ETC IR2110-2

Data Sheet No. PD60147-L
IR2110/IR2113
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
Fully operational to +500V or +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
Separate logic supply range from 5 to 20V
Logic and power ground ±5V offset
CMOS Schmitt-triggered inputs with pull-down
Cycle by cycle edge-triggered shutdown logic
Matched propagation delay for both channels
Outputs in phase with inputs
Description
The IR2110/IR2113 are high voltage, high speed
power MOSFET and IGBT drivers with independent
high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies
enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL
output. The output drivers feature a high pulse
current buffer stage designed for minimum driver
cross-conduction. Propagation delays are matched
to simplify use in high frequency applications. The
floating channel can be used to drive an N-channel
power MOSFET or IGBT in the high side configuration which operates up to 500 or 600 volts.
Product Summary
VOFFSET (IR2110)
(IR2113)
500V max.
600V max.
IO+/-
2A / 2A
VOUT
10 - 20V
ton/off (typ.)
120 & 94 ns
Delay Matching
10 ns
Packages
14 Lead PDIP
IR2110/IR2113
16 Lead PDIP
w/o leads 4 & 5
IR2110-2/IR2113-2
14 Lead PDIP
w/o Lead 4
IR2110-1/IR2113-1
16 Lead SOIC
IR2110S/IR2113S
Typical Connection
up to 500V or 600V
HO
V DD
V DD
VB
HIN
HIN
VS
SD
SD
LIN
LIN
V CC
V SS
V SS
COM
VCC
www.irf.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
TO
LOAD
LO
1
IR2110/IR2113
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.
Symbol
VB
Definition
Min.
Max.
High side floating supply voltage (IR2110)
-0.3
525
(IR2113)
-0.3
625
Units
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VDD
Logic supply voltage
-0.3
VSS + 25
VSS
Logic supply offset voltage
VCC - 25
VCC + 0.3
VIN
Logic input voltage (HIN, LIN & SD)
VSS - 0.3
VDD + 0.3
—
50
VS
dVs/dt
PD
RTHJA
Allowable offset supply voltage transient (figure 2)
Package power dissipation @ TA ≤ +25°C
(14 lead DIP)
—
1.6
(14 lead DIP w/o lead 4)
—
1.5
(16 lead DIP w/o leads 4 & 5)
—
1.6
(16 lead SOIC)
—
1.25
(14 lead DIP)
—
75
Thermal resistance, junction to ambient
(14 lead DIP w/o lead 4)
—
85
(16 lead DIP w/o leads 4 & 5)
—
75
(16lLead SOIC)
—
100
TJ
Junction temperature
—
150
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical
ratings at other bias conditions are shown in figures 36 and 37.
Symbol
Definition
VB
High side floating supply absolute voltage
VS
High side floating supply offset voltage
Min.
Max.
VS + 10
VS + 20
Units
(IR2110)
Note 1
500
(IR2113)
Note 1
600
VB
VHO
High side floating output voltage
VS
VCC
Low side fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VDD
Logic supply voltage
VSS + 4.5
VSS + 20
VSS
Logic supply offset voltage
VIN
TA
-5
5
Logic input voltage (HIN, LIN & SD)
VSS
VDD
Ambient temperature
-40
125
V
°C
Note 1: Logic operational for VS of -4 to +500V. Logic state held for VS of -4V to -VBS.
2
Powered by ICminer.com Electronic-Library Service CopyRight 2003
www.irf.com
IR2110/IR2113
Dynamic Electrical Characteristics
VBIAS (VCC , VBS , VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
ton
Turn-on propagation delay
7
—
120
150
VS = 0V
toff
Turn-off propagation delay
8
—
94
125
VS = 500V/600V
tsd
Shutdown propagation delay
9
—
110
140
VS = 500V/600V
tr
Turn-on rise time
10
—
25
35
tf
Turn-off fall time
11
—
17
25
Delay matching, HS & LS turn-on/off
—
—
—
10
MT
ns
Figure 5
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are
referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage
12
9.5
—
—
VIL
Logic “0” input voltage
13
—
—
6.0
VOH
High level output voltage, VBIAS - VO
14
—
—
1.2
VOL
Low level output voltage, VO
15
—
—
0.1
IO = 0A
V
IO = 0A
ILK
Offset supply leakage current
16
—
—
50
VB=VS = 500V/600V
IQBS
Quiescent VBS supply current
17
—
125
230
VIN = 0V or VDD
IQCC
Quiescent VCC supply current
18
—
180
340
IQDD
Quiescent VDD supply current
19
—
15
30
VIN = 0V or VDD
IIN+
Logic “1” input bias current
20
—
20
40
VIN = VDD
21
22
—
7.5
—
8.6
1.0
9.7
VIN = 0V
23
7.0
8.2
9.4
24
7.4
8.5
9.6
25
7.0
8.2
9.4
IO+
Logic “0” input bias current
VBS supply undervoltage positive going
threshold
VBS supply undervoltage negative going
threshold
VCC supply undervoltage positive going
threshold
VCC supply undervoltage negative going
threshold
Output high short circuit pulsed current
26
2.0
2.5
—
IO-
Output low short circuit pulsed current
27
2.0
2.5
—
IINVBSUV+
VBSUVVCCUV+
VCCUV-
www.irf.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
µA
VIN = 0V or VDD
V
A
VO = 0V, VIN = VDD
PW ≤ 10 µs
VO = 15V, VIN = 0V
PW ≤ 10 µs
3
IR2110/IR2113
Functional Block Diagram
VB
UV
DETECT
VDD
HV
LEVEL
SHIFT
R Q
S
VDD /VCC
LEVEL
SHIFT
HIN
PULSE
FILTER
PULSE
GEN
R
R
Q
HO
S
VS
SD
VCC
VDD /VCC
LEVEL
SHIFT
LIN
S
R Q
UV
DETECT
LO
DELAY
COM
VSS
Lead Definitions
Symbol Description
VDD
Logic supply
HIN
Logic input for high side gate driver output (HO), in phase
SD
Logic input for shutdown
LIN
Logic input for low side gate driver output (LO), in phase
VSS
Logic ground
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
14 Lead PDIP
IR2110/IR2113
14 Lead PDIP w/o Lead 4 16 Lead PDIP w/o Leads 4 & 5 16 Lead SOIC (Wide Body)
IR2110-1/IR2113-1
IR2110-2/IR2113-2
Part Number
4
Powered by ICminer.com Electronic-Library Service CopyRight 2003
IR2110S/IR2113S
www.irf.com
IR2110/IR2113
HV =10 to 500V/600V
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
(0 to 500V/600V)
50%
50%
HIN
LIN
ton
toff
tr
90%
HO
LO
Figure 3. Switching Time Test Circuit
90%
10%
10%
Figure 4. Switching Time Waveform Definition
HIN
LIN
SD
tf
50%
50%
50%
LO
HO
tsd
HO
LO
10%
90%
MT
MT
90%
LO
Figure 3. Shutdown Waveform Definitions
www.irf.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
HO
Figure 6. Delay Matching Waveform Definitions
5
IR2110/IR2113
250
250
200
200
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
Max.
150
Max.
100
Typ.
50
Typ.
150
100
50
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 7A. Turn-On Time vs. Temperature
16
18
20
Figure 7B. Turn-On Time vs. Voltage
250
250
200
200
Turn-Off Delay Time (ns)
Turn-Off Delay Time (ns)
14
VBIAS Supply Voltage (V)
150
Max.
100
Typ.
50
Max.
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 8A. Turn-Off Time vs. Temperature
Figure 8B. Turn-Off Time vs. Voltage
250
250
200
200
Shutdown Delay time (ns)
Shutdown Delay Time (ns)
Max.
150
Max.
100
Typ.
50
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 9A. Shutdown Time vs. Temperature
6
Powered by ICminer.com Electronic-Library Service CopyRight 2003
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 9B. Shutdown Time vs. Voltage
www.irf.com
100
100
80
80
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
IR2110/IR2113
60
40
Max.
60
Max.
40
Typ.
Typ.
20
20
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 10B. Turn-On Rise Time vs. Voltage
50
50
40
40
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
Figure 10A. Turn-On Rise Time vs. Temperature
30
Max.
20
Typ.
10
30
20
Max.
Typ.
10
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 11A. Turn-Off Fall Time vs. Temperature
Figure 11B. Turn-Off Fall Time vs. Voltage
15.0
15.0
12.0
12.0
Logic "1" Input Threshold (V)
Logic "1" Input Threshold (V)
14
VBIAS Supply Voltage (V)
Max
Min.
9.0
6.0
3.0
9.0
6.0
Min.
Max
3.0
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 12A. Logic “1” Input Threshold vs. Temperature
www.irf.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 12B. Logic “1” Input Threshold vs. Voltage
7
15.0
15.0
12.0
12.0
Logic "0" Input Threshold (V)
Logic "0" Input Threshold (V)
IR2110/IR2113
9.0
Max.
Min.
6.0
3.0
9.0
6.0
3.0
0.0
Max.
Min.
0.0
-50
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
12.5
15
17.5
20
Figure 13B. Logic “0” Input Threshold vs. Voltage
5.00
5.00
4.00
4.00
High Level Output Voltage (V)
High Level Output Voltage (V)
Figure 13A. Logic “0” Input Threshold vs. Temperature
3.00
2.00
Max.
1.00
3.00
2.00
Max.
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 14A. High Level Output vs. Temperature
Figure 14B. High Level Output vs. Voltage
1.00
1.00
0.80
0.80
Low Level Output Voltage (V)
Low Level Output Voltage (V)
10
VDD Logic Supply Voltage (V)
0.60
0.40
0.60
0.40
0.20
0.20
Max.
Max.
0.00
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 15A. Low Level Output vs. Temperature
8
Powered by ICminer.com Electronic-Library Service CopyRight 2003
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 15B. Low Level Output vs. Voltage
www.irf.com
IR2110/IR2113
500
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
500
400
300
200
100
400
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
0
125
100
Temperature (°C)
300
400
V B Boost Voltage (V)
Figure 16A. Offset Supply Current vs. Temperature
500
500
400
400
300
Max.
200
500
IR2110
600
IR2113
Figure 16B. Offset Supply Current vs. Voltage
VBS Supply Current (µA)
VBS Supply Current (µA)
200
300
200
Max.
Typ.
100
100
0
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 17A. VBS Supply Current vs. Temperature
16
18
20
Figure 17B. VBS Supply Current vs. Voltage
625
625
500
500
VCC Supply Current (µA)
VCC Supply Current (µA)
14
VBS Floating Supply Voltage (V)
375
Max.
250
375
250
Max.
Typ.
125
125
0
Typ.
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 18A. VCC Supply Current vs. Temperature
www.irf.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 18B. VCC Supply Current vs. Voltage
9
IR2110/IR2113
80
80
VDD Supply Current (µA)
100
VDD Supply Current (µA)
100
60
40
Max.
60
40
Max.
20
20
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
12.5
15
17.5
20
Figure 19B. VDD Supply Current vs. Voltage
100
100
80
80
Logic "1" Input Bias Current (µA)
Logic "1" Input Bias Current (µA)
Figure 19A. VDD Supply Current vs. Temperature
60
40
Max.
20
60
40
Max.
20
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
5
125
7.5
Figure 20A. Logic “1” Input Current vs. Temperature
12.5
15
17.5
20
Figure 20B. Logic “1” Input Current vs. Voltage
5.00
4.00
4.00
Logic "0" Input Bias Current (µA)
5.00
3.00
2.00
1.00
10
VDD Logic Supply Voltage (V)
Temperature (°C)
Logic "0" Input Bias Current (µA)
10
VDD Logic Supply Voltage (V)
Max.
0.00
3.00
2.00
Max.
1.00
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 21A. Logic “0” Input Current vs. Temperature
10
Powered by ICminer.com Electronic-Library Service CopyRight 2003
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 21B. Logic “0” Input Current vs. Voltage
www.irf.com
IR2110/IR2113
11.0
11.0
VBS Undervoltage Lockout + (V)
10.0
10.0
VBS Undervoltage Lockout - (V)
Max.
9.0
Typ.
8.0
Min.
7.0
Max.
9.0
Typ.
8.0
7.0
6.0
Min.
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
Figure 22. VBS Undervoltage (+) vs. Temperature
100
125
10.0
VCC Undervoltage Lockout - (V)
VCC Undervoltage Lockout + (V)
75
11.0
10.0
Max.
9.0
Typ.
8.0
Min.
7.0
Max.
9.0
Typ.
8.0
7.0
6.0
Min.
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
50
75
100
125
Figure 25. VCC Undervoltage (-) vs. Temperature
5.00
4.00
4.00
Output Source Current (A)
5.00
Typ.
Min.
2.00
1.00
0.00
-50
25
Temperature (°C)
Figure 24. VCC Undervoltage (+) vs. Temperature
Output Source Current (A)
50
Figure 23. VBS Undervoltage (-) vs. Temperature
11.0
3.00
25
Temperature (°C)
3.00
2.00
Typ.
1.00
Min.
0.00
-25
0
25
50
75
100
125
Temperature (°C)
Figure 26A. Output Source Current vs. Temperature
www.irf.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 26B. Output Source Current vs. Voltage
11
5.00
5.00
4.00
4.00
Output Sink Current (A)
Output Sink Current (A)
IR2110/IR2113
Typ.
3.00
Min.
2.00
1.00
3.00
2.00
Typ.
1.00
0.00
-50
Min.
0.00
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 27A. Output Sink Current vs. Temperature
Figure 27B. Output Sink Current vs. Voltage
320V
150
320V
150
125
125
100
75
10V
50
Junction Temperature (°C)
Junction Temperature (°C)
140V
140V
25
100
75
10V
50
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
Figure 28. IR2110/IR2113 TJ vs. Frequency
Ω , VCC = 15V
(IRFBC20) RGATE = 33Ω
320V
150
1E+5
1E+6
Figure 29. IR2110/IT2113 TJ vs. Frequency
Ω, VCC = 15V
(IRFBC30) RGATE = 22Ω
140V
320V
150
140V
125
100
10V
75
50
25
Junction Temperature (°C)
125
Junction Temperature (°C)
1E+4
Frequency (Hz)
10V
100
75
50
25
0
1E+2
1E+3
1E+4
1E+5
Frequency (Hz)
Figure 30. IR2110/IR2113 TJ vs. Frequency
Ω , VCC = 15V
(IRFBC40) RGATE = 15Ω
12
Powered by ICminer.com Electronic-Library Service CopyRight 2003
1E+6
0
1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 31. IR2110/IR2113 TJ vs. Frequency
Ω, VCC = 15V
(IRFPE50) RGATE = 10Ω
www.irf.com
IR2110/IR2113
320V
150
140V
100
10V
75
50
25
100
10V
75
50
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+5
1E+6
Figure 33. IR2110S/IR2113S TJ vs. Frequency
Ω , VCC = 15V
(IRFBC30) RGATE = 22Ω
320V 140V
150
125
320V 140V 10V
150
125
10V
Junction Temperature (°C)
Junction Temperature (°C)
1E+4
Frequency (Hz)
Figure 32. IR2110S/IR2113S TJ vs. Frequency
Ω, VCC = 15V
(IRFBC20) RGATE = 33Ω
100
75
50
25
100
75
50
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 34. IR2110S/IR2113S TJ vs. Frequency
Ω , VCC = 15V
(IRFBC40) RGATE = 15Ω
Figure 35. IR2110S/IR2113S TJ vs. Frequency (IRFPE50)
Ω , VCC = 15V
RGATE = 10Ω
0.0
20.0
VSS Logic Supply Offset Voltage (V)
-2.0
VS Offset Supply Voltage (V)
140V
125
Junction Temperature (°C)
125
Junction Temperature (°C)
320V
150
Typ.
-4.0
-6.0
-8.0
-10.0
16.0
12.0
8.0
Typ.
4.0
0.0
10
12
14
16
18
VBS Floating Supply Voltage (V)
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
www.irf.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
20
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
13
IR2110/IR2113
Case Outlines
14 Lead PDIP
14 Lead PDIP w/o Lead 4
14
Powered by ICminer.com Electronic-Library Service CopyRight 2003
01-3002 03
01-3008 02
www.irf.com
IR2110/IR2113
16 Lead PDIP w/o Leads 4 & 5
01-3010 02
16 Lead SOIC (wide body)
01-3014 03
4/12/2000
www.irf.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
15