SHARP GL390V

GL390/GL390V
Thin Bow Type Resin Mold
Package Infrared Emitting Diodes
GL390/GL390V
■ Features
■ Outline Dimensions
(Unit : mm)
1. Thin bow type resin mold package
(Resin area : 2.0 x 3.1 x 5.2 mm)
2. Low peak forward voltage ( GL390V)
φ 3.8 ± 0.3
φ 3.1
2.0 +- 0.1
0.3
❈1
■ Applications
2
24.0 MIN.
0.8 MAX.
0.2 +- 0.5
0.2
4.1
1. Cameras
2. Infrared remote controllers
Protruded resin
1
Epoxy resin
5.2 ± 0.3
VFM : TYP. 1.9V at IFM=0.5A
1
2
2 - 0.5 ± 0.1
(1.0)
2 - 0.5 ± 0.1
1 Anode
2 Cathode
(2.54)
❈ 1 Resin type
GL390
* Tolerance : ± 0.2mm
GL390V
Pale blue transparent resin
Blue transparent resin
■ Model Lineup
Model
Radiant intensity (mW/sr)
Half intensity angle (˚ )
GL390
TYP. 13
GL390V
TYP. 16
TYP. ± 18
■ Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
Reverse voltage
Power dissipation
Operating temperature
Storage temperature
*2
Soldering temperature
Symbol
IF
I FM
VR
P
T opr
T stg
T sol
(Ta=25˚C)
Rating
60
1
6
150
- 25 to 85
- 40 to 85
260
Unit
mA
A
V
mW
˚C
˚C
˚C
*1 Pulse width <=100µ s, Duty ratio=0.01
*2 For 3 seconds at the position of 2.6 mm from the resin edge
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GL390/GL390V
■ Electro-optical Characteristics
Parameter
(Ta=25 ˚C )
Symbol
VF
Forward voltage
GL390
GL390V
Peak forward voltage
V FM
Reverse current
*3
GL390
GL390V
Radiant intensity
Peak emission wavelength
Half intensity wavelength
GL390
GL390V
Terminal capacitance
Response frequency
Half intensity angle
*3
Conditions
I F = 50mA
7
9
-
I FM = 0.5A
IR
V R = 3V
IE
I F = 50mA
λP
∆λ
I F = 5mA
I F = 5mA
Ct
V R = 0 f = 1MHz
fc
∆θ
MIN.
-
I F = 20mA
TYP.
1.3
2.2
1.9
13
16
950
45
70
50
300
± 18
MAX.
1.5
3.5
3.0
10
-
Unit
V
V
µA
mW/sr
I E : Value obtained by converting the value in power of radiant fluxes emitted at the solid angle of 0.01 sr (steradian) in the direction of mechanical axis of
the lens portion into 1 sr or all those emitted from the light emitting diode.
Fig. 2 Peak Forward Current vs. Duty Ratio
Fig. 1 Forward Current vs. Ambient
Temperature
120
10000
5000
Peak forward current I
Forward current I
60
40
20
0
- 25
Pulse width <=100 µ s
Ta = 25˚C
(mA)
FM
80
F
(mA)
100
1000
500
100
50
10
0
25
50
75 85 100
Ambient temperature Ta (˚C )
125
10
-3
10
-2
10
Duty ratio
-1
1
nm
nm
pF
kHz
˚
GL390/GL390V
Fig. 3 Spectral Distribution
Fig. 4 Peak Emission Wavelength vs.
Ambient Temperature
100
1000
Peak emission wavelength λ p (nm)
I F = 5mA
Relative radiant intensity (%)
Ta = 25˚C
80
60
40
20
0
880
900
920
940
960
I F = const.
975
950
925
900
- 25
980 1000 1020 1040
Wavelength λ (nm)
0
25
Fig. 5-1 Forward Current vs. Forward Voltage
(GL390)
+ 50˚C + 25˚C
0˚C
+ 85˚C
- 25˚C
(mA)
F
50
- 20˚C
Forward current I
Forward current I
F
(mA)
25˚C
0˚C
100
100
1000
Ta= 75˚C
50˚C
75
Fig. 5-2 Forward Current vs. Forward Voltage
(GL390V)
500
200
50
Ambient temperature Ta ( ˚C )
20
10
5
100
10
2
1
0
0.5
1.0
1.5
2.0
Forward voltage V
3.0
2.5
F
1
3.5
0
1.5
2.0
1000
(mW/sr)
10
Radiant intensity I
E
5
2
1
0.5
F
2.5
3.0
(V)
Fig. 7 Radiant Intensity vs. Forward Current
IF =
const.
20
1.0
Forward voltage V
Fig. 6 Relative Radiant Flux vs. Ambient
Temperature
Relative radiant flux
0.5
(V)
100
Ta=25˚C
Pulse width 100 µ s
Duty ratio=0.01
: DC
: Pulse
GL390V
10
GL390
1
0.1
0.2
0.1
- 25
0
25
50
75
Ambient temperature Ta ( ˚C)
100
0.01
0.1
1
10
100
Forward current I F (mA)
1000
GL390/GL390V
Fig. 8-1 Radiation Diagram (Horizontal Direction)
- 10˚
0˚
+ 10˚
- 40˚
- 50˚
- 60˚
Relative radiant intensity (%)
- 30˚
- 40˚ - 30˚ - 20 -˚ 10˚ 0˚ + 10˚+ 20˚ + 30˚ + 40˚
+ 30˚
- 50˚
+ 40˚
- 60˚
+ 50˚
- 70˚
+ 60˚
- 70˚
+ 70˚
- 80˚
+ 80˚
- 90˚
0
Fig. 8-2 Radiation Diagram (Vertical Direction)
+ 20˚
+ 90˚
Angular displacement θ
● Please refer to the chapter "Precautions for Use". (Page 78 to 93)
+ 50˚
Relative radiant intensity (%)
- 20˚
+ 70˚
+ 80˚
- 80˚
- 90˚
+ 60˚
0
Angular displacement θ
+ 90˚