SEMICONDUCTOR TECHNICAL DATA High–Performance Silicon–Gate CMOS The MC54/74HC161A and HCI63A are identical in pinout to the LS161 and LS163. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. The HC161A and HC163A are programmable 4–bit binary counters with asynchronous and synchronous reset, respectively. J SUFFIX CERAMIC PACKAGE CASE 620–10 16 • • • • • • 1 Output Drive Capability: 10 LSTTL Loads Outputs Directly Interface to CMOS, NMOS, and TTL Operating Voltage Range: 2.0 to 6.0 V Low Input Current: 1.0 µA High Noise Immunity Characteristic of CMOS Devices In Compliance with the Requirements Defined by JEDEC Standard No. 7A • Chip Complexity: 192 FETs or 48 Equivalent Gates N SUFFIX PLASTIC PACKAGE CASE 648–08 16 1 D SUFFIX SOIC PACKAGE CASE 751B–05 16 1 LOGIC DIAGRAM ORDERING INFORMATION P0 PRESET DATA INPUTS P1 P2 P3 CLOCK 3 14 4 13 5 12 6 11 2 15 RESET LOAD ENABLE P ENABLE T Q0 Q1 Q2 BCD OR BINARY OUTPUT Ceramic Plastic SOIC PIN ASSIGNMENT Q3 RIPPLE CARRY OUT RESET 1 16 CLOCK 2 15 P0 3 14 VCC RIPPLE CARRY OUT Q0 1 P1 4 13 Q1 9 P2 5 12 Q2 7 P3 6 11 Q3 ENABLE P 7 10 ENABLE T GND 8 9 ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ COUNT ENABLES MC54HCXXXAJ MC74HCXXXAN MC74HCXXXAD 10 Device Count Mode Reset Mode HC161A Binary Asynchronous HC163A Binary Synchronous PIN 16 = VCC PIN 8 = GND LOAD FUNCTION TABLE Inputs Clock Output Reset* Load Enable P Enable T Q L H H H H X L H H H X X H L X X X H X L Reset Load Preset Data Count No Count No Count * HC163A only. HC161A is an Asynchronous Reset Device H = high level L = low level X = don’t care 10/95 Motorola, Inc. 1995 3–1 REV 6 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MC54/74HC161A MC54/74HC163A MAXIMUM RATINGS* Symbol VCC Parameter DC Supply Voltage (Referenced to GND) Value Unit – 0.5 to + 7.0 V Vin DC Input Voltage (Referenced to GND) – 1.5 to VCC + 1.5 V Vout DC Output Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V DC Input Current, per Pin ± 20 mA Iout DC Output Current, per Pin ± 25 mA ICC DC Supply Current, VCC and GND Pins ± 50 mA PD Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package† 750 500 mW Tstg Storage Temperature – 65 to + 150 _C Iin TL This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND (Vin or Vout) VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. v v _C Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package) (Ceramic DIP) 260 300 * Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. †Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C Ceramic DIP: – 10 mW/_C from 100_ to 125_C SOIC Package: – 7 mW/_C from 65_ to 125_C For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ v v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ v ÎÎÎÎ v ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎ v ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RECOMMENDED OPERATING CONDITIONS Symbol VCC Vin, Vout Parameter Min Max Unit 2.0 6.0 V 0 VCC V – 55 + 125 _C 0 0 0 1000 500 400 ns DC Supply Voltage (Referenced to GND) DC Input Voltage, Output Voltage (Referenced to GND) TA Operating Temperature, All Package Types tr, tf Input Rise and Fall Time (Figure 1) VCC = 2.0 V VCC = 4.5 V VCC = 6.0 V DC ELECTRICAL CHARACTERISTICS (Voltages referenced to GND) Guaranteed Limit Symbol Parameter Test Conditions VCC V – 55 to 25_C 85_C 125_C Unit VIH Minimum High–Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| 20 µA 2.0 4.5 6.0 1.5 3.15 4.2 1.5 3.15 4.2 1.5 3.15 4.2 V VIL Maximum Low–Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| 20 µA 2.0 4.5 6.0 0.50 1.35 1.80 0.50 1.35 1.80 0.50 1.35 1.80 V Minimum High–Level Output Voltage Vin = VIH or VIL |Iout| 20 µA 2.0 4.5 6.0 1.9 4.4 5.9 1.9 4.4 5.9 1.9 4.4 5.9 V 4.5 6.0 3.98 5.48 3.84 5.34 3.7 5.2 V 2.0 4.5 6.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 V 4.5 6.0 0.26 0.26 0.33 0.33 0.40 0.40 V 6.0 ± 0.1 ± 1.0 ± 1.0 µA 6.0 4 40 160 µA VOH Vin = VIH or VIL |Iout| |Iout| VOL Maximum Low–Level Output Voltage Vin = VIH or VIL |Iout| 20 µA Vin = VIH or VIL |Iout| |Iout| Iin ICC Maximum Input Leakage Current Maximum Quiescent Supply Current (per Package) 4.0 mA 5.2 mA Vin = VCC or GND Vin = VCC or GND Iout = 0 µA 4.0 mA 5.2 mA NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). MOTOROLA 3–2 High–Speed CMOS Logic Data DL129 — Rev 6 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎ v ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MC54/74HC161A MC54/74HC163A AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns) Guaranteed Limit VCC V – 55 to 25_C 85_C 125_C Unit fmax Maximum Clock Frequency (50% Duty Cycle)* 1, 7 2.0 4.5 6.0 6 30 35 5 24 28 4 20 24 MHz tPLH Maximum Propagation Delay, Clock to Q 1, 7 2.0 4.5 6.0 120 20 16 160 23 20 200 28 22 ns 1, 7 2.0 4.5 6.0 145 22 18 185 25 20 320 30 23 ns Symbol Parameter Fig. tPHL tPHL Maximum Propagation Delay, Reset to Q (HC161A Only) 2, 7 2.0 4.5 6.0 145 20 17 185 22 19 220 25 21 ns tPLH Maximum Propagation Delay, Enable T to Ripple Carry Out 3, 7 2.0 4.5 6.0 110 16 14 150 18 15 190 20 17 ns 3, 7 2.0 4.5 6.0 135 18 15 175 20 16 210 22 20 ns 1, 7 2.0 4.5 6.0 120 22 18 160 27 22 200 30 25 ns 1, 7 2.0 4.5 6.0 145 22 20 185 28 24 220 35 28 ns tPHL tPLH Maximum Propagation Delay, Clock to Ripple Carry Out tPHL tPHL Maximum Propagation Delay, Reset to Ripple Carry Out (HC161A Only) 2, 7 2.0 4.5 6.0 155 22 18 190 26 22 230 30 25 ns tTLH, tTHL Maximum Output Transition Time, Any Output 2, 7 2.0 4.5 6.0 75 15 13 95 19 16 110 22 19 ns Maximum Input Capacitance 1, 7 — 10 10 10 pF Cin * Applies to noncascaded/nonsynchronous clocked configurations only with synchronously cascaded counters. (1) Clock to Ripple Carry Out propagation delays. (2) Enable T or Enable P to Clock setup times and (3) Clock to Enable T or Enable P hold times determine fmax. However, if Ripple Carry out of each stage is tied to the Clock of the next stage (nonsynchronously clocked) the fmax in the table above is applicable. See Applications information in this data sheet. NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High– Speed CMOS Data Book (DL129/D). Typical @ 25°C, VCC = 5.0 V CPD Power Dissipation Capacitance (Per Gate)* 30 pF * Used to determine the no–load dynamic power consumption: PD = CPD VCC 2 f + ICC VCC . For load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D). High–Speed CMOS Logic Data DL129 — Rev 6 3–3 MOTOROLA ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ v ÎÎÎÎ v ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MC54/74HC161A MC54/74HC163A TIMING REQUIREMENTS (CL = 50 pF, Input tr = tf = 6.0 ns) Guaranteed Limit VCC V – 55 to 25_C 85_C 125_C tsu Minimum Setup Time, Preset Data Inputs to Clock 5 2.0 4.5 6.0 40 15 12 60 20 18 80 30 20 ns tsu Minimum Setup Time, Load to Clock 5 2.0 4.5 6.0 60 15 12 75 20 18 90 30 20 ns tsu Minimum Setup Time, Reset to Clock (HC163A Only) 4 2.0 4.5 6.0 60 20 17 75 25 23 90 35 25 ns tsu Minimum Setup Time, Enable T or Enable P to Clock 6 2.0 4.5 6.0 80 20 17 95 25 23 110 35 25 ns th Minimum Hold Time, Clock to Load or Preset Data Inputs 5 2.0 4.5 6.0 3 3 3 3 3 3 3 3 3 ns th Minimum Hold Time, Clock to Reset (HC163A Only) 4 2.0 4.5 6.0 3 3 3 3 3 3 3 3 3 ns th Minimum Hold Time, Clock to Enable T or Enable P 6 2.0 4.5 6.0 3 3 3 3 3 3 3 3 3 ns trec Minimum Recovery Time, Reset Inactive to Clock (HC161A Only) 2 2.0 4.5 6.0 80 15 12 95 20 17 110 26 23 ns trec Minimum Recovery Time, Load Inactive to Clock 5 2.0 4.5 6.0 80 15 12 95 20 17 110 26 23 ns tw Minimum Pulse Width, Clock 1 2.0 4.5 6.0 60 12 10 75 15 13 90 18 15 ns tw Minimum Pulse Width, Reset (HC161A Only) 2 2.0 4.5 6.0 60 12 10 75 15 13 90 18 15 ns 2.0 4.5 6.0 1000 500 400 1000 500 400 1000 500 400 ns Symbol tr, tf Parameter Fig. Maximum Input Rise and Fall Times MOTOROLA 3–4 Unit High–Speed CMOS Logic Data DL129 — Rev 6 MC54/74HC161A MC54/74HC163A FUNCTION DESCRIPTION The HC161A/163A are programmable 4–bit synchronous counters that feature parallel Load, synchronous or asynchronous Reset, a Carry Output for cascading and count– enable controls. The HC161A and HC163A are binary counters with asynchronous Reset and synchronous Reset, respectively. CONTROL FUNCTIONS INPUTS Loading Clock (Pin 2) With the rising edge of the Clock, a low level on Load (Pin 9) loads the data from the Preset Data input pins (P0, P1, P2, P3) into the internal flip–flops and onto the output pins, Q0 through Q3. The count function is disabled as long as Load is low. Resetting A low level on the Reset pin (Pin 1) resets the internal flip– flops and sets the outputs (Q0 through Q3) to a low level. The HC161A resets asynchronously, and the HC163A resets with the rising edge of the Clock input (synchronous reset). The internal flip–flops toggle and the output count advances with the rising edge of the Clock input. In addition, control functions, such as resetting and loading occur with the rising edge of the Clock input. Count Enable/Disable These devices have two count–enable control pins: Enable P (Pin 7) and Enable T (Pin 10). The devices count when these two pins and the Load pin are high. The logic equation is: Preset Data Inputs P0, P1, P2, P3 (Pins 3, 4, 5, 6) These are the data inputs for programmable counting. Data on these pins may be synchronously loaded into the internal flip–flops and appear at the counter outputs. P0 (Pin 3) is the least–significant bit and P3 (Pin 6) is the most–significant bit. Count Enable = Enable P • Enable T • Load The count is either enabled or disabled by the control inputs according to Table 1. In general, Enable P is a count– enable control: Enable T is both a count–enable and a Ripple–Carry Output control. OUTPUTS Q0, Q1, Q2, Q3 (Pins 14, 13, 12, 11) Table 1. Count Enable/Disable These are the counter outputs. Q0 (Pin 14) is the least– significant bit and Q3 (Pin 11) is the most–significant bit. Control Inputs Result at Outputs Load Enable P Enable T Q0 – Q3 Ripple Carry Out Ripple Carry Out (Pin 15) H H H Count When the counter is in its maximum state 1111, this output goes high, providing an external look–ahead carry pulse that may be used to enable successive cascaded counters. Ripple Carry Out remains high only during the maximum count state. The logic equation for this output is: L H H No Count High when Q0–Q3 are maximum* X L H No Count High when Q0–Q3 are maximum* X X L No Count L Ripple Carry Out = Enable T • Q0 • Q1 • Q2 • Q3 * Q0 through Q3 are maximum when Q3 Q2 Q1 Q0 = 1111. OUTPUT STATE DIAGRAMS 0 1 2 3 4 15 5 14 6 13 7 12 11 10 9 8 Binary Counters High–Speed CMOS Logic Data DL129 — Rev 6 3–5 MOTOROLA MC54/74HC161A MC54/74HC163A SWITCHING WAVEFORMS tr tf CLOCK tw VCC 90% 50% 10% VCC GND GND tPHL tw 1/fmax tPLH tPHL 50% ANY OUTPUT 90% 50% 10% ANY OUTPUT 50% RESET trec VCC tTLH 50% CLOCK tTHL GND Figure 1. tr Figure 2. tf VCC 90% 50% 10% ENABLE T GND tPLH th tsu tPHL 90% 50% 10% RIPPLE CARRY OUT 50% RESET VCC 50% CLOCK tTLH GND tTHL Figure 3. Figure 4. HC163A Only VALID INPUTS P0, P1, P2, P3 VCC 50% GND tsu th VALID VCC LOAD ENABLE T OR ENABLE P 50% GND tsu CLOCK th VCC 50% GND tsu trec th VCC VCC CLOCK 50% 50% GND GND Figure 5. Figure 6. TEST CIRCUIT TEST POINT OUTPUT DEVICE UNDER TEST CL* * Includes all probe and jig capacitance Figure 7. MOTOROLA 3–6 High–Speed CMOS Logic Data DL129 — Rev 6 High–Speed CMOS Logic Data DL129 — Rev 6 3 3–7 CLOCK LOAD RESET ENABLE T ENABLE P P3 P2 2 9 1 10 7 6 5 P1 4 P0 C C LOAD LOAD R Q3 Q2 Q2 Q1 Q1 Q0 Q0 VCC = PIN 16 GND = PIN 8 Q3 Q2 Q1 Q0 15 RIPPLE CARRY OUT 11 12 13 14 The flip–flops shown in the circuit diagrams are Toggle–Enable flip–flops. A Toggle– Enable flip–flop is a combination of a D flip–flop and a T flip–flop. When loading data from Preset inputs P0, P1, P2, and P3, the Load signal is used to disable the Toggle input (Tn) of the flip–flop. The logic level at the Pn input is then clocked to the Q output of the flip–flop on the next rising edge of the clock. A logic zero on the Reset device input forces the internal clock (C) high and resets the Q output of the flip–flop low. T3 R C C LOAD LOAD P3 T2 R C C LOAD LOAD P2 T1 R C C LOAD LOAD P1 T0 R C C LOAD LOAD P0 MC54/74HC161A MC54/74HC163A Figure 8. 4–Bit Binary Counter with Asynchronous Reset (MC54/74HC161A) MOTOROLA MC54/74HC161A MC54/74HC163A Sequence illustrated in waveforms: 1. Reset outputs to zero. 2. Preset to binary twelve. 3. Count to thirteen, fourteen, fifteen, zero, one and two. 4. Inhibit. RESET (HC161A) (ASYNCHRONOUS) RESET (HC163A) (SYNCHRONOUS) LOAD P0 PRESET DATA INPUTS P1 P2 P3 CLOCK (HC161A) CLOCK (HC163A) COUNT ENABLES ENABLE P ENABLE T Q0 Q1 OUTPUTS Q2 Q3 RIPPLE CARRY OUT 12 13 14 15 0 1 COUNT RESET 2 INHIBIT LOAD Figure 9. Timing Diagram MOTOROLA 3–8 High–Speed CMOS Logic Data DL129 — Rev 6 High–Speed CMOS Logic Data DL129 — Rev 6 3–9 CLOCK LOAD RESET ENABLE T ENABLE P P3 P2 P1 P0 2 9 1 10 7 6 5 4 3 C C LOAD LOAD R Q3 Q2 Q2 Q1 Q1 Q0 Q0 VCC = PIN 16 GND = PIN 8 Q3 Q2 Q1 Q0 15 RIPPLE CARRY OUT 11 12 13 14 The flip–flops shown in the circuit diagrams are Toggle–Enable flip–flops. A Toggle– Enable flip–flop is a combination of a D flip–flop and a T flip–flop. When loading data from Preset inputs P0, P1, P2, and P3, the Load signal is used to disable the Toggle input (Tn) of the flip–flop. The logic level at the Pn input is then clocked to the Q output of the flip–flop on the next rising edge of the clock. A logic zero on the Reset device input forces the internal clock (C) high and resets the Q output of the flip–flop low. T3 R C C LOAD LOAD P3 T2 R C C LOAD LOAD P2 T1 R C C LOAD LOAD P1 T0 R C C LOAD LOAD P0 MC54/74HC161A MC54/74HC163A Figure 10. 4–Bit Binary Counter with Synchronous Reset (MC54/74HC163A) MOTOROLA MC54/74HC161A MC54/74HC163A TYPICAL APPLICATIONS CASCADING LOAD INPUTS LOAD P0 P1 P2 P3 H = COUNT L = DISABLE ENABLE P H = COUNT L = DISABLE ENABLE T CLOCK Q0 Q1 Q2 Q3 R LOAD P0 P1 P2 P3 ENABLE P RIPPLE CARRY OUT INPUTS INPUTS LOAD P0 P1 P2 P3 ENABLE P RIPPLE CARRY OUT ENABLE T CLOCK CLOCK R R Q0 Q1 Q2 Q3 RIPPLE CARRY OUT ENABLE T TO MORE SIGNIFICANT STAGES Q0 Q1 Q2 Q3 RESET OUTPUTS OUTPUTS OUTPUTS CLOCK NOTE: When used in these cascaded configurations the clock fmax guaranteed limits may not apply. Actual performance will depend on number of stages. This limitation is due to set up times between Enable (Port) and Clock. Figure 11. N–Bit Synchronous Counters INPUTS INPUTS INPUTS LOAD ENABLE P ENABLE T LOAD P0 P1 P2 P3 ENABLE P ENABLE T CLOCK LOAD P0 P1 P2 P3 ENABLE P RIPPLE CARRY OUT LOAD P0 P1 P2 P3 ENABLE P RIPPLE CARRY OUT ENABLE T ENABLE T CLOCK CLOCK CLOCK R R R Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 RIPPLE CARRY OUT TO MORE SIGNIFICANT STAGES Q0 Q1 Q2 Q3 RESET OUTPUTS OUTPUTS OUTPUTS Figure 12. Nibble Ripple Counter MOTOROLA 3–10 High–Speed CMOS Logic Data DL129 — Rev 6 MC54/74HC161A MC54/74HC163A TYPICAL APPLICATIONS VARYING THE MODULUS HC163A OTHER INPUTS HC163A Q0 Q1 OTHER INPUTS OPTIONAL BUFFER FOR NOISE REJECTION Q2 Q0 Q1 OUTPUT OPTIONAL BUFFER FOR NOISE REJECTION Q2 Q3 OUTPUT Q3 RESET RESET Figure 13. Modulo–5 Counter Figure 14. Modulo–11 Counter The HC163A facilitates designing counters of any modulus with minimal external logic. The output is glitch–free due to the synchronous Reset. High–Speed CMOS Logic Data DL129 — Rev 6 3–11 MOTOROLA MC54/74HC161A MC54/74HC163A OUTLINE DIMENSIONS J SUFFIX CERAMIC PACKAGE CASE 620–10 ISSUE V –A – 16 9 1 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. –B – L C DIM A B C D E F G J K L M N –T K N SEATING – PLANE E M F J 16 PL 0.25 (0.010) G D 16 PL 0.25 (0.010) T A M 9 1 8 T B N SUFFIX PLASTIC PACKAGE CASE 648–08 ISSUE R –A – 16 M C DIM A B C D F G H J K L M S L S –T – SEATING PLANE K H D 16 PL 0.25 (0.010) M M J G T A M D SUFFIX PLASTIC SOIC PACKAGE CASE 751B–05 ISSUE J –A – 16 1 P 8 PL 0.25 (0.010) 8 B M M G K F R X 45° C –T SEATING – PLANE MOTOROLA J M D 16 PL 0.25 (0.010) M T B S A S 3–12 INCHES MILLIMETERS MIN MAX MIN MAX 0.740 0.770 18.80 19.55 6.35 0.250 0.270 6.85 3.69 0.145 0.175 4.44 0.39 0.015 0.021 0.53 1.02 0.040 0.070 1.77 0.100 BSC 2.54 BSC 0.050 BSC 1.27 BSC 0.21 0.008 0.015 0.38 2.80 0.110 0.130 3.30 7.50 0.295 0.305 7.74 0° 0° 10° 10° 0.020 0.040 0.51 1.01 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 9 –B – MILLIMETERS MIN MAX 19.05 19.93 6.10 7.49 — 5.08 0.39 0.50 1.27 BSC 1.40 1.65 2.54 BSC 0.21 0.38 3.18 4.31 7.62 BSC 15° 0° 1.01 0.51 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B F S S INCHES MIN MAX 0.750 0.785 0.240 0.295 — 0.200 0.015 0.020 0.050 BSC 0.055 0.065 0.100 BSC 0.008 0.015 0.125 0.170 0.300 BSC 15° 0° 0.020 0.040 DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0° 7° 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0° 7° 0.229 0.244 0.010 0.019 High–Speed CMOS Logic Data DL129 — Rev 6 MC54/74HC161A MC54/74HC163A Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 MFAX: [email protected] –TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 High–Speed CMOS Logic Data DL129 — Rev 6 ◊ CODELINE *MC54/74HC161A/D* 3–13 MC54/74HC161A/D MOTOROLA