MOTOROLA MHPM7A15A60A

Order this document
by MHPM7A15A60A/D
SEMICONDUCTOR TECHNICAL DATA
Motorola Preferred Device
Integrated Power Stage for 1.0 hp Motor Drives
The MHPM7A15A60A module integrates a 3-phase input rectifier bridge,
3-phase output inverter, brake transistor/diode, current sense resistor and
temperature sensor in a single convenient package.The output inverter utilizes
advanced insulated gate bipolar transistors (IGBT) matched with free-wheeling
diodes to give optimal dynamic performance. It has been configured for use as
a three-phase motor drive module or for many other power switching
applications. The top connector pins have been designed for easy interfacing to
the user’s control board.
15 AMP, 600 VOLT
HYBRID POWER MODULE
• DC Bus Current Sense Resistor Included
• Short Circuit Rated 10 µs @ 25°C
• Temperature Sensor Included
• Pin-to-Baseplate Isolation exceeds 2500 Vac (rms)
• Convenient Package Outline
• UL
Recognized and Designed to Meet VDE
• Access to Positive and Negative DC Bus
PLASTIC PACKAGE
CASE 440-01, Style 1
MAXIMUM DEVICE RATINGS (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
Repetitive Peak Reverse Voltage
VRRM
600
V
Average Output Rectified Current
IO
15
A
IFSM
200
A
IGBT Reverse Voltage
VCES
600
V
Gate-Emitter Voltage
VGES
± 20
V
IC
15
A
IC(pk)
30
A
INPUT RECTIFIER BRIDGE
Peak Non-repetitive Surge Current — (1/2 Cycle) (1)
OUTPUT INVERTER
Continuous IGBT Collector Current
Peak IGBT Collector Current — (PW = 1.0 ms) (2)
Continuous Free-Wheeling Diode Current
IF
15
A
IF(pk)
30
A
IGBT Power Dissipation
PD
55
W
Free-Wheeling Diode Power Dissipation
PD
30
W
IGBT Junction Temperature Range
TJ
– 40 to +125
°C
Free-Wheeling Diode Junction Temperature Range
TJ
– 40 to +125
°C
Peak Free-Wheeling Diode Current — (PW = 1.0 ms) (2)
(1) 1 cycle = 50 or 60 Hz
(2) 1.0 ms = 1.0% duty cycle
Preferred devices are Motorola recommended choices for future use and best overall value.
 Motorola, Inc. 1995
MOTOROLA
MHPM7A15A60A
1
MAXIMUM DEVICE RATINGS (continued) (TJ = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
IGBT Reverse Voltage
VCES
600
V
Gate-Emitter Voltage
VGES
± 20
V
IC
15
A
IC(pk)
30
A
BRAKE CIRCUIT
Continuous IGBT Collector Current
Peak IGBT Collector Current (PW = 1.0 ms) (2)
IGBT Power Dissipation
PD
55
W
Diode Reverse Voltage
VRRM
600
V
IF
15
A
IF(pk)
30
A
VISO
2500
VAC
Ambient Operating Temperature Range
TA
– 40 to + 85
°C
Operating Case Temperature Range
TC
– 40 to + 90
°C
Storage Temperature Range
Tstg
– 40 to +150
°C
—
6.0
lb–in
Continuous Output Diode Current
Peak Output Diode Current (PW = 1.0 ms) (2)
TOTAL MODULE
Isolation Voltage — (47–63 Hz, 1.0 Minute Duration)
Mounting Torque
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IR
—
10
50
µA
INPUT RECTIFIER BRIDGE
Reverse Leakage Current (VRRM = 600 V)
Forward Voltage (IF = 15 A)
VF
—
1.05
1.5
V
RθJC
—
—
2.9
°C/W
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V)
IGES
—
—
± 20
µA
Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V)
TJ = 25°C
TJ = 125°C
ICES
—
—
—
—
200
2.0
µA
mA
8.0
V
Thermal Resistance (Each Die)
OUTPUT INVERTER
Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA)
VGE(th)
4.0
6.0
Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0)
V(BR)CES
600
700
—
V
Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 15 A)
VCE(SAT)
—
2.7
3.5
V
Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz)
Cies
—
950
—
pF
Input Gate Charge (VCE = 300 V, IC = 15 A, VGE = 15 V)
QT
—
75
—
nC
—
200
350
ns
Fall Time — Inductive Load
(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)
tfi
Turn-On Energy
(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)
E(on)
—
—
1.0
mJ
Turn-Off Energy
(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)
E(off)
—
—
1.0
mJ
Diode Forward Voltage (IF = 15 A, VGE = 0 V)
VF
—
1.5
2.0
V
Diode Reverse Recovery Time
(IF = 15 A, V = 400 V, dI/dt = 50 A/µs)
trr
—
140
200
ns
Diode Stored Charge (IF = 15 A, V = 400 V, di/dt = 50 A/µs)
Qrr
—
—
900
nC
Thermal Resistance — IGBT (Each Die)
RθJC
—
—
1.9
°C/W
Thermal Resistance — Free-Wheeling Diode (Each Die)
RθJC
—
—
3.7
°C/W
(2) 1.0 ms = 1.0% duty cycle
MHPM7A15A60A
2
MOTOROLA
ELECTRICAL CHARACTERISTICS (continued) (TJ = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Gate-Emitter Leakage Current (VCE = 0 V, VGE = ± 20 V)
IGES
—
—
± 20
µA
Collector-Emitter Leakage Current (VCE = 600 V, VGE = 0 V) (1)
TJ = 25°C
TJ = 125°C
ICES
—
—
—
—
200
2.0
µA
mA
BRAKE CIRCUIT
Gate-Emitter Threshold Voltage (VCE = VGE, IC = 1.0 mA)
VGE(th)
4.0
6.0
8.0
V
Collector-Emitter Breakdown Voltage (IC = 10 mA, VGE = 0)
V(BR)CES
600
700
—
V
Collector-Emitter Saturation Voltage (VGE = 15 V, IC = 15 A) (1)
VCE(SAT)
—
2.7
3.5
V
Input Capacitance (VGE = 0 V, VCE = 10 V, f = 1.0 MHz)
Cies
—
950
—
pF
Input Gate Charge (VCE = 300 V, IC = 15 A, VGE = 15 V)
QT
—
75
—
nC
—
200
350
ns
—
—
1.0
mJ
—
—
1.0
mJ
Fall Time — Inductive Load
(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)
tfi
Turn-On Energy
(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)
E(on)
Turn-Off Energy
(VCE = 300 V, IC = 15 A, VGE = 15 V, RG = 150 Ω)
E(off)
Diode Forward Voltage (IF = 15 A)
VF
—
1.5
2.0
V
Diode Reverse Leakage Current
IR
—
—
50
µA
Thermal Resistance — IGBT
RθJC
—
—
1.9
°C/W
Thermal Resistance — Diode
RθJC
—
—
3.7
°C/W
Rsense
—
10
—
mΩ
Rtol
–1.0
—
+1.0
%
VF
—
0.660
—
V
TCVF
—
–1.95
—
mV/°C
SENSE RESISTOR
Resistance
Resistance Tolerance
TEMPERATURE SENSE DIODE
Forward Voltage (@ IF = 1.0 mA)
Forward Voltage Temperature Coefficient (@ IF = 1.0 mA)
(1) 1 cycle = 50 or 60 Hz.
MOTOROLA
MHPM7A15A60A
3
Figure 1. Integrated Power Stage Schematic
MHPM7A15A60A
4
MOTOROLA
R
S
T
24
23
22
–I
6
25
5
= PIN NUMBER IDENTIFICATION
N2
N1
G2
8
G7
Q7
21
B
G1
E1
9
16
7
1
15
P2
P1
4
+I
Q2
Q1
D2
D1
10
+T
C
–T
C
3
2
G4
17
G3
E3
11
Q8
TEMP SENSE
Q4
Q3
D4
D3
G6
14
12
G5
E5
13
D6
D5
W
V
U
18
19
20
3–Phase
Input
Rectifier
Bridge
Brake
IGBT/
Diode
3–Phase
Output
IGBT/Diode
Bridge,
with Current
and Temperature
Sense
DEVICE INTEGRATION
Q6
Q5
VGE
90%
IC
L
VCE
IC
RG
VCE
90%
VCE 10%
10%
td(off)
tf
toff
Figure 2. Inductive Switching Time Test Circuit and Timing Chart
Typical Characteristics
125°C
1.0
25°C
r(t), EFFECTIVE TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
I F, FORWARD CURRENT (A)
50
40
30
20
10
0
0
0.2
0.4
0.6
1.0
1.4
0.8
1.2
VF, FORWARD VOLTAGE (V)
1.6
1.8
Figure 3. Input Bridge Forward Current versus
Forward Voltage
MOTOROLA
2.0
D = 0.5
0.2
P(pk)
0.1
0.01
0.01
SINGLE PULSE
0.1
t1
RθJC(t) = r(t)(RθJC)
t2
RθJC = 3.2°C/W
D Curves apply for power pulse
train shown read time at t1
TJ(pk)–TC = P(pk) RθJC(t)
1.0
10
t, TIME (ms)
100
Figure 4. Input Rectifier Bridge Thermal
Response
MHPM7A15A60A
5
1000
Typical Characteristics
50
50
125°C
12 V
20 V
I C, COLLECTOR CURRENT (A)
I F, FORWARD CURRENT (A)
25°C
40
30
20
10
10 V
15 V
40
30
20
8V
10
7V
0
1
2
3
4
0
0
5
4
8
6
VCE, COLLECTOR–EMITTER VOLTAGE (V)
VF, FORWARD VOLTAGE (V)
Figure 6. Output Inverter Collector-Current
versus Collector-Emitter Voltage
20
5A
10 A
VCE, COLLECTOR-EMITTER VOLTAGE (V)
VCE , COLLECTOR-EMITTER VOLTAGE (V)
Figure 5. Output Inverter Diode Forward Currrent
versus Forward Voltage
20 A
16
12
8
4
0
0
4
12
8
16
VGE, GATE-EMITTER VOLTAGE (V)
450
400
300
SWITCHING ENERGY ( µJ)
SWITCHING ENERGY ( µJ)
125°C
25°C
1
10
IC, COLLECTOR CURRENT (A)
100
Figure 9. Inverter Switching Energy E(off) versus
Collector Current IC
MHPM7A15A60A
6
12
250
10
200
8
150
6
100
4
50
2
0
10
20
30
40
50
60
70
QG, GATE CHARGE (nC)
80
90
0
100
1000
100
1
14
300 V
100 V
200 V
Figure 8. Gate–to–Emitter Voltage versus
Gate Charge
VCE = 300 V
VGE = 15 V
RG = 150 Ω
10
16
350
0
20
18
TJ = 25°C
IC = 15 A
Figure 7. Output Inverter Collector-Emitter
Voltage versus Gate-Emitter Voltage
1000
10
VCE = 300 V
VGE = 15 V
IC = 15 A
100
25°C
10
10
100
RG, GATE RESISTANCE (Ω)
1000
Figure 10. Inverter Switching Energy E(off)
versus Gate Resistance RG
MOTOROLA
V GE , GATE VOLTAGE (V)
0
Typical Characteristics
1000
VCE = 300 V
VGE = 15 V
RG = 150 Ω
TJ = 25°C
SWITCHING TIME (ns)
SWITCHING TIME (ns)
1000
100
10
VCE = 300 V
VGE = 15 V
RG = 150 Ω
TJ = 125°C
100
10
tf @ 125
td @ 125
t(off) @ 125
tf
td
t(off)
1
1
10
IC, COLLECTOR CURRENT (A)
1
100
1
1000
VCE = 300 V
VGE = 15 V
RG = 150 Ω
SWITCHING TIME (ns)
SWITCHING TIME (ns)
1000
100
VCE = 300 V
VGE = 15 V
IC = 15 A
TJ = 25°C
100
10
1
100
RG, GATE RESISTANCE (Ω)
1000
1
10
IC, COLLECTOR CURRENT (A)
10000
VCE = 300 V
VGE = 15 V
IC = 15 A
TJ = 25°C
Cies
1000
100
10
Coes
100
Cres
10
1
10
100
RG, GATE RESISTANCE (Ω)
Figure 15. Inverter Switching Time tr versus
Gate Resistance RG
MOTOROLA
100
Figure 14. Inverter Switching Time tr versus
Collector Current IC
CAPACITANCE (pF)
SWITCHING TIME (ns)
125°C
25°C
tf
td
t(off)
Figure 13. Inverter Switching Time
tf, td, t(off) versus Gate Resistance RG
1000
100
Figure 12. Inverter Switching Time tf, td, t(off)
versus Collector Current IC
Figure 11. Inverter Switching Time tf, td, t(off)
versus Collector Current IC
10
10
10
IC, COLLECTOR CURRENT (A)
1000
1
1
10
100
VCE (V)
Figure 16. Inverter Capacitance versus VCE
MHPM7A15A60A
7
1000
Typical Characteristics
1.0
r(t), EFFECTIVE TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
r(t), EFFECTIVE TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
1.0
D = 0.5
0.2
P(pk)
0.1
0.01
0.01
SINGLE PULSE
0.1
t1
RθJC(t) = r(t)(RθJC)
t2
RθJC = 2.2°C/W
D Curves apply for power pulse
train shown read time at t1
TJ(pk)–TC = P(pk) RθJC(t)
1.0
10
t, TIME (ms)
100
Figure 17. Ouput Inverter IGBT
Thermal Response
1000
D = 0.5
0.2
P(pk)
0.1
0.01
0.01
t1
RθJC(t) = r(t)(RθJC)
t2
RθJC = 3.4°C/W
D Curves apply for power pulse
train shown read time at t1
TJ(pk)–TC = P(pk) RθJC(t)
SINGLE PULSE
0.1
1.0
10
t, TIME (ms)
100
Figure 18. Output Diode Thermal Response
I C , COLLECTOR CURRENT (A)
40
35
30
25
20
15
10
L = 200 µH
5 VGE = 15 V
RG = 150 Ω
0
0
100
200
300
400
500
600
VCE, COLLECTOR-EMITTER VOLTAGE (V)
700
800
Figure 19. Output Inverter Reverse Bias Safe
Operating Area (RBSOA)
MHPM7A15A60A
8
MOTOROLA
1000
PACKAGE DIMENSIONS
E
C
AB
AC
AE
V
K
AA
9 PL
AF
3 PL
AD
DETAIL Z
A
Q
G
1
W
2 PL
AH
N
2 PL
17
T
2 PL
L
S
M
25
Y
18
X
AG
P
4 PL
4 PL
U
J
H
25 PL
7 PL
D
F
DETAIL Z
STYLE 1:
PIN 1.
2.
3.
4.
5.
P1
T–
T+
I+
I–
R
PIN 6.
7.
8.
9.
10.
N2
P2
K1
G1
K3
PIN 11.
12.
13.
14.
15.
G3
K5
G5
G6
G7
PIN 16.
17.
18.
19.
20.
G2
G4
W
V
U
PIN 21.
22.
23.
24.
25.
B
T
S
R
N1
B
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. LEAD LOCATION DIMENSIONS (ie: M, B. AA...)
ARE TO THE CENTER OF THE LEAD.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
Y
AA
AB
AC
AD
AE
AF
AG
AH
MILLIMETERS
MIN
MAX
97.54
98.55
52.45
53.47
14.60
15.88
0.43
0.84
10.80
12.06
0.94
1.35
1.60
2.21
8.58
9.19
0.30
0.71
18.80
20.57
19.30
20.32
38.99
40.26
9.78
11.05
82.55
83.57
4.01
4.62
26.42
27.43
12.06
12.95
4.32
5.33
86.36
87.38
14.22
15.24
7.62
8.13
6.55
7.16
2.49
3.10
2.24
2.84
7.32
7.92
4.78
5.38
8.58
9.19
6.05
6.65
4.78
5.38
69.34
70.36
–––
5.08
INCHES
MIN
MAX
3.840
3.880
2.065
2.105
0.575
0.625
0.017
0.033
0.425
0.475
0.037
0.053
0.063
0.087
0.338
0.362
0.012
0.028
0.74
0.81
0.760
0.800
1.535
1.585
0.385
0.435
3.250
3.290
0.158
0.182
1.040
1.080
0.475
0.515
0.170
0.210
3.400
3.440
0.560
0.600
0.300
0.320
0.258
0.282
0.098
0.122
0.088
0.112
0.288
0.312
0.188
0.212
0.338
0.362
0.238
0.262
0.188
0.212
2.730
2.770
–––
0.200
CASE 440-01
ISSUE O
MOTOROLA
MHPM7A15A60A
9
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] – TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MHPM7A15A60A
10
◊
2PHX34106L–0
*MHPM7A15A60A/D*
PRINTED IN USA 3/95 IMPERIAL LITHO 12250 4,500 HYBRID POWER MODULE
MHPM7A15A60A/D
MOTOROLA