ETC IP200

IP200
Interpolation Circuit for Incremental Measuring Systems
Data Sheet
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 1 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
Contents
1
OVERVIEW ..................................................................................................................................... 3
2
INPUT SIGNALS.............................................................................................................................. 5
2.1
2.2
2.3
3
ANALOGUE S IGNAL P ROPERTIES .................................................................................................... 5
S IGNAL CORRECTION ................................................................................................................... 5
REFERENCE S IGNALS / INDEX POINT ............................................................................................... 6
A/D-CONVERTER ........................................................................................................................... 7
3.1
4
INPUT CIRCUIT RATING ................................................................................................................. 7
DIGITAL OPERATION MODES ........................................................................................................ 8
4.1
4.2
4.3
4.4
4.5
5
OUTPUT S IGNALS / COUNTER VALUE .............................................................................................. 8
ERROR S IGNAL............................................................................................................................ 9
INTERPOLATION RATE ................................................................................................................... 9
INTERVAL T IME / MAXIMUM INPUT FREQUENCY ................................................................................. 9
GLITCH F ILTER .......................................................................................................................... 10
INTERFACES ................................................................................................................................ 11
5.1
STRUCTURE .............................................................................................................................. 11
5.2
SERIAL INTERFACE (SPI) ............................................................................................................ 11
5.2.1
Signals............................................................................................................................. 11
5.2.2
Protocol............................................................................................................................ 12
5.2.3
Synchronous / Asynchronous Mode ................................................................................... 13
5.3
PARALLEL DATA P ORT ................................................................................................................ 14
6
REGISTERS .................................................................................................................................. 15
6.1
6.2
6.3
6.4
READ REGISTERS ...................................................................................................................... 15
WRITE REGISTERS ..................................................................................................................... 15
COMMANDS .............................................................................................................................. 15
CODING ................................................................................................................................... 16
7
MEASUREMENT TRIGGER ........................................................................................................... 20
8
ERROR PROCESSING .................................................................................................................. 21
9
RESET / CONFIGURATION ........................................................................................................... 22
9.1
9.2
9.3
RESET P ROCESSING .................................................................................................................. 22
CONFIGURATION ........................................................................................................................ 22
CONFIGURATION B ITS DEFAULTS ................................................................................................. 23
10
SIGNAL PROPAGATION TIME................................................................................................... 23
11
ELECTRICAL CHARACTERISTICS ............................................................................................ 24
12
MECHANICAL CHARACTERISTICS........................................................................................... 26
12.1
12.2
12.3
12.4
13
P INOUT .................................................................................................................................... 26
DOUBLE F UNCTION P INS ............................................................................................................. 27
PACKAGING .............................................................................................................................. 27
BOND PATTERN ......................................................................................................................... 28
REVISION HISTORY .................................................................................................................. 30
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 2 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
1
Overview
The IP200 interpolation circuit is designed for connection to incremental position and angle measuring
systems with sine-shaped output signals with a 90° phase shift. It can be operated at a large number of
transducer systems working according to the most varied measuring principles. With a maximum
interpolation rate of 200 the IC is capable to split the input signal period into up to 200 segments. A counter
value can be output via parallel or serial interface, respectively.
Different interfaces and flexible configuration types enable the use of the IP200 in single-chip interpolation
systems, in microcontroller-based measuring devices and in multi-channel systems alike. Proprietary
automatic gain and offset control, as well as the possibility of a analogue phase correction ensure a high
measuring precision under industrial conditions. The integrated two-level measuring value trigger and the
additional parallel high speed output makes the IC suitable for use in real time applications.
Block Diagram
Interpolation Rate
Interval Time
Filter
...
Reset
Clock
Phase
Trigger
Config
serial IF
Cosine
Error ?
Counter
parallel IF
ADC
Controller
ADC
Sine
ATAN
PHI
A/B
Filter
RS422
Inst-Amp
Inst-Amp
Reference
Comp
Analog
Digital
GEMAC IP200
Figure 1
Inst-Amp
ADC
ATAN
A/B
serial IF
parallel IF
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
Instrumentation amplifier
Analogue-Digital-Converter
ARCTAN-processing-unit
Generation of the A/B-signals
Serial Interface
Parallel Interface
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 3 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
Features
Analogue Input



3 channels: sine/cosine/reference signal
Standard connection 1V pp (differential)
Input frequency of up to 400kHz
AD converter


up to 1.25MS/s
Single-Ended Input 2.4Vpp
Signal correction


Automatic gain and offset controller
External potentiometer for analogue phase correction
Interpolation rates

200, 160, 100, 80, 50, 40, 25, 20
Measuring result outputs



28 - Bit counter
90° - square wave sequences
Error signal
Configuration options


Via configuration pins
Via serial interface (SPI)
Serial interface (SPI)



For Configuration and measuring value output
16-Bit synchronous/asynchronous mode
Not required for low-cost minimal applications
Parallel output



For measuring value output
16-Bit wide
Up to 40MBit/s bandwidth
Miscellaneous




Filter for suppressing edge noise at low speed input signals
Programmable interval time for adapting the circuit to low
speed digital components
Two-level edge-controlled measuring trigger
Programmable sensor error response

TQFP64 (10mm x 10mm x 1mm) or DIE
Package
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 4 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
2
Input Signals
The two input signals for the interpolation function are analogue voltages (sine/cosine) with a sine-shaped
dependency on the measured value (position or angle respectively) with a phase shift of 90° between these
two analogue voltages, related to one period of the scale. A third input signal serves as a reference signal for
determining the zero or reference point of the scale. All the three input signals are processed as differential
signals.
2.1
Analogue Signal Properties
Difference Signal Sin = SinP-SinN
Angle 0°
Vdi ff Peak to Peak
SinP
SinN
90° Phase Shift
Vdiff Peak to Peak
CosP
CosN
Difference Signal Cos = CosP-CosN
Figure 2
Differential Analogue Input Voltage1)
Analogue Input Voltage VDiff (nominal)
Input Range for VDiff
Maximum Signal Offset Error
Sine/Cosine Phase Shift
1)
on pins SINP, SINN, COSP, COSN
2.2
500mV pp
1Vpp
0.8Vpp ... 1.2Vpp
100mV
90° (adjustable 10°)
Signal Correction
The input signals are subject to a automatic gain and offset control patented by GEMAC. The amplitude
controller is specified for a control range of 20% of nominal input voltage. The offset of the external signals
must not exceed a value of 10% of nominal input voltage. The phase shift of the input signals can be
statically adjusted by a external analogue potentiometer in a range of 10° (also refer to Application Notes
4300x-AN-3-0-E-IPx.pdf).
A Chip Reset results in setting the gain-offset-controller to midscale. For achieving the best interpolation
performance, the gain-offset-controller needs approximately 20 signal periods for reaching a steady state.
Until this time, the input signal frequency must not exceed 50% of the specified maximum signal frequency
(refer to chapter 4.4).
All signal errors figures as a union in the IP200. In some special cases means decreasing of one signal error
result in a wider permissible range of another signal error. For achieving the highest performance of the
automatic gain-offset-controller, it is recommended to carefully adjust the phase shift on the connected
sensor itself. This is important especially for high interpolation rates.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 5 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
2.3
Reference Signals / Index Point
A third output of the measuring system - typically called reference, index point or zero point signal considered to be activated, if the difference of the signals at the REFP and REFN pins becomes greater than
the positive hysteresis voltage V RPH and is considered to be deactivated if this voltage becomes smaller than
the negative hysteresis voltage VRPL.
REFN
REFP
respectively:
VRP = REFP - REFN
VRPH
VRPL
inactive
active
0V
inactive
Figure 3
VRPL (typical)
VRPH (typical)
Hysteresis (typical)
= -6mV
= +6mV
= 12mV

If a sensor without reference signals is used, defined levels on pins REFP and REFN are necessary to
setting the index point always active or always inactive, respectively.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 6 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
3
A/D-Converter
The IP200 contains two integrated Analogue Digital Converter with a maximum sample rate of 1.25MS/s. In
some special applications, were the analogue sensor signal do not match the analogue front end (AFE)
specification (nominal 1V pp), it is possible to connect the input signals to the Analogue Digital Converter
inputs, bypassing the AFE. In this case, the conditioned sensor signals must be sine shaped with a
amplitude of 2.4V pp centred around the ADC common mode level V0. The IP200 includes a on-chip
reference voltage circuit that generates the V0 with a nominal voltage of 2.375V.
3.1
Input Circuit Rating
VMAX = V0 + (VRP - VRN)
Operating Range
Reserve for Gain- and Offset Errors
VNOM = 1.3 (VRP - VRN) (Nominal Amplitude Peak-Peak )
V0 = ½ (VRP + VRN) (Midscale Voltage)
Reserve for Gain- and Offset Errors
VMIN = V0 - (VRP - VRN)
VRP : positive ADC-Reference Voltage
VRN : negative ADC-Reference Voltage
Figure 4
The following reference voltage levels appear on external pins:
Positive Reference Voltage (VRP) Sine-ADC
Positive Reference Voltage (VRP) Cosine-ADC
Negative Reference Voltage (VRN) Sine-ADC
Negative Reference Voltage (VRN) Cosine-ADC
Midscale Voltage for external analogue circuitry
Nominal amplitude
Maximum voltage
Minimum voltage
Pin
RSH
RCH
RSL
RCL
V0
UNOM
UMAX
UMIN
Nominal Value
3.30V
3.30V
1.45V
1.45V
2.375V
2.405V
4.225V
0.525V

For information about the tolerances see chapter Electrical Characteristics.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 7 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
4
Digital Operation Modes
4.1
Output Signals / Counter Value
The position/angle result is available via the integrated serial interface in a 28-bit two's-complement format.
As described, the zero point can be generated using the REFP and REFN reference signal inputs, or it can be
set via the serial interface. By activating the trigger input, measuring result can be kept in a 2-level deep
buffer register in a manner asynchronous to the access via the interfaces.
Simultaneously, the IP200 outputs the phase shifted square wave sequences (known by incremental
measuring transducers) which can be counted in single or quadruple way.
A synchronous reference pulse is generated when the angle of 0° (refer also to Fig. 2) is passed through and
when the analogue differential input voltage between REFP and REFN exceed the positive comparator
hysteresis level. If the differential input voltage is permanently above this level, the reference pulse is
generated once during every signal period. A configuration bit can disable the generation of the reference
pulse.
A
B
OREF
internal
-5
Counter
-4
-3
-2
-1
0
1
2
1
0
-1
-2
-3
-4
-5
t pp
tpp: minimal Interval Time /
Edge Interval
Figure 5

Note that the IP200 IC based on a digital interpolation method. This means that the quantization errors (the
so-called 1 errors) which are inevitable with A/D converters are superposed upon the speed-proportional
A/B output signals. Analogue control systems must feature a corresponding low-pass behaviour when the IC
is used in such systems.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 8 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
4.2
Error Signal
An error signal is generated if the input signals are no longer plausible. The error signal is also generated if
the input frequency is so high that the square-wave signals are unable to follow, and/or when the maximum
input frequency is exceeded. The evaluation of the internal error sources is activated via an error mask
register. The response of the square-wave outputs in the event of an error can also be configured via this
register. The NERR and NRES pins can be connected in order to start a re-synchronisation process of the IC
in the event of an error.

If the error signal was activated, and/or if one of the error bits was set in the result register, the present
measuring result and all the following results must be discarded. Following elimination of the cause of the
error and a reset of the error bit, the reference point must once again be passed by for absolute value
measurements!
4.3
Interpolation Rate
The interpolation rate can be set at 200, 160, 100, 80, 50, 40, 25 and 20. The interpolation rate as defined
for the purposes of this application is the number of increments into which one sine period of the input signal
is divided. This also corresponds to the number of edge changes on the A/B output signals per input signal
period. This means that the number of square-wave periods at the A and B outputs totals 1/4 of the
interpolation rate per input signal period.

In the event that a standard interpolation counter or quadrature decoder is connected to the A/B outputs, this
must work in "quadruple evaluation" mode in order to achieve the full interpolation rate.
4.4
Interval Time / Maximum Input Frequency
The interval time (IT) and the minimum edge distance tpp at the output signals, respectively, can be set in
binary steps at values between 1/fosz and 128/fosz.
In counter mode (the SPEED Bit in the CFG0 Register being set), the maximum input frequency totals
fmax=fosc /96. In all the other modes, the maximum input frequency is limited by the minimum pulse
distance at the output, where:
fmax 
fosc:
IR:
IT:
0.9*fOSZ /(IRIT) < fosz/96
Clock frequency at Pin XA
Activated Interpolation Rate
Activated Interval Time
The limit values are a maximum input frequency of aprox. 400kHz with a clock frequency of 40MHz on the
one hand, as well as a guaranteed edge distance of 128µs at the A/B signals with a clock frequency of 1MHz
on the other. Between these two limits, a large number of specific systems can be adapted by selecting a
suitable clock frequency and interval time of the IP200.

These values apply on condition of an adjusted phase between the input signals and a steady state of the
internal gain-offset-controller. Until this time, the input frequency must not exceed 50% of the specified
maximum frequency.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 9 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
Clock Frequency Examples
IR
200
50
IT
1
2
4
8
16
32
64
128
1
2
4
8
16
32
64
128
tpp
31ns
62ns
125ns
250ns
500ns
1µs
2µs
4µs
31ns
62ns
125ns
250ns
500ns
1µs
2µs
4µs
marked cells:
normal cells:
4.5
fmax
180k
90k
45k
22.5k
11.3k
5.6k
2.8k
1.4k
400k
360k
180k
90k
45k
22.5k
11.3k
5.6k
IR
160
40
fOSC = 40MHz
tpp
fmax
1 31ns 225k
2 62ns 113k
4 125ns
56k
8 250ns
28k
16 500ns
14k
32
1µs
7k
64
2µs
3.5k
128
4µs
1.8k
1 31ns 400k
2 62ns 400k
4 125ns 225k
8 250ns 113k
16 500ns
56k
32
1µs
28k
64
2µs
14k
128
4µs
7k
IT
fmaxCNT = 400kHz
IR
IT
tpp
1 31ns
2 62ns
4 125ns
100
8 250ns
16 500ns
32
1µs
64
2µs
128
4µs
1 31ns
2 62ns
4 125ns
25
8 250ns
16 500ns
32
1µs
64
2µs
128
4µs
fmax
360k
180k
90k
45k
22.5k
11.3k
5.6k
2.8k
400k
400k
360k
180k
90k
45k
22.5k
11.3k
IR
80
20
IT
1
2
4
8
16
32
64
128
1
2
4
8
16
32
64
128
tpp
31ns
62ns
125ns
250ns
500ns
1µs
2µs
4µs
31ns
62ns
125ns
250ns
500ns
1µs
2µs
4µs
fmax
400k
225k
113k
56k
28k
14k
7k
3.5k
400k
400k
400k
225k
113k
56k
28k
14k
Error FAST1 appears on speed overflow
Error FAST2 appears on speed overflow
Glitch Filter
In order to avoid permanent toggling of the downstream counters as a result of analogue noise of the input
signals while the measuring system is in standstill, a digital filter can be optionally activated for the squarewave outputs (pin / bit GFE). In such a case, the minimum edge distance at the output (t pp) is then
automatically set at 2048 / fosc while the measuring system is in standstill or at smaller input frequencies.

Note that in the switching range to the automatic activation / deactivation of this filter, the A/B output signals
are not speed-proportional in each case!
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 10 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
5
Interfaces
The measurement results can be read out over the integrated serial interface (SPI). It is also possible to
make a more detailed configuration of the IP200 IC over this interface than over hardware. For high speed
applications the additional 16-bit wide parallel port allow to read out the measurement results continuously
with up to 32MBit/s.
5.1
Structure
WR-Register Bank
W2
W3
SPI
D_IN
SPI
8 Bit
W0
W1
W4
D_OUT
SPI-RD-Reg.
ADR
D
RD0/ST
Q
RD-Register Bank
R0
32 Bit
CE
R1
...
PAR-RD-Reg.
...
R8
Cycle Counter
C-CNT
D
SYNC
Q
H
D(15:0)
L
CE
nDTHLD
OUTHIGH
1
Figure 6
5.2
Serial Interface (SPI)
The serial interface contains a 16-bit shift register for read accesses and write accesses each. An additional
16-bit hold register series for the intermediate storage of the two MSB’s during read accesses. An 8-bit
address register is used for both read and write accesses. Writing into the IP200 takes place in a byteoriented manner whilst reading being a word-oriented process. Transmission itself is effected as 16-bit
words. A read command triggers the pertinent data output during the next access. A single-byte command is
executed at the end of data transmission. Up to 16 channels can be operated at this interface. The hardware
address of the IC is determined by reading the DP(3:0) pins by a special command.
5.2.1
Signals
The IP200 is a slave which evaluates commands and data received, but which is unable to start a
communication process. The SPI protocol is executed via 4 lines:
SDI
SDO
SCLK
SEN
Data input
Data output (open drain), SDO also serving as the RDY signal
Clock
Enable

The used SPI-protocol is not compatible to the usual micro controller- or DSP-families.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 11 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
Each transfer process is triggered by the sending of a command. To this effect, SEN is kept low during 16
SCLK clock cycles. The input data at SDI is evaluated a the rising edge of SCLK. At the same time, the
shifting of the data of the hold register is triggered at every rising edge at SCLK.
SPI-Access:
tH
tw
tL
Start command processing
SCLK
tVDI
tVDO
tSETDI
SEN
tRDY
tRDY
SDI
XX
SDO
RDY
i15
i14
i13
i12
o14
o15
i11
o13
i10
o12
o11
i9
i8
o10
i7
o9
o8
i6
o7
i5
o6
i4
o5
i3
o4
i2
o3
i1
o2
XX
i0
o1
o0
RDY
Send bit 14 to SDO
Load bit 15 from SDI
Figure 7
Name
tH
tL
tw
tRDY
tVDI
tSETDI
tVDO
5.2.2
Min
2x
2x
1x
3x
TOSZ + 15
TOSZ + 15
TOSZ + 15
TOSZ + 15
2)
Description
SPI clock, H time
SPI clock, L time
Waiting time between SEN falling and SCLK rising
Switching delay RDY / SDO from SEN
Time between SCLK rising and data read
Setup time SDI before SCLK
Time between SCLK rising and data output
4 x TOSZ + 15 ns
15 ns
1 x TOSZ + 15 ns1)
4 TOSZ + 15 ns
5 TOSZ + 15 ns
Protocol
Bit No. at signal SDI
15 14 13
12
0
X
0
0
nB2) 0
0
1
nB2) 1
0
0
nB2) 1
0
1
nB2) 0
1
0
nB2) 0
1
1
nB2) 1
1
X
1)
Max
ns1)
ns1)
ns1)
ns
11
X
10
X
9
X
8
X
H32)
H22)
H12)
H02)
H32)
H22)
H12)
H02)
2)
2)
2)
H3
H2
H1
H02)
H32)
H32)
H22)
H22)
H12)
H12)
H02)
H02)
H32)
H22)
H12)
H02)
7
X
A7
D7
C7
A7
X
X
6
X
A6
D6
C6
A6
X
X
5
X
A5
D5
C5
A5
X
X
4
X
A4
D4
C4
A4
X
X
3
X
A3
D3
C3
A3
X
X
2
X
A2
D2
C2
A2
X
X
1
X
A1
D1
C1
A1
X
X
0
X
A0
D0
C0
A0
X
X
Name
Description
RES
WRA
WRD
WRC
RD0/ST
RD1
NOP
Reserved
Write Address
Write Data
Write Command
Read Byte 0 + 1 (LSB) 1)
Read Byte 2 + 3 (MSB)
Output Read-Register
command load the internal data into a 32-bit hold register
bit must be set to zero in single-channel systems
Bit
nB
H(3:0)
Name
Broadcast mode
(Low-active)
Hardware address
A(7:0)
C(7:0)
D(7:0)
Register address
Command
Data word
Description
0: Command to all channels (for WRA/WRD/WRC only)
1: Command to the channel addressed by H(3:0)
IP200-Channel address for single access (nB=1)
Default: 0x00
IP200-Register address
Single-word command
Write data
(readed data appears at SDO)
Command word examples
Set address register in all channels connected at 0x01:
Write data 0x48 in channel 0x04:
Read L word from register 0x07, one IC existing only:
Configuration of the hardware address in all the channels connected:
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 12 of 30
Phone:
Fax::
Internet:
Email:
0x1001
0x6448
0x8007
0x3000
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
5.2.3
Synchronous / Asynchronous Mode
Read data is loaded into the hold register by the RD0/ST command. This takes place when the internal
sequential control counter and the SYNC register have the same contents (synchronous mode) or when the
ASYNC bit is set (asynchronous mode). Pin SDO is low during the waiting time (meaning of RDY) .
With the SPI working in synchronous mode, the output data can be assigned to a sample time. Equidistant
measurement is possible (refer also to the application example). Higher transmission rates are achieved in
asynchronous mode.
Example: 32-bit read access synchronous with internal cycle counter
SEN
*) any command
SDI
RD0 / ST
SDO
XXXXXX
RD0 / ST *)
RD1
SYNC
RDY
Hold register
Byte 0 +1
RDY
SYNC
Byte 2 + 3
RDY
Data to be transmitted
Figure 8
Example: 16-bit read access, asynchronous, 3 channels
SEN
SDI
RD0 H0
RD0 H1
RD0 H2
RD0 H0
SDO
XXX
Data H0
Data H1
Data H2
Hold register channel 0
Data to be transmitted
Hold register channel 1
Data to be transmitted
Hold register channel 2
Data to be transmitted
Figure 9
Example: write access 1 Channel
Example: command execution 1 channel
SEN
SEN
Execution of command
SDI
SDO
WRA (address)
WRD (data)
XXX
XXX
Figure 10
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
SDI
SDO
WRC
(Command)
XXX
Figure 11
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 13 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
5.3
Parallel Data Port
This interface outputs the last activated SPI read register synchronized to the IP200 internal sequential
control counter. The appearing data are separated into two 16-bit words. After reset, the data of the SPI read
register address 0x00(MVAL)appears on DATA(15:0) by default.
Sequential
Control Counter
29
DATA(15:0)
30
31
D(31:16)
0
1
13
14
15
16
17
D(15:0)
D(31:16)
OUTHIGH
STRB
XA
Signal
T Delay
TDelay < 15ns
Figure 12
To reduce switching noise on the data port the Data outputs DATA(15:8) will be switched 1 clock cycle after
the outputs DATA(7:0). That's why the value at DATA(15:8) is undefined in the clock cycles 0 and 16.
For external components the edges of OUTHIGH can be used to register the new valid data. The level on
OUTHIGH show, which part of the 32-bit read value is active on the data pins (either LSB or MSB). A optional
Strobe-Signal (on pin OREF) can be activated via TSTRB bit in the configuration register TSTCFG.

To get out a desired read register on parallel port, it is necessary to read this register via serial interface first.
EVERY other SPI access at any time can change the behaviour of parallel port.
If the parallel interface be used solely as output port, please select carefully the corresponding attachment
circuit of the configuration and the double function pins at the IP200. Please refer also application notes in
the document 4300x-AN-3-0-E-IPx.pdf.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 14 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
6
Registers
The IP200 contains 16-bit and 32-bit read registers, as well as 8-bit write registers. The addresses are
assigned separately for the read and write registers. A third address space is reserved for commands.
6.1
Read Registers
Address
Description
0x00
0x01
0x03
0x04
0x05
0x07
Measurement Value / Status
Configuration / Status
Interpolation results
Controller Sine
Controller Cosine
Counter Value / Status
6.2
Byte 3
Byte 0
CFG1
CFG0
DPHI
STAT
PHI
SOFF
COFF
SGAIN
CGAIN
CNT
Write Registers
Description
Name
0x00
0x01
0x02
0x03
0x04
0x07
0x08
0x09
0x0A
Configuration
Configuration
Configuration
SPI-Synchronisation
Configuration IC-Test
Controller Sinus (Gain)
Controller Sinus (Offset)
Controller Cosine (Gain)
Controller Cosine (Offset)
CFG0
CFG1
ERRMASK
SYNC
TSTCFG
SGAIN
SOFF
CGAIN
COFF
Commands
Command
0x00
Name
Channel
0x01
Reset
Counter
Reset
Controller
0x02
Byte 1
MVAL
ERRMASK
Address
6.3
Byte 2
Description
The hardware address will be read from pins DP(3:0). Send this command
always as broadcast command!
In multi-channel systems this command must send and executed first after a
global reset!
The parallel counter (register CNT) is reset, the error register is reset.
Note, that the values of trigger hold registers remains unchanged.
The gain-offset-controller will be set to midscale.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 15 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
6.4
Coding
MVAL
Read Address
Default
Measurement Value / Status
0x00
0x00
31:4
CNT
3
FAST1
2
SENSERR
1
TRGOVL
0
FROZEN
Counter Value or Trigger Value respectively (28-bit - two’s complement)
Speed Error
Sensor Error (ADC overflow, sensor breakage, gain- or offset error)
Trigger Overflow
0
CNT contains the current counter value
1
CNT contains the oldest trigger value stored
CNT
FAST1
SENSERR
TRGOVL
FROZEN

For more detailed information about the functions of these bits refer to chapter 7 and 8.
Examples:
0x00004200
0x00004201
0x00004203
0x00004204
0x00004205
CNT
Read Address
Default
Result 0x00000420 is current counter value
Result 0x00000420 is trigger value, no errors
Result 0x00000420 is trigger value, one or more trigger events are lost
Sensor error, Result invalid
Sensor error, Result invalid
Counter Value / Status
0x07
0x00
31:4
CNT
CNT
FAST1
AMPERR
OCOMP
GCOMP
3
GCOMP
2
OCOMP
1
AMPERR
0
FAST1
Counter Value (28-bit - two’s complement)
Speed Error
Sensor Error (ADC overflow or sensor breakage)
Offset Error
Gain Error

For more detailed information about the functions of these bits refer to chapter 7 and 8.
Status
STAT
Read Address
Default
0x01 (Byte 0)
0x00
7:6
TR(1:0)
GCOMP
OCOMP
BQLOW
ADCOVL
FAST1
FAST2
TR(1:0)
5
Fast2
4
Fast1
3
ADCOVL
2
BQLO
1
OCOMP
0
GCOMP
Gain Error
Offset Error
Sensor Breakage
ADC Overflow
Speed Error (Counter and A/B-Signals)
Speed Error (A/B-Signals)
Status of Trigger-Hold-Registers

For more detailed information about the functions of these bits refer to chapter 7 and 8.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 16 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
Interpolation Result - Phase Angle
0x03 (Byte 1/0)
PHI
Read Address
15:8
0x00
7:0
PHI
Interpolated Phase Angle of Input Signals (unsigned, binary)
Scaling:
0 ... 200 = 0°... 360°, if IR(2) = 1
0 ... 160 = 0°... 360°, if IR(2) = 0
PHI
Interpolation Result - Phase Angle Difference
0x03 (Byte 3/2)
DPHI
Read Address
15:8
0x00
Difference to last Phase Angle (two’s complement)
Scaling:
-100 ... +100 = -180°... +180°, if IR(2) = 1
-80 ... +80 = -180°... +180°, if IR(2) = 0
DPHI
CFG0
Read Address
Write Address
Default
7
SPEED
IR(2:0)
000
001
010
011
100
101
110
111
7:0
DPHI
Configuration Register 0
0x01 (Byte 1)
0x00
Configuration pins will be read (IT0=0)
6
GFE
5:3
IT(2:0)
Interpolation Rate
160
80
40
20
200
100
50
25
Square Wave Periods A/B
40
20
10
5
50
25
12½
6¼
2:0
IR(2:0)
IT(2:0)
000
001 *)
010
011 *)
100
101 *)
110
111 *)
*)
Interval Time tpp in 1/ fOSZ
1
2
4
8
16
32
64
128
only selectable over SPI
GFE
0
1
Glitch Filter deactivated
Glitch Filter activated
SPEED
0
1
Configure speed monitoring for A/B outputs
Configure speed monitoring for internal counter

The double function pins SDI and TRG are used for initializing of the GFE and SPEED bits during reset
processing. The IT0 bit can only be assigned over serial interface. For more information refere also to
IP200 application notes.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 17 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
CFG1
Read Address
Write Address
Default
*)
Configuration Register 1
0x01 (Byte 2)
0x01
0x00
7:3
2
1
0
00000*)
DISREG
DISREF
TRSLP
Bits must remain unchanged in order to guarantee the correct functioning of the IC
DISREG
0
1
Internal automatic gain-offset-controller activated
Internal automatic gain-offset-controller deactivated
TRSLP
0
1
Trigger event occurs on the falling edge of pin TRG
Trigger event occurs on the rising edge of pin TRG
DISREF
0
1
Reference point processing activated
Reference point processing deactivated
ERRMASK
Read Address
Write Address
Default
7
Latch
Error Mask Register
0x01 (Byte 3)
0x02
0x3F
6
Hold
5
Fast2
4
Fast1
3
ADCOVL
2
BQLO
1
OCOMP
0
GCOMP
Enable Gain Error Detection
Enable Offset Error Detection
Enable Sensor Breakage Detection
Enable ADC Clipping Detection
Enable Speed monitoring (Counter and A/B-Signals)
Enable Speed monitoring (A/B-Signals)
Deactivate square-wave outputs in event of an error
Store error states
GCOMP
OCOMP
BQLOW
ADCOVL
FAST1
FAST2
HOLD
LATCH
For detailed Information about the meaning of the bits refere to chapter 8.

For square wave operation (A/B-Signals) it is recommended to set the error mask register to 0x3F or
0xFF respectively, in counter mode use the error mask register loaded with 0xDF and set the SPEED
bit in the CFG0 register.
SYNC
Write Address
Default
7
ASYNC
SPI-Synchronization Register
0x03
0x00
6
0
0
ASYNC
1
SYNCVAL
5
0
4:0
SYNCVAL
Import read data with SPI-RD0/ST the next time the contents of the cycle
counter and SYNCVAL are identical
Import read data always with SPI-RD0/ST
Sequential control counter compare value for SPI synchronization
For more detailed information about the functions of these bits refer to chapter 5.2.3
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 18 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
TSTCFG
Write Address
Default
*)
Configuration IC-Test
0x04
0x00
7:3
2
1:0
00000*)
TSTRB
00*)
Bits must remain unchanged in order to guarantee the correct functioning of the IC
TSTRB
SGAIN
CGAIN
Read Address
Write Address
Default
0
1
Configure pin OREF as index point output
Configure pin OREF as Strobe-Signal for the parallel Interface
Gain Correction Value, Sine
Gain Correction Value, Cosine
0x04 / 0x05 (Byte 0)
0x07 / 0x09
0x80
7:0
GAIN
GAIN
SOFF
COFF
Read Address
Write Address
Default
Current value of the gain correction registers (unsigned, binary)
Scaling:
0x00
Factor 0.5
0x80
Factor 1
0xFF
Factor 1.5
Offset Correction Value, Sine
Offset Correction Value, Cosine
0x04 / 0x05 (Byte 1)
0x08 / 0x0A
0x00
7:0
OFFSET
OFFSET
Current value of the offset correction registers (two's complement)
Scaling:
0x80
Maximum Offset negative (-25% ADC Maximum)
0x00
No Offset
0x7F
Maximum Offset positive (+25% ADC Maximum)

Write accesses to the SOFF/COFF/SGAIN/CGAIN register serve for pre-setting - these registers are
permanently updated by the internal automatic gain-offset-controller.
The scaling factor indicated applies to the behaviour of the adjustment register; it does not describe the
maximum signal error possible.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 19 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
7
Measurement Trigger
A signal edge event on pin TRG/GFE stores the current measurement result (counter value) in one of the
two-level deep trigger hold register. The active trigger edge is configured by the configuration bit TRGSLP
(register CFG1).
A read access to the register MVAL returns the “oldest” value of the trigger hold register. If the trigger register
contains no active value, the current counter value returns in result of the read access. It is possible to save
the results of two trigger events. While not both trigger register would be read out, all following trigger events
are ignored. The TRGOVL bit in register MVAL is set, if a trigger event occurs and both trigger hold register
contains valid data.
Every SPI read access to the register MVAL releases one trigger hold register. Only if trigger hold register 1
is empty (TR1=0), a new trigger processing is possible. If the parallel interface used solely as output port,
the pin CLRTRG must be operated to confirm the reading of one trigger event result.
A logic “1” in the FROZEN bit out of the register MVAL indicates the source of the read value as trigger result.
A logic “0” in this bit indicates the read access as normal read of the counter value. The actual state of the
trigger is coded in the bits TR(1:0)of the status register (STAT).
TR(1:0) TRGOVL
00
0
01
0
10
0
11
0
10
1
11
1
FROZEN
0
1
1
1
1
1
MVAL contents
Current counter value
Trigger Hold Register 0
Trigger Hold Register 1
Trigger Hold Register 0
Trigger Hold Register 1
Trigger Hold Register 0
next Trigger Event
Storing to Trigger Hold Register 0
Storing to Trigger Hold Register 1
Storing disabled, TRGOVL will be set
Storing disabled, TRGOVL will be set
Storing disabled, TRGOVL is set
Storing disabled, TRGOVL is set

For applications which need fast response time related to trigger events and a high data rate on the serial
port as well , it could be better to read out only the 16 LSB of the MVAL register to check out if a trigger event
occurred.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 20 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
8
Error Processing
The IP200 has 6 sources for generating the global error signal. Each source can be activated by the
corresponding bit in the error mask register. With the LatchErr bit being activated, the individual error
signals are stored until the next chip reset or until the next SPI ResetCount command (command 0x01)
occurs, respectively. The logic OR function of the masked and stored error signals appears as a low active
signal on pin NERR. With the HoldErr bit being active, the A, B and OREF outputs freeze in the current state
on error case. The NERR and NRES pins can be shorted in order to re-synchronise the IC in the event of an
error. The error signal is active for 8 system clocks in this case.
Error Mask Register
Bit
GCOMP
OCOMP
BQLOW
ADUOVL
FAST1
FAST2
HoldErr
LatchErr
Description (if bit is set)
Gain controller reaches his limit
Offset controller reaches his limit
Amplitude Error: the resulting Sine-Cosine-Vector is to small
One or both ADC-Converter are clipping
Signal frequency to high, no signal direction recognition possible (SPEED=1),
Signal frequency to fast for proper generating A/B/OREF - Signals (SPEED=0)
Signal frequency to fast for proper generating the A/B/OREF - Signals (depends
upon IT(2:0), refer also to table “Clock Frequency Examples” in chapter 4.4)
The A/B/OREF - Signals freeze in error case
The masked error signal is stored until next SPI-reset-command or a global reset
occurs, respectively

For square wave operation (A/B-Signals) it is recommended to set the error mask register to 0x3F or 0xFF
respectively, in counter mode use the error mask register loaded with 0xDF and set the SPEED bit in the
CFG0 register.
The status register STAT contains all error bits. The MVAL and CNT register contain logic combinations
of counter relevant error bits:
SENSERR = ADUOVL or BQLOW or OCOMP or GCOMP
AMPERR = ADUOVL or BQLOW
Sensor breakage error:
Partial or complete tearing off of the connected sensor is detected in the IP200 at the time of occurrence.
Thereafter, the automatic gain-offset-controller tries to compensate this error which, due to the large
operating range of the gain-offset-controller, can lead to a situation where the cause of this error seems to
have been eliminated.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 21 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
9
Reset / Configuration
The IP200 IC does not contain an internal Power-On-Reset circuit! It is essential to supply the IP200
with an external reset signal on pin NRES. This reset signal must appear low until 3ms after VDD rising to a
voltage level of 4.75V.
If NRES and NERR are shorted, the error signal is held through the “NERR -chain” while one of the chain flipflops contains a “0”.
Reset (LOW-active) to
all Flip Flops in the IC
NRES
VDD
internal NERR
D
Q
D
CLK
NERR
Q
CLK
NRES
Chain of Flip Flops,
not affected by NRES-Signal
IP200
Figure 13
9.1
Reset Processing
1.
2.
3.
4.
5.
Pin SDO/RDY goes to L, all register will be initialised with default values.
The IC is operating a self-calibration, the configuration pins are read into the CFG0 register.
Start of normal operation.
Pin SDO/RDY goes to H (external pull-up required).
The configuration register could be changed via SPI interface.
The time between the rising edge of NRES and the rising edge of SDO/RDY, which means the end of the
reset process, amount to approximately 1365 system clocks.
9.2
Configuration
There are two different types of configuration possible:
Configuration via input pins
 The register CFG0 will be configured via the input pins IR(2:0), IT(2:1), TRG/GFE and
SDI/SPEED.
 All other registers are initialised with default values.
 Suitable for low-cost single-chip and standard applications.
Configuration via SPI
 Pins DP(3:0) select SPI hardware address (for multi-channel systems only).
 Suitable for applications with SPI interface, for example microcontroller systems.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 22 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
9.3
Configuration Bits Defaults
Name
Description
Default
IR(2:0)
IT(2:1)
IT(0)
GFE
SPEED
DISREG
DISREF
TRSLP
TSTSTRB
ERRMASK
SGAIN
SOFF
CGAIN
COFF
SYNC
Interpolation Rate
Interval Time
Interval Time
Glitch-Filter-Enable
Speed-Mode for internal Counter
Disable automatic controller
Disable Index Point
Trigger Edge
Enable Strobe-Signal on pin OREF
Error Mask Register
Initial value Gain Correction, Sine
Initial value Offset Correction, Sine
Initial value Gain Correction, Cosine
Initial value Offset Correction, Cosine
SPI synchronisation with internal
sequential control counter
Pin IR(2:0)is read
Pin IT(2:1)is read
0
Pin TRG/GFE is read
Pin SDI/SPEED is read
0
0
0
0
0x3F
0x80
0x00
0x80
0x00
0x00
10 Signal Propagation Time
The delay time between the sampling point of the analogue input signals (sine/cosine) and the availability of
the interpolation result (i.e. related to trigger) totals 90 system clocks. The delay time between sampling and
updating the data registers and those values available via parallel or serial interface, respectively, totals 96
system clocks. If a external counter unit connected to the A/B/OREF outputs is used, the time between
sampling and output of resulting square waves totals 122 system clocks.
Every 32nd system clock a new measurement result appears on the parallel data output. Note that the data
transferring time of the used interface is added to the IP200 internal system propagation time.
N
Sample s(t)
ADC-Data
Index Point
N+1
N-1
Trigger Event Result
N-3
DATA Register SPI / Parallel
N+6
N+2
N
N+1
N-2
N-3
N+3
N+2
N-1
N-2
N+4
N
N-1
N+5
N+3
N+1
N
N+4
N+2
N+1
N+2
ext. counter unit con. to A/B
X(N-4)
X(N-3)
X(N-2)
X(N-1)
X(N-1)
32x SYSCLK 26x SYSCLK
X(N)
X(N+1)
X(N-1)+2
X(N+2)
Index Point:
OREF is H
A
B
X(N-1)-1
X(N-1)+1
X(N-1)+3
Figure 14

Note that the constant delay time of the IC (as with any other digital signal processing systems)
result in a frequency-dependent phase shift between the analogue input signals and the output
signals (d = 2·f·tv).
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 23 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
11 Electrical Characteristics
Absolute maximum ratings
Min.
TYP
Max
Unit
Power supply VDD
0.3
7
V
*)
Temperature
-55
125
°C
storage temperature
-55
155
°C
ESD
1
kV
*)
with defined circuit
Crossing these ratings can damage the IC; events of maximum supply voltage and maximum temperature at the same time have been
to avoid.
Recommended Operating Conditions
MIN
NOM
MAX
Unit
Supply voltages (VDD, VDDA) with respect to Ground (VSS)
4.75
5.0
5.25
V
Supply current analogue (@20°C)
10
20
35
mA
Supply current digital (@20MHz & 20°C)
40
mA
System clock pulse duration time Low / High
12.5*)
500
ns
System clock frequency range fo sc
1
40*)
MHz
Operating case temperature
-20
85
°C
Digital input and output voltage V_IL
0
0.3 x VDD
V
Digital input and output voltage V_IH
0.7 x VDD
VDD
V
Digital input and output voltage V_OL***)
0
0.8
V
Digital input and output voltage V_OH***)
2
VDD
V
Crystal**) connected to XA and XB:
Internal load capacitance ( XA, XB)
6
pF
Power-On-Time
3
ms
*)
Note that the system clock pulse duration time does not remain under minimum throughout the entire temperature range, if a crystal is
used.
**)
The IP200 circuit is intended for series resonant fundamental mode operation.
***)
I_out max. 4mA
Interpolation
Input frequency range
Automatic gain control range
Automatic offset control range
Interpolation Rates
Minimum interval time A/B - Signals
Interpolation accuracy @ I-Rate = 200, f< 100kHz
Interpolation accuracy @ I-Rate = 200, 250kHz <f
Propagation delay counter
Propagation delay square-wave outputs (A/B/OREF)
Reference pulse position related to Sin
Data Rate parallel interface (DWORDS, 32 Bit)
Pulse width at TRG / CLRTRG
time constant glitch filter
MIN
0
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
NOM
Unit
kHz
related to nom.
amplitude
ns
Inc.
Inc.
ns
ns
MHz
ns
ns
MAX
VDD-1.2
<1
Unit
V
µA
400
kHz
0.5
1.2
VCC - 1.5V
°
Vpp
V
dB
dB
1
10
100
12
6
20
nF
µF
µA
°
mV
mV
6pF||1G
1.0
VCC / 2
1G||8pF
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 24 of 30
Phone:
Fax::
Internet:
Email:
MAX
fosz / 96
20%
10%
20 / 25 / 40 / 50 / 80 / 100 / 160 / 200
1 / fosz
128 / fo sz
0.7
1.2
2
90 / fosc
122 / fo sc
0°
fosc / 32
4 / fosc + 15
2048/ fosc
Analogue Input Specifications
MIN
Input voltage range analog pins* )
0
Input current analog pins*)
Input impedance analog pins*)
Input frequency range SIINP,SINN,COSP,COSN
(< 1dB attenuation)
Phase offset between SIN and COS @100kHz
Peak to peak input voltage SINN  SINP / COSN  COSP
0.8
Common Mode Level SINN  SINP / COSN  COSP
1.5
CMRR (< 5Hz)
66
PSRR (< 5Hz)
66
Input Impedance
Load capacitance at OUTS/OUTC @ RS = 510
Load capacitance at OUTS/OUTC @ RS > 2k
Source current at V0
-100
Phase deviation
10.5
Switching voltage of index point comparator
-6
Hysteresis of index point comparator
8
*)
at the pins SINP, SINN, COSP, COSN, REFP, REFN, INPS and INPC
GEMAC
NOM
11.3
0
12
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
ADC
Input Impedance
Mid voltage usable for external circuits
positive Reference voltage sine-ADC RSH
positive Reference voltage cosine-ADC RCH
negative Reference voltage sine-ADC RSL
negative Reference voltage cosine-ADC RCL
Signal amplitude in case of direct connection to the ADC
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
MIN
2.325
3.22
3.22
1.39
1.39
NOM
100M||20pF
2.375
3.3
3.3
1.45
1.45
2.4
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 25 of 30
Phone:
Fax::
Internet:
Email:
MAX
Unit
2.425
3.42
3.42
1.53
1.53
V
V
V
V
V
VPP
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
12 Mechanical Characteristics
12.1 Pinout
Pin Name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
DATA(0)
DATA(1)
DATA(2)
DATA(3)
DATA(4)
DATA(5)
DATA(6)
DATA(7)
DATA(8)
DATA(9)
DATA(10)
DATA(11)
DATA(12)
DATA(13)
DATA(14)
DATA(15)
VSS2
VDD2
OUTHIGH
CLRTRG
XB
XA
SCLK
SCEN
SDI / SPEED
SDO/RDY
VDD3
TM
VSSA1
VDDA1
REFN
REFP
COUT
CODO
ODPU
ODPD
TTLIN
Type
Description
COUT
COUT
COUT
COUT
COUT
COUT
COUT
COUT
COUT
COUT
COUT
COUT
COUT
COUT
COUT
COUT
DSUP
DSUP
COUT
TTLIN
OSC
OSC
TTLIN
TTLIN
TTLIN
CODO
DSUP
TTLIN
ASUP
ASUP
AIN
AIN
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Data Output Port
Digital Ground
Digital Supply
MSB at Parallel Data Port active
Clear Trigger 1)
Crystal Input B 1)
Crystal Input B / ext. Clock
SPI Clock 3)
SPI Enable 2)
SPI Data Input/ SPEED (Cfg) 1)
SPI Data Output 4)
Digital Supply
Test Mode Input 1)
Analogue Ground
Analogue Supply
Negative Reference Input 6)
Positive Reference Input 6)
Pin Name
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
CMOS - OUT 4mA
CMOS - OUT 4mA / Open-Drain
CMOS - OUT 4mA / Open-Drain /w Pull Up
CMOS - OUT 4mA / Open-Drain /w Pull Down
Input, TTL - Level
SINP
SINN
OUTS180
OUTS
INPS
RSH
RSL
V0
VSSA2
VDDA2
RCL
RCH
INPC
OUTC
COSN
COSP
PH
VDDA3
VSSA3
IT2
IT1 / DP3
IR2 / DP2
IR1 / DP1
IR0 / DP0
OREF
B
A
TRG/GFE
NERR
NRES
VDD1
VSS1
Type
Description
AIN
AIN
AOUT
AOUT
AIN
AIO
AIO
AIO
ASUP
ASUP
AIO
AIO
AIN
AOUT
AIN
AIN
AIN
ASUP
ASUP
TTLIN
TTLIN
TTLIN
TTLIN
TTLIN
COUT
COUT
COUT
TTLIN
ODPU
TTLIN
DSUP
DSUP
Positive Signal Input Sine
Negative Signal Input Sine 5)
Sine Analogue Output (Phase rev.)
Sine Analogue Output
ADC Input Sine
Pos. Reference Voltage SADC
Neg. Reference Voltage SADC
Analogue Midscale Voltage
Analogue Ground
Analogue Supply
Neg. Reference Voltage CADC
Pos. Reference Voltage CADC
ADC Input Cosine
Cosine Analogue Output
Negative Signal Input Cosine 5)
Positive Signal Input Cosine
Analogue Phase Correction Input 5)
Analogue Supply
Analogue Ground
Interval Time Select 3 3)
IT Select 1 / DProg 3 3)
Interpolation Rate / DProg 2 3)
Interpolation Rate / DProg 1 3)
Interpolation Rate / DProg 0 3)
Index Point Output Signal
Square Wave Output B
Square Wave Output A
Trigger / Glitch-Filter-Enable 3)
Error Output
Reset
Digital Supply
Digital Ground
OSC
AIN / AOUT / AIO
DSUP
ASUP
Oscillator - I/O, 6pF
Analogue-IO
Digital Power Supply
Analogue Power Supply
1)
if unused, pull Low
if unused, pull High
3)
if unused, pull Low or High
4)
if unused, connect to separate pull up resistor
5)
if unused connect to V0
6)
if unused, pull the REFP and REFN inputs to different analogue voltage levels. The absolute voltage
difference between these pins must exceed the maximum reference comparator input hysteresis range for a
comparator safety behaviour
2)

Each IC input pin requires a defined connection!
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 26 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
12.2 Double Function Pins
During reset process (the time between rising edge at NRES input and rising edge at SDO/RDY output) the
following pins are required for IC configuration:
Name
IT1 /
IR2 /
IR1 /
IR0 /
TRG /
SDI /
DP3
DP2
DP1
DP0
GFE
SPEED
During Reset
Interval Time
Interpolation Rate
Interpolation Rate
Interpolation Rate
Glitch Filter Enable
SPEED Mode Select
After Reset
SPI Hardware Address
SPI Hardware Address
SPI Hardware Address
SPI Hardware Address
Trigger Signal
SPI Data Input
(Initial
(Initial
(Initial
(Initial
value)
value)
value)
value)
The attachment circuit of these pins depends upon the used interface type for measurement result output
and the preferred method of configuration. Refer also to the application notes in the document “ 4300x-AN-30-E-IPx.pdf”.
12.3 Packaging
TQFP64 Package:
Figure 15
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 27 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
DATA15
DATA14
DATA13
DATA12
DATA11
DATA10
DATA9
DATA8
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
563,75 ; 4474
742,75 ; 4474
921,75 ; 4474
1100,75 ; 4474
1279,75 ; 4474
1458,75 ; 4474
1637,75 ; 4474
1816,75 ; 4474
1995,75 ; 4474
2174,75 ; 4474
2353,75 ; 4474
2532,75 ; 4474
2711,75 ; 4474
2890,75 ; 4474
3069,75 ; 4474
3248,75 ; 4474
12.4 Bond Pattern
upper right corner
x 3915 ; y 4665
VSS2
57 ; 4099,25
3724 ; 4101,75 VSS1
VDD2
57 ; 3902,80
3724 ; 3894,30 VDD1
Digital Circuit
OUTHIGH
57 ; 3681,75
CLRTRG
57 ; 3472,10
3724 ; 3457,00 NERR
XB
57 ; 3214,70
3724 ; 3246,90 TRG
XA
57 ; 3056,70
3724 ; 3015,90 A
SCLK
57 ; 2780,70
3724 ; 2819,30 B
SCEN
57 ; 2555,10
3724 ; 2634,20 OREF
SDI
SDO
57 ; 2342,15
57 ; 2164,80
3724 ; 3671,10 NRES
IP200
3724 ; 2376,10 IR0
3724 ; 2198,60 IR1
VSSZ 58 ; 1798,20
VDD3 58 ; 1639,80
TM
3723 ; 1785,75 IR2
3723 ; 1581,05 IT1
58 ; 1382,30
3723 ; 1376,35 IT2
VSSA1 58 ; 1162,85
VDDA1 58 ; 988,85
ADC
3723 ; 1166,05 V0C
3723 ; 991,25 VSSA3
3723 ; 830,00 VDDA3
ADC
REFN 58 ; 758,50
58 ; 345,40
COSP 3484,55 ; 58
OUTC 3044,55 ; 58
COSN 3264,55 ; 58
RCH 2622,40 ; 58
INPC 2824,55 ; 58
RCL 2393,15 ; 58
V0 1819,75 ; 58
VSSA2 2026,00 ; 58
VDDA2 2199,60 ; 58
RSL 1599,75 ; 58
939,75 ; 58
OUTS
RSH 1379,75 ; 58
719,75 ; 58
x
INPS 1159,75 ; 58
499,75 ; 58
SINN
OUTS180
y
279,75 ; 58
x -35; y -35
lower left corner
3723 ; 339,85 PH
SINP
V0S
3723 ; 590,50 V0S180
Analog Circuit
REFP 58 ; 571,65
Notes:
1. All linear dimensions are in µm.
2. All pad dimensions refer to metall layer 2.
3. Pad size: 99,000 x 99,000.
4. Pad center point: X+49,500 x Y+49,500.
5. Dimension of lower left corner of bond window refer to pad dimensions: X+7,000 x Y+7,000.
6. Size of bond window: 85,000 x 85,000.
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 28 of 30
Phone:
Fax::
Internet:
Email:
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
Pin
Name
TQFP64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
DATA8
DATA9
DATA10
DATA11
DATA12
DATA13
DATA14
DATA15
VSS2
VDD2
OUTHIGH
CLRTRG
XB
XA
SCLK
SCEN
SDI
SDO
VDD3
TM
VSSA1
VDDA1
REFN
REFP
SINP
SINN
OUTS180
OUTS
INPS
RSH
RSL
V0
VSSA2
VDDA2
RCL
RCH
INPC
OUTC
COSN
COSP
PH
VDDA3
VSSA3
Pads, lower left corner
Metal 2 (99 x 99)
Bond (85 x 85)
Centre Point
x
y
x
y
x
y
3248,75 4474,00
3255,75
4481,00 3298,25
3069,75 4474,00
3076,75
4481,00 3119,25
2890,75 4474,00
2897,75
4481,00 2940,25
2711,75 4474,00
2718,75
4481,00 2761,25
2532,75 4474,00
2539,75
4481,00 2582,25
2353,75 4474,00
2360,75
4481,00 2403,25
2174,75 4474,00
2181,00
4481,00 2224,25
1995,75 4474,00
2002,75
4481,00 2045,25
1816,75 4474,00
1823,75
4481,00 1866,25
1637,75 4474,00
1644,75
4481,00 1687,25
1458,75 4474,00
1465,75
4481,00 1508,25
1279,75 4474,00
1286,75
4481,00 1329,25
1100,75 4474,00
1167,75
4481,00 1150,25
921,75 4474,00
928,75
4481,00
971,25
742,75 4474,00
749,75
4481,00
792,25
563,75 4474,00
570,75
4481,00
613,25
57,00 4099,25
64,00
4106,25
106,50
57,00 3902,80
64,00
3909,80
106,50
57,00 3681,75
64,00
3688,80
106,50
57,00 3472,10
64,00
3479,10
106,50
57,00 3214,70
64,00
3221,70
106,50
57,00 3056,70
64,00
3063,70
106,50
57,00 2780,70
64,00
2787,70
106,50
57,00 2555,10
64,00
2562,10
106,50
57,00 2342,15
64,00
2349,15
106,50
57,00 2164,80
64,00
2171,80
106,50
58,00 1639,80
65,00
1646,80
107,50
58,00 1382,30
65,00
1389,30
107,50
58,00 1162,85
65,00
1169,85
107,50
58,00
988,85
65,00
995,85
107,50
58,00
785,50
65,00
792,50
107,50
58,00
571,65
65,00
578,65
107,50
279,75
58,00
286,75
65,00
329,25
499,75
58,00
506,75
65,00
549,25
719,75
58,00
726,75
65,00
769,25
939,75
58,00
946,75
65,00
989,25
1159,75
58,00
1166,75
65,00 1209,25
1379,75
58,00
1386,75
65,00 1429,25
1599,75
58,00
1606,60
65,00 1649,25
1819,75
58,00
1826,75
65,00 1869,25
2026,00
58,00
2033,00
65,00 2075,50
2199,60
58,00
2206,60
65,00 2249,10
2393,15
58,00
2400,15
65,00 2442,65
2622,40
58,00
2629,40
65,00 2671,90
2824,55
58,00
2831,55
65,00 2874,05
3044,55
58,00
3051,55
65,00 3094,05
3264,55
58,00
3271,55
65,00 3314,05
3484,55
58,00
3491,55
65,00 3534,05
3723,00
339,85
3730,00
346,85 3772,50
3723,00
830,00
3730,00
837,00 3772,50
3723,00
991,25
3730,00
998,25 3772,50
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 29 of 30
Phone:
Fax::
Internet:
Email:
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4523,50
4148,75
3952,30
3731,25
3521,60
3264,20
3106,20
2830,20
2604,60
2391,65
2214,30
1689,30
1431,80
1212,35
1038,35
835,00
621,15
107,50
107,50
107,50
107,50
107,50
107,50
107,50
107,50
107,50
107,50
107,50
107,50
107,50
107,50
107,50
107,50
389,35
879,50
1040,75
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf
Pin
Name
TQFP64
52
53
54
55
56
57
58
59
60
61
62
63
64
Pads, lower left corner
Metal 2 (99 x 99)
Bond (85 x 85)
Centre Point
x
y
x
y
x
y
3723,00 1376,35
3730,00
1383,35 3772,50
3723,00 1581,05
3730,00
1588,05 3772,50
3723,00 1785,75
3730,00
1792,75 3772,50
3724,00 2198,60
3731,00
2265,60 3773,50
3724,00 2376,10
3731,00
2383,10 3773,50
3724,00 2634,20
3731,00
2641,20 3773,50
3724,00 2819,30
3731,00
2826,30 3773,50
3724,00 3015,90
3731,00
3022,90 3773,50
3724,00 3246,90
3731,00
3253,90 3773,50
3724,00 3457,00
3731,00
3464,00 3773,50
3724,00 3671,00
3731,00
3678,60 3773,50
3724,00 3894,30
3731,00
3901,30 3773,50
3724,00 4101,75
3731,00
4108,75 3773,50
IT2
IT1
IR2
IR1
IR0
OREF
B
A
TRG
NERR
NRES
VDD1
VSS1
1425,85
1630,55
1835,25
2248,10
2425,60
2683,70
2868,80
3065,40
3296,40
3506,50
3720,50
3943,80
4151,25
13 Revision History
Date
16.04.02
16.05.02
07.01.04
20.04.04
No.
1.0
1.1
2.0
2.1
Modification
First preparation
Modification page 10
Diverse modifications and additions
SPI protocol corrections,
supplementation of mechanical and electrical parameters
GEMAC
Gesellschaft für
Mikroe lektronikanwendung Chemnitz mbH
Zwickauer Straße 227
D-09116 Chemnitz, Germany
+49 371 33 77 - 0
+49 371 33 77 272
www.gemac-chemnitz.de
[email protected]
[email protected]
Date: 20.04.04
Page 30 of 30
Phone:
Fax::
Internet:
Email:
Status
preliminary
preliminary
actual
actual
Title:
Data Sheet GC-IP200
Name of Document:
43500-DB-2-1-E-IP200.pdf