TI SN74CBTLV3384DGVR

SCDS059G − MARCH 1998 − REVISED JUNE 2004
D 5-Ω Switch Connection Between Two Ports
D Rail-to-Rail Switching on Data I/O Ports
D Ioff Supports Partial-Power-Down Mode
D
D
DBQ, DGV, DW, OR PW PACKAGE
(TOP VIEW)
1OE
1B1
1A1
1A2
1B2
1B3
1A3
1A4
1B4
1B5
1A5
GND
Operation
Latch-Up Performance Exceeds 250 mA Per
JESD 17
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
description/ordering information
The SN74CBTLV3384 provides ten bits of
high-speed bus switching. The low on-state
resistance of the switch allows connections to be
made with minimal propagation delay.
1
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
VCC
2B5
2A5
2A4
2B4
2B3
2A3
2A2
2B2
2B1
2A1
2OE
The device is organized as dual 5-bit bus switches
with separate output-enable (OE) inputs. It can be
used as two 5-bit bus switches or one 10-bit bus switch. When OE is low, the associated 5-bit bus switch is on,
and A port is connected to B port. When OE is high, the switch is open, and the high-impedance state exists
between the two ports.
This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that
damaging current will not backflow through the device when it is powered down. The device has isolation during
power off.
To ensure the high-impedance state during power up or power down, OE shall be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
ORDERING INFORMATION
ORDERABLE
PART NUMBER
TOP-SIDE
MARKING
Tape and reel
SN74CBTLV3384DBQR
CBTLV3384
Tube
SN74CBTLV3384DW
Tape and reel
SN74CBTLV3384DWR
TSSOP − PW
Tape and reel
SN74CBTLV3384PWR
TVSOP − DGV
Tape and reel
SN74CBTLV3384DGVR
PACKAGE†
TA
QSOP − DBQ
−40°C
−40
C to 85
85°C
C
SOIC − DW
CBTLV3384
CL384
CL384
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
FUNCTION TABLE
(each 5-bit bus switch)
INPUTS
INPUTS/OUTPUTS
1OE
2OE
1B1−1B5
2B1−2B5
L
L
1A1−1A5
2A1−2A5
L
H
1A1−1A5
Z
H
L
Z
2A1−2A5
H
H
Z
Z
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2004, Texas Instruments Incorporated
!"# $ %&'# "$ (&)*%"# +"#',
+&%#$ %! # $('%%"#$ (' #-' #'!$ '."$ $#&!'#$
$#"+"+ /""#0, +&%# (%'$$1 +'$ # '%'$$"*0 %*&+'
#'$#1 "** (""!'#'$,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCDS059G − MARCH 1998 − REVISED JUNE 2004
logic diagram (positive logic)
2
3
1A1
1B1
SW
10
11
1A5
1B5
SW
1
1OE
15
14
2A1
2B1
SW
23
22
2A5
SW
2B5
13
2OE
simplified schematic, each FET switch
A
B
(OE)
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Continuous channel current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Input clamp current, IIK (VI/O < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Package thermal impedance, θJA (see Note 2): DBQ package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCDS059G − MARCH 1998 − REVISED JUNE 2004
recommended operating conditions (see Note 3)
VCC
Supply voltage
VIH
High-level control input voltage
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
VIL
Low-level control input voltage
VCC = 2.3 V to 2.7 V
VCC = 2.7 V to 3.6 V
MIN
MAX
2.3
3.6
UNIT
V
1.7
V
2
0.7
0.8
V
TA
Operating free-air temperature
−40
85
°C
NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
II
Ioff
ICC
∆ICC‡
Control inputs
Ci
Control inputs
Cio(OFF)
TEST CONDITIONS
VCC = 3 V,
VCC = 3.6 V,
II = −18 mA
VI = VCC or GND
VCC = 0,
VCC = 3.6 V,
VI or VO = 0 to 3.6 V
IO = 0,
VCC = 3.6 V,
VI = 3 V or 0
One input at 3 V,
VO = 3 V or 0,
OE = VCC
MIN
TYP†
VI = VCC or GND
Other inputs at VCC or GND
MAX
−1.2
V
±1
µA
10
µA
10
µA
300
µA
4.5
VI = 0
VCC = 2.3 V,
TYP at VCC = 2.5 V
VI = 1.7 V,
ron§
VI = 0
VCC = 3 V
UNIT
pF
10
pF
II = 64 mA
II = 24 mA
5
8
5
8
II = 15 mA
II = 64 mA
27
40
5
7
Ω
II = 24 mA
5
7
VI = 2.4 V,
II = 15 mA
10
15
† All typical values are at VCC = 3.3 V (unless otherwise noted), TA = 25°C.
‡ This is the increase in supply current for each input that is at the specified voltage level, rather than VCC or GND.
§ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by
the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Figure 1)
VCC = 2.5 V
± 0.2 V
FROM
(INPUT)
TO
(OUTPUT)
tpd¶
A or B
B or A
ten
OE
A or B
1
5
OE
A or B
1
5.5
PARAMETER
tdis
MIN
MAX
VCC = 3.3 V
± 0.3 V
MIN
0.15
UNIT
MAX
0.25
ns
1
4.3
ns
1
5.5
ns
¶ The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when
driven by an ideal voltage source (zero output impedance).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCDS059G − MARCH 1998 − REVISED JUNE 2004
PARAMETER MEASUREMENT INFORMATION
2 × VCC
RL
From Output
Under Test
S1
Open
GND
CL
(see Note A)
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
GND
RL
LOAD CIRCUIT
VCC
CL
RL
V∆
2.5 V ±0.2 V
3.3 V ±0.3 V
30 pF
50 pF
500 Ω
500 Ω
0.15 V
0.3 V
VCC
Timing Input
VCC/2
0V
tw
tsu
VCC
VCC/2
Input
VCC/2
th
VCC
VCC/2
Data Input
VCC/2
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC
VCC/2
Input
VCC/2
0V
tPHL
tPLH
VOH
VCC/2
Output
VCC/2
VOL
VOH
Output
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPLH
tPHL
VCC/2
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VCC
Output
Control
Output
Waveform 2
S1 at GND
(see Note B)
VCC/2
VCC/2
0V
tPLZ
tPZL
VCC
VCC/2
VOL + V∆
VOL
tPHZ
tPZH
VCC/2
VOH − V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MSOI004E JANUARY 1995 − REVISED MAY 2002
DBQ (R−PDSO−G**)
PLASTIC SMALL−OUTLINE PACKAGE
0.012 (0,30)
0.008 (0,20)
0.025 (0,64)
0.005 (0,13)
13
24
0.244 (6,20)
0.228 (5,80)
0.157 (3,99)
0.150 (3,81)
0.008 (0,20) NOM
Gauge Plane
1
12
0.010 (0,25)
A
0°−8°
0.035 (0,89)
0.016 (0,40)
0.069 (1,75) MAX
Seating Plane
0.010 (0,25)
0.004 (0,10)
0.004 (0,10)
PINS **
16
20
24
28
A MAX
0.197
(5,00)
0.344
(8,74)
0.344
(8,74)
0.394
(10,01)
A MIN
0.189
(4,80)
0.337
(8,56)
0.337
(8,56)
0.386
(9,80)
M0−137
VARIATION
AB
AD
AE
AF
DIM
D
4073301/F 02/2002
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
D. Falls within JEDEC MO−137.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2004, Texas Instruments Incorporated