.
max.
Units
4,5
–
–
–
–
–
62
–
5,5
0,4
12
–
2,1(2,4)
2,5(3,0)
–
–
6,5
14
–
0,32
2,45(2,85)
–
–
V
V
mA
mA
µA
V
V
S
–
–
–
–
–
–
11
1,6
0,8
–
700
15
2
1
20
pF
nF
nF
nF
nH
–
–
–
–
–
–
75
50
520
50
21
19
–
–
–
–
–
–
ns
ns
ns
ns
mWs
mWs
–
–
–
–
–
–
2,0(1,8)
2,25(2,05)
1,1
–
78
19,5
2,5
–
1,2
7
–
–
V
V
V
mΩ
A
µC
≥ VCES
Inverse Diode 8)
VF = VEC
VF = VEC
VTO
rt
IRRM
Qrr
IF = 150 A VGE = 0 V;
IF = 200 A Tj = 25 (125) °C
Tj = 125 °C 2)
Tj = 125 °C 2)
IF = 150 A; Tj = 125 °C2)
IF = 150 A; Tj = 125 °C2)
Thermal characteristics
Rthjc
Rthjc
Rthch
per IGBT
per diode
per module
–
–
–
–
–
–
0,09
0,25
0,038
°C/W
°C/W
°C/W
GB
Features
• MOS input (voltage controlled)
• N channel, homogeneous Silicon
structure NPT-IGBT (Non punch
through)
• Low saturation voltage
• Low inductance case
• Low tail current with low
temperature dependence
• High short circuit capability,
self limiting to 6 * Icnom
• Latch-up free
• Fast & soft inverse CAL diodes 8)
• Isolated copper baseplate using
DCB Direct Copper Bonding
Technology without hard mould
• Large clearance (12 mm) and
creepage distances (20 mm)
Typical Applications → B 6 – 161
• Switching (not for linear use)
• Inverter drives
• UPS
1)
2)
3)
8)
Tcase = 25 °C, unless otherwise
specified
IF = – IC, VR = 600 V,
–diF/dt = 1500 A/µs, VGE = 0 V
Use VGEoff = –5... –15 V
CAL = Controlled Axial Lifetime
Technology
Cases and mech. data
→ B 6 – 162
© by SEMIKRON
0898
B 6 – 157
SKM 200 GB 124 D
M200G124.X LS-1
1400
M200G124.X LS -2
70
W
1200
60
1000
50
800
40
600
30
400
20
200
Tj = 125 °C
VCE = 600 V
VGE = + 15 V
RG = 7 Ω
E on
mWs
E off
10
E
Ptot
0
0
0
20
40
60
80
100
TC
120
140 160
°C
0
Fig. 1 Rated power dissipation Ptot = f (TC)
100
150
200
250
300
A
350
Fig. 2 Turn-on /-off energy = f (IC)
M200G124.X LS-3
90
mWs
80
50
IC
M200G124.X LS -4
1000
Tj = 125 °C
VCE = 600 V
VGE = + 15 V
IC = 150 A
E on
70
A
100
60
1 pulse
TC = 25 °C
Tj ≤ 150 °C
t p=10µs
100µs
50
40
E off
30
1ms
10
Not for
linear use
20
10ms
IC
10
E
0
1
0 R
G
10
20
30
40
50
Ω
1
60
Fig. 3 Turn-on /-off energy = f (RG)
100
1000
10000
V
Fig. 4 Maximum safe operating area (SOA) IC = f (VCE)
M200G124.X LS -5
2,5
VCE 10
VGE = 15 V
RGoff = 7 Ω
IC = 150 A
2
M200G124.X LS -6
12
Tj ≤ 150 °C
10
di/dt= 1000 A/µs
3000 A/µs
5000 A/µs
8
1,5
Tj ≤ 150 °C
VGE = ± 15 V
tsc ≤ 10 µs
L < 25 nH
IC = 150 A
6
1
0,5
ICpuls/IC
4
allowed numbers of
short circuits: <1000
2
time between short
circuits: >1s
ICSC/IC
0
0
0
200
V CE
400
600
800
1000 1200 1400
V
Fig. 5 Turn-off safe operating area (RBSOA)
B 6 – 158
0
200
VCE
400
600
800
1000 1200
1400
V
Fig. 6 Safe operating area at short circuit IC = f (VCE)
0898
© by SEMIKRON
M2 0 0G1 24 .X LS -8
300
Tj = 150 °C
VGE ≥ 15V
A
250
200
150
100
50
IC
0
0
40
80
120
160
°C
TC
Fig. 8 Rated current vs. temperature IC = f (TC)
M2 0 0G1 24 .X LS -9
M 20 0G1 24 .X LS -1 0
300
300
A
A
17V
15V
13V
11V
9V
7V
250
200
250
17V
15V
13V
11V
9V
7V
200
150
150
100
100
50
50
IC
IC
0
0
0
V CE
1
2
3
4
V
5
Fig. 9 Typ. output characteristic, tp = 80 µs; 25 °C
0
VCE 1
2
3
4
5
V
Fig. 10 Typ. output characteristic, tp = 80 µs; 125 °C
M200G124.X LS-12
300
Pcond(t) = VCEsat(t) · IC(t)
A
250
VCEsat(t) = VCE(TO)(Tj) + rCE(Tj) · IC(t)
200
VCE(TO)(Tj) ≤ 1,3 + 0,0005 (Tj –25) [V]
150
typ.: rCE(Tj) = 0,0053 + 0,000017 (Tj –25) [Ω]
100
max.: rCE(Tj) = 0,0077 + 0,000023 (Tj –25) [Ω]
+2
valid for VGE = + 15 –1
50
IC
[V]; IC > 0,3 ICnom
0
0
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations
© by SEMIKRON
V GE
2
4
6
8
10
12
V
14
Fig. 12 Typ. transfer characteristic, tp = 80 µs; VCE = 20 V
0898
B 6 – 159
SKM 200 GB 124 D
M200G124.X LS-13
20
V
18
600V
16
M200G124.X LS -14
100
Rthjc = 0,005
ICpuls = 150 A
VGE = 0 V
f = 1 MHz
nF
800V
Cies
14
10
12
10
Coes
8
1
6
Cres
4
V GE
C
2
0
0,1
0
200
400
600
800
1000
1200
0
nC
QGate
Fig. 13 Typ. gate charge characteristic
ns
tdoff
100
10
20
30
V
Fig. 14 Typ. capacitances vs.VCE
M200G124.X LS-15
1000
VCE
Tj = 125 °C
VCE = 600 V
VGE = ± 15 V
RGon = 7 Ω
RGoff = 7 Ω
induct. load
M200G124.X LS -16
10000
ns
tdoff
Tj = 125 °C
VCE = 600 V
VGE = ± 15 V
IC = 150 A
induct. load
1000
tdon
t don
tr
100
tf
tr
tf
t
t
10
10
0
50
100
150
200
250
300
IC
0
350
A
20
30
40
50
M200GB 124.X LS -17
M200G124.X LS -18
10
mJ
A
RG=
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
4Ω
Tj=125°C, typ.
150
60
Ω
Fig. 16 Typ. switching times vs. gate resistor RG
Fig. 15 Typ. switching times vs. IC
200
10
RG
8
6Ω
6
10 Ω
Tj=25°C, typ.
Tj=125°C, max.
Tj=25°C, max.
100
17 Ω
4
40 Ω
50
2
E offD
IF
0
0
0
VF
1
2
40
IF
V
Fig. 17 Typ. CAL diode forward characteristic
B 6 – 160
0
3
80
120
160
200
240
A
Fig. 18 Diode turn-off energy dissipation per pulse
0898
© by SEMIKRON
M 20 0G1 24 .X LS -1 9
1
M2 0 0G1 24 .X LS -2 0
1
K/W
K/W
0,1
0,1
0,01
0,01
D=0,50
0,20
0,10
0,05
0,02
0,01
0,001
0,001
single pulse
single pulse
ZthJC
0,0001
0,00001
0,0001
D=0,5
0,2
0,1
0,05
0,02
0,01
ZthJC
0,001
0,01
0,1
0,0001
0,00001
1
s
tp
Fig. 19 Transient thermal impedance of IGBT
ZthJC = f (tp); D = tp / tc = tp · f
4Ω
6Ω
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
IF = 150 A
RG= 4 Ω
6Ω
160
10 Ω
120
120
10 Ω
17 Ω
80
17 Ω
40 Ω
40
1
M200G124.X LS -23
200
80
0,1
s
A
240
200
160
0,01
280
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
RG=
A
240
0,001
Fig. 20 Transient thermal impedance of
inverse CAL diodes ZthJC = f (tp); D = tp / tc = tp · f
M200G124.X LS-22
280
0,0001
tp
40 Ω
40
IRR
IRR
0
0
0
40
80
120
160
200
IF
240
0
1000
diF/dt
A
Fig. 22 Typ. CAL diode peak reverse recovery
current IRR = f (IF; RG)
2000
3000
4000
5000
6000 7000
A/µs
Fig. 23 Typ. CAL diode peak reverse recovery
current IRR = f (di/dt)
M2 0 0G1 24 .X LS -2 4
35
µC
30
Typical Applications
include
Switched mode power supplies
10 Ω
25
DC servo and robot drives
Inverters
20
DC choppers
15
RG= 4 Ω
IF =
200 A
17 Ω
150 A
40 Ω
110 A
75 A
AC motor speed control
40 A
10
UPS Uninterruptable power supplies
General power switching applications
6Ω
VCC = 600 V
Tj = 125 °C
VGE = ± 15 V
5
Qrr
Electronic (also portable) welders
0
0
2000
diF/dt
4000
6000
A/µs
8000
Fig. 24 Typ. CAL diode recovered charge
© by SEMIKRON
0898
B 6 – 161
SKM 200 GB 124 D
SEMITRANS 3
Case D 56
UL Recognized
File no. E 63 532
SKM 200 GB 124 D
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions
M1
M2
a
w
B 6 – 162
to heatsink, SI Units
to heatsink, US Units
for terminals, SI Units
for terminals, US Units
Values
(M6)
(M6)
Units
min.
typ.
max.
3
27
2,5
22
–
–
–
–
–
–
–
–
5
44
5
44
5x9,81
325
0898
Nm
lb.in.
Nm
lb.in.
m/s2
g
This is an electrostatic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Three devices are supplied in one
SEMIBOX A without mounting
hardware, which can be ordered
separately under Ident No.
33321100 (for 10 SEMITRANS 3).
Larger packing units of 12 and 20
pieces are used if suitable
Accessories → B 6 – 4.
SEMIBOX → C – 1.
© by SEMIKRON