ETC HYS72V32300GR-7.5

HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
3.3 V 168-pin Registered SDRAM Modules
PC133 128 MByte Module
PC133 256 MByte module
PC133 512 MByte Module
PC133 1 GByte Module
• 168-pin Registered 8 Byte Dual-In-Line
SDRAM Module for PC and Server main
memory applications
• Programmable CAS Latency, Burst Length,
and Wrap Sequence (Sequential &
Interleave)
• One bank 16M × 72, 32M x 72 and 64M × 72
two bank 128M × 72 organization
• Auto Refresh (CBR) and Self Refresh
• Optimized for ECC applications with very low
input capacitances
• Serial Presence Detect with E2PROM
• All inputs and outputs are LVTTL compatible
• Utilizes SDRAMs in TSOPII-54 packages
with registers and PLL.
• JEDEC standard Synchronous DRAMs
(SDRAM) Programmable CAS Latency, Burst
Length and Wrap Sequence (Sequential &
Interleave)
• Card Size: 133.35 mm × 43.18 mm × 3.99/
8.13 mm with Gold contact pads
(JEDEC MO-161)
• Single + 3.3 V (± 0.3 V) power supply
• These modules all fully compatible with the
current industry standard PC133
specifications
• Performance:
-7.5
Unit
fCK
Clock Frequency (max.) @ CL = 3
133
MHz
tCK
Clock Cycle Time (min.) @ CL = 3
7.5
ns
tAC
Clock Access Time (min.)
CAS Latency = 3
5.4
ns
The HYS 72Vxx3xxGR-7.5 are industry standard 168-pin 8-byte Dual in-line Memory Modules
(DIMMs) organized as 16M × 72, 32M x 72, 64M × 72 and 128M × 72 high speed memory arrays
designed with Synchronous DRAMs (SDRAMs) for ECC applications. The 32M x 72 (256Mbyte)
registered DIMM module is available in two versions (12 or 13 row addresses). All control and
address signals are registered on-DIMM and the design incorporates a PLL circuit for the Clock
inputs. Use of an on-board register reduces capacitive loading on the input signals but are delayed
by one cycle in arriving at the SDRAM devices. Decoupling capacitors are mounted on the PC
board. The DIMMs use a serial presence detects scheme implemented via a serial E2PROM using
the 2-pin I2C protocol. The first 128 bytes are utilized by the DIMM manufacturer and the second
128 bytes are available to the end user. All Infineon 168-pin DIMMs provide a high performance,
flexible 8-byte interface in a 133.35 mm long footprint.
Data Book
1
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
Ordering Information
Type
Compliance Code
Description
SDRAM
Technology
HYS 72V16300GR-7.5
PC133R-333-542-B2 one bank 128 MB Reg. DIMM
64 MBit
HYS 72V16301GR-7.5
PC133R-333-542-B2 one bank 128 MB Reg. DIMM
128 MBit
HYS 72V32301GR-7.5
PC133R-333-542-B2 one bank 256 MB Reg. DIMM
128 Mbit
HYS 72V32300GR-7.5
PC133R-333-542-AA one bank 256 MB Reg. DIMM
256 Mbit
HYS 72V64300GR-7.5
PC133R-333-542-B2 one bank 512 MB Reg. DIMM
256 MBit
HYS 72V128320GR-7.5 PC133R-333-542-B2 two banks 1 GByte Reg. DIMM 256 MBit
(stacked)
Note: HYS 72V32301GR-7.5All part numbers end with a place code (not shown), designating the
die revision. Consult factory for current revision. Example: HYS 64V16300GR-7.5-C2,
indicating Rev.C2 dies are used for SDRAM components.
Pin Definitions and Functions
A0 - A11, A12 Address Inputs (A12 is used for
256Mbit based modules only)
DQMB0 - DQMB7 Data Mask
BA0, BA1
Bank Selects
CS0 - CS3
Chip Select
DQ0 - DQ63
Data Input/Output
REGE
Register Enable
CB0 - CB7
Check Bits
VDD
Power (+ 3.3 V)
RAS
Row Address Strobe
VSS
Ground
CAS
Column Address Strobe
SCL
Clock for Presence Detect
WE
Read/Write Input
SDA
Serial Data Out
CKE0
Clock Enable
N.C.
No Connection
–
–
CLK0 - CLK3 Clock Input
Address Format
Density Organization Memory SDRAMs
Banks
# of
# of row/bank/ Refresh Period Interval
SDRAMs columns bits
128 MB 16M × 72
1
16M × 4
18
12/2/10
4k
64 ms 15.6 µs
128 MB 16M × 72
1
16M x 8
9
12/2/10
4k
64 ms 15.6 µs
256 MB 32M x 72
1
32M x 4
18
12/2/11
4k
64 ms 15.6 µs
256 MB 32M x 72
1
32M x 8
9
13/2/10
8k
64 ms 7.8 µs
512 MB 64M × 72
1
64M × 4
18
13/2/11
8k
64 ms 7.8 µs
2
64M × 4
36
13/2/11
8k
64 ms 7.8 µs
1 GB
128M × 72
Data Book
2
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
Pin Configuration
PIN#
Symbol
PIN#
Symbol
PIN#
Symbol
PIN#
Symbol
1
VSS
43
VSS
85
VSS
127
VSS
2
DQ0
44
DU
86
DQ32
128
CKE0
3
DQ1
45
CS2
87
DQ33
129
CS3
4
DQ2
46
DQMB2
88
DQ34
130
DQMB6
5
DQ3
47
DQMB3
89
DQ35
131
DQMB7
6
VDD
48
DU
90
VDD
132
N.C.
7
DQ4
49
VDD
91
DQ36
133
VDD
8
DQ5
50
N.C.
92
DQ37
134
N.C.
9
DQ6
51
N.C.
93
DQ38
135
N.C.
10
DQ7
52
CB2
94
DQ39
136
CB6
11
DQ8
53
CB3
95
DQ40
137
CB7
12
VSS
54
VSS
96
VSS
138
VSS
13
DQ9
55
DQ16
97
DQ41
139
DQ48
14
DQ10
56
DQ17
98
DQ42
140
DQ49
15
DQ11
57
DQ18
99
DQ43
141
DQ50
16
DQ12
58
DQ19
100
DQ44
142
DQ51
17
DQ13
59
VDD
101
DQ45
143
VDD
18
VDD
60
DQ20
102
VDD
144
DQ52
19
DQ14
61
N.C.
103
DQ46
145
N.C.
20
DQ15
62
DU
104
DQ47
146
DU
21
CB0
63
N.C.
105
CB4
147
REGE
22
CB1
64
VSS
106
CB5
148
VSS
23
VSS
65
DQ21
107
VSS
149
DQ53
24
N.C.
66
DQ22
108
N.C.
150
DQ54
25
N.C.
67
DQ23
109
N.C.
151
DQ55
26
VDD
68
VSS
110
VDD
152
VSS
27
WE
69
DQ24
111
CAS
153
DQ56
28
DQMB0
70
DQ25
112
DQMB4
154
DQ57
29
DQMB1
71
DQ26
113
DQMB5
155
DQ58
30
CS0
72
DQ27
114
CS1
156
DQ59
31
DU
73
VDD
115
RAS
157
VDD
32
VSS
74
DQ28
116
VSS
158
DQ60
33
A0
75
DQ29
117
A1
159
DQ61
Data Book
3
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
Pin Configuration (cont’d)
PIN#
Symbol
PIN#
Symbol
PIN#
Symbol
PIN#
Symbol
34
A2
76
DQ30
118
A3
160
DQ62
35
A4
77
DQ31
119
A5
161
DQ63
36
A6
78
VSS
120
A7
162
VSS
37
A8
79
CLK2
121
A9
163
CLK3
38
A10 (AP)
80
N.C.
122
BA0
164
N.C.
39
BA1
81
WP
123
A11
165
SA0
40
VDD
82
SDA
124
VDD
166
SA1
41
VDD
83
SCL
125
CLK1
167
SA2
42
CLK0
84
VDD
126
A12
168
VDD
Data Book
4
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
RCS0
RDQMB0
RDQMB4
DQ0-DQ3
DQM
CS
DQ0-DQ3
D0
DQ32-DQ35
DQM
CS
DQ0-DQ3
D8
DQ4-DQ7
DQM
CS
DQ0-DQ3
D1
DQ36-DQ39
DQM
CS
DQ0-DQ3
D9
RDQMB1
RDQMB5
DQM
DQ0-DQ3
DQ8-DQ11
DQ40-DQ43
DQM
CS
DQ0-DQ3
D10
D2
DQ12-DQ15
CS
DQM
DQ0-DQ3
D3
DQ44-DQ47
CS
DQM
DQ0-DQ3
D11
CB0-CB3
DQM
CS
DQ0-DQ3
D16
CB4-CB7
DQM
CS
DQ0-DQ3
D17
RCS2
RDQMB2
RDQMB6
DQ16-DQ19
DQM
CS
DQ0-DQ3
D4
DQ48-DQ51
DQM
CS
DQ0-DQ3
D12
DQ20-DQ23
CS
DQM
DQ0-DQ3
D5
DQ52-DQ55
CS
DQM
DQ0-DQ3
D13
RDQMB3
RDQMB7
DQ24-DQ27
CS
DQM
DQ0-DQ3
D6
DQ56-DQ59
CS
DQM
DQ0-DQ3
D14
DQ28-DQ31
CS
DQM
DQ0-DQ3
D7
DQ60-DQ63
CS
DQM
DQ0-DQ3
D15
CLK0
PLL
CS0/CS2
DQMB0-7
BA0, BA1
A0-A11, A12
RAS
CAS
CKE0
WE
Register
12 pF
SDRAMs D0-D17
CLK1, CLK2, CLK3
RCS0/RCS2
RDQMB0-7
RBA0, RBA1
RA0-RA11, RA12
RRAS
RCAS
RCKE0
RWE
12 pF
SDRAMs D0-D17
SDRAMs D0-D17
SDRAMs D0-D17
SDRAMs D0-D17
SDRAMs D0-D17
SDRAMs D0-D17
REGE
10 k Ω
SA0
SA1
SA2
SCL
E 2PROM
(256 word x 8 Bit)
SA0
SA1 SDA
SA2
WP
SCL
V CC
47 k Ω
D0-D17, Reg., DLL
C
V SS
D0-D17, Reg., DLL
1)
DQ wirding may differ from that decribed
in this drawing; however DQ/DQB relationship
must be maintained as shown
2)
All resistors are 10 Ω unless otherwise noted
V CC
SPB04135
Block Diagram: One Bank 16M × 72, 32M × 72 and 64M × 72 SDRAM DIMM Modules
HYS72V16300GR, HYS72V32301GR and HYS 72V64300GR using x4 organized SDRAMs
Data Book
5
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
RCS0
RDQMB0
DQ0-DQ7
CS
DQM
DQ0-DQ7
D0
RDQMB4
DQ32-DQ39
CS
DQM
DQ0-DQ7
D4
RDQMB1
DQ8-DQ15
CS
DQM
DQ0-DQ7
D1
RDQMB5
DQ40-DQ47
CS
DQM
DQ0-DQ7
D5
CS WE
DQM
DQ0-DQ7
D8
RCB0-RCB7
RCS2
RDQMB2
DQ16-DQ23
CS
DQM
DQ0-DQ7
D2
RDQMB4
DQ48-DQ55
CS
DQM
DQ0-DQ7
D6
RDQMB3
DQ24-DQ31
CS
DQM
DQ0-DQ7
D3
RDQMB7
DQ56-DQ63
CS
DQM
DQ0-DQ7
D7
VCC
D0-D8, Reg., DLL
C
VSS
D0-D8, Reg., DLL
CLK0
PLL
Register
RCS0/RCS2
RDQMB0-7
RBA0, RBA1
RA0-11,12
RRAS
RCAS
RCKE0
RWE
SDRAMs D0-D8
SDRAMs D0-D8
SDRAMs D0-D8
SDRAMs D0-D8
SDRAMs D0-D8
SDRAMs D0-D8
Notes:
1)
DQ wirding may differ from that
decribed in this drawing;
however DQ/DQB relationship
must be maintained as shown
2)
All resistors are 10 Ω unless
otherwise noted
*) A12 is only for 32 M x 72
organisation
CLK1, CLK2, CLK3
REGE
10 k Ω
12 pF
VCC
Block Diagram: One Bank 16Mx72 and 32M × 72 Modules
HYS72V16301 & HYS72V32300GR using x8 organized SDRAMs
Data Book
47 k Ω
SDRAMs D0-D8
12 pF
CS0/CS2
DQMB0-7
BA0, BA1
A0-A11,12* )
RAS
CAS
CKE0
WE
E2PROM
(256 word x 8 Bit)
SA0
SA0
SA1
SA1 SDA
SA2
WP
SA2
SCL
SCL
6
SPB04130
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
RCS0
RCS1
RDQMB0
RDQMB4
DQ0-DQ3
CS
DQM
DQ0-DQ3
D0
CS
DQM
DQ0-DQ3
D0
DQ32-DQ35
DQM CS
DQ0-DQ3
D8
CS
DQM
DQ0-DQ3
D8
DQ4-DQ7
DQM
CS
DQ0-DQ3
D1
DQM
CS
DQ0-DQ3
D1
DQ36-DQ39
DQM CS
DQ0-DQ3
D9
DQM
CS
DQ0-DQ3
D9
DQ8-DQ11
DQM
CS
DQ0-DQ3
D2
DQM
CS
DQ0-DQ3
D2
DQ40-DQ43
DQM CS
DQ0-DQ3
D10
DQM
CS
DQ0-DQ3
D10
DQ12-DQ15
CS
DQM
DQ0-DQ3
D3
CS
DQM
DQ0-DQ3
D3
DQ44-DQ47
DQM CS
DQ0-DQ3
D11
CS
DQM
DQ0-DQ3
D11
CB0-CB3
CS
DQM
DQ0-DQ3
D16
CS
DQM
DQ0-DQ3
D16
CB4-CB7
DQM CS
DQ0-DQ3
D17
DQM
CS
DQ0-DQ3
D17
DQ16-DQ19
DQM
CS
DQ0-DQ3
D4
DQM
CS
DQ0-DQ3
D4
DQ48-DQ51
DQM CS
DQ0-DQ3
D12
DQM
CS
DQ0-DQ3
D12
DQ20-DQ23
DQM
CS
DQ0-DQ3
D5
DQM
CS
DQ0-DQ3
D5
DQ52-DQ55
DQM CS
DQ0-DQ3
D13
CS
DQM
DQ0-DQ3
D13
DQ24-DQ27
DQM
CS
DQ0-DQ3
D6
DQM
CS
DQ0-DQ3
D6
DQ56-DQ59
DQM CS
DQ0-DQ3
D14
CS
DQM
DQ0-DQ3
D14
DQ28-DQ31
DQM
CS
DQ0-DQ3
D7
DQM
CS
DQ0-DQ3
D7
DQ61-DQ63
DQM CS
DQ0-DQ3
D15
DQM
CS
DQ0-DQ3
D15
RDQMB1
RDQMB5
RCS2
RCS3
RDQMB2
RDQMB6
RDQMB3
CLK0
RDQMB7
PLL
CS0-CS3
DQMB0-7
BA0, BA1
A0-A11, A12* )
RAS
CAS
CKE0
WE
REGE
10 k Ω
V CC
Register
12 pF
Stacked SDRAMs D0-D17
CLK1, CLK2, CLK3
RCS0-RCS3
RDQMB0-7
RBA0, RBA1
RA0-RA11
RRAS
RCAS
RCKE0
RWE
12 pF
Stacked SDRAMs D0-D17
Stacked SDRAMs D0-D17
Stacked SDRAMs D0-D17
Stacked SDRAMs D0-D17
Stacked SDRAMs D0-D17
Stacked SDRAMs D0-D17
E 2PROM
(256 word x 8 Bit)
SA0
SA0
SA1
SA1 SDA
SA2
SA2
WP
SCL
SCL
V CC
47 k Ω
D0-D17, Reg. DLL
C
V SS
D0-D17, Reg. DLL
1.)
*) A12 is only used for
128 M x 72 organisation
DQ wirding may differ from that decribed
in this drawing; however DQ/DQB relationship
must be maintained as shown
2.) All resistors are 10 Ω unless otherwise noted
SPB04136
Block Diagram: Two Bank 128M × 72 SDRAM DIMM Modules
HYS 72V128320GR Using Stacked x4 Organized SDRAMs
Data Book
7
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
DC Characteristics
TA = 0 to 70 °C 1); VSS = 0 V; VDD,VDDQ = 3.3 V ± 0.3 V
Parameter
Symbol
Limit Values
min.
max.
Unit
Input High Voltage
VIH
2.0
VDD + 0.3
V
Input Low Voltage
VIL
– 0.5
0.8
V
Output High Voltage (IOUT = – 4.0 mA)
VOH
2.4
–
V
Output Low Voltage (IOUT = 4.0 mA)
VOL
–
0.4
V
Input Leakage Current, any input
(0 V < VIN < 3.6 V, all other inputs = 0 V)
II(L)
– 10
10
µA
Output Leakage Current
(DQ is disabled, 0 V < VOUT < VDD)
IO(L)
– 10
10
µA
Capacitance
TA = 0 to 70 °C 1); VDD = 3.3 V ± 0.3 V, f = 1 MHz
Parameter
Symbol
Limit Values (max.)
One Bank
modules
Two Bank
Modules
Unit
Input Capacitance
(all inputs except CLK and CKE)
CIN
10
20
pF
Input Capacitance (CLK)
CCLK
30
30
pF
Input Capacitance (CKE)
CCKE
17
30
pF
Input/Output Capacitance
(DQ0 - DQ63, CB0 - CB7)
CIO
10
17
pF
Input Capacitance (SCL, SA0 - 2)
CSC
8
8
pF
Input/Output Capacitance (SDA)
CSD
8
8
pF
Data Book
8
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
Operating Currents per SDRAM Component
TA = 0 to 70 °C 1), VDD = 3.3 V ± 0.3 V
(Recommended Operating Conditions unless otherwise noted)
Parameter
Test Condition Symbol 64 Mb 128
Mb
256 M Unit Note
b
max.
Operating current
2)
ICC1
–
tRC = tRC(MIN.), tCK = tCK(MIN.)
x4 100
120
270
mA
Outputs open, Burst Length = 4,
CL = 3
All banks operated in random
access,
all banks operated in ping-pong
manner to maximize gapless
data access
Precharge stand-by current
in Power Down Mode
tCK = min.
ICC2P
2
2
2
mA
2)
tCK = min.
ICC2N
35
40
35
mA
2)
CKE ≥ VIH(MIN.)
ICC3N
45
50
50
mA
2)
CKE ≤ VIL(MAX.)
ICC3P
8
10
10
mA
2)
–
ICC4
CS = VIH(MIN.), CKE ≤ VIL(MAX.)
Precharge Stand-by Current
in Non-Power Down Mode
CS = VIH (MIN.), CKE ≥ VIH(MIN.)
No operating current
tCK = min., CS = VIH(MIN.),
active state (max. 4 banks)
Burst operating current
tCK = min.,
Read command cycling
2), 3)
x4 60
120
270
mA
Auto refresh current
–
tCK = min.,
Auto Refresh command cycling
ICC5
130
180
240
mA
2)
Self refresh current
Self Refresh Mode,
CKE = 0.2 V
ICC6
1
1.5
2.5
mA
2)
Data Book
–
9
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
AC Characteristics (SDRAM Device Specification) 4), 5)
TA = 0 to 70 °C 1); VSS = 0 V; VDD = 3.3 V ± 0.3 V, tT = 1 ns
Parameter
Symbol
Limit Values
Unit
Note
-7.5
min.
max.
tCK
Clock Cycle Time
CAS Latency = 3
CAS Latency = 2 (64Mb & 128Mb based mod.)
CAS Latency = 2 (256Mb based modules)
7.5
10
12
–
–
–
ns
ns
ns
fCK
Clock Frequency
CAS Latency = 3
CAS Latency = 2 (64Mb & 128Mb based mod.)
CAS Latency = 2 (256Mb based modules)
–
–
–
133
100
83
MHz
MHz
MHz
Clock and Access Time
Access Time from Clock
CAS Latency = 3
CAS Latency = 2
tAC
Clock High Pulse Width
–
–
–
–
–
5.4
6
ns
ns
tCH
2.5
–
ns
–
Clock Low Pulse Width
tCL
2.5
–
ns
–
Transition Time
tT
0.5
10
ns
–
Input Setup Time
tIS
1.5
–
ns
–
Input Hold Time
tIH
0.8
–
ns
–
Power Down Mode Entry Time
tSB
–
1
CLK
–
Power Down Mode Exit Setup Time
tPDE
1
–
CLK
–
Mode Register Setup Time
tRCS
2
–
CLK
–
Row to Column Delay Time
tRCD
20
–
ns
–
Row Precharge Time
tRP
20
–
ns
–
Row Active Time
tRAS
45
100k
ns
–
Row Cycle Time
tRC
67.5
–
ns
–
Activate (a) to Activate (b) Command Period
tRRD
2
–
CLK
–
CAS(a) to CAS(b) Command Period
tCCD
1
–
CLK
–
Data Book
10
Setup and Hold Parameters
Common Parameters
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
AC Characteristics (SDRAM Device Specification) (cont’d)
TA = 0 to 70 °C 1); VSS = 0 V; VDD = 3.3 V ± 0.3 V, tT = 1 ns
Parameter
Symbol
4), 5)
Limit Values
Unit
Note
-7.5
min.
max.
–
–
15.6
7.8
µs
µs
Refresh Cycle
Refresh Period
64&128MBit SDRAM Based Modules
256 MBit SDRAM Based Modules
tREF
Self Refresh Exit Time
tSREX
1
–
CLK
6)
Data Out Hold Time
tOH
3
–
ns
–
Data Out to Low Impedance Time
tLZ
0
–
ns
7)
Data Out to High Impedance Time
tHZ
3
7
ns
7)
DQM Data Out Disable Latency
tDQZ
–
2
CLK
–
Data Input to Precharge
(write recovery)
tWR
2
–
CLK
–
DQM Write Mask Latency
tDQW
0
–
CLK
–
Data Book
11
–
Read Cycle
Write Cycle
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
Notes
1. The registered DIMM modules are designed to operate under system operating conditions
between 0-55 deg C ambient, maximum sustained bandwidth and 0 LFM airflow.
2. These parameters depend on the cycle rate. All values are measured at 133 MHz operation
frequency. Input signals are changed once during tck excepts for Icc6 and for standby currents
when tck = infinity.
3. These parameters are measured with continous data stream during read access and all DQ
toggling. CL=3 and BL=4 is assumed and the Vcc current is excluded.
4. An initial pause of 100 µs is required after power-up. Then a Precharge All Banks command must
be given followed by eight Auto Refresh (CBR) cycles before the Mode Register Set Operation
can begin. Also the on-DIMM PLL must be given enough clock cycles to stabilize ( tSTAB) before
any operation can be guaranteed.
5. AC timing tests have VIL = 0.8 V and VIH = 2.0 V with the timing referenced to the 1.4 V crossover
point. The transition time is measured between VIH and VIL. All AC measurements assume
tT = 1 ns with the AC output load circuit shown. Specified tAC and tOH parameters are measured
with a 50 pF only, without any resistive termination and with a input signal of 1 V/ns edge rate
between 0.8 V and 2.0 V.
6. Self Refresh Exit is a synchronous operation and begins on the second positive clock edge after
CKE returns high. Self Refresh Exit is not complete until a time period equal to tRC is satisfied
after the Self Refresh Exit command is registered.
7. Referenced to the time at which the output achieves the open circuit condition, not to output
voltage levels.
t CH
2.4 V
0.4 V
CLOCK
t CL
t SETUP
tT
t HOLD
INPUT
1.4 V
t AC
t LZ
t AC
I/O
t OH
50 pF
OUTPUT
1.4 V
Measurement conditions for
tAC and tOH
t HZ
SPT03404
A serial presence detect storage device - E2PROM 34C02 - is assembled onto the module.
Information about the module configuration, speed, etc. is written into the E 2PROM device during
module production using a serial presence detect protocol (I2C synchronous 2-wire bus).
Data Book
12
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
SPD-Table for -7.5 Registered DIMM Modules with PLL
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Number of SDRAM Banks
SDRAM Supported CAS
Latencies
SDRAM CS Latencies
SDRAM WE Latencies
SDRAM DIMM Module
Attributes
SDRAM Device Attributes
Min. Clock Cycle Time at
CL = 2
Max. Data Access Time from
Clock for CL = 2
Min. Clock Cycle Time at
CL = 1
Max. Data Access Time from
Clock at CL = 1
Data Book
10/11
1/2
72
0
LVTTL
7.5 ns
5.4 ns
ECC
15.6/7.8 µs
x4 / x8
x4 / x8
1 CLK
1, 2, 4, 8 &
(full page)
4
2&3
0C
0C
80
08
04
0C
0D
0A
01
0A
01
0B
01
80
04
04
80
08
08
80
04
04
02
82
08
08
82
04
04
82
04
04
0F
01
0F
0F
0F
8F
0F
0A
01
48
00
01
75
54
1 GB
2 Banks
128
256
SDRAM
12/13
512 MB
1 Bank
Number of SPD Bytes
Total Bytes in Serial PD
Memory Type
Number of Row Addresses
(without BS bits)
Number of Column Addresses
Number of DIMM Banks
Module Data Width
Module Data Width (cont’d)
Module Interface Levels
Cycle Time at CL = 3
Access Time from Clock at
CL = 3
DIMM Config (Error Det/Corr.)
Refresh Rate/Type
SDRAM Width, Primary
Error Checking SDRAM Data
Width
Minimum tCCD
Burst Length Supported
256 MB
1 Bank**)
0
1
2
3
Hex
256 MB
1 Bank*)
SPD Entry
Value
128 MB
1 Bank 2)
Description
128 MB
1 Bank 1)
Byte#
0D
0D
0B
01
0B
02
04
06
0
0
with PLL
01
01
1F
VDD tol +/–
0E
10%
10/12 ns
A0
A0
A0
C0
C0
C0
6.0
60
60
60
60
60
60
not supported
00
not supp.
00
13
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
SPD-Table for -7.5 Registered DIMM Modules with PLL (cont’d)
32
33
34
SDRAM Input Setup Time
SDRAM Input Hold Time
SDRAM Data Input Setup
Time
35
SDRAM Data Input Hold Time
36-61 Superset Information
(may be used in future)
62
SPD Revision
63
Checksum for Bytes 0 - 62
64-125 Manufacturer’s Information
126
Frequency Specification
127
Details of Clocks
128+
Unused Storage Locations
20
20
40
14
0F
14
2D
40
1 GB
2 Banks
20 ns
15 ns
20 ns
45 ns
128 MByte/
256 Mbyte
512 MByte
1.5 ns
0.8 ns
1.5 ns
512 MB
1 Bank
SDRAM Minimum tRP
SDRAM Minimum tRRD
SDRAM Minimum tRCD
SDRAM Minimum tRAS
Module Bank Density (per
bank)
256 MB
1 Bank**)
27
28
29
30
31
Hex
256 MB
1 Bank*)
SPD Entry
Value
128 MB
1 Bank 2)
Description
128 MB
1 Bank 1)
Byte#
80
80
15
08
15
0.8 ns
–
08
00
JEDEC 2
–
–
–
–
–
69
02
93
CC
CD
8F
FF
64
8D
FF
8D
FF
8D
FF
C8
8F
FF
50
8F
FF
1) HYS72V16300GR-7.5
2) HYS72V16301GR-7.5
*) HYS72V32301GR-7.5
**) HYS72V32300GR-7.5
Data Book
14
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
Package Outlines
Module Package
JEDEC MO-161
Registered DIMM Modules Raw Card AA L-DIM168-44
256MB modules
Front
Side
3.99
0.157 max.
1.5" (nominal)
Back
4.24
0.167
4.24
0.167
Front
1.27 ± 0.10
0.050 ± 0.004
note: all outline dimensions and tolerances are in accordance with the JEDEC standard
Data Book
15
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
Package Outlines
Module Package
JEDEC MO-161
Registered DIMM Modules Raw Card B L-DIM168-37-2
128MB, 256MB & 512MB modules
Front
Side
3.99
0.157 max.
1.7" (nominal)
Back
4.24
0.167
4.24
0.167
Front
1.27 ± 0.10
0.050 ± 0.004
note: all outline dimensions and tolerances are in accordance with the JEDEC standard
Data Book
16
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
Package Outlines
Module Package
JEDEC MO-161
Registered DIMM Modules Raw Card B L-DIM168-37-2
1 GByte module
Front
Side
8 max.
1.7" (nominal)
Back
4.24
0.167
4.24
0.167
Front
1.27 ± 0.10
0.050 ± 0.004
note: all outline dimensions and tolerances are in accordance with the JEDEC standard
Data Book
17
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
Functional Description
All these PC133 168-pin Registered DIMMs conform to a compatible set of timing and operation
characteristics intended to comply with the 133 MHz standards. The Registered DIMMs achieve
high speed data transfer rate up to 133 MHz.
All control and address signals are synchronized with the positive edge of externally supplied clocks
and are registered on-DIMM and hence delayed by one clock cycle in arriving at the SDRAM
devices. The use of the on-board register reduces the capacitive loading of the DIMM on input
control and address signals. The SDRAM device data lines (DQ) are connected directly to the DIMM
tabs through 10 Ohm series resistors. All the following timing diagrams and explanations show
DIMM operation at the tabs, not SDRAM operation.
The picture below depicts an overview of the effect of the Registered Mode on the data outputs
(DQs) for a Read operation. Without the registers, the data is delayed according to the device CAS
latency, in the case two clocks. With the register, the data is delayed according to the device CAS
latency plus an additional clock cycle. This is know as the DIMM CAS latency, and in this example
is four three. The data path can be thought of as a pipeline in which the register effectively lengthens
the pipe by one clock cycle.
Registered DIMM Burst Read Operation (BL = 4)
T0
T1
T2
T3
T4
T5
T6
Read A
NOP
NOP
NOP
NOP
NOP
NOP
CLK
Command
Device
CAS latency = 2
t CK2 , DQ’s
DIMM
CAS latency = 3
t CK3 , DQ’s
DOUT A0 DOUT A1 DOUT A2 DOUT A3
DOUT A0 DOUT A1 DOUT A2 DOUT A3
Added for on-DIMM pipeline register
One Clock Reg-DIMM Latency = 1
SPT03968
In case of a Burst Write Command the data-in is delayed one clock due the op-DIMM pipeline
register also. Therefore, data for the first Burst Write cycle must be applied on the DQ pins on the
next clock cycle after the Write command is issued. the remaining data inputs must be supplied on
each subsequent rising clock edge until the burst length is completed. When the burst has finished,
any additional data supplied to the DQ pins will be ignored.
Data Book
18
1.00
HYS 72Vxx3xxGR-7.5
PC133 Registered SDRAM-Modules
T0
T1
T2
T3
T4
T5
T6
T7
T8
NOP
Write A
NOP
NOP
NOP
NOP
NOP
NOP
NOP
DIN A0
DIN A1
DIN A2
DIN A3
don’t care
CLK
Command
DQ’s
The first data element and the Write
are registered on the next clock edge
Reg-DIMM Latency = 1 CLK
Extra data is ignored after
termination of a Burst.
SPT03969
Registered DIMM Burst Write Operation (BL = 4)
Data Book
19
1.00