19-3948; Rev 0; 1/06 ILABLE N KIT AVA IO T A U L A V E High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch The MAX2041 high-linearity passive upconverter or downconverter mixer is designed to provide 7.4dB NF and a 7.2dB conversion loss for an RF frequency range of 1700MHz to 3000MHz to support UMTS/WCDMA, DCS, PCS, and WiMAX base-station transmitter or receiver applications. The IIP3 is typically +33.5dBm for both downconversion and upconversion operation. With an LO frequency range of 1900MHz to 3000MHz, this particular mixer is ideal for high-side LO injection architectures. (For a pin-compatible mixer meant for low-side LO injection, refer to the MAX2039.) In addition to offering excellent linearity and noise performance, the MAX2041 also yields a high level of component integration. This device includes a double-balanced passive mixer core, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also integrated to allow for a single-ended RF input for downconversion (or RF output for upconversion), and single-ended LO inputs. The MAX2041 requires a nominal LO drive of 0dBm, and supply current is guaranteed to be below 145mA. The MAX2041 is pin compatible with the MAX2031 815MHz to 995MHz mixer, making this family of passive upconverters and downconverters ideal for applications where a common PC board layout is used for both frequency bands. The MAX2041 is available in a compact 20-pin thin QFN package (5mm x 5mm) with an exposed paddle. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range. Features ♦ 1700MHz to 3000MHz RF Frequency Range ♦ 1900MHz to 3000MHz LO Frequency Range ♦ 1500MHz to 2000MHz LO Frequency Range (MAX2039) ♦ DC to 350MHz IF Frequency Range ♦ 7.2dB Conversion Loss ♦ +33.5dBm Input IP3 ♦ ♦ ♦ ♦ ♦ +23.3dBm Input 1dB Compression Point 7.4dB Noise Figure Integrated LO Buffer Integrated RF and LO Baluns Low -3dBm to +3dBm LO Drive ♦ Built-In SPDT LO Switch with 43dB LO1 to LO2 Isolation and 50ns Switching Time ♦ Pin Compatible with the MAX2031 815MHz to 995MHz Mixer ♦ External Current-Setting Resistor Provides Option for Operating Mixer in Reduced-Power/ReducedPerformance Mode ♦ Lead-Free Package Available Ordering Information PART Applications UMTS/WCDMA Base Stations DCS 1800/PCS 1900 EDGE Base Stations cdmaOneTM and cdma2000® Base Stations WiMAX Base Stations and Customer Premise Equipment PHS/PAS Base Stations Predistortion Receivers Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radio Military Systems Microwave Links Digital and Spread-Spectrum Communication Systems TEMP RANGE PIN-PACKAGE PKG CODE MAX2041ETP 20 Thin QFN-EP* -40°C to +85°C (5mm x 5mm) T2055-3 bulk MAX2041ETP-T 20 Thin QFN-EP* -40°C to +85°C (5mm x 5mm) T2055-3 T/R MAX2041ETP+ 20 Thin QFN-EP* (5mm x 5mm) -40°C to +85°C T2055-3 lead-free bulk MAX2041ETP+T 20 Thin QFN-EP* (5mm x 5mm) -40°C to +85°C T2055-3 lead-free T/R cdmaOne is a trademark of CDMA Development Group. *EP = Exposed paddle. T = Tape-and-reel package. + = Lead free. cdma2000 is a registered trademark of Telecommunications Industry Association. Pin Configuration and Typical Application Circuit appear at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX2041 General Description MAX2041 High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch ABSOLUTE MAXIMUM RATINGS θJA .................................................................................+33°C/W θJC ...................................................................................+8°C/W Operating Temperature Range (Note A) ....TC = -40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +165°C Lead Temperature (soldering, 10s) .................................+300°C VCC to GND ...........................................................-0.3V to +5.5V TAP, LOBIAS, LOSEL to GND ....................-0.3V to (VCC + 0.3V) LO1, LO2, IF+, IF- to GND ....................................-0.3V to +0.3V IF, LO1, LO2 Input Power...............................................+15dBm RF Input Power .................................................................20dBm RF (RF is DC shorted to GND through a balun) .................50mA Continuous Power Dissipation (TA = +70°C) 20-Pin QFN-EP (derated 20mW/°C above +70°C) ..........2.2W Note A: TC is the temperature on the exposed paddle of the package. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (MAX2041 Typical Application Circuit, VCC = +4.75V to +5.25V, no RF signals applied, IF+ and IF- DC grounded through a transformer, TC = -40°C to +85°C. Typical values are at VCC = +5V, TC = +25°C, unless otherwise noted.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC LO_SEL Input Logic Low VIL LO_SEL Input Logic High VIH CONDITIONS MIN TYP MAX 4.75 5.00 5.25 V 104 145 mA 0.8 V 2 UNITS V AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (MAX2041 Typical Application Circuit, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 1700MHz to 3000MHz, fLO = 1900MHz to 3000MHz, fIF = 200MHz, fLO > fRF, TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +5V, PRF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 2100MHz, fIF = 200MHz, TC = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MAX UNITS 1700 3000 MHz MAX2041 1900 3000 MAX2039 1500 2000 DC 350 RF Frequency Range fRF LO Frequency Range fLO IF Frequency Range fIF External IF transformer dependent Conversion Loss LC PRF < +2dBm Loss Variation Over Temperature Input Compression Point Input Third-Order Intercept Point TC = -40°C to +85°C Noise Figure Under-Blocking 2 TYP MHz MHz 7.2 dB 0.0075 dB/°C P1dB (Note 2) 23.3 dBm IIP3 Two tones: fRF1 = 1900MHz, fRF2 = 1901MHz, PRF = 0dBm/tone, fLO = 2100MHz, PLO = 0dBm 33.5 dBm ±0.75 dB Single sideband 7.4 dB PRF = 5dBm, fRF = 2000MHz, fLO = 2190MHz, fBLOCK = 2100MHz (Note 3) 19 dB Input IP3 Variation Over Temperature Noise Figure MIN TC = -40°C to +85°C NF _______________________________________________________________________________________ High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch (MAX2041 Typical Application Circuit, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 1700MHz to 3000MHz, fLO = 1900MHz to 3000MHz, fIF = 200MHz, fLO > fRF, TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +5V, PRF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 2100MHz, fIF = 200MHz, TC = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS LO Drive MIN TYP -3 Spurious Response at IF 2x2 2LO - 2RF, PRF = 0dBm 63 3x3 3LO - 3RF, PRF = 0dBm 69 LO2 selected, 1900MHz < fLO < 2100MHz 49 LO1 selected, 1900MHz < fLO < 2100MHz 43 LO1 to LO2 Isolation Maximum LO Leakage at RF Port PLO = +3dBm (Note 4) Maximum LO Leakage at IF Port PLO = +3dBm Minimum RF-to-IF Isolation LO Switching Time 50% of LOSEL to IF settled to within 2° RF Port Return Loss LO Port Return Loss IF Port Return Loss MAX UNITS +3 dBm dBc dB -18.5 dBm -30 dBm 35 dB 50 ns 18 dB LO port selected, LO and IF terminated 16 LO port unselected, LO and IF terminated 26 LO driven at 0dBm, RF terminated into 50Ω 20 dB dB AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) (MAX2041 Typical Application Circuit, VCC = +4.75V to +5.25V, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 1700MHz to 3000MHz, fLO = 1900MHz to 3000MHz, fIF = 200MHz, fRF = fLO - fIF, TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = +5V, PIF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 2100MHz, fIF = 200MHz, TC = +25°C, unless otherwise noted.) (Note 1) PARAMETER Input Compression Point Input Third-Order Intercept Point LO ± 2IF Spur LO ± 3IF Spur Output Noise Floor SYMBOL CONDITIONS MIN TYP MAX UNITS P1dB (Note 2) 23.3 dBm IIP3 Two tones: fIF1 = 200MHz, fIF2 = 201MHz, PIF = 0dBm/tone, fLO = 1900MHz, PLO = 0dBm 33.5 dBm LO - 2IF 67 LO + 2IF 65 LO - 3IF 75 LO + 3IF 72 POUT = 0dBm -160 dBc dBc dBm/ Hz Note 1: All limits include external component losses. Output measurements taken at IF port for downconverter and RF port for upconverter from the Typical Application Circuit. Note 2: Compression point characterized. It is advisable not to continuously operate the mixer RF or IF input above +15dBm. Note 3: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021. Note 4: Refer to the MAX2043 for improved LO leakage of -52dBm typical. _______________________________________________________________________________________ 3 MAX2041 AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued) Typical Operating Characteristics (MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.) Downconverter Curves TC = -40°C 5 7 PLO = -3dBm, 0dBm, +3dBm 6 5 2100 2300 1700 1900 2100 2300 1500 INPUT IP3 vs. RF FREQUENCY INPUT IP3 vs. RF FREQUENCY 37 INPUT IP3 (dBm) TC = +85°C 33 31 TC = -40°C PLO = 0dBm 35 37 VCC = 5.25V 33 PLO = -3dBm 31 PLO = +3dBm 35 33 VCC = 5.0V 27 27 27 25 2300 25 1500 1700 RF FREQUENCY (MHz) 1900 2100 2300 1500 1700 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE (dB) 8 7 TC = +25°C PLO = -3dBm 9 2300 NOISE FIGURE vs. RF FREQUENCY 8 7 2100 10 9 NOISE FIGURE (dB) 10 MAX2041 toc07 TC = +85°C 1900 RF FREQUENCY (MHz) MAX2041 toc08 NOISE FIGURE vs. RF FREQUENCY 10 9 VCC = 4.75V 31 29 2100 2300 INPUT IP3 vs. RF FREQUENCY 29 1900 2100 39 29 25 1900 RF FREQUENCY (MHz) 39 MAX2041 toc04 TC = +25°C 37 1700 1700 RF FREQUENCY (MHz) 39 1500 MAX2041 toc03 4 1500 RF FREQUENCY (MHz) 35 VCC = 4.75V, 5.0V, 5.25V 6 PLO = 0dBm, +3dBm MAX2041 toc09 1900 INPUT IP3 (dBm) 1700 MAX2041 toc05 1500 7 5 4 4 INPUT IP3 (dBm) 8 CONVERSION LOSS (dB) TC = +25°C 6 8 CONVERSION LOSS (dB) 7 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2041 toc02 MAX2041 toc01 TC = +85°C 8 CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY 9 MAX2041 toc06 CONVERSION LOSS vs. RF FREQUENCY 9 NOISE FIGURE (dB) MAX2041 High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch 8 7 VCC = 4.75V, 5.0V, 5.25V 6 6 6 TC = -40°C 5 5 1600 1750 1900 2050 2200 RF FREQUENCY (MHz) 4 2350 2500 5 1600 1750 1900 2050 2200 RF FREQUENCY (MHz) 2350 2500 1600 1750 1900 2050 2200 RF FREQUENCY (MHz) _______________________________________________________________________________________ 2350 2500 High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Downconverter Curves 60 55 TC = +25°C TC = -40°C 65 60 55 50 45 1700 1900 2100 60 55 VCC = 4.75V 2300 VCC = 5.0V 45 1500 1700 1900 2100 2300 1500 1700 1900 2100 2300 FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO2 SELECTED) 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO2 SELECTED) 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO2 SELECTED) 70 65 60 TC = -40°C 55 TC = +25°C 50 MAX2041 toc14 PLO = -3dBm 75 70 65 60 PLO = +3dBm 55 PLO = 0dBm 50 45 1900 2100 2300 FUNDAMENTAL RF FREQUENCY (MHz) 75 70 65 TC = -40°C TC = +85°C 60 55 1900 2100 2300 PRF = 0dBm 80 75 70 65 PLO = -3dBm, 0dBm, +3dBm 60 55 1900 2100 FUNDAMENTAL RF FREQUENCY (MHz) VCC = 4.75V 55 VCC = 5.0V 1500 2300 1700 1900 2100 2300 3LO - 3RF RESPONSE vs. RF FREQUENCY 85 PRF = 0dBm 80 VCC = 5.25V 75 70 65 VCC = 5.0V 60 VCC = 4.75V 55 50 45 45 1700 60 FUNDAMENTAL RF FREQUENCY (MHz) 50 50 1500 65 3LO - 3RF RESPONSE vs. RF FREQUENCY 3LO - 3RF RESPONSE (dBc) TC = +25°C 1700 85 MAX2041 toc16 PRF = 0dBm 80 70 FUNDAMENTAL RF FREQUENCY (MHz) 3LO - 3RF RESPONSE vs. RF FREQUENCY 85 75 45 1500 3LO - 3RF RESPONSE (dBc) 1700 PRF = 0dBm 50 45 1500 VCC = 5.25V 80 MAX2041 toc18 TC = +85°C 85 2LO - 2RF RESPONSE (dBc) 75 PRF = 0dBm 80 2LO - 2RF RESPONSE (dBc) 80 85 MAX2041 toc13 PRF = 0dBm MAX2041 toc15 FUNDAMENTAL RF FREQUENCY (MHz) 85 3LO - 3RF RESPONSE (dBc) 65 50 45 1500 VCC = 5.25V 70 PLO = +3dBm 50 2LO - 2RF RESPONSE (dBc) 70 PRF = 0dBm 75 2LO - 2RF RESPONSE (dBc) 65 PLO = -3dBm 80 MAX2041 toc17 2LO - 2RF RESPONSE (dBc) 70 PRF = 0dBm PLO = 0dBm 75 2LO - 2RF RESPONSE (dBc) TC = +85°C 75 80 MAX2041 toc11 PRF = 0dBm MAX2041 toc10 80 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO1 SELECTED) 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO1 SELECTED) MAX2041 toc12 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO1 SELECTED) 45 1500 1700 1900 2100 FUNDAMENTAL RF FREQUENCY (MHz) 2300 1500 1700 1900 2100 2300 FUNDAMENTAL RF FREQUENCY (MHz) _______________________________________________________________________________________ 5 MAX2041 Typical Operating Characteristics (continued) (MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.) Typical Operating Characteristics (continued) (MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.) Downconverter Curves 23 TC = +85°C 21 TC = -40°C PLO = 0dBm 23 22 PLO = -3dBm 21 23 22 20 19 19 18 18 18 17 17 1900 2100 2300 17 1500 1700 1900 2100 2300 1500 LO SWITCH ISOLATION vs. LO FREQUENCY TC = -40°C 45 TC = +85°C LO SWITCH ISOLATION vs. LO FREQUENCY MAX2041 toc23 50 PLO = +3dBm 45 PLO = -3dBm 40 35 2100 2300 2500 -25 TC = +85°C -35 2100 2300 2500 PLO = +3dBm -25 -30 2300 LO FREQUENCY (MHz) 2500 1900 2100 2300 2500 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 -15 -20 VCC = 5.25V -25 -30 VCC = 5.0V -35 PLO = 0dBm PLO = -3dBm VCC = 4.75V -40 -45 2100 1700 LO FREQUENCY (MHz) -20 -40 1900 1500 MAX2041 toc26 -15 -35 TC = -40°C -40 -45 1700 1900 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2041 toc25 TC = +25°C -30 1700 -10 LO LEAKAGE (dBm) -20 40 LO FREQUENCY (MHz) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -15 45 35 1500 LO FREQUENCY (MHz) -10 50 VCC = 4.75V, 5.0V, 5.25V LO LEAKAGE (dBm) 1900 2300 LO SWITCH ISOLATION vs. LO FREQUENCY 35 1700 2100 55 PLO = 0dBm TC = +25°C 1900 RF FREQUENCY (MHz) 55 LO SWITCH ISOLATION (dB) MAX2041 toc22 50 1500 1700 RF FREQUENCY (MHz) 55 40 VCC = 5.0V MAX2041 toc24 1700 VCC = 4.75V 21 20 RF FREQUENCY (MHz) LO SWITCH ISOLATION (dB) 24 19 1500 6 25 LO SWITCH ISOLATION (dB) 20 24 VCC = 5.25V 26 MAX2041 toc27 22 PLO = +3dBm 25 INPUT P1dB (dBm) TC = +25°C 24 26 MAX2041 toc21 25 INPUT P1dB vs. RF FREQUENCY 27 MAX2041 toc20 MAX2041 toc19 26 INPUT P1dB (dBm) INPUT P1dB vs. RF FREQUENCY 27 INPUT P1dB (dBm) INPUT P1dB vs. RF FREQUENCY 27 LO LEAKAGE (dBm) MAX2041 High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch -45 1700 1900 2100 2300 LO FREQUENCY (MHz) 2500 1700 1900 2100 2300 LO FREQUENCY (MHz) _______________________________________________________________________________________ 2500 High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Downconverter Curves -20 TC = +25°C TC = -40°C -30 -20 PLO = -3dBm, 0dBm, +3dBm -25 -30 1700 1900 2100 2300 2500 RF-TO-IF ISOLATION vs. RF FREQUENCY 1700 1900 2100 2300 1500 TC = -40°C 30 TC = +25°C MAX2041 toc32 45 25 20 40 35 30 PLO = -3dBm, 0dBm, +3dBm 1900 2300 2100 45 40 35 30 VCC = 4.75V, 5.0V, 5.25V 1500 1700 RF FREQUENCY (MHz) 20 25 30 10 15 20 25 30 35 VCC = 4.75V, 5.0V, 5.25V 40 PLO = -3dBm, 0dBm, +3dBm 2300 MAX2041 toc35 5 IF PORT RETURN LOSS (dB) 15 2100 IF PORT RETURN LOSS vs. IF FREQUENCY 0 MAX2041 toc34 10 1900 RF FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 35 2500 20 1700 RF FREQUENCY (MHz) 5 2300 25 1500 0 2100 RF-TO-IF ISOLATION vs. RF FREQUENCY 20 2300 1900 50 25 2100 1700 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION (dB) 35 1900 -25 2500 50 MAX2041 toc31 TC = +85°C RF PORT RETURN LOSS (dB) RF-TO-IF ISOLATION (dB) 45 1700 VCC = 5.0V VCC = 4.75V LO FREQUENCY (MHz) 50 1500 -20 -30 1500 LO FREQUENCY (MHz) 40 VCC = 5.25V -15 MAX2041 toc33 1500 MAX2041 toc30 MAX2041 toc29 -15 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 RF-TO-IF ISOLATION (dB) -25 LO LEAKAGE RF PORT (dBm) MAX2041 toc28 LO LEAKAGE RF PORT (dBm) TC = +85°C -15 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 LO LEAKAGE RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 45 50 40 1000 1500 2000 2500 RF FREQUENCY (MHz) 3000 50 100 150 200 250 300 350 IF FREQUENCY (MHz) _______________________________________________________________________________________ 7 MAX2041 Typical Operating Characteristics (continued) (MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.) Typical Operating Characteristics (continued) (MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.) Downconverter Curves LO UNSELECTED RETURN LOSS vs. RF FREQUENCY 15 PLO = +3dBm 20 25 PLO = 0dBm 30 35 PLO = -3dBm 1500 2000 2500 120 20 30 40 PLO = -3dBm, 0dBm, +3dBm LO FREQUENCY (MHz) 110 100 90 VCC = 5.0V VCC = 4.75V 70 1000 3000 VCC = 5.25V 80 50 60 40 1000 10 SUPPLY CURRENT (mA) 10 130 MAX2041 toc37 5 SUPPLY CURRENT vs. TEMPERATURE (TC) 0 LO UNSELECTED RETURN LOSS (dB) MAX2041 toc36 LO SELECTED RETURN LOSS (dB) 0 MAX2041 toc38 LO SELECTED RETURN LOSS vs. LO FREQUENCY 1500 2000 2500 -40 3000 -15 10 35 60 85 TEMPERATURE (°C) LO FREQUENCY (MHz) Typical Operating Characteristics (MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO - fIF, fIF = 200MHz, R1 = 549Ω, unless otherwise noted.) Upconverter Curves TC = -40°C TC = +25°C 5 PLO = -3dBm, 0dBm, +3dBm 6 5 4 8 7 8 CONVERSION LOSS (dB) 6 8 CONVERSION LOSS (dB) 7 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2041 toc40 MAX2041 toc39 TC = +85°C 8 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2041 toc41 CONVERSION LOSS vs. RF FREQUENCY 9 CONVERSION LOSS (dB) MAX2041 High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch 7 VCC = 4.75V, 5.0V, 5.25V 6 5 4 4 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) _______________________________________________________________________________________ High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Upconverter Curves TC = +25°C 33 31 TC = -40°C 27 27 25 VCC = 5.0V VCC = 4.75V 27 25 1500 1600 1700 1800 1900 2000 2100 2200 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO + 2IF REJECTION vs. RF FREQUENCY (LO1 SELECTED) LO + 2IF REJECTION vs. RF FREQUENCY (LO1 SELECTED) LO + 2IF REJECTION vs. RF FREQUENCY (LO1 SELECTED) 65 60 TC = +85°C 55 PLO = +3dBm 70 65 60 80 PIF = 0dBm 75 LO + 2IF REJECTION (dBc) TC = +25°C 70 75 PIF = 0dBm PLO = 0dBm MAX2041 toc46 TC = -40°C 80 MAX2041 toc45 PIF = 0dBm PLO = -3dBm 55 MAX2041 toc47 1500 1600 1700 1800 1900 2000 2100 2200 LO + 2IF REJECTION (dBc) 70 65 60 55 VCC = 4.75V, 5.0V, 5.25V 50 50 50 45 45 45 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) LO + 2IF REJECTION vs. RF FREQUENCY (LO2 SELECTED) LO + 2IF REJECTION vs. RF FREQUENCY (LO2 SELECTED) LO + 2IF REJECTION vs. RF FREQUENCY (LO2 SELECTED) TC = +85°C 80 70 65 60 TC = +25°C 55 50 PLO = -3dBm 75 PIF = 0dBm PLO = +3dBm 70 65 60 PLO = 0dBm 55 50 45 80 PIF = 0dBm 75 LO + 2IF REJECTION (dBc) PIF = 0dBm LO + 2IF REJECTION (dBc) TC = -40°C MAX2041 toc48 80 MAX2041 toc50 1500 1600 1700 1800 1900 2000 2100 2200 MAX2041 toc49 LO + 2IF REJECTION (dBc) 31 29 PLO = -3dBm, 0dBm, +3dBm 25 75 75 33 1500 1600 1700 1800 1900 2000 2100 2200 85 LO + 2IF REJECTION (dBc) 31 29 VCC = 5.25V 35 33 29 80 37 35 INPUT IP3 (dBm) 35 INPUT IP3 (dBm) 37 INPUT IP3 (dBm) TC = +85°C INPUT IP3 vs. RF FREQUENCY 39 MAX2041 toc43 MAX2041 toc42 37 INPUT IP3 vs. RF FREQUENCY 39 MAX2041 toc44 INPUT IP3 vs. RF FREQUENCY 39 70 65 60 55 VCC = 4.75V, 5.0V, 5.25V 50 45 45 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) _______________________________________________________________________________________ 9 MAX2041 Typical Operating Characteristics (continued) (MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO - fIF, fIF = 200MHz, R1 = 549Ω, unless otherwise noted.) Typical Operating Characteristics (continued) (MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO - fIF, fIF = 200MHz, R1 = 549Ω, unless otherwise noted.) Upconverter Curves 70 65 60 55 TC = +85°C 70 65 60 55 50 PLO = -3dBm VCC = 4.75V MAX2041 toc53 PIF = 0dBm 70 65 60 55 VCC = 4.75V, 5.0V, 5.25V PLO = 0dBm 50 45 1500 1600 1700 1800 1900 2000 2100 2200 FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) LO - 2IF REJECTION vs. RF FREQUENCY (LO2 SELECTED) LO - 2IF REJECTION vs. RF FREQUENCY (LO2 SELECTED) LO - 2IF REJECTION vs. RF FREQUENCY (LO2 SELECTED) 65 TC = +25°C 55 PIF = 0dBm PLO = +3dBm 75 70 65 PLO = 0dBm 60 80 75 LO - 2IF REJECTION (dBc) 70 60 80 LO - 2IF REJECTION (dBc) TC = +85°C 85 MAX2041 toc54 PIF = 0dBm 55 PLO = -3dBm 50 70 VCC = 5.0V 65 VCC = 4.75V 60 55 50 50 45 PIF = 0dBm VCC = 5.25V MAX2041 toc56 1500 1600 1700 1800 1900 2000 2100 2200 TC = -40°C 45 45 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) 80 75 TC = +25°C 70 TC = -40°C 60 55 PIF = 0dBm LO + 3IF REJECTION vs. RF FREQUENCY 80 75 70 65 PLO = 0dBm PLO = -3dBm 60 55 50 90 VCC = 5.25V 85 PIF = 0dBm MAX2041 toc59 PLO = +3dBm 85 LO + 3IF REJECTION (dBc) PIF = 0dBm MAX2041 toc57 TC = +85°C 85 LO + 3IF REJECTION vs. RF FREQUENCY 90 LO + 3IF REJECTION (dBc) LO + 3IF REJECTION vs. RF FREQUENCY 90 10 VCC = 5.25V 75 45 80 65 80 1500 1600 1700 1800 1900 2000 2100 2200 85 LO - 2IF REJECTION (dBc) 75 TC = -40°C 45 75 PIF = 0dBm PLO = +3dBm MAX2041 toc55 50 80 MAX2041 toc58 LO - 2IF REJECTION (dBc) 75 85 LO - 2IF REJECTION vs. RF FREQUENCY (LO1 SELECTED) LO - 2IF REJECTION (dBc) PIF = 0dBm LO - 2IF REJECTION (dBc) TC = +25°C MAX2041 toc51 80 LO - 2IF REJECTION vs. RF FREQUENCY (LO1 SELECTED) MAX2041 toc52 LO - 2IF REJECTION vs. RF FREQUENCY (LO1 SELECTED) LO + 3IF REJECTION (dBc) MAX2041 High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch 80 75 70 65 VCC = 4.75V VCC = 5.0V 60 55 50 50 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) ______________________________________________________________________________________ High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Upconverter Curves 75 70 65 55 75 70 PLO = -3dBm 65 PLO = 0dBm 60 55 50 MAX2041 toc62 VCC = 5.25V VCC = 5.0V 75 70 65 60 VCC = 4.75V 55 50 50 1500 1600 1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) FUNDAMENTAL RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -40°C, +25°C, +85°C -25 -20 PLO = -3dBm, 0dBm, +3dBm -25 -30 MAX2041 toc65 MAX2041 toc64 -15 -10 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT (dBm) MAX2041 toc63 -15 -10 -30 VCC = 5.25V -15 -20 VCC = 4.75V VCC = 5.0V -25 -30 1700 1800 1900 2000 2100 2200 2300 2400 1700 1800 1900 2000 2100 2200 2300 2400 1700 1800 1900 2000 2100 2200 2300 2400 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) IF LEAKAGE AT RF vs. LO FREQUENCY -50 IF LEAKAGE (dBm) -50 -60 TC = -40°C -70 -80 -60 IF LEAKAGE AT RF vs. LO FREQUENCY PLO = -3dBm, 0dBm, +3dBm -70 -80 TC = +85°C -40 -50 -60 VCC = 4.75V -70 -80 TC = +25°C -90 MAX2041 toc68 MAX2041 toc66 -40 IF LEAKAGE (dBm) IF LEAKAGE AT RF vs. LO FREQUENCY -40 IF LEAKAGE (dBm) 80 1500 1600 1700 1800 1900 2000 2100 2200 -10 LO LEAKAGE AT RF PORT (dBm) PLO = +3dBm 80 PIF = 0dBm 85 MAX2041 toc67 60 TC = +85°C TC = -40°C LO - 3IF REJECTION vs. RF FREQUENCY 90 LO - 3IF REJECTION (dBc) TC = +25°C PIF = 0dBm 85 LO - 3IF REJECTION (dBc) LO - 3IF REJECTION (dBc) 80 MAX2041 toc60 PIF = 0dBm 85 LO - 3IF REJECTION vs. RF FREQUENCY 90 MAX2041 toc61 LO - 3IF REJECTION vs. RF FREQUENCY 90 -90 -90 VCC = 5.25V VCC = 5.0V 1700 1800 1900 2000 2100 2200 2300 2400 1700 1800 1900 2000 2100 2200 2300 2400 1700 1800 1900 2000 2100 2200 2300 2400 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) ______________________________________________________________________________________ 11 MAX2041 Typical Operating Characteristics (continued) (MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO - fIF, fIF = 200MHz, R1 = 549Ω, unless otherwise noted.) High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2041 Pin Description PIN NAME 1, 6, 8, 14 VCC 2 RF Single-Ended 50Ω RF Input/Output. This port is internally matched and DC shorted to GND through a balun. 3 TAP Center Tap of the Internal RF Balun. Bypass to GND with capacitors close to the IC, as shown in the Typical Application Circuit. 4, 5, 10, 12, 13, 16, 17, 20 GND Ground 7 LOBIAS 9 LOSEL 11 LO1 15 LO2 18, 19 IF-, IF+ EP GND FUNCTION Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical Application Circuit. Bias Resistor for Internal LO Buffer. Connect a 549Ω ±1% resistor from LOBIAS to the power supply. Local Oscillator Select. Logic control input for selecting LO1 or LO2. Local Oscillator Input 1. Drive LOSEL low to select LO1. Local Oscillator Input 2. Drive LOSEL high to select LO2. Differential IF Input/Outputs Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias. Detailed Description The MAX2041 can operate either as a downconverter or an upconverter mixer that provides 7.2dB of conversion loss with a typical 7.4dB noise figure. IIP3 is +33.5dBm for both upconversion and downconversion operation. The integrated baluns and matching circuitry allow for 50Ω single-ended interfaces to the RF port and two LO ports. The RF port can be used as an input for downconversion or an output for upconversion. A single-pole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs with 43dB of LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2041’s inputs to a range of -3dBm to +3dBm. The IF port incorporates a differential output for downconversion, which is ideal for providing enhanced IIP2 performance. For upconversion, the IF port is a differential input. Specifications are guaranteed over broad frequency ranges to allow for use in UMTS, cdma2000, 2G/2.5G/3G DCS 1800, PCS 1900, and WiMAX base stations. The MAX2041 is specified to operate over an RF frequency range of 1700MHz to 3000MHz, an LO frequency range of 1900MHz to 3000MHz, and an IF frequency range of DC to 350MHz. Operation beyond these ranges is possible; see the Typical Operating Characteristics for additional details. 12 This device can operate equally well in low-side LO injection applications as long as the LO frequency range is between 1900MHz and 3000MHz. If an LO frequency range below 1900MHz is desired, refer to the MAX2039. RF Port and Balun For using the MAX2041 as a downconverter, the RF input is internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required since the input is internally DC shorted to ground through the on-chip balun. The RF return loss is typically better than 17dB over a 1400MHz to 3000MHz frequency range. For upconverter operation, the RF port is a single-ended output similarly matched to 50Ω. LO Inputs, Buffer, and Balun The MAX2041 can be used for either high-side or lowside injection applications with a 1900MHz to 3000MHz LO frequency range. For a device with a 1500MHz to 2000MHz LO frequency range, refer to the MAX2039 data sheet. As an added feature, the MAX2041 includes an internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50ns, which is more than adequate for virtually all GSM applications. If frequency hopping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic-high selects LO2, logic-low selects LO1. To avoid damage to the part, voltage MUST ______________________________________________________________________________________ High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch High-Linearity Mixer The core of the MAX2041 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. Differential IF The MAX2041 mixer has an IF frequency range of DC to 350MHz. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF applications require a 1:1 balun to transform the 50Ω differential IF impedance to a 50Ω single-ended system. After the balun, the IF return loss is better than 15dB. The differential IF is used as an input port for upconverter operation. The user can use a differential IF amplifier following the mixer but a DC block is required on both IF pins. In this configuration, the IF+ and IF- pins need to be returned to ground through a high resistance (about 1kΩ). This ground return can also be accomplished by grounding the RF TAP (pin 3) and AC-coupling the IF+ and IF- ports (pins 19 and 18). Layout Considerations A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PC board exposed pad MUST be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX2041 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. Power-Supply Bypassing Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin and TAP with the capacitors shown in the Typical Application Circuit; see Table 1. Place the TAP bypass capacitor to ground within 100 mils of the TAP pin. Table 1. Component List Referring to the Typical Application Circuit COMPONENT VALUE DESCRIPTION C1 4pF Microwave capacitor (0603) C4 10pF Microwave capacitor (0603) Applications Information C2, C6, C7, C8, C10, C12 22pF Microwave capacitors (0603) Input and Output Matching C3, C5, C9, C11 0.01µF R1 549Ω The RF and LO inputs are internally matched to 50Ω. No matching components are required. Return loss at the RF port is typically better than 17dB over a 1400MHz to 3000MHz frequency range, and return loss at the LO ports is typically better than 16dB over a 1900MHz to 3000MHz frequency range. RF and LO inputs require only DC-blocking capacitors for interfacing. The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit). Bias Resistor Bias current for the LO buffer is optimized by fine tuning resistor R1. If reduced current is required at the expense of performance, contact the factory for details. If the ±1% bias resistor values are not readily available, substitute standard ±5% values. Microwave capacitors (0603) ±1% resistor (0603) T1 IF balun with DC grounded 1:1 Balun ports M/A-COM MABAES0029 U1 MAX2041 Maxim IC Exposed Pad RF/Thermal Considerations The EP of the MAX2041’s 20-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the MAX2041 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PC board, either directly or through an array of plated via holes. ______________________________________________________________________________________ 13 MAX2041 be applied to VCC before digital logic is applied to LOSEL (see the Absolute Maximum Ratings). LO1 and LO2 inputs are internally matched to 50Ω, requiring only a 22pF DC-blocking capacitor. A two-stage internal LO buffer allows a wide-input power range for the LO drive. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on chip. High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch MAX2041 Typical Application Circuit T1 C3 5 IF 16 GND 3 GND 4 17 IF18 19 20 IF+ GND VCC 1 C2 VCC C1 RF RF 15 1 2 14 MAX2041 LO2 C12 VCC LO2 INPUT VCC C11 C5 TAP C4 GND 3 13 4 12 5 11 GND GND LO1 INPUT 10 LO1 GND 9 LOSEL 8 VCC VCC LOBIAS 6 7 C10 GND R1 VCC C6 C7 VCC C9 LOSEL INPUT C8 Pin Configuration GND IF+ IF- GND GND 19 18 17 16 PROCESS: SiGe BiCMOS 20 TOP VIEW 15 LO2 2 14 VCC TAP 3 13 GND GND 4 12 GND GND 5 11 LO1 VCC 1 RF Chip Information 14 7 8 9 LOBIAS VCC LOSEL GND 10 6 VCC MAX2041 ______________________________________________________________________________________ High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch QFN THIN.EPS D2 D b CL 0.10 M C A B D2/2 D/2 k L MARKING AAAAA E/2 E2/2 CL (NE-1) X e E DETAIL A PIN # 1 I.D. e/2 E2 PIN # 1 I.D. 0.35x45¡ e (ND-1) X e DETAIL B e L1 L CL CL L L e e 0.10 C A C 0.08 C A1 A3 PACKAGE OUTLINE, 16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm -DRAWING NOT TO SCALE- 21-0140 I 1 2 ______________________________________________________________________________________ 15 MAX2041 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) MAX2041 High-Linearity, 1700MHz to 3000MHz Upconversion/ Downconversion Mixer with LO Buffer/Switch Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) COMMON DIMENSIONS EXPOSED PAD VARIATIONS PKG. 16L 5x5 20L 5x5 28L 5x5 32L 5x5 40L 5x5 SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. A A1 A3 b D E e PKG. CODES 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0 0.02 0.05 0 0.02 0.05 0 0.02 0.05 0 0.02 0.05 0 T1655-2 T1655-3 T1655N-1 T2055-3 D2 3.00 3.00 3.00 3.00 3.00 T2055-4 T2055-5 3.15 T2855-3 3.15 T2855-4 2.60 T2855-5 2.60 3.15 T2855-6 T2855-7 2.60 T2855-8 3.15 T2855N-1 3.15 T3255-3 3.00 T3255-4 3.00 T3255-5 3.00 T3255N-1 3.00 T4055-1 3.20 0.02 0.05 0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF. 0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 0.65 BSC. 0.50 BSC. 0.40 BSC. 0.80 BSC. 0.50 BSC. - 0.25 - 0.25 - 0.25 0.35 0.45 0.25 - 0.25 0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60 L1 - 0.30 0.40 0.50 40 16 N 20 28 32 ND 10 4 5 7 8 4 10 5 7 8 NE WHHB ----WHHC WHHD-1 WHHD-2 JEDEC k L NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. L E2 exceptions MIN. NOM. MAX. MIN. NOM. MAX. –0.15 3.10 3.10 3.10 3.10 3.10 3.25 3.25 2.70 2.70 3.25 2.70 3.25 3.25 3.10 3.10 3.10 3.10 3.30 3.20 3.20 3.20 3.20 3.20 3.35 3.35 2.80 2.80 3.35 2.80 3.35 3.35 3.20 3.20 3.20 3.20 3.40 3.00 3.00 3.00 3.00 3.00 3.15 3.15 2.60 2.60 3.15 2.60 3.15 3.15 33.00 33.00 3.00 3.00 3.20 3.10 3.10 3.10 3.10 3.10 3.25 3.25 2.70 2.70 3.25 2.70 3.25 3.25 3.10 3.10 3.10 3.10 3.30 3.20 3.20 3.20 3.20 3.20 3.35 3.35 2.80 2.80 3.35 2.80 3.35 3.35 3.20 3.20 3.20 3.20 3.40 ** ** ** ** ** 0.40 ** ** ** ** ** 0.40 ** ** ** ** ** ** DOWN BONDS ALLOWED YES NO NO YES NO YES YES YES NO NO YES YES NO YES NO YES NO YES ** SEE COMMON DIMENSIONS TABLE 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. 5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. 6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-3 AND T2855-6. 10. WARPAGE SHALL NOT EXCEED 0.10 mm. 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. 12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. 13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", –0.05. PACKAGE OUTLINE, 16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm 21-0140 -DRAWING NOT TO SCALE- I 2 2 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2006 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.