TI SNJ54ALS133FK

SN54ALS133, SN74ALS133
13-INPUT POSITIVE-NAND GATES
SDAS202B – APRIL 1982 – REVISED DECEMBER 1994
•
SN54ALS133 . . . J PACKAGE
SN74ALS133 . . . D OR N PACKAGE
(TOP VIEW)
Package Options Include Plastic
Small-Outline (D) Packages, Ceramic Chip
Carriers (FK), and Standard Plastic (N) and
Ceramic (J) 300-mil DIPs
A
B
C
D
E
F
G
GND
description
These devices contain a 13-input positive-NAND
gate. They perform the following Boolean
functions in positive logic:
Y = A• B• C • D • E• F • G • H• I • J • K• L • M
Y = A+ B+ C+ D + E+ F + G + H+ I + J + K+ L + M
The SN54ALS133 is characterized for operation
over the full military temperature range of – 55°C
to 125°C. The SN74ALS133 is characterized for
operation from 0°C to 70°C.
All inputs H
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
M
L
K
J
I
H
Y
B
A
NC
VCC
M
3
C
D
NC
E
F
OUTPUT
Y
L
H
4
2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
L
K
NC
J
I
G
GND
NC
Y
H
One or more inputs L
16
SN54ALS133 . . . FK PACKAGE
(TOP VIEW)
FUNCTION TABLE
INPUTS A – M
1
NC – No internal connection
logic symbol†
A
B
C
D
E
F
G
H
I
J
K
L
M
1
logic diagram (positive logic)
A
&
2
B
3
C
4
D
5
E
6
F
7
9
G
Y
10
H
11
I
12
J
13
K
14
L
15
M
1
2
3
4
5
6
7
9
Y
10
11
12
13
14
15
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and
IEC Publication 617-12.
Pin numbers shown are for the D, J, and N packages.
Copyright  1994, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54ALS133, SN74ALS133
13-INPUT POSITIVE-NAND GATES
SDAS202B – APRIL 1982 – REVISED DECEMBER 1994
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Operating free-air temperature range, TA: SN54ALS133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
SN74ALS133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions
SN54ALS133
VCC
VIH
Supply voltage
High-level input voltage
SN74ALS133
MIN
NOM
MAX
MIN
NOM
MAX
4.5
5
5.5
4.5
5
5.5
2
2
VIL
Low level input voltage
Low-level
0.8‡
0.7§
IOH
IOL
High-level output current
– 0.4
Low-level output current
– 55
125
V
V
4
TA
Operating free-air temperature
‡ Applies over temperature range – 55°C to 70°C
§ Applies over temperature range 70°C to 125°C
UNIT
0
0.8
– 0.4
mA
8
mA
70
°C
V
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VIK
VOH
VCC = 4.5 V,
VCC = 4.5 V to 5.5 V,
II = –18 mA
IOH = – 0.4 mA
VOL
5V
VCC = 4
4.5
IOL = 4 mA
IOL = 8 mA
II
IIH
VCC = 5.5 V,
VCC = 5.5 V,
VI = 7 V
VI = 2.7 V
IIL
IO#
VCC = 5.5 V,
VCC = 5.5 V,
VI = 0.4 V
VO = 2.25 V
ICCH
ICCL
VCC = 5.5 V,
VCC = 5.5 V,
VI = 0
VI = 4.5 V
SN54ALS133
TYP¶
MAX
MIN
SN74ALS133
TYP¶
MAX
MIN
–1.2
VCC – 2
–1.5
VCC – 2
0.25
0.5
V
V
0.25
0.4
0.35
0.5
0.1
– 20
UNIT
0.1
V
mA
20
20
µA
– 0.1
– 0.1
mA
–112
mA
mA
–112
– 30
0.24
0.34
0.24
0.34
0.56
0.8
0.56
0.08
mA
¶ All typical values are at VCC = 5 V, TA = 25°C.
# The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54ALS133, SN74ALS133
13-INPUT POSITIVE-NAND GATES
SDAS202B – APRIL 1982 – REVISED DECEMBER 1994
switching characteristics (see Figure 1)
PARAMETER
tPLH
tPHL
FROM
(INPUT)
Any
TO
(OUTPUT)
Y
VCC = 4.5 V to 5.5 V,
CL = 50 pF,
RL = 500 Ω,
TA = MIN to MAX†
SN54ALS133 SN74ALS133
MIN
MAX
MIN
1
16
3
11
1
47
5
25
UNIT
MAX
ns
† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54ALS133, SN74ALS133
13-INPUT POSITIVE-NAND GATES
SDAS202B – APRIL 1982 – REVISED DECEMBER 1994
PARAMETER MEASUREMENT INFORMATION
SERIES 54ALS/74ALS AND 54AS/74AS DEVICES
7V
RL = R1 = R2
VCC
S1
RL
R1
Test
Point
From Output
Under Test
CL
(see Note A)
From Output
Under Test
RL
Test
Point
From Output
Under Test
CL
(see Note A)
CL
(see Note A)
LOAD CIRCUIT FOR
BI-STATE
TOTEM-POLE OUTPUTS
LOAD CIRCUIT
FOR OPEN-COLLECTOR OUTPUTS
3.5 V
Timing
Input
Test
Point
LOAD CIRCUIT
FOR 3-STATE OUTPUTS
3.5 V
High-Level
Pulse
1.3 V
R2
1.3 V
1.3 V
0.3 V
0.3 V
Data
Input
tw
th
tsu
3.5 V
1.3 V
3.5 V
Low-Level
Pulse
1.3 V
0.3 V
1.3 V
0.3 V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PULSE DURATIONS
3.5 V
Output
Control
(low-level
enabling)
1.3 V
1.3 V
0.3 V
tPZL
Waveform 1
S1 Closed
(see Note B)
tPLZ
[3.5 V
1.3 V
tPHZ
tPZH
Waveform 2
S1 Open
(see Note B)
1.3 V
VOL
0.3 V
VOH
1.3 V
0.3 V
[0 V
3.5 V
1.3 V
Input
1.3 V
0.3 V
tPHL
tPLH
VOH
In-Phase
Output
1.3 V
1.3 V
VOL
tPLH
tPHL
VOH
Out-of-Phase
Output
(see Note C)
1.3 V
1.3 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
D. All input pulses have the following characteristics: PRR ≤ 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
E. The outputs are measured one at a time with one transition per measurement.
Figure 1. Load Circuits and Voltage Waveforms
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
25-Jan-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
5962-8859001FA
ACTIVE
CFP
W
16
1
TBD
JM38510/37005B2A
ACTIVE
LCCC
FK
20
1
TBD
JM38510/37005BEA
ACTIVE
CDIP
J
16
1
TBD
M38510/37005B2A
ACTIVE
LCCC
FK
20
1
TBD
M38510/37005BEA
ACTIVE
CDIP
J
16
1
TBD
(2)
Lead/
Ball Finish
Call TI
MSL Peak Temp
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42
N / A for Pkg Type
A42
N / A for Pkg Type
SN54ALS133J
ACTIVE
CDIP
J
16
1
TBD
SN74ALS133D
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74ALS133DE4
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74ALS133DG4
ACTIVE
SOIC
D
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74ALS133DR
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74ALS133DRE4
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74ALS133DRG4
ACTIVE
SOIC
D
16
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74ALS133N
ACTIVE
PDIP
N
16
25
Pb-Free (RoHS)
TBD
CU NIPDAU N / A for Pkg Type
SN74ALS133N3
OBSOLETE
PDIP
N
16
SN74ALS133NE4
ACTIVE
PDIP
N
16
25
Pb-Free (RoHS)
SN74ALS133NSR
ACTIVE
SO
NS
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74ALS133NSRE4
ACTIVE
SO
NS
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SN74ALS133NSRG4
ACTIVE
SO
NS
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
SNJ54ALS133FK
ACTIVE
LCCC
FK
20
1
TBD
SNJ54ALS133J
ACTIVE
CDIP
J
16
1
TBD
A42
N / A for Pkg Type
SNJ54ALS133W
ACTIVE
CFP
W
16
1
TBD
A42
N / A for Pkg Type
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
Addendum-Page 1
Call TI
Samples
(Requires Login)
Call TI
POST-PLATE N / A for Pkg Type
A42
(3)
Call TI
CU NIPDAU N / A for Pkg Type
POST-PLATE N / A for Pkg Type
PACKAGE OPTION ADDENDUM
www.ti.com
25-Jan-2012
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN54ALS133, SN74ALS133 :
• Catalog: SN74ALS133
• Military: SN54ALS133
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Military - QML certified for Military and Defense Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74ALS133DR
SOIC
D
16
2500
330.0
16.4
6.5
10.3
2.1
8.0
16.0
Q1
SN74ALS133NSR
SO
NS
16
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74ALS133DR
SN74ALS133NSR
SOIC
D
16
2500
333.2
345.9
28.6
SO
NS
16
2000
367.0
367.0
38.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated