ETC IRL6903

PD - 9.1538B
IRL6903
HEXFET® Power MOSFET
Logic-Level Gate Drive
l Advanced Process Technology
l Dynamic dv/dt Rating
l 175°C Operating Temperature
l Fast Switching
l P-Channel
l Fully Avalanche Rated
Description
l
D
VDSS = -30V
RDS(on) = 0.011Ω
G
ID = -105A…
S
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This
benefit, combined with the fast switching speed and
ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient and reliable device for use
in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
TO-220AB
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ -10V
Continuous Drain Current, VGS @ -10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
-105…
-74
-360
200
1.3
± 16
1000
-55
20
-5.0
-55 to + 175
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
0.75
–––
62
°C/W
10/7/97
IRL6903
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
-30
–––
–––
–––
-1.0
36
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
gfs
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
LS
Internal Source Inductance
–––
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
V(BR)DSS
IGSS
Typ. Max. Units
Conditions
––– –––
V
VGS = 0V, ID = -250µA
-0.028 ––– V/°C Reference to 25°C, ID = -1mA
––– 0.011
VGS = -10V, ID = -55A „
Ω
––– 0.02
VGS = -4.5V, ID = -46A „
––– –––
V
VDS = VGS, ID = -250µA
––– –––
S
VDS = -25V, ID = -65A
––– -25
VDS = -30V, VGS = 0V
µA
––– -250
VDS = -24V, VGS = 0V, TJ = 150°C
––– 100
VGS = -16V
nA
––– -100
VGS = 16V
––– 100
ID = -55A
––– 44
nC VDS = -24V
––– 55
VGS = -4.5V, See Fig. 6 and 13 „
16 –––
VDD = -15V
130 –––
ID = -55A
ns
88 –––
RG = 2.5Ω, VGS = -4.5V
150 –––
RD = 0.26Ω, See Fig. 10 „
Between lead,
4.5 –––
6mm (0.25in.)
nH
G
from package
7.5 –––
and center of die contact
4400 –––
VGS = 0V
2000 –––
pF
VDS = -25V
590 –––
ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
IS
ISM
VSD
t rr
Q rr
t on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– -105…
showing the
A
G
integral reverse
––– ––– -360
p-n junction diode.
S
––– ––– -1.3
V
TJ = 25°C, IS = -55A, VGS = 0V „
––– 82 120
ns
TJ = 25°C, IF = -55A
––– 170 260
nC
di/dt = -100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 0.66mH
RG = 25Ω, IAS = -55A. (See Figure 12)
ƒ ISD ≤ -55A, di/dt ≤ -130A/µs, VDD ≤ V(BR)DSS ,
TJ ≤ 175°C
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Calculated continuous current based on maximum allowable
junction temperature; for recommended current-handling of the
package refer to Design Tip # 93-4
D
S
IRL6903
1000
1000
VGS
-15V
-12V
-10V
-8.0V
-6.0V
-4.0V
-3.0V
BOTTOM -2.5V
VGS
-15V
-12V
-10V
-8.0V
-6.0V
-4.0V
-3.0V
BOTTOM -2.5V
100
TOP
-I D, Drain-to-Source Current (A)
-I D, Drain-to-Source Current (A)
TOP
100
10
1
0.1
0.1
-2.5V
20µs PULSE WIDTH
TJ = 25 °C
-2.5V
1
10
10
1
0.1
100
-VDS, Drain-to-Source Voltage (V)
R DS(on) , Drain-to-Source On Resistance
(Normalized)
-I D , Drain-to-Source Current (A)
2.0
TJ = 25 °C
TJ = 175 ° C
10
1
V DS = -25V
20µs PULSE WIDTH
2
3
4
5
6
7
8
9
-VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
100
Fig 2. Typical Output Characteristics
1000
0.1
10
-VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
1
20µs PULSE WIDTH
TJ = 175 °C
10
ID = -91A
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = -10V
0
20 40 60 80 100 120 140 160 180
T J, Junction Temperature ( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
IRL6903
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance (pF)
6000
Ciss
4000
Coss
2000
Crss
15
-V GS, Gate-to-Source Voltage (V)
8000
ID = -55A
VDS = -24V
VDS = -15V
12
9
6
3
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
1
10
0
100
50
100
150
200
250
300
Q G , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000
TJ = 175 ° C
100
-II D , Drain Current (A)
-ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
10
100us
100
TJ = 25 ° C
1
0.1
0.2
V GS = 0 V
0.8
1.4
2.0
-VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
2.6
1ms
TC = 25 ° C
TJ = 175° C
Single Pulse
10
1
10ms
10
-V DS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
100
IRL6903
120
105
VGS
90
I D , Drain Current (A)
RD
VDS
LIMITED BY PACKAGE
D.U.T.
RG
+
VDD
75
-4.5V
60
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
45
Fig 10a. Switching Time Test Circuit
30
td(on)
15
tr
t d(off)
tf
VGS
10%
0
25
50
75
100
125
TC , Case Temperature
150
175
( ° C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
90%
VDS
Fig 10b. Switching Time Waveforms
(Z thJC )
1
D = 0.50
Thermal Response
0.20
0.1
0.10
PDM
0.05
t1
0.02
0.01
0.01
0.00001
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.01
0.1
t1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1
IRL6903
IA S
-10
20V
tp
VD D
A
D R IV E R
ID
-22A
-39A
-55A
TOP
2500
D .U .T
RG
EAS , Single Pulse Avalanche Energy (mJ)
3000
L
VDS
BOTTOM
2000
0 .0 1 Ω
1500
15V
Fig 12a. Unclamped Inductive Test Circuit
I AS
1000
500
0
25
50
75
100
125
150
Starting T J, Junction Temperature
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
tp
V(BR)DSS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
-4.5V
QGS
175
( °C)
QGD
D.U.T.
+VDS
VGS
VG
-3mA
Charge
Fig 13a. Basic Gate Charge Waveform
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
IRL6903
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T*
ƒ
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
‚
-
-
„
+

• dv/dt controlled by RG
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
RG
VGS
*
+
-
VDD
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
Period
D=
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[ VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 14. For P-Channel HEXFETS
[ ISD]
IRL6903
Package Outline
TO-220AB Outline
Dimensions are shown in millimeters (inches)
2 . 8 7 ( .1 1 3 )
2 . 6 2 ( .1 0 3 )
1 0 . 5 4 (. 4 1 5 )
1 0 . 2 9 (. 4 0 5 )
-B -
3 . 7 8 (. 1 4 9 )
3 . 5 4 (. 1 3 9 )
4 . 6 9 ( .1 8 5 )
4 . 2 0 ( .1 6 5 )
-A -
1 .3 2 (. 0 5 2 )
1 .2 2 (. 0 4 8 )
6 . 4 7 (. 2 5 5 )
6 . 1 0 (. 2 4 0 )
4
1 5 . 2 4 ( .6 0 0 )
1 4 . 8 4 ( .5 8 4 )
1 . 1 5 ( .0 4 5 )
M IN
1
2
1 4 . 0 9 (.5 5 5 )
1 3 . 4 7 (.5 3 0 )
3X
1 .4 0 (. 0 5 5 )
1 .1 5 (. 0 4 5 )
L E A D A S S IG N M E N T S
1 - G A TE
2 - D R AIN
3 - SO URCE
4 - D R AIN
3
4 . 0 6 (. 1 6 0 )
3 . 5 5 (. 1 4 0 )
0 . 9 3 ( .0 3 7 )
3 X 0 . 6 9 ( .0 2 7 )
0 .3 6 (. 0 1 4 )
3X
M
B A
2 . 5 4 ( .1 0 0 )
2X
NO TE S :
1 D I M E N S IO N I N G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 .
2 C O N T R O L L I N G D IM E N S IO N : I N C H
M
0 . 5 5 (. 0 2 2 )
0 . 4 6 (. 0 1 8 )
2 .9 2 (. 1 1 5 )
2 .6 4 (. 1 0 4 )
3 O U T L IN E C O N F O R M S T O J E D E C O U T L I N E T O -2 2 0 A B .
4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S .
Part Marking Information
TO-220AB
E XPLE
AM PLE
N 1010
IRF 1010
E X AM
: T:HI TSHIISS AISN AIRF
S ELY
MB LY
W ITWH ITAHS SAESMB
T DE
CO DE
9B 1M
LO TLOCO
9B 1M
A
INRTE
T ION
IN TE
NARTNA
ION
AL AL
T IF IER
R ECRTEC
IF IER
F 1010
IR F IR
1010
LO GO
LO GO
9246
9246
9B 9B1M 1M
S SBEM
A S SAEM
LYB LY
CO DE
LO TLO TCO DE
A
P A RT
NU
P A RT
NU M
BEMRBE R
D A TE
D A TE
C ODCEOD E
(Y YW
(Y YW
W) W)
= AYE
Y Y Y=Y YE
R AR
W
W
=
W W = W EW
EKE EK
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
10/97