MAXIM MAX2041ETP+

19-3948; Rev 0; 1/06
ILABLE
N KIT AVA
IO
T
A
U
L
A
V
E
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
The MAX2041 high-linearity passive upconverter or
downconverter mixer is designed to provide 7.4dB NF
and a 7.2dB conversion loss for an RF frequency range
of 1700MHz to 3000MHz to support UMTS/WCDMA,
DCS, PCS, and WiMAX base-station transmitter or
receiver applications. The IIP3 is typically +33.5dBm
for both downconversion and upconversion operation.
With an LO frequency range of 1900MHz to 3000MHz,
this particular mixer is ideal for high-side LO injection
architectures. (For a pin-compatible mixer meant for
low-side LO injection, refer to the MAX2039.)
In addition to offering excellent linearity and noise performance, the MAX2041 also yields a high level of component integration. This device includes a double-balanced
passive mixer core, a dual-input LO selectable switch,
and an LO buffer. On-chip baluns are also integrated to
allow for a single-ended RF input for downconversion (or
RF output for upconversion), and single-ended LO inputs.
The MAX2041 requires a nominal LO drive of 0dBm, and
supply current is guaranteed to be below 145mA.
The MAX2041 is pin compatible with the MAX2031
815MHz to 995MHz mixer, making this family of passive
upconverters and downconverters ideal for applications
where a common PC board layout is used for both frequency bands.
The MAX2041 is available in a compact 20-pin thin
QFN package (5mm x 5mm) with an exposed paddle.
Electrical performance is guaranteed over the extended
-40°C to +85°C temperature range.
Features
♦ 1700MHz to 3000MHz RF Frequency Range
♦ 1900MHz to 3000MHz LO Frequency Range
♦ 1500MHz to 2000MHz LO Frequency Range
(MAX2039)
♦ DC to 350MHz IF Frequency Range
♦ 7.2dB Conversion Loss
♦ +33.5dBm Input IP3
♦
♦
♦
♦
♦
+23.3dBm Input 1dB Compression Point
7.4dB Noise Figure
Integrated LO Buffer
Integrated RF and LO Baluns
Low -3dBm to +3dBm LO Drive
♦ Built-In SPDT LO Switch with 43dB LO1 to LO2
Isolation and 50ns Switching Time
♦ Pin Compatible with the MAX2031 815MHz to
995MHz Mixer
♦ External Current-Setting Resistor Provides Option
for Operating Mixer in Reduced-Power/ReducedPerformance Mode
♦ Lead-Free Package Available
Ordering Information
PART
Applications
UMTS/WCDMA Base Stations
DCS 1800/PCS 1900 EDGE Base Stations
cdmaOneTM and cdma2000® Base Stations
WiMAX Base Stations and Customer Premise Equipment
PHS/PAS Base Stations
Predistortion Receivers
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radio
Military Systems
Microwave Links
Digital and Spread-Spectrum Communication Systems
TEMP RANGE PIN-PACKAGE
PKG
CODE
MAX2041ETP
20 Thin QFN-EP*
-40°C to +85°C (5mm x 5mm)
T2055-3
bulk
MAX2041ETP-T
20 Thin QFN-EP*
-40°C to +85°C (5mm x 5mm)
T2055-3
T/R
MAX2041ETP+
20 Thin QFN-EP*
(5mm x 5mm)
-40°C to +85°C
T2055-3
lead-free
bulk
MAX2041ETP+T
20 Thin QFN-EP*
(5mm x 5mm)
-40°C to +85°C
T2055-3
lead-free
T/R
cdmaOne is a trademark of CDMA Development Group.
*EP = Exposed paddle.
T = Tape-and-reel package.
+ = Lead free.
cdma2000 is a registered trademark of Telecommunications
Industry Association.
Pin Configuration and Typical Application Circuit appear at
end of data sheet.
________________________________________________________________ Maxim Integrated Products
For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX2041
General Description
MAX2041
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
ABSOLUTE MAXIMUM RATINGS
θJA .................................................................................+33°C/W
θJC ...................................................................................+8°C/W
Operating Temperature Range (Note A) ....TC = -40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +165°C
Lead Temperature (soldering, 10s) .................................+300°C
VCC to GND ...........................................................-0.3V to +5.5V
TAP, LOBIAS, LOSEL to GND ....................-0.3V to (VCC + 0.3V)
LO1, LO2, IF+, IF- to GND ....................................-0.3V to +0.3V
IF, LO1, LO2 Input Power...............................................+15dBm
RF Input Power .................................................................20dBm
RF (RF is DC shorted to GND through a balun) .................50mA
Continuous Power Dissipation (TA = +70°C)
20-Pin QFN-EP (derated 20mW/°C above +70°C) ..........2.2W
Note A: TC is the temperature on the exposed paddle of the package.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(MAX2041 Typical Application Circuit, VCC = +4.75V to +5.25V, no RF signals applied, IF+ and IF- DC grounded through a transformer, TC = -40°C to +85°C. Typical values are at VCC = +5V, TC = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
LO_SEL Input Logic Low
VIL
LO_SEL Input Logic High
VIH
CONDITIONS
MIN
TYP
MAX
4.75
5.00
5.25
V
104
145
mA
0.8
V
2
UNITS
V
AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION)
(MAX2041 Typical Application Circuit, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to
+3dBm, PRF = 0dBm, fRF = 1700MHz to 3000MHz, fLO = 1900MHz to 3000MHz, fIF = 200MHz, fLO > fRF, TC = -40°C to +85°C,
unless otherwise noted. Typical values are at VCC = +5V, PRF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 2100MHz, fIF = 200MHz,
TC = +25°C, unless otherwise noted.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MAX
UNITS
1700
3000
MHz
MAX2041
1900
3000
MAX2039
1500
2000
DC
350
RF Frequency Range
fRF
LO Frequency Range
fLO
IF Frequency Range
fIF
External IF transformer dependent
Conversion Loss
LC
PRF < +2dBm
Loss Variation Over Temperature
Input Compression Point
Input Third-Order Intercept Point
TC = -40°C to +85°C
Noise Figure Under-Blocking
2
TYP
MHz
MHz
7.2
dB
0.0075
dB/°C
P1dB
(Note 2)
23.3
dBm
IIP3
Two tones:
fRF1 = 1900MHz,
fRF2 = 1901MHz,
PRF = 0dBm/tone,
fLO = 2100MHz,
PLO = 0dBm
33.5
dBm
±0.75
dB
Single sideband
7.4
dB
PRF = 5dBm, fRF = 2000MHz, fLO =
2190MHz, fBLOCK = 2100MHz
(Note 3)
19
dB
Input IP3 Variation Over
Temperature
Noise Figure
MIN
TC = -40°C to +85°C
NF
_______________________________________________________________________________________
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
(MAX2041 Typical Application Circuit, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to
+3dBm, PRF = 0dBm, fRF = 1700MHz to 3000MHz, fLO = 1900MHz to 3000MHz, fIF = 200MHz, fLO > fRF, TC = -40°C to +85°C,
unless otherwise noted. Typical values are at VCC = +5V, PRF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 2100MHz, fIF = 200MHz,
TC = +25°C, unless otherwise noted.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
LO Drive
MIN
TYP
-3
Spurious Response at IF
2x2
2LO - 2RF, PRF = 0dBm
63
3x3
3LO - 3RF, PRF = 0dBm
69
LO2 selected, 1900MHz < fLO < 2100MHz
49
LO1 selected, 1900MHz < fLO < 2100MHz
43
LO1 to LO2 Isolation
Maximum LO Leakage at RF Port
PLO = +3dBm (Note 4)
Maximum LO Leakage at IF Port
PLO = +3dBm
Minimum RF-to-IF Isolation
LO Switching Time
50% of LOSEL to IF settled to within 2°
RF Port Return Loss
LO Port Return Loss
IF Port Return Loss
MAX
UNITS
+3
dBm
dBc
dB
-18.5
dBm
-30
dBm
35
dB
50
ns
18
dB
LO port selected, LO and IF terminated
16
LO port unselected, LO and IF terminated
26
LO driven at 0dBm, RF terminated into 50Ω
20
dB
dB
AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(MAX2041 Typical Application Circuit, VCC = +4.75V to +5.25V, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 1700MHz to 3000MHz,
fLO = 1900MHz to 3000MHz, fIF = 200MHz, fRF = fLO - fIF, TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC =
+5V, PIF = 0dBm, PLO = 0dBm, fRF = 1900MHz, fLO = 2100MHz, fIF = 200MHz, TC = +25°C, unless otherwise noted.) (Note 1)
PARAMETER
Input Compression Point
Input Third-Order Intercept Point
LO ± 2IF Spur
LO ± 3IF Spur
Output Noise Floor
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
P1dB
(Note 2)
23.3
dBm
IIP3
Two tones:
fIF1 = 200MHz,
fIF2 = 201MHz,
PIF = 0dBm/tone,
fLO = 1900MHz,
PLO = 0dBm
33.5
dBm
LO - 2IF
67
LO + 2IF
65
LO - 3IF
75
LO + 3IF
72
POUT = 0dBm
-160
dBc
dBc
dBm/
Hz
Note 1: All limits include external component losses. Output measurements taken at IF port for downconverter and RF port for
upconverter from the Typical Application Circuit.
Note 2: Compression point characterized. It is advisable not to continuously operate the mixer RF or IF input above +15dBm.
Note 3: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all
SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.
Note 4: Refer to the MAX2043 for improved LO leakage of -52dBm typical.
_______________________________________________________________________________________
3
MAX2041
AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
Typical Operating Characteristics
(MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Downconverter Curves
TC = -40°C
5
7
PLO = -3dBm, 0dBm, +3dBm
6
5
2100
2300
1700
1900
2100
2300
1500
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 vs. RF FREQUENCY
37
INPUT IP3 (dBm)
TC = +85°C
33
31
TC = -40°C
PLO = 0dBm
35
37
VCC = 5.25V
33
PLO = -3dBm
31
PLO = +3dBm
35
33
VCC = 5.0V
27
27
27
25
2300
25
1500
1700
RF FREQUENCY (MHz)
1900
2100
2300
1500
1700
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE (dB)
8
7
TC = +25°C
PLO = -3dBm
9
2300
NOISE FIGURE vs. RF FREQUENCY
8
7
2100
10
9
NOISE FIGURE (dB)
10
MAX2041 toc07
TC = +85°C
1900
RF FREQUENCY (MHz)
MAX2041 toc08
NOISE FIGURE vs. RF FREQUENCY
10
9
VCC = 4.75V
31
29
2100
2300
INPUT IP3 vs. RF FREQUENCY
29
1900
2100
39
29
25
1900
RF FREQUENCY (MHz)
39
MAX2041 toc04
TC = +25°C
37
1700
1700
RF FREQUENCY (MHz)
39
1500
MAX2041 toc03
4
1500
RF FREQUENCY (MHz)
35
VCC = 4.75V, 5.0V, 5.25V
6
PLO = 0dBm, +3dBm
MAX2041 toc09
1900
INPUT IP3 (dBm)
1700
MAX2041 toc05
1500
7
5
4
4
INPUT IP3 (dBm)
8
CONVERSION LOSS (dB)
TC = +25°C
6
8
CONVERSION LOSS (dB)
7
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2041 toc02
MAX2041 toc01
TC = +85°C
8
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2041 toc06
CONVERSION LOSS vs. RF FREQUENCY
9
NOISE FIGURE (dB)
MAX2041
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
8
7
VCC = 4.75V, 5.0V, 5.25V
6
6
6
TC = -40°C
5
5
1600
1750
1900
2050
2200
RF FREQUENCY (MHz)
4
2350
2500
5
1600
1750
1900
2050
2200
RF FREQUENCY (MHz)
2350
2500
1600
1750
1900
2050
2200
RF FREQUENCY (MHz)
_______________________________________________________________________________________
2350
2500
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
60
55
TC = +25°C
TC = -40°C
65
60
55
50
45
1700
1900
2100
60
55
VCC = 4.75V
2300
VCC = 5.0V
45
1500
1700
1900
2100
2300
1500
1700
1900
2100
2300
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO2 SELECTED)
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO2 SELECTED)
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO2 SELECTED)
70
65
60
TC = -40°C
55
TC = +25°C
50
MAX2041 toc14
PLO = -3dBm
75
70
65
60
PLO = +3dBm
55
PLO = 0dBm
50
45
1900
2100
2300
FUNDAMENTAL RF FREQUENCY (MHz)
75
70
65
TC = -40°C
TC = +85°C
60
55
1900
2100
2300
PRF = 0dBm
80
75
70
65
PLO = -3dBm, 0dBm, +3dBm
60
55
1900
2100
FUNDAMENTAL RF FREQUENCY (MHz)
VCC = 4.75V
55
VCC = 5.0V
1500
2300
1700
1900
2100
2300
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
PRF = 0dBm
80
VCC = 5.25V
75
70
65
VCC = 5.0V
60
VCC = 4.75V
55
50
45
45
1700
60
FUNDAMENTAL RF FREQUENCY (MHz)
50
50
1500
65
3LO - 3RF RESPONSE vs. RF FREQUENCY
3LO - 3RF RESPONSE (dBc)
TC = +25°C
1700
85
MAX2041 toc16
PRF = 0dBm
80
70
FUNDAMENTAL RF FREQUENCY (MHz)
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
75
45
1500
3LO - 3RF RESPONSE (dBc)
1700
PRF = 0dBm
50
45
1500
VCC = 5.25V
80
MAX2041 toc18
TC = +85°C
85
2LO - 2RF RESPONSE (dBc)
75
PRF = 0dBm
80
2LO - 2RF RESPONSE (dBc)
80
85
MAX2041 toc13
PRF = 0dBm
MAX2041 toc15
FUNDAMENTAL RF FREQUENCY (MHz)
85
3LO - 3RF RESPONSE (dBc)
65
50
45
1500
VCC = 5.25V
70
PLO = +3dBm
50
2LO - 2RF RESPONSE (dBc)
70
PRF = 0dBm
75
2LO - 2RF RESPONSE (dBc)
65
PLO = -3dBm
80
MAX2041 toc17
2LO - 2RF RESPONSE (dBc)
70
PRF = 0dBm
PLO = 0dBm
75
2LO - 2RF RESPONSE (dBc)
TC = +85°C
75
80
MAX2041 toc11
PRF = 0dBm
MAX2041 toc10
80
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO1 SELECTED)
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO1 SELECTED)
MAX2041 toc12
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO1 SELECTED)
45
1500
1700
1900
2100
FUNDAMENTAL RF FREQUENCY (MHz)
2300
1500
1700
1900
2100
2300
FUNDAMENTAL RF FREQUENCY (MHz)
_______________________________________________________________________________________
5
MAX2041
Typical Operating Characteristics (continued)
(MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Typical Operating Characteristics (continued)
(MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Downconverter Curves
23
TC = +85°C
21
TC = -40°C
PLO = 0dBm
23
22
PLO = -3dBm
21
23
22
20
19
19
18
18
18
17
17
1900
2100
2300
17
1500
1700
1900
2100
2300
1500
LO SWITCH ISOLATION vs. LO FREQUENCY
TC = -40°C
45
TC = +85°C
LO SWITCH ISOLATION vs. LO FREQUENCY
MAX2041 toc23
50
PLO = +3dBm
45
PLO = -3dBm
40
35
2100
2300
2500
-25
TC = +85°C
-35
2100
2300
2500
PLO = +3dBm
-25
-30
2300
LO FREQUENCY (MHz)
2500
1900
2100
2300
2500
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-15
-20
VCC = 5.25V
-25
-30
VCC = 5.0V
-35
PLO = 0dBm
PLO = -3dBm
VCC = 4.75V
-40
-45
2100
1700
LO FREQUENCY (MHz)
-20
-40
1900
1500
MAX2041 toc26
-15
-35
TC = -40°C
-40
-45
1700
1900
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
MAX2041 toc25
TC = +25°C
-30
1700
-10
LO LEAKAGE (dBm)
-20
40
LO FREQUENCY (MHz)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-15
45
35
1500
LO FREQUENCY (MHz)
-10
50
VCC = 4.75V, 5.0V, 5.25V
LO LEAKAGE (dBm)
1900
2300
LO SWITCH ISOLATION vs. LO FREQUENCY
35
1700
2100
55
PLO = 0dBm
TC = +25°C
1900
RF FREQUENCY (MHz)
55
LO SWITCH ISOLATION (dB)
MAX2041 toc22
50
1500
1700
RF FREQUENCY (MHz)
55
40
VCC = 5.0V
MAX2041 toc24
1700
VCC = 4.75V
21
20
RF FREQUENCY (MHz)
LO SWITCH ISOLATION (dB)
24
19
1500
6
25
LO SWITCH ISOLATION (dB)
20
24
VCC = 5.25V
26
MAX2041 toc27
22
PLO = +3dBm
25
INPUT P1dB (dBm)
TC = +25°C
24
26
MAX2041 toc21
25
INPUT P1dB vs. RF FREQUENCY
27
MAX2041 toc20
MAX2041 toc19
26
INPUT P1dB (dBm)
INPUT P1dB vs. RF FREQUENCY
27
INPUT P1dB (dBm)
INPUT P1dB vs. RF FREQUENCY
27
LO LEAKAGE (dBm)
MAX2041
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
-45
1700
1900
2100
2300
LO FREQUENCY (MHz)
2500
1700
1900
2100
2300
LO FREQUENCY (MHz)
_______________________________________________________________________________________
2500
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
-20
TC = +25°C
TC = -40°C
-30
-20
PLO = -3dBm, 0dBm, +3dBm
-25
-30
1700
1900
2100
2300
2500
RF-TO-IF ISOLATION vs. RF FREQUENCY
1700
1900
2100
2300
1500
TC = -40°C
30
TC = +25°C
MAX2041 toc32
45
25
20
40
35
30
PLO = -3dBm, 0dBm, +3dBm
1900
2300
2100
45
40
35
30
VCC = 4.75V, 5.0V, 5.25V
1500
1700
RF FREQUENCY (MHz)
20
25
30
10
15
20
25
30
35
VCC = 4.75V, 5.0V, 5.25V
40
PLO = -3dBm, 0dBm, +3dBm
2300
MAX2041 toc35
5
IF PORT RETURN LOSS (dB)
15
2100
IF PORT RETURN LOSS vs. IF FREQUENCY
0
MAX2041 toc34
10
1900
RF FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
35
2500
20
1700
RF FREQUENCY (MHz)
5
2300
25
1500
0
2100
RF-TO-IF ISOLATION vs. RF FREQUENCY
20
2300
1900
50
25
2100
1700
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
RF-TO-IF ISOLATION (dB)
35
1900
-25
2500
50
MAX2041 toc31
TC = +85°C
RF PORT RETURN LOSS (dB)
RF-TO-IF ISOLATION (dB)
45
1700
VCC = 5.0V
VCC = 4.75V
LO FREQUENCY (MHz)
50
1500
-20
-30
1500
LO FREQUENCY (MHz)
40
VCC = 5.25V
-15
MAX2041 toc33
1500
MAX2041 toc30
MAX2041 toc29
-15
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
RF-TO-IF ISOLATION (dB)
-25
LO LEAKAGE RF PORT (dBm)
MAX2041 toc28
LO LEAKAGE RF PORT (dBm)
TC = +85°C
-15
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
LO LEAKAGE RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
45
50
40
1000
1500
2000
2500
RF FREQUENCY (MHz)
3000
50
100
150
200
250
300
350
IF FREQUENCY (MHz)
_______________________________________________________________________________________
7
MAX2041
Typical Operating Characteristics (continued)
(MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Typical Operating Characteristics (continued)
(MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF , fIF = 200MHz, R1 = 549Ω, unless otherwise noted.)
Downconverter Curves
LO UNSELECTED RETURN LOSS
vs. RF FREQUENCY
15
PLO = +3dBm
20
25
PLO = 0dBm
30
35
PLO = -3dBm
1500
2000
2500
120
20
30
40
PLO = -3dBm, 0dBm, +3dBm
LO FREQUENCY (MHz)
110
100
90
VCC = 5.0V
VCC = 4.75V
70
1000
3000
VCC = 5.25V
80
50
60
40
1000
10
SUPPLY CURRENT (mA)
10
130
MAX2041 toc37
5
SUPPLY CURRENT vs. TEMPERATURE (TC)
0
LO UNSELECTED RETURN LOSS (dB)
MAX2041 toc36
LO SELECTED RETURN LOSS (dB)
0
MAX2041 toc38
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
1500
2000
2500
-40
3000
-15
10
35
60
85
TEMPERATURE (°C)
LO FREQUENCY (MHz)
Typical Operating Characteristics
(MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO - fIF, fIF = 200MHz, R1 = 549Ω, unless
otherwise noted.)
Upconverter Curves
TC = -40°C
TC = +25°C
5
PLO = -3dBm, 0dBm, +3dBm
6
5
4
8
7
8
CONVERSION LOSS (dB)
6
8
CONVERSION LOSS (dB)
7
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2041 toc40
MAX2041 toc39
TC = +85°C
8
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2041 toc41
CONVERSION LOSS vs. RF FREQUENCY
9
CONVERSION LOSS (dB)
MAX2041
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
7
VCC = 4.75V, 5.0V, 5.25V
6
5
4
4
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
_______________________________________________________________________________________
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Upconverter Curves
TC = +25°C
33
31
TC = -40°C
27
27
25
VCC = 5.0V
VCC = 4.75V
27
25
1500 1600 1700 1800 1900 2000 2100 2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO + 2IF REJECTION vs. RF FREQUENCY
(LO1 SELECTED)
LO + 2IF REJECTION vs. RF FREQUENCY
(LO1 SELECTED)
LO + 2IF REJECTION vs. RF FREQUENCY
(LO1 SELECTED)
65
60
TC = +85°C
55
PLO = +3dBm
70
65
60
80
PIF = 0dBm
75
LO + 2IF REJECTION (dBc)
TC = +25°C
70
75
PIF = 0dBm
PLO = 0dBm
MAX2041 toc46
TC = -40°C
80
MAX2041 toc45
PIF = 0dBm
PLO = -3dBm
55
MAX2041 toc47
1500 1600 1700 1800 1900 2000 2100 2200
LO + 2IF REJECTION (dBc)
70
65
60
55
VCC = 4.75V, 5.0V, 5.25V
50
50
50
45
45
45
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
LO + 2IF REJECTION vs. RF FREQUENCY
(LO2 SELECTED)
LO + 2IF REJECTION vs. RF FREQUENCY
(LO2 SELECTED)
LO + 2IF REJECTION vs. RF FREQUENCY
(LO2 SELECTED)
TC = +85°C
80
70
65
60
TC = +25°C
55
50
PLO = -3dBm
75
PIF = 0dBm
PLO = +3dBm
70
65
60
PLO = 0dBm
55
50
45
80
PIF = 0dBm
75
LO + 2IF REJECTION (dBc)
PIF = 0dBm
LO + 2IF REJECTION (dBc)
TC = -40°C
MAX2041 toc48
80
MAX2041 toc50
1500 1600 1700 1800 1900 2000 2100 2200
MAX2041 toc49
LO + 2IF REJECTION (dBc)
31
29
PLO = -3dBm, 0dBm, +3dBm
25
75
75
33
1500 1600 1700 1800 1900 2000 2100 2200
85
LO + 2IF REJECTION (dBc)
31
29
VCC = 5.25V
35
33
29
80
37
35
INPUT IP3 (dBm)
35
INPUT IP3 (dBm)
37
INPUT IP3 (dBm)
TC = +85°C
INPUT IP3 vs. RF FREQUENCY
39
MAX2041 toc43
MAX2041 toc42
37
INPUT IP3 vs. RF FREQUENCY
39
MAX2041 toc44
INPUT IP3 vs. RF FREQUENCY
39
70
65
60
55
VCC = 4.75V, 5.0V, 5.25V
50
45
45
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
_______________________________________________________________________________________
9
MAX2041
Typical Operating Characteristics (continued)
(MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO - fIF, fIF = 200MHz, R1 = 549Ω, unless
otherwise noted.)
Typical Operating Characteristics (continued)
(MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO - fIF, fIF = 200MHz, R1 = 549Ω, unless
otherwise noted.)
Upconverter Curves
70
65
60
55
TC = +85°C
70
65
60
55
50
PLO = -3dBm
VCC = 4.75V
MAX2041 toc53
PIF = 0dBm
70
65
60
55
VCC = 4.75V, 5.0V, 5.25V
PLO = 0dBm
50
45
1500 1600 1700 1800 1900 2000 2100 2200
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
LO - 2IF REJECTION vs. RF FREQUENCY
(LO2 SELECTED)
LO - 2IF REJECTION vs. RF FREQUENCY
(LO2 SELECTED)
LO - 2IF REJECTION vs. RF FREQUENCY
(LO2 SELECTED)
65
TC = +25°C
55
PIF = 0dBm
PLO = +3dBm
75
70
65
PLO = 0dBm
60
80
75
LO - 2IF REJECTION (dBc)
70
60
80
LO - 2IF REJECTION (dBc)
TC = +85°C
85
MAX2041 toc54
PIF = 0dBm
55
PLO = -3dBm
50
70
VCC = 5.0V
65
VCC = 4.75V
60
55
50
50
45
PIF = 0dBm
VCC = 5.25V
MAX2041 toc56
1500 1600 1700 1800 1900 2000 2100 2200
TC = -40°C
45
45
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
80
75
TC = +25°C
70
TC = -40°C
60
55
PIF = 0dBm
LO + 3IF REJECTION vs. RF FREQUENCY
80
75
70
65
PLO = 0dBm
PLO = -3dBm
60
55
50
90
VCC = 5.25V
85
PIF = 0dBm
MAX2041 toc59
PLO = +3dBm
85
LO + 3IF REJECTION (dBc)
PIF = 0dBm
MAX2041 toc57
TC = +85°C
85
LO + 3IF REJECTION vs. RF FREQUENCY
90
LO + 3IF REJECTION (dBc)
LO + 3IF REJECTION vs. RF FREQUENCY
90
10
VCC = 5.25V
75
45
80
65
80
1500 1600 1700 1800 1900 2000 2100 2200
85
LO - 2IF REJECTION (dBc)
75
TC = -40°C
45
75
PIF = 0dBm
PLO = +3dBm
MAX2041 toc55
50
80
MAX2041 toc58
LO - 2IF REJECTION (dBc)
75
85
LO - 2IF REJECTION vs. RF FREQUENCY
(LO1 SELECTED)
LO - 2IF REJECTION (dBc)
PIF = 0dBm
LO - 2IF REJECTION (dBc)
TC = +25°C
MAX2041 toc51
80
LO - 2IF REJECTION vs. RF FREQUENCY
(LO1 SELECTED)
MAX2041 toc52
LO - 2IF REJECTION vs. RF FREQUENCY
(LO1 SELECTED)
LO + 3IF REJECTION (dBc)
MAX2041
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
80
75
70
65
VCC = 4.75V
VCC = 5.0V
60
55
50
50
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
______________________________________________________________________________________
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Upconverter Curves
75
70
65
55
75
70
PLO = -3dBm
65
PLO = 0dBm
60
55
50
MAX2041 toc62
VCC = 5.25V
VCC = 5.0V
75
70
65
60
VCC = 4.75V
55
50
50
1500 1600 1700 1800 1900 2000 2100 2200
1500 1600 1700 1800 1900 2000 2100 2200
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
FUNDAMENTAL RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -40°C, +25°C, +85°C
-25
-20
PLO = -3dBm, 0dBm, +3dBm
-25
-30
MAX2041 toc65
MAX2041 toc64
-15
-10
LO LEAKAGE AT RF PORT (dBm)
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2041 toc63
-15
-10
-30
VCC = 5.25V
-15
-20
VCC = 4.75V
VCC = 5.0V
-25
-30
1700 1800 1900 2000 2100 2200 2300 2400
1700 1800 1900 2000 2100 2200 2300 2400
1700 1800 1900 2000 2100 2200 2300 2400
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
IF LEAKAGE AT RF vs. LO FREQUENCY
-50
IF LEAKAGE (dBm)
-50
-60
TC = -40°C
-70
-80
-60
IF LEAKAGE AT RF vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
-70
-80
TC = +85°C
-40
-50
-60
VCC = 4.75V
-70
-80
TC = +25°C
-90
MAX2041 toc68
MAX2041 toc66
-40
IF LEAKAGE (dBm)
IF LEAKAGE AT RF vs. LO FREQUENCY
-40
IF LEAKAGE (dBm)
80
1500 1600 1700 1800 1900 2000 2100 2200
-10
LO LEAKAGE AT RF PORT (dBm)
PLO = +3dBm
80
PIF = 0dBm
85
MAX2041 toc67
60
TC = +85°C
TC = -40°C
LO - 3IF REJECTION vs. RF FREQUENCY
90
LO - 3IF REJECTION (dBc)
TC = +25°C
PIF = 0dBm
85
LO - 3IF REJECTION (dBc)
LO - 3IF REJECTION (dBc)
80
MAX2041 toc60
PIF = 0dBm
85
LO - 3IF REJECTION vs. RF FREQUENCY
90
MAX2041 toc61
LO - 3IF REJECTION vs. RF FREQUENCY
90
-90
-90
VCC = 5.25V
VCC = 5.0V
1700 1800 1900 2000 2100 2200 2300 2400
1700 1800 1900 2000 2100 2200 2300 2400
1700 1800 1900 2000 2100 2200 2300 2400
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX2041
Typical Operating Characteristics (continued)
(MAX2041 Typical Application Circuit, VCC = +5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO - fIF, fIF = 200MHz, R1 = 549Ω, unless
otherwise noted.)
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
MAX2041
Pin Description
PIN
NAME
1, 6, 8, 14
VCC
2
RF
Single-Ended 50Ω RF Input/Output. This port is internally matched and DC shorted to GND through a
balun.
3
TAP
Center Tap of the Internal RF Balun. Bypass to GND with capacitors close to the IC, as shown in the
Typical Application Circuit.
4, 5, 10, 12,
13, 16, 17,
20
GND
Ground
7
LOBIAS
9
LOSEL
11
LO1
15
LO2
18, 19
IF-, IF+
EP
GND
FUNCTION
Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical
Application Circuit.
Bias Resistor for Internal LO Buffer. Connect a 549Ω ±1% resistor from LOBIAS to the power supply.
Local Oscillator Select. Logic control input for selecting LO1 or LO2.
Local Oscillator Input 1. Drive LOSEL low to select LO1.
Local Oscillator Input 2. Drive LOSEL high to select LO2.
Differential IF Input/Outputs
Exposed Ground Paddle. Solder the exposed paddle to the ground plane using multiple vias.
Detailed Description
The MAX2041 can operate either as a downconverter
or an upconverter mixer that provides 7.2dB of conversion loss with a typical 7.4dB noise figure. IIP3 is
+33.5dBm for both upconversion and downconversion
operation. The integrated baluns and matching circuitry
allow for 50Ω single-ended interfaces to the RF port
and two LO ports. The RF port can be used as an input
for downconversion or an output for upconversion. A
single-pole, double-throw (SPDT) switch provides 50ns
switching time between the two LO inputs with 43dB of
LO-to-LO isolation. Furthermore, the integrated LO
buffer provides a high drive level to the mixer core,
reducing the LO drive required at the MAX2041’s
inputs to a range of -3dBm to +3dBm. The IF port incorporates a differential output for downconversion, which
is ideal for providing enhanced IIP2 performance. For
upconversion, the IF port is a differential input.
Specifications are guaranteed over broad frequency
ranges to allow for use in UMTS, cdma2000, 2G/2.5G/3G
DCS 1800, PCS 1900, and WiMAX base stations. The
MAX2041 is specified to operate over an RF frequency
range of 1700MHz to 3000MHz, an LO frequency range
of 1900MHz to 3000MHz, and an IF frequency range of
DC to 350MHz. Operation beyond these ranges is possible; see the Typical Operating Characteristics for
additional details.
12
This device can operate equally well in low-side LO injection applications as long as the LO frequency range is
between 1900MHz and 3000MHz. If an LO frequency
range below 1900MHz is desired, refer to the MAX2039.
RF Port and Balun
For using the MAX2041 as a downconverter, the RF input
is internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required
since the input is internally DC shorted to ground through
the on-chip balun. The RF return loss is typically better
than 17dB over a 1400MHz to 3000MHz frequency range.
For upconverter operation, the RF port is a single-ended
output similarly matched to 50Ω.
LO Inputs, Buffer, and Balun
The MAX2041 can be used for either high-side or lowside injection applications with a 1900MHz to 3000MHz
LO frequency range. For a device with a 1500MHz to
2000MHz LO frequency range, refer to the MAX2039
data sheet. As an added feature, the MAX2041 includes
an internal LO SPDT switch that can be used for frequency-hopping applications. The switch selects one of the
two single-ended LO ports, allowing the external oscillator
to settle on a particular frequency before it is switched in.
LO switching time is typically less than 50ns, which is
more than adequate for virtually all GSM applications. If
frequency hopping is not employed, set the switch to
either of the LO inputs. The switch is controlled by a
digital input (LOSEL): logic-high selects LO2, logic-low
selects LO1. To avoid damage to the part, voltage MUST
______________________________________________________________________________________
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
High-Linearity Mixer
The core of the MAX2041 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer.
Differential IF
The MAX2041 mixer has an IF frequency range of DC to
350MHz. Note that these differential ports are ideal for
providing enhanced IIP2 performance. Single-ended IF
applications require a 1:1 balun to transform the 50Ω differential IF impedance to a 50Ω single-ended system.
After the balun, the IF return loss is better than 15dB.
The differential IF is used as an input port for upconverter operation. The user can use a differential IF amplifier
following the mixer but a DC block is required on both IF
pins. In this configuration, the IF+ and IF- pins need to
be returned to ground through a high resistance (about
1kΩ). This ground return can also be accomplished by
grounding the RF TAP (pin 3) and AC-coupling the IF+
and IF- ports (pins 19 and 18).
Layout Considerations
A properly designed PC board is an essential part of
any RF/microwave circuit. Keep RF signal lines as short
as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin
traces directly to the exposed pad under the package.
The PC board exposed pad MUST be connected to the
ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level
ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed
pad on the bottom of the device package to the PC
board. The MAX2041 Evaluation Kit can be used as a
reference for board layout. Gerber files are available
upon request at www.maxim-ic.com.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin and
TAP with the capacitors shown in the Typical
Application Circuit; see Table 1. Place the TAP bypass
capacitor to ground within 100 mils of the TAP pin.
Table 1. Component List Referring to the
Typical Application Circuit
COMPONENT
VALUE
DESCRIPTION
C1
4pF
Microwave capacitor (0603)
C4
10pF
Microwave capacitor (0603)
Applications Information
C2, C6, C7, C8,
C10, C12
22pF
Microwave capacitors (0603)
Input and Output Matching
C3, C5, C9, C11
0.01µF
R1
549Ω
The RF and LO inputs are internally matched to 50Ω. No
matching components are required. Return loss at the RF
port is typically better than 17dB over a 1400MHz to
3000MHz frequency range, and return loss at the LO
ports is typically better than 16dB over a 1900MHz to
3000MHz frequency range. RF and LO inputs require
only DC-blocking capacitors for interfacing.
The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun
transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).
Bias Resistor
Bias current for the LO buffer is optimized by fine tuning resistor R1. If reduced current is required at the
expense of performance, contact the factory for details.
If the ±1% bias resistor values are not readily available,
substitute standard ±5% values.
Microwave capacitors (0603)
±1% resistor (0603)
T1
IF balun with DC grounded
1:1 Balun ports
M/A-COM MABAES0029
U1
MAX2041 Maxim IC
Exposed Pad RF/Thermal Considerations
The EP of the MAX2041’s 20-pin thin QFN-EP package
provides a low thermal-resistance path to the die. It is
important that the PC board on which the MAX2041 is
mounted be designed to conduct heat from the EP. In
addition, provide the EP with a low-inductance path to
electrical ground. The EP MUST be soldered to a
ground plane on the PC board, either directly or
through an array of plated via holes.
______________________________________________________________________________________
13
MAX2041
be applied to VCC before digital logic is applied to
LOSEL (see the Absolute Maximum Ratings). LO1 and
LO2 inputs are internally matched to 50Ω, requiring
only a 22pF DC-blocking capacitor.
A two-stage internal LO buffer allows a wide-input power
range for the LO drive. The on-chip low-loss balun,
along with an LO buffer, drives the double-balanced
mixer. All interfacing and matching components from
the LO inputs to the IF outputs are integrated on chip.
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
MAX2041
Typical Application Circuit
T1
C3
5
IF
16
GND
3
GND
4
17
IF18
19
20
IF+
GND
VCC
1
C2
VCC
C1
RF
RF
15
1
2
14
MAX2041
LO2
C12
VCC
LO2
INPUT
VCC
C11
C5
TAP
C4
GND
3
13
4
12
5
11
GND
GND
LO1
INPUT
10
LO1
GND
9
LOSEL
8
VCC
VCC
LOBIAS
6
7
C10
GND
R1
VCC
C6
C7
VCC
C9
LOSEL
INPUT
C8
Pin Configuration
GND
IF+
IF-
GND
GND
19
18
17
16
PROCESS: SiGe BiCMOS
20
TOP VIEW
15
LO2
2
14
VCC
TAP
3
13
GND
GND
4
12
GND
GND
5
11
LO1
VCC
1
RF
Chip Information
14
7
8
9
LOBIAS
VCC
LOSEL
GND 10
6
VCC
MAX2041
______________________________________________________________________________________
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
QFN THIN.EPS
D2
D
b
CL
0.10 M C A B
D2/2
D/2
k
L
MARKING
AAAAA
E/2
E2/2
CL
(NE-1) X e
E
DETAIL A
PIN # 1
I.D.
e/2
E2
PIN # 1 I.D.
0.35x45¡
e
(ND-1) X e
DETAIL B
e
L1
L
CL
CL
L
L
e
e
0.10 C
A
C
0.08 C
A1 A3
PACKAGE OUTLINE,
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm
-DRAWING NOT TO SCALE-
21-0140
I
1
2
______________________________________________________________________________________
15
MAX2041
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
MAX2041
High-Linearity, 1700MHz to 3000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
COMMON DIMENSIONS
EXPOSED PAD VARIATIONS
PKG.
16L 5x5
20L 5x5
28L 5x5
32L 5x5
40L 5x5
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.
A
A1
A3
b
D
E
e
PKG.
CODES
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80
0
0.02 0.05
0
0.02 0.05
0
0.02 0.05
0
0.02 0.05
0
T1655-2
T1655-3
T1655N-1
T2055-3
D2
3.00
3.00
3.00
3.00
3.00
T2055-4
T2055-5
3.15
T2855-3
3.15
T2855-4
2.60
T2855-5
2.60
3.15
T2855-6
T2855-7
2.60
T2855-8
3.15
T2855N-1 3.15
T3255-3
3.00
T3255-4
3.00
T3255-5
3.00
T3255N-1 3.00
T4055-1
3.20
0.02 0.05
0.20 REF.
0.20 REF.
0.20 REF.
0.20 REF.
0.20 REF.
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30 0.15 0.20 0.25
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10
0.65 BSC.
0.50 BSC.
0.40 BSC.
0.80 BSC.
0.50 BSC.
- 0.25 - 0.25 - 0.25 0.35 0.45
0.25 - 0.25 0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50 0.40 0.50 0.60
L1
- 0.30 0.40 0.50
40
16
N
20
28
32
ND
10
4
5
7
8
4
10
5
7
8
NE
WHHB
----WHHC
WHHD-1
WHHD-2
JEDEC
k
L
NOTES:
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
L
E2
exceptions
MIN. NOM. MAX. MIN. NOM. MAX. –0.15
3.10
3.10
3.10
3.10
3.10
3.25
3.25
2.70
2.70
3.25
2.70
3.25
3.25
3.10
3.10
3.10
3.10
3.30
3.20
3.20
3.20
3.20
3.20
3.35
3.35
2.80
2.80
3.35
2.80
3.35
3.35
3.20
3.20
3.20
3.20
3.40
3.00
3.00
3.00
3.00
3.00
3.15
3.15
2.60
2.60
3.15
2.60
3.15
3.15
33.00
33.00
3.00
3.00
3.20
3.10
3.10
3.10
3.10
3.10
3.25
3.25
2.70
2.70
3.25
2.70
3.25
3.25
3.10
3.10
3.10
3.10
3.30
3.20
3.20
3.20
3.20
3.20
3.35
3.35
2.80
2.80
3.35
2.80
3.35
3.35
3.20
3.20
3.20
3.20
3.40
**
**
**
**
**
0.40
**
**
**
**
**
0.40
**
**
**
**
**
**
DOWN
BONDS
ALLOWED
YES
NO
NO
YES
NO
YES
YES
YES
NO
NO
YES
YES
NO
YES
NO
YES
NO
YES
** SEE COMMON DIMENSIONS TABLE
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN
0.25 mm AND 0.30 mm FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR
T2855-3 AND T2855-6.
10. WARPAGE SHALL NOT EXCEED 0.10 mm.
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", –0.05.
PACKAGE OUTLINE,
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm
21-0140
-DRAWING NOT TO SCALE-
I
2
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2006 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products, Inc.