ETC AFL5015D

PD - 94456A
AFL50XXD SERIES
50V Input, Dual Output
ADVANCED ANALOG
HIGH RELIABILITY
HYBRID DC/DC CONVERTERS
Description
The AFL Series of DC/DC converters feature high power
density with no derating over the full military temperature range. This series is offered as part of a complete
family of converters providing single and dual output
voltages and operating from nominal +28, +50, +120 or
+270 volt inputs with output power ranging from 80 to
120 watts. For applications requiring higher output
power, individual converters can be operated in parallel. The internal current sharing circuits assure equal
current distribution among the paralleled converters. This
series incorporates Advanced Analog’s proprietary magnetic pulse feedback technology providing optimum
dynamic line and load regulation response. This feedback system samples the output voltage at the pulse
width modulator fixed clock frequency, nominally 550
KHz. Multiple converters can be synchronized to a system clock in the 500 KHz to 700 KHz range or to the
synchronization output of one converter. Undervoltage
lockout, primary and secondary referenced inhibit, softstart and load fault protection are provided on all models.
These converters are hermetically packaged in two enclosure variations, utilizing copper core pins to minimize resistive DC losses. Three lead styles are available, each fabricated with Advanced Analog’s rugged
ceramic lead-to-package seal assuring long term
hermeticity in the most harsh environments.
Manufactured in a facility fully qualified to MIL-PRF38534, these converters are available in four screening
grades to satisfy a wide range of requirements. The CH
grade is fully compliant to the requirements of MIL-H38534 for class H. The HB grade is fully processed and
screened to the class H requirement, may not necessarily meet all of the other MIL-PRF-38534 requirements,
e.g., element evaluation and Periodic Inspection (P.I.)
not required. Both grades are tested to meet the complete group “A” test specification over the full military
www.irf.com
AFL
Features
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
30 To 80 Volt Input Range
±5, ±12, and ±15 Volts Outputs Available
High Power Density - up to 70 W / in3
Up To 100 Watt Output Power
Parallel Operation with Stress and Current
Sharing
Low Profile (0.380") Seam Welded Package
Ceramic Feedthru Copper Core Pins
High Efficiency - to 85%
Full Military Temperature Range
Continuous Short Circuit and Overload
Protection
Output Voltage Trim
Primary and Secondary Referenced
Inhibit Functions
Line Rejection > 40 dB - DC to 50KHz
External Synchronization Port
Fault Tolerant Design
Single Output Versions Available
Standard Military Drawings Available
temperature range without output power deration.
Two grades with more limited screening are also
available for use in less demanding applications.
Variations in electrical, mechanical and screening can be accommodated. Contact Advanced
Analog for special requirements.
1
07/09/02
AFL50XXD Series
Specifications
ABSOLUTE MAXIMUM RATINGS
Input Voltage
-0.5V to 100V
Soldering Temperature
300°C for 10 seconds
Case Temperature
Operating
Storage
-55°C to +125°C
-65°C to +135°C
Static Characteristics -55°C < TCASE < +125°C, 30V< VIN < 80V unless otherwise specified.
Group A
Subgroups
Parameter
Test Conditions
INPUT VOLTAGE
Note 6
OUTPUT VOLTAGE
VIN = 50 Volts, 100% Load
Min
Nom
Max
Unit
30
50
80
V
AFL5005D
1
1
Positive Output
Negative Output
4.95
-5.05
5.00
-5.00
5.05
-4.95
V
V
AFL5012D
1
1
Positive Output
Negative Output
11.88
-12.12
12.00
-12.00
12.12
-11.88
V
V
AFL5015D
1
1
Positive Output
Negative Output
14.85
-15.15
15.00
-15.00
15.15
-14.85
V
V
AFL5005D
2, 3
2, 3
Positive Output
Negative Output
4.90
-5.10
5.10
-4.90
V
V
AFL5012D
2, 3
2, 3
Positive Output
Negative Output
11.76
-12.24
12.24
-11.76
V
V
AFL5015D
2, 3
2, 3
Positive Output
Negative Output
14.70
-15.30
15.30
-14.70
V
V
OUTPUT CURRENT
VIN = 30, 50, 80 Volts - Notes 6, 11
AFL5005D
Either Output
12.8
A
AFL5012D
Either Output
6.4
A
AFL5015D
Either Output
5.3
A
OUTPUT POWER
Total of Both Outputs. Notes 6,11
80
AFL5005D
AFL5012D
96
AFL5015D
100
MAXIMUM CAPACITIVE LOAD
Each Output Note 1
OUTPUT VOLTAGE
TEMPERATURE COEFFICIENT
VIN = 50 Volts, 100% Load - Notes 1, 6
OUTPUT VOLTAGE REGULATION
Line
Load
1, 2, 3
1, 2, 3
Note 10
No Load, 50% Load, 100% Load
VIN = 30, 50, 80 Volts.
W
W
W
µfd
10,000
-0.015
+0.015
%/°C
-0.5
-1.0
+0.5
+1.0
%
%
VIN = 30, 50, 80 Volts. Note 12
Cross
AFL5005D
1, 2, 3
Positive Output
Negative Output
-1.0
-8.0
+1.0
+8.0
%
%
AFL5012D
1, 2, 3
Positive Output
Negative Output
-1.0
-5.0
+1.0
+5.0
%
%
AFL5015D
1, 2, 3
Positive Output
Negative Output
-1.0
-5.0
+1.0
+5.0
%
%
For Notes to Specifications, refer to page 4
2
www.irf.com
AFL50XXD Series
Static Characteristics (Continued)
Parameter
Group A
Subgroups
OUTPUT RIPPLE VOLTAGE
Min
Nom
VIN = 30, 50, 80 Volts, 100% Load,
BW = 10MHz
Max
Unit
AFL5005D
1, 2, 3
60
mVpp
AFL5012D
1, 2, 3
80
mVpp
AFL5015D
1, 2, 3
80
mVpp
No Load
1
2, 3
1, 2, 3
1, 2, 3
50
60
5
5
mA
mA
mA
mA
INPUT CURRENT
Inhibit 1
Inhibit 2
VIN = 50 Volts
IOUT = 0
Pin 4 Shorted to Pin 2
Pin 12 Shorted to Pin 8
VIN = 50 Volts, 100% Load
INPUT RIPPLE CURRENT
AFL5005D
1, 2, 3
60
AFL5012D
1, 2, 3
60
mApp
mApp
AFL5015D
1, 2, 3
60
mApp
125
115
140
%
%
%
32
W
CURRENT LIMIT POINT
Expressed as a Percentage
of Full Rated Load
1
2
3
Overload or Short Circuit
VOUT = 90% VNOM , Current split
equally on positive and negative outputs.
Note 5
115
105
125
VIN = 50 Volts
LOAD FAULTPOWER DISSIPATION
1, 2, 3
VIN = 50 Volts, 100% Load
EFFICIENCY
AFL5005D
AFL5012D
AFL5015D
ENABLE INPUTS (Inhibit Function)
Converter Off
Sink Current
Converter On
Sink Current
SWITCHING FREQUENCY
SYNCHRONIZATION INPUT
Frequency Range
Pulse Amplitude, Hi
Pulse Amplitude, Lo
Pulse Rise Time
Pulse Duty Cycle
ISOLATION
Test Conditions
1, 2, 3
1, 2, 3
1, 2, 3
1, 2, 3
1, 2, 3
78
80
81
Logical Low on Pin 4 or Pin 12
Note 1
Logical High on Pin 4 and Pin 12 - Note 9
Note 1
-0.5
2.0
1, 2, 3
500
1, 2, 3
1, 2, 3
1, 2, 3
500
2.0
-0.5
Note 1
Note 1
1
Input to Output or Any Pin to Case
(except Pin 3). Test @ 500VDC
DEVICE WEIGHT
Slight Variations with Case Style
MTBF
MIL-HDBK-217F, AIF @ TC = 40°C
81
84
85
550
20
100
0.8
100
50
100
V
µA
V
µA
600
KHz
700
10
0.8
100
80
KHz
V
V
nSec
%
MΩ
85
300
%
%
%
gms
KHrs
For Notes to Specifications, refer to page 4
www.irf.com
3
AFL50XXD Series
Dynamic Characteristics -55°C < TCASE < +125°C, VIN=50V unless otherwise specified.
Parameter
Group A
Subgroups
AFL5012D
Either Output
AFL5015D
Either Output
Min
Nom
Max
Unit
Note 2, 8
LOAD TRANSIENT RESPONSE
AFL5005D
Either Output
Test Conditions
Amplitude
Recovery
4, 5, 6
4, 5, 6
Load Step 50% ⇔ 100%
-450
450
200
mV
µSec
Amplitude
Recovery
4, 5, 6
4, 5, 6
Load Step 10% ⇔ 50%
10% ⇒ 50%
50% ⇒ 10%
-450
450
200
400
mV
µSec
µSec
Amplitude
Recovery
Amplitude
Recovery
4, 5, 6
4, 5, 6
Load Step 50% ⇔ 100%
-750
750
200
mV
µSec
4, 5, 6
4, 5, 6
Load Step 10% ⇔ 50%
10% ⇒ 50%
50% ⇒ 10%
-750
750
200
400
mV
µSec
µSec
Load Step 50% ⇔ 100%
-750
750
200
mV
µSec
Load Step 10% ⇔ 50%
10% ⇒ 50%
50% ⇒ 10%
-750
750
200
400
mV
µSec
µSec
Amplitude
Recovery
Amplitude
Recovery
4, 5, 6
4, 5, 6
4, 5, 6
4, 5, 6
Note 1, 2, 3
LINE TRANSIENT RESPONSE
VIN Step = 30 ⇔ 80 Volts
Amplitude
Recovery
500
500
mV
µSec
250
120
mV
mSec
Note 4
TURN-ON CHARACTERISTICS
Overshoot
Delay
-500
4, 5, 6
4, 5, 6
Enable 1, 2 on. (Pins 4, 12 high or
open)
LOAD FAULT RECOVERY
Same as Turn On Characteristics.
LINE REJECTION
MIL-STD-461D, CS101, 30Hz to 50KHz
Note 1
50
75
40
50
dB
Notes to Specifications:
1.
2.
Parameters not 100% tested but are guaranteed to the limits specified in the table.
Recovery time is measured from the initiation of the transient to where Vout has returned to within ±1% of Vout at
50% load.
3. Line transient transition time ≥ 100 µSec.
4. Turn-on delay is measured with an input voltage rise time of between 100 and 500 volts per millisecond.
5. Current limit point is that condition of excess load causing output voltage to drop to 90% of nominal.
6. Parameter verified as part of another test.
7. All electrical tests are performed with the remote sense leads connected to the output leads at the load.
8. Load transient transition time ≥ 10 µSec.
9. Enable inputs internally pulled high. Nominal open circuit voltage ≈ 4.0VDC.
10. Load current split equally between +Vout and -Vout.
11. Output load must be distributed so that a minimum of 20% of the total output power is being provided by one of
the outputs.
12. Cross regulation measured with load on tested output at 20% while changing the load on other output from 20%
to 80%.
4
www.irf.com
AFL50XXD Series
AFL50XXD Circuit Description
Figure I. AFL Dual Output Block Diagram
DC INPUT
1
INPUT
FILTER
OUTPUT
FILTER
ENABLE 1
4
PRIMARY
BIAS SUPPLY
CURRENT
SENSE
OUTPUT
FILTER
SYNC OUTPUT
5
SYNC INPUT
6
SHARE
CONTROL
FB
CASE
3
INPUT RETURN
2
Circuit Operation and Application Information
The AFL series of converters employ a forward switched
mode converter topology. (refer to Figure I.) Operation of
the device is initiated when a DC voltage whose magnitude
is within the specified input limits is applied between pins 1
and 2. If pins 4 and 12 are enabled (at a logical 1 or open)
the primary bias supply will begin generating a regulated
housekeeping voltage bringing the circuitry on the primary
side of the converter to life. Two power MOSFETs used to
chop the DC input voltage into a high frequency square
wave, apply this chopped voltage to the power transformer.
As this switching is initiated, a voltage is impressed on a
second winding of the power transformer which is then
rectified and applied to the primary bias supply. When this
occurs, the input voltage is excluded from the bias voltage
generator and the primary bias voltage becomes internally
generated.
The switched voltage impressed on the secondary output
transformer windings is rectified and filtered to provide the
positive and negative converter output voltages. An error
amplifier on the secondary side compares the positive output voltage to a precision reference and generates an error
signal proportional to the difference. This error signal is
magnetically coupled through the feedback transformer into
the control section of the converter varying the pulse width
of the square wave signal driving the MOSFETs, narrowing
the pulse width if the output voltage is too high and widening it if it is too low. These pulse width variations provide
the necessary corrections to maintain the magnitude of
output voltage within its’ specified limits.
Because the primary and secondary sides are coupled by
magnetic elements, full isolation from input to output is
achieved.
ERROR
AMP
& REF
AMPLIFIER
7
+ OUTPUT
8
OUTPUT RETURN
9
- OUTPUT
11
SHARE
12
ENABLE 2
10
TRIM
ancillary features, basic operation of the AFL50XXD series
can be initiated by simply applying an input voltage to pins 1
and 2 and connecting the appropriate loads between pins
7, 8, and 9. Of course, operation of anyconverter with high
power density should not be attempted before secure attachment to an appropriate heat dissipator. (See Thermal
Considerations, page 7)
Inhibiting Converter Output
As an alternative to application and removal of the DC voltage to the input, the user can control the converter output
by providing TTL compatible, positive logic signals to either
of two enable pins (pin 4 or 12). The distinction between
these two signal ports is that enable 1 (pin 4) is referenced
to the input return (pin 2) while enable 2 (pin 12) is referenced to the output return (pin 8). Thus, the user has
access to an inhibit function on either side of the isolation
barrier. Each port is internally pulled “high” so that when not
used, an open connection on both enable pins permits normal converter operation. When their use is desired, a logical “low” on either port will shut the converter down.
Figure II. Enable Input Equivalent Circuit
+ 5 .6 V
100K
P in 4 o r
P in 1 2
1N4148
290K
D isa b le
2N3904
180K
P in 2 o r
P in 8
Although incorporating several sophisticated and useful
www.irf.com
5
AFL50XXD Series
Internally, these ports differ slightly in their function. In use,
a low on Enable 1 completely shuts down all circuits in the
converter, while a low on Enable 2 shuts down the secondary side while altering the controller duty cycle to near zero.
Externally, the use of either port is transparent to the user
save for minor differences in idle current. (See specification
table).
level of +2.0 volts. The sync output of another converter
which has been designated as the master oscillator provides a convenient frequency source for this mode of operation. When external synchronization is not required, the
sync in pin should be left unconnected thereby permitting
the converter to operate at its’ own internally set frequency.
The sync output signal is a continuous pulse train set at 550
±50 KHz, with a duty cycle of 15 ±5%. This signal is referenced to the input return and has been tailored to be compatible with the AFL sync input port. Transition times are
less than 100 ns and the low level output impedance is less
than 50 ohms. This signal is active when the DC input
voltage is within the specified operating range and the converter is not inhibited. The sync output has adequate drive
reserve to synchronize at least five additional converters.
A typical connection is illustrated in Figure III.
Synchronization of Multiple Converters
When operating multiple converters, system requirements
often dictate operation of the converters at a common frequency. To accommodate this requirement, the AFL series
converters provide both a synchronization input and output.
The sync input port permits synchronization of an AFL converter to any compatible external frequency source operating between 500 and 700 KHz. This input signal should
be referenced to the input return and have a 10% to 90%
duty cycle. Compatibility requires transition times less th an
100 ns, maximum low level of +0.8 volts and a minimum high
Figure III. Preferred Connection for Parallel Operation
Power
Input
1
12
Vin
Enable 2
Rtn
Share
Case
Enable 1
AFL
Trim
- Output
Return
Sync Out
Sync In
Optional
Synchronization
Connection
+ Output
7
6
Share Bus
1
12
Enable 2
Vin
Rtn
Share
Case
Enable 1
AFL
Trim
to Negative Load
- Output
Return
Sync Out
Sync In
to Positive Load
+ Output
7
6
1
12
Vin
Enable 2
Rtn
Share
Case
Enable 1
AFL
Trim
- Output
Return
Sync Out
+ Output
Sync In
7
6
(Other Converters)
Parallel Operation-Current and Stress Sharing
Figure III. illustrates the preferred connection scheme for
operation of a set of AFL converters with outputs operating
in parallel. Use of this connection permits equal current
sharing among the members of a set whose load current
exceeds the capacity of an individual AFL. An important
6
feature of the AFL series operating in the parallel mode is
that in addition to sharing the current, the stress induced by
temperature will also be shared. Thus if one member of a
paralleled set is operating at a higher case temperature, the
current it provides to the load will be reduced as
compenstionfor the temperature induced stress on that
device.
www.irf.com
AFL50XXD Series
When operating in the shared mode, it is important that
symmetry of connection be maintained as an assurance of
optimum load sharing performance. Thus, converter outputs should be connected to the load with equal lengths of
wire of the same gauge and sense leads from each converter should be connected to a common physical point,
preferably at the load along with the converter output and
return leads. All converters in a paralleled set must have
their share pins connected together. This arrangement is
diagrammatically illustrated in Figure III. showing the outputs and return pins connected at a star point which is
located close as possible to the load.
vide similar effectiveness, these alternatives are often less
convenient and can be somewhat messy to use.
A conservative aid to estimating the total heat sink surface
area (AHEAT SINK) required to set the maximum case temperature rise (∆T) above ambient temperature is given by
the following expression:
.
 ∆T −143

− 3.0
A HEAT SINK ≈ 
 80P 0.85 
where
As a consequence of the topology utilized in the current
sharing circuit, the share pin may be used for other functions. For applications requiring only a single converter, the
voltage appearing on the share pin may be used as a “current monitor”. The share pin open circuit voltage is nominally
+1.00v at no load and increases linearly with increasing
output current to +2.20v at full load. Note that the current
we refer to here is the total device output current, that is,
the sum of the positive and negative output currents.
Thermal Considerations
Because of the incorporation of many innovative technological concepts, the AFL series of converters is capable of
providing very high output power from a package of very
small volume. These magnitudes of power density can only
be obtained by combining high circuit efficiency with effective methods of heat removal from the die junctions. This
requirement has been effectively addressed inside the device; but when operating at maximum loads, a significant
amount of heat will be generated and this heat must be
conducted away from the case. To maintain the case temperature at or below the specified maximum of 125°C, this
heat must be transferred by conduction to an appropriate
heat dissipater held in intimate contact with the converter
base-plate.
Since the effectiveness of this heat transfer is dependent
on the intimacy of the baseplate/heatsink interface, it is
strongly recommended that a high thermal conductivity heat
transferring medium is inserted between the baseplate and
heatsink. The material most frequently utilized at the factory during all testing and burn-in processes is sold under
the trade name of Sil-Pad 4001 . This particular product is
an insulator but electrically conductive versions are also
available. Use of these materials assures maximum surface contact with the heat dissipater thereby compensating
for any minor surface variations. While other available types
of heat conductive materials and thermal compounds pro-
∆T = Case temperature rise above ambient
 1

P = Device dissipation in Watts = POUT 
− 1
 Eff

As an example, it is desired to maintain the case temperature of an AFL5015D at ≤ +85°C while operating in an open
area whose ambient temperature is held at a constant +25°C;
then
∆T = 85 - 25 = 60°C
If the worst case full load efficiency for this device is 83%
@ 100W; then the power dissipation at full load is given by
 1

− 1 = 100 • ( 0.205) = 20.5W
P = 100 • 
 .83 
and the required heat sink area is
60


A HEAT SINK = 
0.85 
 80 • 20.5

−1.43
− 3.0 = 56.3 in 2
Thus, a total heat sink surface area (including fins, if any)
of 56 in2 in this example, would limit case rise to 60°C above
ambient. A flat aluminum plate, 0.25" thick and of approximate dimension 4" by 7" (28 in2 per side) would suffice for
this application in a still air environment. Note that to meet
the criteria in this example, both sides of the plate require
unrestricted exposure to the +25°C ambient air.
1Sil-Pad is a registered Trade Mark of Bergquist, Minneapolis, MN
www.irf.com
7
AFL50XXD Series
Input Filter
Table I. Output Voltage Trim Values and Limits
The AFL50XXD series converters incorporate a single stage
LC input filter whose elements dominate the input load impedance characteristic during the turn-on. The input circuit
is as shown in Figure IV.
Figure IV. Input Filter Circuit
0.75µH
P in 1
2.7µ fd
P in 2
AFL5005D
Vout
5.5
5.4
5.3
5.2
5.1
5.0
4.9
4.8
4.7
4.6
4.583
Radj
0
12.5K
33.3K
75K
200K
∞
190K
65K
23K
2.5K
0
AFL5012D
Vout
12.5
12.4
12.3
12.2
12.1
12.0
11.7
11.3
10.8
10.6
10.417
Radj
0
47.5K
127K
285K
760K
∞
975K
288K
72.9K
29.9K
0
AFL5015D
Vout
15.5
15.4
15.3
15.2
15.1
15.0
14.6
14.0
13.5
13.0
12.917
Radj
0
62.5K
167K
375K
1.0M
∞
1.2M
325K
117K
12.5K
0
Undervoltage Lockout
A minimum voltage is required at the input of the converter
to initiate operation. This voltage is set to 26.5 ± 1.5 volts. To
preclude the possibility of noise or other variations at the
input falsely initiating and halting converter operation, a hysteresis of approximately 2 volts is incorporated in this circuit. Thus if the input voltage droops to 24.5 ± 1.5 volts, the
converter will shut down and remain inoperative until the
input voltage returns to ≈ 25 volts.
Output Voltage Adjust
By use of the trim pin (10), the magnitude of output voltages
can be adjusted over a limited range in either a positive or
negative direction. Connecting a resistor between the trim
pin and either the output return or the positive output will
raise or lower the magnitude of output voltage. The span of
output voltage magnitude is restricted to the limits shown in
Table I.
Figure V. Connection for VOUT Adjustment
Note that the nominal magnitude of output voltage resides in
the middle of the table and the corresponding resistor value
is set to ∞. To set the magnitude above nominal, the adjust
resistor is connected to output return. To set the magnitude
below nominal, the adjust resistor is connected to the positive output. (Refer to Figure V.)
For output voltage settings that are within the limits, but
between those presented in Table I, it is suggested that the
resistor values be determined empirically by selection or by
use of a variable resistor. The value thus determined can
then be replaced with a good quality fixed resistor for permanent installation.
When use of the trim feature is elected, the user should be
aware that the temperature performance of the converter
output voltage will be affected by the temperature performance of the resistor selected as the adjustment element
and therefore, the user is advised to employ resistors with
an very small temperature coefficient of resistance.
12
E n ab le 2
S h are
R ADJ
A FL50 xxD
T rim
+
- V o ut
To
Loads
R e turn
+ V out
7
Connect Radj to + to increase, - to decrease.
8
www.irf.com
AFL50XXD Series
AFL50XXD Case Outlines
Case X
Case W
Pin Variation of Case Y
3.000
ø 0.128
2.760
0.050
0.050
1
12
0.250
0.250
1.260 1.500
0.200 Typ
Non-cum
6
7
1.000
Ref
1.000
Pin
ø 0.040
Pin
ø 0.040
0.220
2.500
0.220
2.800
2.975 max
0.525
0.238 max
0.42
0.380
Max
0.380
Max
Case Y
Case Z
Pin Variation of Case Y
0.300
1.150
ø 0.140
0.25 typ
0.050
0.050
1
12
0.250
0.250
1.500 1.750 2.00
1.000
Ref
0.200 Typ
Non-cum
6
7
1.000
Ref
Pin
ø 0.040
Pin
ø 0.040
1.750
0.375
0.220
0.220
0.36
2.500
2.800
2.975 max
0.525
0.238 max
0.380
Max
0.380
Max
Tolerances, unless otherwise specified:
.XX
.XXX
=
=
±0.010
±0.005
BERYLLIA WARNING: These converters are hermetically sealed; however they contain BeO substrates and should not be ground or subjected to any other
operations including exposure to acids, which may produce Beryllium dust or fumes containing Beryllium
www.irf.com
9
AFL50XXD Series
Available Screening Levels and Process Variations for AFL50XXD Series.
MIL-STD-883
Method
Requirement
Temperature Range
No
Suffix
ES
Suffix
HB
Suffix
CH
Suffix
-20°C to +85°C
-55°C to +125°C
-55°C to +125°C
-55°C to +125°C
Element Evaluation
MIL-PRF-38534
Internal Visual
2017
¬
Yes
Yes
Yes
Temperature Cycle
1010
Cond B
Cond C
Cond C
Constant Acceleration
2001
500g
Cond A
Cond A
Burn-in
1015
48hrs @ 85°C
48hrs @ 125°C
160hrs @ 125°C
160hrs @ 125°C
MIL-PRF-38534
25°C
25°C
-55, +25, +125°C
-55, +25, +125°C
Seal, Fine & Gross
1014
¬
Cond A, C
Cond A, C
Cond A, C
External Visual
2009
¬
Yes
Yes
Yes
Final Electrical (Group A)
*
per Commercial Standards
AFL50XXD Pin Designation
Pin No.
Designation
1
Positive Input
2
Input Return
3
Case
4
Enable 1
5
Sync Output
6
Sync Input
7
Positive Output
8
Output Return
9
Negative Output
10
Output Voltage Trim
11
Share
12
Enable 2
Part Numbering
AFL 50 05 D X / CH
Model
Input Voltage
28= 28 V, 50= 50 V
120=120 V, 270= 270 V
Output Voltage
05= 5 V, 12= 12 V,
15= 15 V
Screening
Case Style
–
, ES
HB, CH
W, X, Y, Z
Outputs
S = Single
D = Dual
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 07/02
10
www.irf.com