STMICROELECTRONICS TS507IDT

TS507
High precision rail-to-rail operational amplifier
Features
■
Ultra low offset voltage: 25 µV typ, 100 µV max
■
Rail-to-rail input/output voltage swing
■
Operating from 2.7 V to 5.5 V
■
High speed: 1.9 MHz
■
45° phase margin with 100 pF
■
Low consumption: 0.8 mA at 2.7 V
■
Very large signal voltage gain: 131 dB
■
High power supply rejection ratio: 105 dB
■
Very high ESD protection 5kV (HBM)
■
Latch-up immunity
■
Available in SOT23-5 micropackage
Pin connections (top view)
SOT23-5
Output
1
VDD
2
Non Inverting Input
3
5
VCC
4
Inverting Input
SO-8
Applications
■
Battery-powered applications
■
Portable devices
■
Signal conditioning
■
Medical instrumentation
N.C.
1
Inverting Input
2
Non Inverting Input
3
VDD
4
8
N.C.
_
7
VCC
+
6
Output
5
N.C.
Description
The TS507 is a high performance rail-to-rail input
and output amplifier with very low offset voltage.
This amplifier uses a new trimming technique that
yields ultra low offset voltages without any need
for external zeroing.
The circuit offers very stable electrical
characteristics over the entire supply voltage
range, and is particularly intended for automotive
and industrial applications.
The TS507 is housed in the space-saving 5-pin
SOT23 package, making it well suited for batterypowered systems. This micropackage simplifies
the PC board design because of its ability to be
placed in tight spaces (external dimensions are
2.8 mm x 2.9 mm).
April 2008
Rev 5
1/20
www.st.com
20
Contents
TS507
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Application note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
3.1
Out-of-the-loop compensation technique . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
In-the-loop-compensation technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2
SO-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2/20
TS507
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Parameter
Supply voltage (1)
Differential input voltage
(2)
(3)
Vin
Input voltage
Tstg
Storage temperature
Value
Unit
6
V
±2.5
V
VDD-0.3 to VCC+0.3
V
-65 to +150
°C
250
125
°C/W
(4) (5)
Rthja
Thermal resistance junction to ambient
SOT23-5
SO-8
Rthjc
Thermal resistance junction to case
SOT23-5
SO-8
81
40
°C/W
Maximum junction temperature
150
°C
5
kV
300
V
2
kV
Tj
HBM: human body model(6)
ESD
(7)
MM: machine model
CDM: charged device model
(8)
Latch-up immunity
class A
1. Value with respect to VDD pin.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. VCC-Vin must not exceed 6V and Vin must not exceed 6V.
4. Short-circuits can cause excessive heating and destructive dissipation.
5. Rthja/c are typical values.
6. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
7. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
8. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
Table 2.
Operating conditions
Symbol
Parameter
VCC
Supply voltage(1)
Vicm
Common mode input voltage range
Vid
Toper
Differential input
voltage(2)
Operating free air temperature range
TS507C
TS507I
Value
Unit
2.7 to 5.5
V
VDD to VCC
V
±2.5
V
0 to +85
-40 to +125
°C
1. Value with respect to VDD pin.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3/20
Electrical characteristics
TS507
2
Electrical characteristics
Table 3.
Electrical characteristics at VCC = +5V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C,
RL connected to VCC/2 (unless otherwise specified)(1)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
25
100
250
400
µV
450
550
750
µV
DC performance
Vio
ΔVio/Δt
Input offset voltage(2)
Vicm = 0 to 3.8V, T=25°C
TS507C full temp range
TS507I full temp range
Vicm = 0V to 5V, T=25°C
TS507C full temp range
TS507I full temp range
Vio drift vs. temperature
Tmin < Top < Tmax
1
Input bias current
T = 25°C
TS507C full temp range
TS507I full temp range
8
Iib
Input offset current
T = 25°C
TS507C full temp range
TS507I full temp range
2
Iio
CMRR
Common mode rejection ratio
20 log (ΔVicm/ΔVio)
Vicm from 0V to 3.8V, T=25°C
TS507C full temp range
TS507I full temp range
94
94
91
Vicm from 0V to 5V
PSRR
Avd
VOL
4/20
nA
25
35
50
nA
dB
96
VCC from 2.7V to 5.5V,
Vicm=vcc/2, T=25°C
TS507C full temp range
TS507I full temp range
91
90
89
105
Large signal voltage gain
RL = 10kΩ, Vout= 0.5V to 4.5V
Full temp range
99
98
131
Low level output voltage
70
75
110
115
Power supply rejection ratio
20 log (ΔVCC/ΔVio)
VCC-VOH High level output voltage drop
µV/°C
dB
dB
RL = 600Ω, T=25°C
TS507C full temp range
TS507I full temp range
67
RL = 10kΩ, T=25°C
Full Temp range
4
15
15
RL = 600Ω, T=25°C
TS507C full temp range
TS507I full temp range
64
90
110
125
RL = 10kΩ, T=25°C
Full temp range
4
95
110
120
15
15
mV
mV
TS507
Table 3.
Electrical characteristics
Electrical characteristics at VCC = +5V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C,
RL connected to VCC/2 (unless otherwise specified)(1) (continued)
Symbol
Parameter
Min.
Typ.
74
60
53
104
Isink
Vout = VCC, Vid=-1V, T=25°C
TS507C full temp range
TS507I full temp range
90
77
70
128
Isource
Vout = VDD, Vid=1V, T=25°C
TS507C full temp range
TS507I full temp range
Supply current (per operator)(2)
No load, Vout=VCC/2,
Vicm=0 to 5V, T=25°C
Full temp range
0.85
Gain bandwidth product
RL = 2kΩ, CL = 100pF,
f = 100kHz
1.9
MHz
φm
Phase margin
RL = 2kΩ, CL=100pF
45
Degrees
Gm
Gain margin
RL = 2kΩ, CL=100pF
10
dB
SR
Slew rate
RL = 2kΩ, CL=100pF,
Vout = 1.25V to 3.75V, 10% to
90%
0.6
V/µs
eN
Equivalent input noise voltage
f = 1kHz
12
nV/√Hz
iN
Equivalent input noise current
f = 10kHz
1.2
pA/√Hz
0.0003
%
Iout
ICC
Conditions
Max.
Unit
mA
1.15
1.25
mA
Dynamic performance
GBP
THD+eN THD + noise
f=1kHz, G=1, RL=2kΩ, Vicm=2V,
Vout=3.5Vpp
1. All parameter limits at temperatures different from 25° C are guaranteed by correlation.
2. Measurements done at 4 Vicm values: Vicm=0 V, Vicm=3.8 V, Vicm=4.2 V, Vicm=5 V.
5/20
Electrical characteristics
Table 4.
TS507
Electrical characteristics at VCC = +3.3V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C,
RL connected to VCC/2 (unless otherwise specified)(1)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
25
100
250
400
µV
450
550
750
µV
DC performance
Vio
ΔVio
Input offset voltage(2)
Vicm = 0V to 3.3V, T=25°C
TS507C full temp range
TS507I full temp range
Vio drift vs. temperature
Tmin < Top < Tmax
1
Input bias current
T = 25°C
TS507C full temp range
TS507I full temp range
6
Iib
Input offset current
T = 25°C
TS507C full temp range
TS507I full temp range
2
Iio
Common mode rejection ratio
20 log (ΔVicm/ΔVio)
Vicm from 0V to 2.1V
115
dB
Large signal voltage gain
RL = 10kΩ, Vout= 0.5V to 2.8V
127
dB
RL = 600Ω, T=25°C
TS507C full temp range
TS507I full temp range
59
RL = 10kΩ, T=25°C
Full temp range
4
15
15
RL = 600Ω, T=25°C
TS507C full temp range
TS507I full temp range
57
80
100
115
RL = 10kΩ, T=25°C
Full temp range
4
CMRR
Avd
VCC-VOH High level output voltage drop
VOL
Low level output voltage
Vout = VCC, Vid=-1V, T=25°C
TS507C full temp range
TS507I full temp range
33
26
22
48
Isink
37
32
29
56
Isource
Vout = VDD, Vid=1V, T=25°C
TS507C full temp range
TS507I full temp range
Supply current (per operator)(2)
No load, Vout=VCC/2,
Vicm=0 to 3.3V, T=25°C
Full temp range
Iout
ICC
6/20
Vicm = 0 to 2.1V, T=25°C
TS507C full temp range
TS507I full temp range
µV/°C
70
75
145
nA
25
40
45
nA
85
100
110
mV
mV
15
15
mA
0.81
1.1
1.2
mA
TS507
Table 4.
Electrical characteristics
Electrical characteristics at VCC = +3.3V, VDD = 0V, Vicm = VCC/2, Tamb = 25°C,
RL connected to VCC/2 (unless otherwise specified)(1) (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Dynamic performance
Gain bandwidth product
RL = 2kΩ, CL = 100pF,
f = 100kHz
1.9
MHz
φm
Phase margin
RL = 2kΩ, CL=100pF
45
Degrees
Gm
Gain margin
RL = 2kΩ, CL=100pF
10
dB
SR
Slew rate
RL = 2kΩ, CL=100pF,
Vout= 0.5V to 2.8V, 10% to 90%
0.6
V/µs
eN
Equivalent input noise voltage
f = 1kHz
12
nV/√Hz
0.0004
%
GBP
THD+eN THD + noise
f=1KHz, G=1, RL=2kΩ,
Vicm=1.15V, Vout=1.8Vpp
1. All parameter limits at temperatures different from 25° C are guaranteed by correlation.
2. Measurements done at 4 Vicm values: Vicm=0 V, Vicm=2.1 V, Vicm=2.5 V, Vicm=3.3 V.
7/20
Electrical characteristics
Table 5.
TS507
Electrical characteristics at VCC = +2.7V VDD = 0V, Vicm = VCC/2, Tamb = 25°C,
RL connected to VCC/2 (unless otherwise specified)(1)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
25
100
250
400
µV
450
550
750
µV
DC performance
Vio
ΔVio
Input offset voltage(2)
Vicm = 0V to 2.7V, T=25°C
TS507C full temp range
TS507I full temp range
Vio drift vs. temperature
Tmin < Top < Tmax
1
Input bias current
T = 25°C
TS507C full temp range
TS507I full temp range
8
Iib
Input offset current
T = 25°C
TS507C full temp range
TS507I full temp range
2
Iio
Common mode rejection ratio
20 log (ΔVicm/ΔVio)
Vicm from 0V to 1.5V
115
dB
Large signal voltage gain
RL = 10kΩ, Vout= 0.5V to 2.2V
126
dB
RL = 600Ω, T=25°C
TS507C full temp range
TS507I full temp range
57
RL = 10kΩ, T=25°C
Full temp range
4
15
15
RL = 600Ω, T=25°C
TS507C full temp range
TS507I full temp range
57
80
100
115
RL = 10kΩ, T=25°C
Full temp range
4
CMRR
Avd
VCC-VOH High level output voltage drop
VOL
Low level output voltage
Vout = VCC, Vid=-1V, T=25°C
TS507C full temp range
TS507I full temp range
20
15
13
30
Isink
22
19
17
35
Isource
Vout = VDD, Vid=1V, T=25°C
TS507C full temp range
TS507I full temp range
Supply current (per operator)(2)
No load, Vout=VCC/2,
Vicm=0 to 2.7V, T=25°C
Full temp range
Iout
ICC
8/20
Vicm = 0 to 1.9V, T=25°C
TS507C full temp range
TS507I full temp range
µV/°C
70
75
160
nA
25
45
45
nA
85
100
105
mV
mV
15
15
mA
0.79
1.1
1.2
mA
TS507
Table 5.
Electrical characteristics
Electrical characteristics at VCC = +2.7V VDD = 0V, Vicm = VCC/2, Tamb = 25°C,
RL connected to VCC/2 (unless otherwise specified)(1) (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Dynamic performance
Gain bandwidth product
RL = 2kΩ, CL = 100pF,
f = 100kHz
1.9
MHz
φm
Phase margin
RL = 2kΩ, CL=100pF
45
Degrees
Gm
Gain margin
RL = 2kΩ, CL=100pF
11
dB
SR
Slew rate
RL = 2kΩ, CL=100pF,
Vout= 0.5V to 2.2V, 10% to 90%
0.6
V/µs
eN
Equivalent input noise voltage
f = 1kHz
12
nV/√Hz
0.0005
%
GBP
THD+eN THD + noise
f=1KHz, G=1, RL=2kΩ,
Vicm=0.85V, Vout=1.2Vpp
1. All parameter limits at temperatures different from 25° C are guaranteed by correlation.
2. Measurements done at 4 Vicm values: Vicm=0 V, Vicm=1.5 V, Vicm=1.9 V, Vicm=2.7 V.
9/20
Electrical characteristics
Figure 1.
TS507
Input offset voltage distribution for Figure 2.
Vicm≤ VCC-1.2V at T=25°C
30
Input offset voltage distribution vs.
temperature for Vicm≤ VCC-1.2V
400
350
300
Vio distribution at T=25°C for 0V<=Vicm<=Vcc-1.2V
25
0V<=Vicm<=Vcc-1.2V
250
200
150
100
Vio (µV)
Population %
20
15
10
50
0
-50
-100
-150
-200
-250
5
-300
-350
0
-120
-400
-100
-80
-60
-40
-20
0
20
40
60
80
100
-50 -40 -30 -20 -10
120
0
Temperature (°C)
Input offset voltage (µV)
Figure 3.
10 20 30 40 50 60 70 80 90 100 110 120 130
Input offset voltage distribution vs. Figure 4.
temperature for Vicm ≥ VCC-0.8V
Input offset voltage distribution for
Vicm ≤ VCC-1.2V at T=25°C after HTB
45
700
Vio distribution at T=25°C for 0V<=Vicm<=Vcc-1.2V
after HTB (1000 hours at 125°C)
600
40
Vcc-0.8V<=Vicm<=Vcc
500
400
35
300
30
Population %
Vio (µV)
200
100
0
-100
-200
-300
25
20
15
-400
10
-500
-600
5
-700
-50 -40 -30 -20 -10 0
0
-100
10 20 30 40 50 60 70 80 90 100 110 120 130
-80
-60
Temperature (°C)
Figure 5.
-40
-20
0
20
40
60
80
100
Input offset voltage (µV)
Input offset voltage distribution for Figure 6.
Vicm ≤ VCC-1.2V at T=25°C after THB
Input offset voltage vs. input
common mode voltage at T=25°C
40
35
Vcc=3.3V
Population %
25
20
15
10
5
0
-120
0
-20
Vcc=5.5V
Vcc=5V
-40
-60
-80
-100
-80
-60
-40
-20
0
20
40
Input offset voltage (µV)
10/20
Vcc=2.7V
20
Vio distribution at T=25°C for 0V<=Vicm<=Vcc-1.2V
after THB (1000 hours at 85°C, humidity 85%)
Input Offset Voltage (μV)
30
60
80
100
120
-100
-2.5
-2.0
-1.5
-1.0
Vicm-Vcc (V)
-0.5
0.0
TS507
Electrical characteristics
Figure 7.
Supply current vs. input common
mode voltage in closed loop
configuration at VCC=5V
Figure 8.
Supply current vs. supply voltage at
Vicm=VCC/2
1.0
1.0
0.8
0.8
0.7
T=25°C
Supply Current (mA)
Supply Current (mA)
T=125°C
T=125°C
T=-40°C
0.5
0.3
Vcc=5V
Closed loop
0.7
T=25°C
0.5
T=-40°C
0.3
0.2
0.2
0.0
0.0
Vicm=Vcc/2
0
Figure 9.
1
2
3
4
Input common mode voltage (V)
5
Supply current vs. input common
mode voltage in follower
configuration at VCC=2.7V
0
1
2
3
Supply voltage (V)
4
5
Figure 10. Supply current vs. input common
mode voltage in follower
configuration at VCC=5V
1.0
1.0
T=125°C
0.8
T=25°C
0.7
0.5
Supply Current (mA)
Supply Current (mA)
0.8
T=-40°C
0.3
Follower configuration
Vcc=2.7V
0.2
0.7
T=125°C
0.5
0.3
Follower configuration
Vcc=5V
0.2
0.0
0.0
T=25°C
T=-40°C
0.0
0.5
1.0
1.5
2.0
Input Common Mode Voltage (V)
2.5
0
1
2
3
4
Input Common Mode Voltage (V)
5
Figure 11. Output current vs. supply voltage at Figure 12. Output current vs. output voltage at
Vicm=VCC/2
VCC=2.7V
150
100
Output Current (mA)
75
Source
Vid = 1V
T=125°C
T=-40°C
T=25°C
Output Current (mA)
125
50
25
Vicm=Vcc/2
0
-25
-50
-75
-100
-125
T=125°C
Sink
Vid = -1V
T=25°C
T=-40°C
-150
3.0
3.5
4.0
4.5
Supply voltage (V)
5.0
5.5
40
T=-40°C
35
30
Source
25
Vid=1V
20
T=25°C
15
T=125°C
10
5
0
Vcc=2.7V
-5
-10
T=125°C
-15
T=25°C
-20
Sink
-25
-30 Vid=-1V
-35
T=-40°C
-40
0.0
0.5
1.0
1.5
2.0
2.5
Output Voltage (V)
11/20
Electrical characteristics
TS507
Figure 13. Output current vs. output voltage at Figure 14. Positive and negative slew rate vs.
VCC=5V
supply voltage
T=25°C
125
Source
Vid=1V
100
T=-40°C
Output Current (mA)
75
50
Positive and Negative Slew Rate (V/µs)
150
T=125°C
25
Vcc=5V
0
-25
T=125°C
-50
-75
-100
-125
-150
0.0
Sink
Vid=-1V
T=-40°C
1.0
T=25°C
2.0
3.0
Output Voltage (V)
4.0
1.0
0.6
0.4
T=-40°C
0.2
Vin : from 0.5V to Vcc-0.5V
SR : calculated from 10% to 90%
0.0
T=25°C
T=-40°C
-0.2
T=25°C
-0.4
-0.6
-0.8
T=125°C
Negative slew rate
-1.0
2.0
5.0
T=125°C
Positive slew rate
0.8
2.5
3.0
3.5
4.0
4.5
Supply Voltage (V)
5.0
5.5
6.0
Figure 15. Voltage gain and phase vs.
Figure 16. Voltage gain and phase vs.
frequency at VCC=5V and Vicm=2.5V
frequency at VCC=5V and Vicm=2.5V
at T=25°C
at T=-40°C
40
Phase
180
50
180
150
40
150
120
30
120
30
90
Cl=230pF 30
Gain
0
0
-30
-10
-20
-30
-60
Vcc=5V, Vicm=2.5V, G= -100
Rl=2kOhms, Vrl=Vcc/2
Tamb=25°C
10
5
10
6
60
10
30
Phase
0
10
-30
-60
-20
-90
Vcc=5V, Vicm=2.5V, G= -100
Rl=2kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=-40°C
-30
-120
7
0
Gain
-10
-90
-40
-50
4
10
Gain (dB)
Gain (dB)
10
90
20
60
Phase (°)
Cl=100pF
20
Phase (°)
50
-150
-40
-180
-50
4
10
10
Frequency (Hz)
5
10
-120
-150
6
10
7
-180
Frequency (Hz)
Figure 17. Voltage gain and phase vs.
Figure 18. Closed loop gain in voltage follower
frequency at VCC=5V and Vicm=2.5V
configuration for different
at T=125°C
capacitive load at T=25°C
50
180
40
150
20
120
30
10
90
60
30
Phase
0
0
-30
Gain
-10
-60
-20
-30
-40
-50
4
10
10
10
6
Frequency (Hz)
12/20
G ain without C L
-10
G ain with C L =300 pF
-20
-90
Vcc=5V, Vicm=2.5V, G= -100
Rl=2kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=125°C
5
0
Gain (dB)
10
Phase (°)
Gain (dB)
20
TS507 :
V cc = 5 V
V icm = 2,5 V
T = 25 °C
R L = 10 k Ω
-120
G ain with C L =550 pF
-30
-150
10
7
-180
-40
10k
100k
1M
Frequency (H z)
10M
TS507
Electrical characteristics
Figure 19. Gain margin according the output
load, at VCC=5V and T=25°C
Figure 20. Phase margin according the output
load, at VCC=5V and T=25°C
1E-6
1E-6
V cc = 5 V
V icm = 2,5 V
T amb = 25 °C
1E-7
Load Capacitor (F)
Load Capacitor (F)
1E-7
UNSTABLE
1E-8
1E-9
0 dB
1E-10
10 dB
1E-11 30 dB
20 dB
V cc = 5 V
V icm = 2,5 V
T amb = 25 °C
UNSTABLE
0°
1E-8
10 °
1E-9
20 °
1E-10
30 °
1E-11
40 °
STABLE
1E-12
1E-12
1
10
100
1k
10k
100k
1M
1
10M
10
100
Figure 21. Gain margin vs. output current, at
VCC=5V and T=25°C
10k
100k
1M
10M
Figure 22. Phase margin vs. output current, at
VCC=5V and T=25°C
20.0
70
17.5
R ecom m ended area
50
Phase Margin (°)
100 pF
12.5
10.0
300 pF
7.5
550 pF
5.0
V cc = 5 V
V icm = 2,5 V
T am b = 25 °C
RL = 2 kΩ
2.5
0.0
-3
-2
-1
0
1
2
3
5 50 pF
30
20
V cc = 5 V
V icm = 2,5 V
T am b = 2 5 °C
R L = 2 kΩ
0
-1 0
4
-4
-3
O utput Current (m A)
10
25
0
0
-10
-25
Gain Margin
-20
-50
0.0100
2
3
4
Vcc=3.3V
Vcc=2.7V
f=1kHz
Rl=2kO hm s
G ain=1
BW =22kHz
Vicm =(Vcc-1V)/2
0.0010
Phase Margin
-75
Load Capacitor (F)
1
Vcc=5V
THD + N (%)
20
1n
0
0.1000
Phase (°)
75
Vcc = 5 V
Vicm = 2,5 V
50
Tamb = 25 °C
RL = 2 k Ω
100p
-1
Figure 24. Distortion + noise vs. output
voltage
30
-40
10p
-2
O utput C urrent (m A)
Figure 23. Phase and gain margins vs
capacitive load at = 25°C
-30
30 0 pF
10 0 pF
40
10
-2.5
-4
R ecom m e nded a rea
60
15.0
Gain Margin (dB)
1k
Load Resistor ( Ω )
Load Resistor ( Ω )
Gain (dB)
STABLE
50 °
-100
10n
0.0001
0.01
0.1
1
Output Voltage (Vpp)
13/20
Electrical characteristics
TS507
Figure 25. Distortion + noise vs. frequency
Figure 26. Noise vs. frequency
1000
Vout=Vcc-1.5Vpp
Rl=2kO hm s
G ain=1
BW =80kHz
Vicm =(Vcc-1V)/2
Vcc=2.7V
1E-3
Vcc=3.3V
Vcc=5V
1E-4
10
14/20
Input equivalent noise density (nV/VHz)
THD + N (%)
0.01
100
10
Vcc=5V, Vicm=2.5V, Tamb=25°C
1
100
1000
Frequency (Hz)
10000
1
10
100
Frequency (Hz)
1000
10000
TS507
Application note
3
Application note
An application note, based on the TS507, describes three compensation techniques for
solving stability issues when driving large capacitive loads. Two of them are briefly explained
here. For more details, refer to the application note on www.st.com. To find it, do a keyword
search for AN2653.
3.1
Out-of-the-loop compensation technique
The first technique, named the out-of-the-loop compensation, uses an isolation resistor,
ROL, added in series between the output of the amplifier and its load (see Figure 27). The
resistor isolates the op-amp feedback network from the capacitive load. This compensation
method is effective, but the drawback is a limitation on the accuracy of Vout depending on
the resistive load value.
Figure 27. Out-of-the-loop compensation schematics
To help implement the compensation, the abacus given in Figure 28 to Figure 29 provide the
ROL value to choose for a given CL and phase/gain margins. These abacus are plotted in
the case of a voltage follower configuration with a load resistor of 10 kΩ at 25°C.
Figure 28. Gain margin abacus : serial resistor Figure 29. Phase margin abacus : serial
to be added in a voltage follower
resistor to be added in a voltage
configuration at 25°C
follower configuration at 25°C
100
100
STAB LE
8 dB
0 dB
4 dB
12 dB
1
16 dB
Compensation Resistor ROL
10
U NSTAB LE
0 .1
0 .0 1
10p
100p
1n
10n
100n
L o ad C ap a cito r (F )
V cc = 5 V
V ic m = 2 ,5 V
T = 2 5 °C
RL = 10 kΩ
1µ
10µ
Compensation Resistor ROL
30 °
STABLE
20 °
10
10 °
1
0 °
U N STAB LE
V cc = 5 V
V icm = 2 ,5 V
T = 2 5 °C
R L = 10 kΩ
0 .1
0 .0 1
10p
100p
1n
10n
100n
1µ
10µ
L o ad C a p a cito r (F )
15/20
Application note
3.2
TS507
In-the-loop-compensation technique
The second technique is called the in-the-loop-compensation technique, because the
additional components (a resistor and a capacitor) used to improve the stability are inserted
in the feedback loop (see Figure 30).
Figure 30. In-the-loop compensation schematics
This compensation method allows, by a good choice of compensation components, to
compensate the original pole (caused by the capacitive load), and thus to improve stability.
The main drawback of this circuit is the reduction of the output swing, because the isolation
resistor is in the signal path.
Table 6 helps you to choose the best compensation components for different ranges of load
capacitors (and with RL = 10 kΩ) in voltage follower configuration.
Table 6.
Best compensation components for different load capacitor ranges in
voltage follower configuration for TS507 (with RL = 10 kΩ)
Load capacitor
range
RIL (kΩ)
CIL (pF)
Minimum gain
margin (dB)(1)
Minimum phase
margin
(degree)(1)
10 pF to 100 pF
1
250
17
55
100 pF to 1 nF
1
250
16
42
1 nF to 10 nF
1
630
11
27
1. Parameter guaranteed by design at 25°C.
16/20
TS507
4
Package information
Package information
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
4.1
SOT23-5 package information
Figure 31. SOT23-5 package mechanical drawing
Table 7.
SOT23-5 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
Mils
Max.
Min.
Typ.
Max.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.00
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0.95
37.4
e1
1.9
74.8
L
0.35
0.55
13.7
21.6
17/20
Package information
4.2
TS507
SO-8 package
Figure 32. SO-8 package mechanical drawing
Table 8.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
1°
8°
1°
8°
ccc
18/20
Inches
0.10
0.004
TS507
5
Ordering information
Ordering information
Table 9.
Order codes
Temperature
range
Order code
Package
TS507ID
TS507IDT
Packing
SO-8
TS507IYD(1)
TS507IYDT(1)
TS507I
-40°C to 125°C
SO-8
(Automotive grade)
SOT23-5(2)
TS507ILT
TS507IYLT(1)
Tape & reel
K137
SO-8
Tube or
Tape & reel
TS507C
SOT23-5(2)
Tape & reel
K136
0°C to 85°C
TS507CLT
TS507Y
K131
(Automotive grade)
TS507CD
TS507CDT
Tube or
Tape & reel
Tape & reel
SOT23-5(2)
-40°C to 125°C
Marking
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are on-going.
2. All information related to the SOT23-5 package is subject to change without notice.
6
Revision history
Table 10.
Document revision history
Date
Revision
Changes
01-Oct-2004
1
Preliminary data release for product in development.
02-May-2006
2
Update preliminary data release for product in development.
15-Dec-2006
3
First public release.
03-May-2007
4
Automotive grade products added.
08-Apr-2008
5
Electrical characteristics curves for Bode and AC stability added and
updated.
Application note section added.
19/20
TS507
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
20/20