MAXIM MAX2044

19-5002; Rev 0; 10/09
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
Features
The MAX2044 single, high-linearity upconversion/downconversion mixer provides +32.5dBm input IP3, 8.5dB
noise figure, and 7.7dB conversion loss for 2300MHz
to 4000MHz LTE, WiMAXK, and MMDS wireless infrastructure applications. With an ultra-wide 2600MHz to
4300MHz LO frequency range, the MAX2044 can be
used in either low-side or high-side LO injection architectures for virtually all 2.5GHz and 3.5GHz applications.
S 2300MHz to 4000MHz RF Frequency Range
In addition to offering excellent linearity and noise
performance, the MAX2044 also yields a high level of
component integration. This device includes a doublebalanced passive mixer core, an LO buffer, and on-chip
baluns that allow for single-ended RF and LO inputs.
The MAX2044 requires a nominal LO drive of 0dBm,
and supply current is typically 138mA at VCC = 5.0V or
121mA at VCC = 3.3V.
S 21dBm Typical Input 1dB Compression Point
The MAX2044 is pin similar with the MAX2029/MAX2031
650MHz to 1000MHz mixers and the MAX2039/MAX2041/
MAX2042 1700MHz to 3000MHz mixers, making this
entire family of up/downconverters ideal for applications where a common PCB layout is used for multiple
frequency bands.
The MAX2044 is available in a compact 20-pin thin QFN
(5mm x 5mm) package with an exposed pad. Electrical
performance is guaranteed over the extended -40NC to
+85NC temperature range.
S 2600MHz to 4300MHz LO Frequency Range
S 50MHz to 500MHz IF Frequency Range
S 7.7dB Conversion Loss
S 8.5dB Noise Figure
S +32.5dBm Typical Input IP3
S 68dBc Typical 2RF - 2LO Spurious Rejection at
PRF = -10dBm
S Integrated LO Buffer
S Integrated RF and LO Baluns for Single-Ended
Inputs
S Low -3dBm to +3dBm LO Drive
S Pin Similar with the MAX2029/MAX2031 Series
of 650MHz to 1000MHz Mixers and the MAX2039/
MAX2041/MAX2042 Series of 1700MHz to
3000MHz Mixers
S Single 5.0V or 3.3V Supply
S External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/ReducedPerformance Mode
Applications
Ordering Information
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
PART
TEMP RANGE
PIN-PACKAGE
MAX2044ETP+
-40NC to +85NC
20 Thin QFN-EP*
MAX2044ETP+T
-40NC to +85NC
20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
WiMAX is a trademark of WiMAX Forum.
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX2044
General Description
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND...........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS to GND........................... -0.3V to (VCC + 0.3V)
RF, LO Input Power........................................................ +20dBm
RF, LO Current (RF and LO is DC shorted
to GND through a balun).................................................50mA
Continuous Power Dissipation (Note 1)..................................5W
BJA (Notes 2, 3)............................................................. +38NC/W
BJC (Notes 1, 3)............................................................. +13NC/W
Operating Case Temperature
Range (Note 4)...................................... TC = -40NC to +85NC
Junction Temperature......................................................+150NC
Storage Temperature Range............................. -65NC to +150NC
Lead Temperature (soldering, 10s).................................+300NC
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.
The junction temperature must not exceed +150NC.
Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 4.75V to 5.25V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical
values are at VCC = 5.0V, TC = +25NC, all parameters are production tested.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
UNITS
4.75
5.0
5.25
V
138
155
mA
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 3.0V to 3.6V, no input RF or LO signals. TC = -40NC to +85NC, unless otherwise noted. Typical
values are at VCC = 3.3V, TC = +25NC, parameters are guaranteed by design, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
3.0
3.3
3.6
V
121
135
mA
TYP
MAX
UNITS
Total supply current, VCC = 3.3V
UNITS
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER
RF Frequency Range
LO Frequency
IF Frequency
LO Drive
SYMBOL
CONDITIONS
MIN
Typical Application Circuit with C1 = 3.3nH
and C12 = 0.3pF, see Table 1 for details
(Note 5)
2300
Typical Application Circuit with C1 = 8.2pF
and C12 not installed, see Table 1 for
details (Note 5)
3000
4000
fLO
(Note 5)
2600
4300
MHz
fIF
Using an M/A-Com MABAES0029 1:1
transformer as defined in the Typical
Application Circuit, IF matching
components affect the IF frequency range
(Note 5)
50
500
MHz
(Note 5)
-3
+3
dBm
fRF
PLO
3000
MHz
0
2 _______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz,
TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)
PARAMETER
Conversion Loss
SYMBOL
LC
Loss Variation vs. Frequency
DLC
CONDITIONS
TC = +25NC (Notes 7, 8)
0.01
dB/NC
21
dBm
IP1dB
(Note 9)
Noise Figure Under Blocking
Conditions
2RF - 2LO Spurious Rejection
dB
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone
(Note 7, 8)
28.3
32.5
fRF = 3500MHz, fRF1 - fRF2 = 1MHz,
PRF = 0dBm per tone. TC = +25NC
(Notes 7, 8)
30.0
32.5
dBm
fRF = 3100MHz to 3900MHz, fIF = 300MHz,
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone,
TC = -40NC to +85NC
±0.5
Single sideband, no blockers present
(Notes 7, 10)
8.5
10
Single sideband, no blockers present,
TC = +25NC (Notes 7, 10)
8.5
9.2
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
0.018
NFB
+8dBm blocker tone applied to RF port,
fBLOCKER = 3750MHz, fRF = 3500MHz,
fLO = 3200MHz, PLO = 0dBm, VCC = 5.0V,
TC = +25NC (Notes 7, 10, 11)
17.5
NFSSB
Noise Figure Temperature
Coefficient
dB
0.25
Input Compression Point
Noise Figure
UNITS
8.5
fRF = 3100MHz to 3900MHz, over any
200MHz band
fRF = 3100MHz to 3900MHz,
TC = -40NC to +85NC
Third-Order Input Intercept
Point Variation Over
Temperature
MAX
7.7
0.15
TCCL
IIP3
TYP
7.2
fRF = 3100MHz to 3900MHz, over any
100MHz band
Conversion Loss Temperature
Coefficient
Third-Order Input Intercept
Point
MIN
2x2
fSPUR = fLO +
150MHz,
TC = +25NC
fSPUR = fLO +
150MHz
dBm
dB
PRF = -10dBm
(Notes 7, 10)
62
68
PRF = 0dBm (Notes 7, 8)
52
58
PRF = -10dBm
(Notes 7, 10)
60
68
PRF = 0dBm (Notes 7, 8)
50
58
dB/NC
20
dB
dBc
_______________________________________________________________________________________ 3
MAX2044
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 3100MHz to 3900MHz, fLO = 2800MHz to 3600MHz, fIF = 300MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz,
TC = +25NC. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)
PARAMETER
3RF - 3LO Spurious Rejection
SYMBOL
3x3
CONDITIONS
fSPUR = fLO +
100MHz,
TC = +25NC
fSPUR = fLO +
100MHz
MIN
TYP
PRF = -10dBm
(Notes 7, 10)
82
89
PRF = 0dBm (Notes 7, 8)
62
69
PRF = -10dBm
(Notes 7, 10)
81
89
PRF = 0dBm (Notes 7, 8)
61
69
MAX
UNITS
dBc
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
14
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s
IF outputs
50
I
RLIF
RF terminated into 50I, LO driven by a
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
16
dB
42
dB
IF Output Return Loss
33
16
dB
RF-to-IF Isolation
fRF = 3500MHz, PLO = +3dBm (Note 8)
LO Leakage at RF Port
fLO = 2500MHz to 4000MHz, PLO = +3dBm
(Notes 7, 8)
-31
dBm
2LO Leakage at RF Port
PLO = +3dBm
-35
dBm
LO Leakage at IF Port
PLO = +3dBm (Note 8)
-28
dBm
4 _______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are at VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.)
(Note 6)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
LC
fRF = 3100MHz to 3900MHz, over any
100MHz band
MIN
TYP
MAX
UNITS
7.7
dB
0.1
dB
Loss Variation vs. Frequency
DLC
Conversion Loss Temperature
Coefficient
TCCL
fRF = 3100MHz to 3900MHz,
TC = -40NC to +85NC
0.009
dB/NC
Input Compression Point
IP1dB
(Note 9)
19.5
dBm
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone
29.5
dBm
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone,
TC = -40NC to +85NC
±0.2
dB
Third-Order Input Intercept
Point
IIP3
Third-Order Input Intercept
Variation Over Temperature
Noise Figure
NFSSB
Single sideband, no blockers present
8.5
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
0.018
dB/NC
2RF - 2LO Spurious Rejection
2x2
fSPUR = fLO +
150MHz
PRF = -10dBm
69
PRF = 0dBm
64
3RF - 3LO Spurious Rejection
3x3
fSPUR = fLO +
100MHz
PRF = -10dBm
73.3
PRF = 0dBm
63.3
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
18
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
19
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s
IF outputs
50
I
RLIF
RF terminated into 50I, LO driven by a
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
14.5
dB
IF Output Return Loss
dBc
dBc
RF-to-IF Isolation
fRF = 3100MHz to 3900MHz,
PLO = +3dBm
41
dB
LO Leakage at RF Port
fLO = 2800MHz to 3600MHz,
PLO = +3dBm
-30
dBm
2LO Leakage at RF Port
fLO = 2800MHz to 3600MHz,
PLO = +3dBm
-25.6
dBm
LO Leakage at IF Port
fLO = 2800MHz to 3600MHz,
PLO = +3dBm
-27
dBm
_______________________________________________________________________________________ 5
MAX2044
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 2300MHz to 2900MHz, HIGH-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.)
(Note 6)
PARAMETER
Conversion Loss
SYMBOL
LC
Loss Variation vs. Frequency
DLC
Conversion Loss Temperature
Coefficient
TCCL
Third-Order Input Intercept
Point
CONDITIONS
IIP3
Third-Order Input Intercept
Variation Over Temperature
MIN
TYP
MAX
UNITS
8.1
dB
fRF = 2300MHz to 2900MHz, over any
100MHz band
0.15
dB
fRF = 2300MHz to 2900MHz,
TC = -40NC to +85NC
0.008
dB/NC
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone
34
dBm
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone,
TC = -40NC to +85NC
±0.2
dB
PRF = -10dBm
67
PRF = 0dBm
62
PRF = -10dBm
79
PRF = 0dBm
69
2LO - 2RF Spurious Rejection
2x2
fSPUR = fLO - 150MHz
3LO - 3RF Spurious Rejection
3x3
fSPUR = fLO - 100MHz
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
23
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
17
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s
IF outputs
50
I
RLIF
RF terminated into 50I, LO driven by a
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
13.6
dB
IF Output Return Loss
dBc
dBc
RF-to-IF Isolation
fRF = 2300MHz to 2900MHz,
PLO = +3dBm
39
dB
LO Leakage at RF Port
fLO = 2600MHz to 3200MHz,
PLO = +3dBm
-29.5
dBm
2LO Leakage at RF Port
fLO = 2600MHz to 3200MHz,
PLO = +3dBm
-43
dBm
LO Leakage at IF Port
fLO = 2600MHz to 3200MHz,
PLO = +3dBm
-28.6
dBm
6 _______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are at VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, TC = +25NC, unless otherwise noted.)
(Note 6)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
LC
Loss Variation vs. Frequency
DLC
Conversion Loss Temperature
Coefficient
TCCL
Third-Order Input Intercept
Point
IIP3
Third-Order Input Intercept
Variation Over Temperature
MIN
TYP
MAX
UNITS
7.8
dB
fRF = 3100MHz to 3900MHz, over any
100MHz band
0.15
dB
fRF = 3100MHz to 3900MHz,
TC = -40NC to +85NC
0.008
dB/NC
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone
31.5
dBm
fRF1 - fRF2 = 1MHz, PRF = 0dBm per tone,
TC = -40NC to +85NC
±0.2
dB
PRF = -10dBm
67
PRF = 0dBm
62
2LO - 2RF Spurious Rejection
2x2
fSPUR = fLO - 150MHz
3LO - 3RF Spurious Rejection
3x3
fSPUR = fLO - 100MHz
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
17.7
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
16.3
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s
IF outputs
50
I
RLIF
RF terminated into 50I, LO driven by a
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
15
dB
RF-to-IF Isolation
fRF = 3100MHz to 3900MHz,
PLO = +3dBm
41
dB
LO Leakage at RF Port
fLO = 3400MHz to 4200MHz,
PLO = +3dBm
-30
dBm
2LO Leakage at RF Port
fLO = 3400MHz to 4200MHz,
PLO = +3dBm
-21
dBm
LO Leakage at IF Port
fLO = 3400MHz to 4200MHz,
PLO = +3dBm
-27.2
dBm
IF Output Return Loss
PRF = -10dBm
76.7
PRF = 0dBm
66.7
dBc
dBc
_______________________________________________________________________________________ 7
MAX2044
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE,
fRF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = 5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3300MHz, fIF = 200MHz, unless otherwise noted.)
PARAMETER
Conversion Loss
SYMBOL
Conversion Loss Variation vs.
Frequency
DLC
Conversion Loss Temperature
Coefficient
TCCL
Input Third-Order Intercept Point
CONDITIONS
MIN
LC
IIP3
IIP3 Variation with TC
LO ± 2IF Spur
1x2
LO ± 3IF Spur
1x3
Output Noise Floor
TYP
MAX
UNITS
7.7
dB
fRF = 3100MHz to 3900MHz, over any
100MHz band
0.2
fRF = 3100MHz to 3900MHz, over any
200MHz band
0.25
TC = -40NC to +85NC
0.01
dB/NC
fIF1 = 200MHz, fIF2 = 201MHz,
PIF = 0dBm/tone
33.5
dBm
fIF1 = 200MHz, fIF2 = 201MHz,
PIF = 0dBm/tone, TC = -40NC to +85NC
±0.2
dB
LO - 2IF
61.6
LO + 2IF
60.2
LO - 3IF
78.2
LO + 3IF
80.3
POUT = 0dBm (Note 11)
-165
dB
dBc
dBc
dBm/Hz
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.)
PARAMETER
Conversion Loss
SYMBOL
LC
Conversion Loss Variation vs.
Frequency
DLC
Conversion Loss Temperature
Coefficient
TCCL
Input Third-Order Intercept Point
IIP3 Variation with TC
CONDITIONS
IIP3
MIN
TYP
8
MAX
UNITS
dB
fRF = 3100MHz to 3900MHz, over any
100MHz band
0.2
fRF = 3100MHz to 3900MHz, over any
200MHz band
0.25
TC = -40NC to +85NC
0.01
dB/NC
fIF1 = 200MHz, fIF2 = 201MHz,
PIF = 0dBm/tone
29.5
dBm
fIF1 = 200MHz, fIF2 = 201MHz,
PIF = 0dBm/tone, TC = -40NC to +85NC
±0.2
dB
dB
8 _______________________________________________________________________________________
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 200MHz, unless otherwise noted.)
PARAMETER
SYMBOL
LO ± 2IF Spur
1x2
LO ± 3IF Spur
1x3
Output Noise Floor
CONDITIONS
MIN
TYP
LO - 2IF
58.9
LO + 2IF
57.8
LO - 3IF
69.4
LO + 3IF
69.5
POUT = 0dBm (Note 11)
-165
MAX
UNITS
dBc
dBc
dBm/Hz
Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 6: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 7: Guaranteed by design and characterization.
Note 8: 100% production tested for functional performance.
Note 9: Maximum reliable continuous input power applied to the RF or IF port of this device is +20dBm from a 50I source.
Note 10: Not production tested.
Note 11: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
8
7
9
CONVERSION LOSS (dB)
TC = +85°C
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2044 toc02
MAX2044 toc01
9
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
10
8
PLO = -3dBm, 0dBm, +3dBm
7
MAX2044 toc03
CONVERSION LOSS vs. RF FREQUENCY
10
9
8
VCC = 4.75V, 5.0V, 5.25V
7
TC = -40°C
6
6
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
6
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
_______________________________________________________________________________________ 9
MAX2044
3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION,
fRF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION) (continued)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
33
31
PLO = 0dBm
TC = +85°C
29
PLO = -3dBm
29
27
3600
3800
4000
3200
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE vs. RF FREQUENCY
3400
3600
3800
4000
3000
2RF - 2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
2RF - 2LO RESPONSE (dBc)
TC = +85°C
65
TC = -40°C
60
55
PLO = 0dBm
70
PLO = +3dBm
65
60
PRF = 0dBm
3800
4000
3000
3200
3400
3600
3800
4000
55
75
65
3600
RF FREQUENCY (MHz)
3800
4000
3400
3600
3800
4000
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
MAX2044 toc11
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
55
3400
3200
RF FREQUENCY (MHz)
PRF = 0dBm
TC = +85°C
3200
3000
PRF = 0dBm
3RF - 3LO RESPONSE (dBc)
TC = +25°C
65
3000
60
3RF - 3LO RESPONSE vs. RF FREQUENCY
3RF - 3LO RESPONSE (dBc)
TC = -40°C
VCC = 4.75V
65
VCC = 5.0V
85
MAX2044 toc10
PRF = 0dBm
4000
VCC = 5.25V
70
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE vs. RF FREQUENCY
3800
50
RF FREQUENCY (MHz)
85
3600
55
50
3600
3400
2RF - 2LO RESPONSE vs. RF FREQUENCY
PLO = -3dBm
50
75
3200
75
55
TC = +25°C
3400
VCC = 4.75V
RF FREQUENCY (MHz)
75
MAX2044 toc07
PRF = 0dBm
70
3200
VCC = 5.0V
RF FREQUENCY (MHz)
75
3000
31
27
3000
2RF - 2LO RESPONSE (dBc)
3400
MAX2044 toc08
3200
33
29
27
3000
2RF - 2LO RESPONSE (dBc)
35
MAX2044 toc09
31
35
PRF = 0dBm/TONE
VCC = 5.25V
MAX2044 toc12
33
PLO = +3dBm
INPUT IP3 (dBm)
TC = -40°C
PRF = 0dBm/TONE
INPUT IP3 (dBm)
INPUT IP3 (dBm)
35
MAX2044 toc04
PRF = 0dBm/TONE
INPUT IP3 vs. RF FREQUENCY
37
MAX2044 toc06
INPUT IP3 vs. RF FREQUENCY
37
MAX2044 toc05
INPUT IP3 vs. RF FREQUENCY
37
3RF - 3LO RESPONSE (dBc)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
75
VCC = 5.25V
65
VCC = 5.0V
VCC = 4.75V
55
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
RF FREQUENCY (MHz)
10 �������������������������������������������������������������������������������������
3800
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
NOISE FIGURE vs. RF FREQUENCY
10
8
7
TC = -40°C
8
PLO = -3dBm, 0dBm, +3dBm
6
5
3600
3800
4000
3200
INPUT P1dB vs. RF FREQUENCY
3800
4000
3000
23
TC = +25°C
21
TC = +85°C
23
21
PLO = 0dBm
19
3400
3600
3800
4000
3800
21
VCC = 5.0V
VCC = 4.75V
17
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = -40°C
-30
TC = +25°C
MAX2044 toc20
-20
-30
PLO = -3dBm, 0dBm, +3dBm
-10
LO LEAKAGE AT IF PORT (dBm)
-20
-10
LO LEAKAGE AT IF PORT (dBm)
MAX2044 toc19
-10
4000
VCC = 5.25V
19
17
3200
3600
INPUT P1dB vs. RF FREQUENCY
PLO = +3dBm
PLO = -3dBm
3400
25
MAX2044 toc17
MAX2044 toc16
TC = -40°C
3000
3200
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
INPUT P1dB (dBm)
INPUT P1dB (dBm)
3600
25
17
LO LEAKAGE AT IF PORT (dBm)
3400
RF FREQUENCY (MHz)
25
19
VCC = 5.0V
7
5
3000
RF FREQUENCY (MHz)
23
8
MAX2044 toc18
3400
INPUT P1dB (dBm)
3200
VCC = 5.25V
6
5
3000
VCC = 4.75V
9
4000
MAX2044 toc21
6
9
7
10
NOISE FIGURE (dB)
9
NOISE FIGURE vs. RF FREQUENCY
11
MAX2044 toc14
TC = +25°C
NOISE FIGURE (dB)
NOISE FIGURE (dB)
MAX2044 toc13
TC = +85°C
10
11
MAX2044 toc15
NOISE FIGURE vs. RF FREQUENCY
11
-20
-30
VCC = 4.75V, 5.0V, 5.25V
TC = +85°C
-40
-40
2700
2900
3100
3300
LO FREQUENCY (MHz)
3500
3700
-40
2700
2900
3100
3300
LO FREQUENCY (MHz)
3500
3700
2700
2900
3100
3300
3500
3700
LO FREQUENCY (MHz)
______________________________________________________________________________________ 11
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
40
TC = -40°C
TC = +25°C
20
PLO = -3dBm, 0dBm, +3dBm
30
20
3200
3400
3600
3800
4000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = +25°C
TC = -40°C
-40
-50
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-50
3000
4000
3500
-30
VCC = 4.75V, 5.0V, 5.25V
-40
-50
2500
3000
3500
4000
2500
3000
3500
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = +25°C
TC = +85°C
-40
-50
PLO = +3dBm
-30
PLO = 0dBm
PLO = -3dBm
-40
-50
3000
3500
LO FREQUENCY (MHz)
4000
-20
2LO LEAKAGE AT RF PORT (dBm)
-30
2LO LEAKAGE AT RF PORT (dBm)
MAX2044 toc28
TC = -40°C
-20
MAX2044 toc29
LO FREQUENCY (MHz)
-20
4000
MAX2044 toc27
-20
LO LEAKAGE AT RF PORT (dBm)
-30
-20
MAX2044 toc26
MAX2044 toc25
TC = +85°C
2500
VCC = 4.75V, 5.0V, 5.25V
30
RF FREQUENCY (MHz)
-20
2500
40
20
3000
LO LEAKAGE AT RF PORT (dBm)
3000
LO LEAKAGE AT RF PORT (dBm)
40
50
4000
MAX2044 toc30
30
50
RF-TO-IF ISOLATION (dB)
TC = +85°C
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2044 toc23
MAX2044 toc22
50
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2044 toc24
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
2LO LEAKAGE AT RF PORT (dBm)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
VCC = 4.75V
-30
VCC = 5.0V
-40
VCC = 5.25V
-50
2500
3000
3500
LO FREQUENCY (MHz)
4000
2500
3000
3500
LO FREQUENCY (MHz)
12 �������������������������������������������������������������������������������������
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
IF PORT RETURN LOSS
vs. IF FREQUENCY
5
0
fLO = 3200MHz
5
IF PORT RETURN LOSS (dB)
10
15
20
PLO = -3dBm, 0dBm, +3dBm
25
15
20
VCC = 4.75V, 5.0V, 5.25V
25
30
30
3000
3200
3400
3600
3800
4000
50
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
150
MAX2044 toc33
PLO = 0dBm
PLO = +3dBm
VCC = 5.25V
145
SUPPLY CURRENT (mA)
PLO = -3dBm
10
20
140
RF FREQUENCY (MHz)
0
LO PORT RETURN LOSS (dB)
10
500
MAX2044 toc34
RF PORT RETURN LOSS (dB)
fIF = 300MHz
MAX2044 toc31
0
MAX2044 toc32
RF PORT RETURN LOSS
vs. RF FREQUENCY
140
135
VCC = 5.0V
VCC = 4.75V
130
125
30
120
2500
3000
3500
LO FREQUENCY (MHz)
4000
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________ 13
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +85°C
8
7
9
8
PLO = -3dBm, 0dBm, +3dBm
7
MAX2044 toc37
MAX2044 toc35
TC = +25°C
CONVERSION LOSS vs. RF FREQUENCY
10
CONVERSION LOSS (dB)
9
VCC = 3.3V
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
VCC = 3.3V
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2044 toc36
CONVERSION LOSS vs. RF FREQUENCY
10
9
8
VCC = 3.0V, 3.3V, 3.6V
7
TC = -40°C
6
3600
3800
4000
6
3000
3200
RF FREQUENCY (MHz)
MAX2044 toc38
VCC = 3.3V
PRF = 0dBm/TONE
TC = +25°C
TC = -40°C
26
3000
VCC = 3.3V
PRF = 0dBm/TONE
30
28
3600
3800
4000
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
VCC = 3.0V
3400
3600
3800
3000
4000
3200
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE (dBc)
70
TC = +85°C
60
VCC = 3.3V
PRF = 0dBm
PLO = +3dBm
70
60
PLO = 0dBm
TC = -40°C
3400
3600
3800
4000
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE vs. RF FREQUENCY
MAX2044 toc41
VCC = 3.3V
PRF = 0dBm
TC = +25°C
28
24
3200
RF FREQUENCY (MHz)
80
4000
30
26
3000
2RF - 2LO RESPONSE vs. RF FREQUENCY
3800
VCC = 3.6V
32
2RF - 2LO RESPONSE vs. RF FREQUENCY
80
2RF - 2LO RESPONSE (dBc)
3400
3600
PRF = 0dBm/TONE
MAX2044 toc42
3200
3400
INPUT IP3 vs. RF FREQUENCY
24
3000
3200
34
26
24
80
4000
RF FREQUENCY (MHz)
32
TC = +85°C
30
28
3800
INPUT IP3 vs. RF FREQUENCY
34
INPUT IP3 (dBm)
INPUT IP3 (dBm)
32
3600
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
34
3400
MAX2044 toc40
3400
INPUT IP3 (dBm)
3200
MAX2044 toc39
3000
MAX2044 toc43
6
2RF - 2LO RESPONSE (dBc)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
PRF = 0dBm
70
VCC = 3.6V
VCC = 3.3V
60
VCC = 3.0V
PLO = -3dBm
50
50
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
50
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
RF FREQUENCY (MHz)
14 �������������������������������������������������������������������������������������
3800
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
TC = +85°C
55
45
65
PLO = -3dBm, 0dBm, +3dBm
55
45
3400
3600
3800
4000
3200
RF FREQUENCY (MHz)
3800
4000
MAX2044 toc47
9
8
TC = -40°C
3000
PLO = -3dBm
PLO = 0dBm
9
8
PLO = +3dBm
7
10
3600
3800
4000
3200
RF FREQUENCY (MHz)
3400
3600
3800
17
15
19
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
3200
3800
4000
3400
3600
3800
23
VCC = 3.6V
MAX2044 toc46
4000
19
VCC = 3.3V
VCC = 3.0V
17
15
3600
3000
21
17
3400
VCC = 3.6V
7
INPUT P1dB vs. RF FREQUENCY
VCC = 3.3V
INPUT P1dB (dBm)
TC = +85°C
3200
8
RF FREQUENCY (MHz)
23
MAX2044 toc50
19
3000
VCC = 3.3V
4000
21
TC = +25°C
4000
9
INPUT P1dB vs. RF FREQUENCY
VCC = 3.3V
TC = -40°C
21
VCC = 3.0V
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
23
3800
5
3000
INPUT P1dB (dBm)
3400
3600
6
MAX2044 toc51
3200
3400
NOISE FIGURE vs. RF FREQUENCY
5
3000
3200
11
6
5
VCC = 3.3V
RF FREQUENCY (MHz)
VCC = 3.3V
10
6
INPUT P1dB (dBm)
3600
11
NOISE FIGURE (dB)
NOISE FIGURE (dB)
TC = +25°C
7
3400
NOISE FIGURE vs. RF FREQUENCY
VCC = 3.3V
TC = +85°C
10
VCC = 3.0V
55
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
11
65
45
3000
NOISE FIGURE (dB)
3200
MAX2044 toc48
3000
PRF = 0dBm
VCC = 3.6V
MAX2044 toc49
TC = -40°C
VCC = 3.3V
PRF = 0dBm
MAX2044 toc52
65
3RF - 3LO RESPONSE vs. RF FREQUENCY
75
3RF - 3LO RESPONSE (dBc)
MAX2044 toc44
3RF - 3LO RESPONSE (dBc)
3RF - 3LO RESPONSE (dBc)
VCC = 3.3V
PRF = 0dBm
TC = +25°C
3RF - 3LO RESPONSE vs. RF FREQUENCY
75
MAX2044 toc45
3RF - 3LO RESPONSE vs. RF FREQUENCY
75
15
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
______________________________________________________________________________________ 15
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = +25°C
-30
TC = +85°C
-40
PLO = -3dBm, 0dBm, +3dBm
-30
-40
3100
3300
3500
3700
2900
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
40
3300
3500
3700
3400
TC = +25°C
3600
3800
50
40
PLO = -3dBm, 0dBm, +3dBm
30
4000
3100
3300
3500
50
40
VCC = 3.0V, 3.3V, 3.6V
30
20
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -40°C, +25°C, +85°C
-40
-50
VCC = 3.3V
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-50
3000
3500
LO FREQUENCY (MHz)
4000
-20
LO LEAKAGE AT RF PORT (dBm)
-30
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2044 toc59
RF FREQUENCY (MHz)
VCC = 3.3V
3700
RF-TO-IF ISOLATION vs. RF FREQUENCY
RF FREQUENCY (MHz)
-20
2500
2900
60
20
3200
MAX2044 toc55
2700
LO FREQUENCY (MHz)
VCC = 3.3V
20
3000
VCC = 3.0V, 3.3V, 3.6V
RF-TO-IF ISOLATION vs. RF FREQUENCY
RF-TO-IF ISOLATION (dB)
TC = +85°C
TC = -40°C
3100
60
MAX2044 toc56
VCC = 3.3V
30
-30
LO FREQUENCY (MHz)
60
50
-20
-40
2700
RF-TO-IF ISOLATION (dB)
2900
MAX2044 toc57
2700
RF-TO-IF ISOLATION (dB)
MAX2044 toc54
-20
-10
MAX2044 toc58
TC = -40°C
VCC = 3.3V
4000
MAX2044 toc61
-20
-10
MAX2044 toc60
LO LEAKAGE AT IF PORT (dBm)
VCC = 3.3V
LO LEAKAGE AT IF PORT (dBm)
MAX2044 toc53
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
-30
VCC = 3.0V, 3.3V, 3.6V
-40
-50
2500
3000
3500
LO FREQUENCY (MHz)
4000
2500
3000
3500
LO FREQUENCY (MHz)
16 �������������������������������������������������������������������������������������
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
TC = +25°C
-45
-55
VCC = 3.0V
-25
-35
PLO = -3dBm, 0dBm, +3dBm
-45
-55
3000
4000
3500
VCC = 3.3V
VCC = 3.6V
-35
-45
-55
2500
3000
LO FREQUENCY (MHz)
4000
3500
2500
3000
LO FREQUENCY (MHz)
VCC = 3.3V
fIF = 300MHz
0
10
15
20
fLO = 3200MHz
5
IF PORT RETURN LOSS (dB)
5
4000
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2044 toc65
0
3500
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
RF PORT RETURN LOSS (dB)
25
10
15
VCC = 3.0V, 3.3V, 3.6V
20
25
PLO = -3dBm, 0dBm, +3dBm
30
30
3200
3400
3600
3800
4000
140
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs.TEMPERATURE (TC)
VCC = 3.3V
10
PLO = -3dBm
20
PLO = 0dBm
30
3500
LO FREQUENCY (MHz)
130
VCC = 3.6V
125
120
115
VCC = 3.3V
VCC = 3.0V
110
PLO = +3dBm
3000
135
4000
500
MAX2044 toc68
0
2500
50
RF FREQUENCY (MHz)
SUPPLY CURRENT (mA)
3000
MAX2044 toc67
2500
-25
MAX2044 toc66
TC = +85°C
-35
-15
2LO LEAKAGE AT RF PORT (dBm)
-25
LO PORT RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
2LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
TC = -40°C
-15
MAX2044 toc62
-15
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc64
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc63
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
105
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________ 17
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 3.3V, fRF = 3000MHz to
4000MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to
2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
7
TC = -40°C
6
9
8
PLO = -3dBm, 0dBm, +3dBm
7
6
2600
2750
2900
RF FREQUENCY (MHz)
33
TC = +25°C
TC = +85°C
29
27
2750
2900
2600
2750
PRF = 0dBm/TONE
PLO = +3dBm
2750
PLO = -3dBm
37
35
PRF = 0dBm/TONE
VCC = 5.25V
33
VCC = 5.0V
31
VCC = 4.75V
29
27
2300
2450
2600
2750
2900
2300
2450
2600
2750
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
70
60
TC = +25°C
PLO = +3dBm
70
60
PLO = 0dBm
PLO = -3dBm
TC = -40°C
50
2600
2750
RF FREQUENCY (MHz)
2900
2900
PRF = 0dBm
VCC = 4.75V
70
VCC = 5.0V
60
VCC = 5.25V
50
2450
80
MAX2044 toc76
PRF = 0dBm
2LO - 2RF RESPONSE (dBc)
2LO - 2RF RESPONSE (dBc)
TC = +85°C
80
2900
INPUT IP3 vs. RF FREQUENCY
PLO = 0dBm
2900
2600
RF FREQUENCY (MHz)
33
31
2450
RF FREQUENCY (MHz)
PRF = 0dBm
2300
MAX2044 toc71
2300
27
2450
MAX2044 toc75
80
2600
29
2300
7
MAX2044 toc77
31
2450
35
INPUT IP3 (dBm)
INPUT IP3 (dBm)
35
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
37
MAX2044 toc72
TC = -40°C
8
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
9
6
2300
INPUT IP3 (dBm)
2450
MAX2044 toc73
2300
37
CONVERSION LOSS (dB)
8
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2044 toc70
MAX2044 toc69
TC = +25°C
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TC = +85°C
9
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2044 toc74
CONVERSION LOSS vs. RF FREQUENCY
10
2LO - 2RF RESPONSE (dBc)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
50
2300
2450
2600
2750
RF FREQUENCY (MHz)
2900
2300
2450
2600
2750
RF FREQUENCY (MHz)
18 �������������������������������������������������������������������������������������
2900
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
TC = +25°C
75
65
TC = -40°C
55
2450
2600
2750
PLO = +3dBm
75
65
PLO = 0dBm
PLO = -3dBm
2900
VCC = 5.25V
65
VCC = 5.0V
VCC = 4.75V
55
2300
2450
2600
2750
2900
2300
2450
2600
2750
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = -40°C
-40
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-40
3050
3200
TC = +85°C
30
20
2900
3050
3200
2600
2750
RF FREQUENCY (MHz)
VCC = 5.25V
2600
2900
2750
2900
3050
3200
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2044 toc85
50
40
PLO = -3dBm, 0dBm, +3dBm
30
20
2450
VCC = 5.0V
-35
RF-TO-IF ISOLATION vs. RF FREQUENCY
RF-TO-IF ISOLATION (dB)
TC = +25°C
2750
60
MAX2044 toc84
50
40
-30
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
TC = -40°C
VCC = 4.75V
-40
2600
LO FREQUENCY (MHz)
60
-25
MAX2044 toc86
2900
RF-TO-IF ISOLATION (dB)
2750
2900
MAX2044 toc83
MAX2044 toc82
-25
-20
LO LEAKAGE AT IF PORT (dBm)
-30
-20
LO LEAKAGE AT IF PORT (dBm)
MAX2044 toc81
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = +85°C
2300
75
RF FREQUENCY (MHz)
TC = +25°C
2600
PRF = 0dBm
RF FREQUENCY (MHz)
-25
-35
MAX2044 toc80
85
RF FREQUENCY (MHz)
-20
LO LEAKAGE AT IF PORT (dBm)
PRF = 0dBm
55
2300
RF-TO-IF ISOLATION (dB)
3LO - 3RF RESPONSE
vs. RF FREQUENCY
3LO - 3RF RESPONSE (dBc)
TC = +85°C
85
MAX2044 toc78
PRF = 0dBm
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
85
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc79
3LO - 3RF RESPONSE
vs. RF FREQUENCY
50
40
VCC = 4.75V, 5.0V, 5.25V
30
20
2300
2450
2600
2750
RF FREQUENCY (MHz)
2900
2300
2450
2600
2750
2900
RF FREQUENCY (MHz)
______________________________________________________________________________________ 19
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to
2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to
2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-30
TC = -40°C
TC = +25°C
-40
-50
PLO = -3dBm, 0dBm, +3dBm
-40
-20
-50
2725
3150
3575
4000
-40
2725
3150
3575
4000
2300
2725
3150
3575
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -40°C
TC = +25°C
-50
TC = +85°C
-60
-30
PLO = +3dBm
PLO = 0dBm
-40
-50
PLO = -3dBm
-60
2725
3150
3575
LO FREQUENCY (MHz)
4000
-20
4000
MAX2044 toc92
-20
2LO LEAKAGE AT RF PORT (dBm)
MAX2044 toc90
-30
2300
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
-20
-40
-30
-50
2300
2LO LEAKAGE AT RF PORT (dBm)
2300
MAX2044 toc89
MAX2044 toc88
-30
MAX2044 toc91
LO LEAKAGE AT RF PORT (dBm)
TC = +85°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2044 toc87
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
-30
VCC = 5.25V
VCC = 5.0V
-40
-50
VCC = 4.75V
-60
2300
2725
3150
3575
LO FREQUENCY (MHz)
4000
2300
2725
3150
3575
LO FREQUENCY (MHz)
20 �������������������������������������������������������������������������������������
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
5
VCC = 4.75V, 5.0V, 5.25V
5
IF PORT RETURN LOSS (dB)
fIF = 300MHz
10
0
MAX2044 toc93
PLO = -3dBm, 0dBm, +3dBm
15
20
25
10
15
20
fLO = 2600MHz
fLO = 2900MHz
25
30
30
2450
2600
2750
2900
50
140
230
320
410
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
0
PLO = -3dBm
20
PLO = +3dBm
30
VCC = 5.25V
145
SUPPLY CURRENT (mA)
10
PLO = 0dBm
150
MAX2044 toc95
2300
LO PORT RETURN LOSS (dB)
fLO = 3200MHz
500
MAX2044 toc96
RF PORT RETURN LOSS (dB)
0
MAX2044 toc94
IF PORT RETURN LOSS
vs. IF FREQUENCY
RF PORT RETURN LOSS
vs. RF FREQUENCY
140
135
VCC = 5.0V
VCC = 4.75V
130
125
120
40
2500
3000
3500
LO FREQUENCY (MHz)
4000
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________ 21
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 2300MHz to
2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
8
7
9
CONVERSION LOSS (dB)
TC = +25°C
TC = +85°C
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2044 toc98
MAX2044 toc97
9
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
10
8
PLO = -3dBm, 0dBm, +3dBm
7
MAX2044 toc99
CONVERSION LOSS vs. RF FREQUENCY
10
9
8
VCC = 4.75V, 5.0V, 5.25V
7
TC = -40°C
6
3400
3600
3800
4000
6
3000
3200
RF FREQUENCY (MHz)
TC = -40°C
31
TC = +25°C
TC = +85°C
3000
PRF = 0dBm/TONE
PLO = +3dBm
33
31
PLO = -3dBm
3200
3400
3600
3800
4000
3400
3600
3800
PRF = 0dBm/TONE
35
VCC = 5.0V
33
VCC = 5.25V
31
PLO = 0dBm
VCC = 4.75V
29
27
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
60
TC = -40°C
TC = +25°C
PRF = 0dBm
PLO = +3dBm
70
PLO = 0dBm
60
80
2LO - 2RF RESPONSE (dBc)
TC = +85°C
2LO - 2RF RESPONSE (dBc)
70
80
4000
MAX2044 toc105
RF FREQUENCY (MHz)
MAX2044 toc104
RF FREQUENCY (MHz)
MAX2044 toc103
RF FREQUENCY (MHz)
PRF = 0dBm
4000
INPUT IP3 vs. RF FREQUENCY
37
27
3000
3200
RF FREQUENCY (MHz)
29
27
80
4000
35
INPUT IP3 (dBm)
INPUT IP3 (dBm)
35
29
3800
INPUT IP3 vs. RF FREQUENCY
37
MAX2044 toc100
PRF = 0dBm/TONE
33
3600
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
37
3400
INPUT IP3 (dBm)
3200
MAX2044 toc101
3000
MAX2044 toc102
6
2LO - 2RF RESPONSE (dBc)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
PRF = 0dBm
VCC = 5.25V
70
VCC = 5.0V
60
VCC = 4.75V
PLO = -3dBm
50
50
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
50
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
RF FREQUENCY (MHz)
22 �������������������������������������������������������������������������������������
3800
4000
SiGe, High-Linearity, 3000MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
TC = -40°C
65
TC = +25°C
75
PLO = +3dBm
PLO = 0dBm
65
55
3200
3400
3600
3800
65
55
3000
3200
3400
3600
3800
4000
3000
3200
3400
3600
3800
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-30
-40
3900
4100
4300
3500
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
3700
3900
4100
4300
RF-TO-IF ISOLATION vs. RF FREQUENCY
RF-TO-IF ISOLATION (dB)
TC = +25°C, +85°C
40
TC = -40°C
20
RF FREQUENCY (MHz)
3500
3800
4000
3700
3900
4100
4300
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2044 toc113
50
40
PLO = -3dBm, 0dBm, +3dBm
30
20
3600
3300
LO FREQUENCY (MHz)
60
MAX2044 toc112
50
3400
-30
LO FREQUENCY (MHz)
60
3200
VCC = 4.75V, 5.0V, 5.25V
-40
3300
RF-TO-IF ISOLATION (dB)
3700
-20
TC = +85°C
-40
3500
MAX2044 toc111
MAX2044 toc110
PLO = -3dBm, 0dBm, +3dBm
4000
MAX2044 toc114
TC = +25°C
-20
-10
LO LEAKAGE AT IF PORT (dBm)
-30
-10
LO LEAKAGE AT IF PORT (dBm)
TC = -40°C
3000
VCC = 5.0V
RF FREQUENCY (MHz)
MAX2044 toc109
LO LEAKAGE AT IF PORT (dBm)
4000
-20
30
VCC = 5.25V
RF FREQUENCY (MHz)
-10
3300
75
VCC = 4.75V
55
3000
PRF = 0dBm
PLO = -3dBm
TC = +85°C
RF-TO-IF ISOLATION (dB)
85
MAX2044 toc108
PRF = 0dBm
3LO - 3RF RESPONSE (dBc)
75
85
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc107
PRF = 0dBm
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
85
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2044 toc106
3LO - 3RF RESPONSE
vs. RF FREQUENCY
50
40
VCC = 4.75V, 5.0V, 5.25V
30
20
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
______________________________________________________________________________________ 23
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-30
TC = +85°C
-40
TC = -40°C
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-30
-40
TC = +25°C
-20
4000
4500
-50
3000
3500
4000
4500
3000
3500
4000
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-30
TC = +25°C
TC = +85°C
-20
PLO = 0dBm
-30
PLO = -3dBm
-40
4500
MAX2044 toc120
PLO = +3dBm
-10
2LO LEAKAGE AT RF PORT (dBm)
-20
2LO LEAKAGE AT RF PORT (dBm)
TC = -40°C
-10
MAX2044 toc119
LO FREQUENCY (MHz)
MAX2044 toc118
LO FREQUENCY (MHz)
-10
-40
-40
VCC = 4.75V, 5.0V, 5.25V
-50
3500
-30
PLO = -3dBm, 0dBm, +3dBm
-50
3000
MAX2044 toc117
MAX2044 toc116
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2044 toc115
LO LEAKAGE AT RF PORT (dBm)
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
-20
VCC = 4.75V
-30
VCC = 5.0V
-40
VCC = 5.25V
-50
-50
3000
3400
3800
LO FREQUENCY (MHz)
4200
-50
3000
3400
3800
LO FREQUENCY (MHz)
4200
3000
3400
3800
LO FREQUENCY (MHz)
24 �������������������������������������������������������������������������������������
4200
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
5
10
15
20
PLO = -3dBm, 0dBm, +3dBm
25
0
10
15
VCC = 4.75V, 5.0V, 5.25V
20
25
30
3200
3400
3600
3800
4000
50
140
230
320
410
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
150
MAX2044 toc123
0
PLO = -3dBm
20
PLO = 0dBm
PLO = +3dBm
40
VCC = 5.25V
145
SUPPLY CURRENT (mA)
10
500
MAX2044 toc124
3000
LO PORT RETURN LOSS (dB)
fLO = 3800MHz
5
30
30
MAX2044 toc122
fIF = 300MHz
IF PORT RETURN LOSS (dB)
RF PORT RETURN LOSS (dB)
0
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2044 toc121
RF PORT RETURN LOSS
vs. RF FREQUENCY
140
135
VCC = 5.0V
130
VCC = 4.75V
125
120
50
3000
3500
4000
LO FREQUENCY (MHz)
4500
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________ 25
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCC = 5.0V, fRF = 3000MHz to
4000MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
8
7
9
CONVERSION LOSS (dB)
TC = +85°C
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2044 toc126
MAX2044 toc125
9
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
10
8
PLO = -3dBm, 0dBm, +3dBm
7
MAX2044 toc127
CONVERSION LOSS vs. RF FREQUENCY
10
9
8
VCC = 4.75V, 5.0V, 5.25V
7
TC = -40°C
6
3600
3800
4000
6
3000
3200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
3800
4000
3000
PIF = 0dBm/TONE
PLO = +3dBm
34
INPUT IP3 (dBm)
34
TC = +25°C
TC = +85°C
30
32
PLO = 0dBm
34
PLO = -3dBm
3800
4000
LO - 2IF RESPONSE vs. RF FREQUENCY
3200
3400
3600
3800
4000
LO - 2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
LO - 2IF RESPONSE (dBc)
TC = +25°C
65
55
75
45
65
PLO = 0dBm
55
PLO = -3dBm
45
3400
3600
RF FREQUENCY (MHz)
3200
3800
4000
3400
3600
3800
4000
LO - 2IF RESPONSE vs. RF FREQUENCY
PLO = +3dBm
TC = -40°C
3200
3000
RF FREQUENCY (MHz)
85
MAX2044 toc131
PIF = 0dBm
3000
VCC = 4.75V
RF FREQUENCY (MHz)
85
TC = +85°C
VCC = 5.0V
28
3000
RF FREQUENCY (MHz)
75
32
30
85
PIF = 0dBm
VCC = 5.0V
LO - 2IF RESPONSE (dBc)
3600
4000
PIF = 0dBm/TONE
MAX2044 toc132
3400
3800
VCC = 5.25V
28
3200
3600
36
30
28
3400
INPUT IP3 vs. RF FREQUENCY
36
MAX2044 toc128
PIF = 0dBm/TONE
3000
3200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
TC = -40°C
INPUT IP3 (dBm)
3600
RF FREQUENCY (MHz)
36
32
3400
MAX2044 toc130
3400
INPUT IP3 (dBm)
3200
MAX2044 toc129
3000
75
MAX2044 toc133
6
LO - 2IF RESPONSE (dBc)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
VCC = 5.25V
65
VCC = 4.75V
55
45
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
RF FREQUENCY (MHz)
26 �������������������������������������������������������������������������������������
3800
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
65
TC = +25°C
55
65
PLO = 0dBm
55
TC = -40°C
45
3600
3800
4000
LO - 3IF RESPONSE vs. RF FREQUENCY
3200
3400
3600
3800
3000
MAX2044 toc137
TC = +25°C
80
TC = +85°C
PIF = 0dBm
60
90
3800
4000
PLO = -3dBm, 0dBm, +3dBm
3200
3600
3800
3400
3600
RF FREQUENCY (MHz)
3000
3200
3800
4000
3400
3600
3800
4000
90
LO + 3IF RESPONSE vs. RF FREQUENCY
80
PLO = -3dBm, 0dBm, +3dBm
70
60
3200
70
4000
100
PIF = 0dBm
LO + 3IF RESPONSE (dBc)
TC = +25°C
60
3000
80
RF FREQUENCY (MHz)
PIF = 0dBm
LO + 3IF RESPONSE (dBc)
80
70
VCC = 4.75V, 5.0V, 5.25V
LO + 3IF RESPONSE vs. RF FREQUENCY
TC = -40°C
TC = +85°C
3400
100
MAX2044 toc140
PIF = 0dBm
90
90
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
4000
60
3000
RF FREQUENCY (MHz)
100
3800
PIF = 0dBm
MAX2044 toc141
3600
3600
LO - 3IF RESPONSE vs. RF FREQUENCY
80
70
3400
100
60
3400
3200
RF FREQUENCY (MHz)
LO - 3IF RESPONSE vs. RF FREQUENCY
TC = -40°C
3200
55
4000
100
LO - 3IF RESPONSE (dBc)
LO - 3IF RESPONSE (dBc)
PIF = 0dBm
3000
VCC = 4.75V
RF FREQUENCY (MHz)
100
70
65
45
3000
RF FREQUENCY (MHz)
90
VCC = 5.25V
75
MAX2044 toc139
3400
LO - 3IF RESPONSE (dBc)
3200
MAX2044 toc138
3000
PIF = 0dBm
PLO = -3dBm
45
LO + 3IF RESPONSE (dBc)
PLO = +3dBm
VCC = 5.0V
90
MAX2044 toc142
TC = +85°C
75
LO + 2IF RESPONSE (dBc)
LO + 2IF RESPONSE (dBc)
75
PIF = 0dBm
LO + 2IF RESPONSE vs. RF FREQUENCY
85
MAX2044 toc136
MAX2044 toc134
PIF = 0dBm
LO + 2IF RESPONSE (dBc)
LO + 2IF RESPONSE vs. RF FREQUENCY
85
MAX2044 toc135
LO + 2IF RESPONSE vs. RF FREQUENCY
85
VCC = 5.25V
80
VCC = 5.0V
70
VCC = 4.75V
60
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
______________________________________________________________________________________ 27
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +85°C
TC = +25°C
-30
TC = -40°C
-40
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-40
3000
3200
3400
3600
3800
-30
VCC = 4.75V, 5.0V, 5.25V
-35
3000
3200
3400
3600
3800
2800
3000
3200
3400
3600
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-60
-70
-80
TC = +25°C
TC = +85°C
-90
-100
-50
-60
PLO = +3dBm
-70
-80
PLO = 0dBm
PLO = -3dBm
-90
-100
3000
3200
3400
LO FREQUENCY (MHz)
3600
3800
-50
IF LEAKAGE AT RF PORT (dBm)
TC = -40°C
MAX2044 toc147
MAX2044 toc146
-50
2800
-25
-40
2800
IF LEAKAGE AT RF PORT (dBm)
2800
MAX2044 toc145
MAX2044 toc144
-25
-20
VCC = 5.25V
-60
3800
MAX2044 toc148
-35
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
LO LEAKAGE AT RF PORT (dBm)
-25
MAX2044 toc143
LO LEAKAGE AT RF PORT (dBm)
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT (dBm)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
-70
-80
VCC = 5.0V
VCC = 4.75V
-90
-100
2800
3000
3200
3400
LO FREQUENCY (MHz)
3600
3800
2800
3000
3200
3400
LO FREQUENCY (MHz)
28 �������������������������������������������������������������������������������������
3600
3800
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
PLO = -3dBm, 0dBm, +3dBm
10
15
20
fLO = 3200MHz
5
25
VCC = 4.75V, 5.0V, 5.25V
10
15
20
25
30
30
3000
3200
3400
3600
3800
4000
50
140
230
320
410
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
150
MAX2044 toc151
0
5
PLO = -3dBm
10
PLO = 0dBm
15
20
PLO = +3dBm
VCC = 5.25V
145
SUPPLY CURRENT (mA)
LO PORT RETURN LOSS (dB)
MAX2044 toc150
5
0
VCC = 5.0V
500
MAX2044 toc152
RF PORT RETURN LOSS (dB)
fIF = 200MHz
IF PORT RETURN LOSS (dB)
0
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2044 toc149
RF PORT RETURN LOSS
vs. RF FREQUENCY
140
135
VCC = 4.75V
130
125
25
120
30
2500
3000
3500
LO FREQUENCY (MHz)
4000
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________ 29
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 5.0V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
8
7
9
CONVERSION LOSS (dB)
TC = +25°C
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2044 toc154
MAX2044 toc153
TC = +85°C
VCC = 3.3V
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
VCC = 3.3V
9
CONVERSION LOSS vs. RF FREQUENCY
10
8
PLO = -3dBm, 0dBm, +3dBm
7
MAX2044 toc155
CONVERSION LOSS vs. RF FREQUENCY
10
9
8
VCC = 3.0V, 3.3V, 3.6V
7
TC = -40°C
6
3200
3400
3600
3800
4000
6
3000
3200
RF FREQUENCY (MHz)
3600
3800
4000
3000
3200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
VCC = 3.3V
PIF = 0dBm/TONE
32
3600
3800
4000
INPUT IP3 vs. RF FREQUENCY
34
MAX2044 toc156
VCC = 3.3V
PIF = 0dBm/TONE
3400
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
34
32
3400
34
MAX2044 toc157
3000
MAX2044 toc158
6
PIF = 0dBm/TONE
32
VCC = 3.6V
TC = +25°C
28
TC = +85°C
30
28
26
24
3800
4000
3200
RF FREQUENCY (MHz)
3400
3600
3800
4000
LO - 2IF RESPONSE vs. RF FREQUENCY
LO - 2IF RESPONSE vs. RF FREQUENCY
VCC = 3.3V
PIF = 0dBm
LO - 2IF RESPONSE (dBc)
75
TC = +85°C
65
TC = +25°C
75
PLO = +3dBm
PLO = -3dBm
TC = -40°C
45
3400
3600
RF FREQUENCY (MHz)
3800
4000
3600
3800
4000
LO - 2IF RESPONSE vs. RF FREQUENCY
65
55
3400
85
PIF = 0dBm
75
VCC = 3.6V
65
55
VCC = 3.3V
PLO = 0dBm
45
3200
3200
RF FREQUENCY (MHz)
85
MAX2044 toc159
VCC = 3.3V
PIF = 0dBm
3000
3000
RF FREQUENCY (MHz)
85
55
VCC = 3.3V
24
3000
LO - 2IF RESPONSE (dBc)
3600
MAX2044 toc160
3400
VCC = 3.0V
26
24
3200
28
PLO = -3dBm, 0dBm, +3dBm
26
3000
30
MAX2044 toc161
30
INPUT IP3 (dBm)
INPUT IP3 (dBm)
INPUT IP3 (dBm)
TC = -40°C
LO - 2IF RESPONSE (dBc)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
VCC = 3.0V
45
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
RF FREQUENCY (MHz)
30 �������������������������������������������������������������������������������������
3800
4000
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
PLO = +3dBm
65
55
PLO = 0dBm
TC = -40°C
3800
4000
3000
3200
LO - 3IF RESPONSE vs. RF FREQUENCY
VCC = 3.3V
PIF = 0dBm
3800
4000
3000
TC = +25°C
70
TC = +85°C
60
TC = -40°C
VCC = 3.3V
PIF = 0dBm
50
3800
70
PLO = -3dBm, 0dBm, +3dBm
60
4000
3200
70
VCC = 3.0V
60
3600
3800
4000
VCC = 3.3V
3000
70
TC = +25°C
TC = +85°C
VCC = 3.3V
PIF = 0dBm
80
3800
4000
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
80
VCC = 3.6V
70
VCC = 3.3V
60
VCC = 3.0V
50
50
3200
3600
LO + 3IF RESPONSE vs. RF FREQUENCY
70
60
3400
90
TC = -40°C
3000
3200
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
LO + 3IF RESPONSE (dBc)
80
60
3400
90
MAX2044 toc168
VCC = 3.3V
PIF = 0dBm
MAX2044 toc164
PIF = 0dBm
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
4000
50
3000
RF FREQUENCY (MHz)
90
3800
VCC = 3.6V
LO + 3IF RESPONSE (dBc)
3600
3600
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2044 toc169
3400
3400
80
50
3200
3200
RF FREQUENCY (MHz)
LO - 3IF RESPONSE vs. RF FREQUENCY
LO - 3IF RESPONSE (dBc)
LO - 3IF RESPONSE (dBc)
3600
80
MAX2044 toc165
80
LO + 3IF RESPONSE (dBc)
3400
RF FREQUENCY (MHz)
LO - 3IF RESPONSE (dBc)
3600
RF FREQUENCY (MHz)
3000
VCC = 3.3V
45
MAX2044 toc166
3400
55
VCC = 3.0V
45
3200
VCC = 3.6V
65
PLO = -3dBm
45
3000
75
MAX2044 toc167
TC = +25°C
75
PIF = 0dBm
LO + 2IF RESPONSE (dBc)
TC = +85°C
65
55
VCC = 3.3V
PIF = 0dBm
LO + 2IF RESPONSE (dBc)
75
LO + 2IF RESPONSE vs. RF FREQUENCY
85
MAX2044 toc163
MAX2044 toc162
VCC = 3.3V
PIF = 0dBm
LO + 2IF RESPONSE (dBc)
LO + 2IF RESPONSE vs. RF FREQUENCY
85
MAX2044 toc170
LO + 2IF RESPONSE vs. RF FREQUENCY
85
3400
3600
RF FREQUENCY (MHz)
3800
4000
50
3000
3200
3400
3600
RF FREQUENCY (MHz)
3800
4000
3000
3200
3400
3600
3800
4000
RF FREQUENCY (MHz)
______________________________________________________________________________________ 31
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-30
TC = +25°C
TC = -40°C
-35
-40
-25
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-20
-40
3000
3200
3400
3600
3800
-30
VCC = 3.0V, 3.3V, 3.6V
-35
-40
2800
3000
3200
3400
3600
3800
2800
3000
3200
3400
3600
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -40°C
-80
-90
TC = +25°C
VCC = 3.3V
-70
PLO = 0dBm
PLO = -3dBm
-80
-90
PLO = +3dBm
-100
3200
VCC = 3.0V
-70
-80
-90
VCC = 3.6V
VCC = 3.3V
TC = +85°C
-100
3000
-60
3800
MAX2044 toc176
-70
-60
IF LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
IF LEAKAGE AT RF PORT (dBm)
-60
2800
-25
LO FREQUENCY (MHz)
MAX2044 toc174
2800
MAX2044 toc173
VCC = 3.3V
LO LEAKAGE AT RF PORT (dBm)
TC = +85°C
-20
MAX2044 toc172
-25
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc175
LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
LO LEAKAGE AT RF PORT (dBm)
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2044 toc171
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT (dBm)
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
3400
LO FREQUENCY (MHz)
3600
3800
-100
2800
3000
3200
3400
LO FREQUENCY (MHz)
3600
3800
2800
3000
3200
3400
LO FREQUENCY (MHz)
32 �������������������������������������������������������������������������������������
3600
3800
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
IF PORT RETURN LOSS
vs. IF FREQUENCY
VCC = 3.3V
fIF = 200MHz
5
10
PLO = -3dBm, 0dBm, +3dBm
15
20
0
fLO = 3200MHz
5
IF PORT RETURN LOSS (dB)
MAX2044 toc177
25
15
20
25
30
30
3200
3400
3600
3800
4000
140
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
VCC = 3.3V
5
10
PLO = -3dBm
15
20
PLO = +3dBm
135
130
SUPPLY CURRENT (mA)
0
25
50
RF FREQUENCY (MHz)
MAX2044 toc179
3000
LO PORT RETURN LOSS (dB)
VCC = 3.0V, 3.3V, 3.6V
10
PLO = 0dBm
500
MAX2044 toc180
RF PORT RETURN LOSS (dB)
0
MAX2044 toc178
RF PORT RETURN LOSS
vs. RF FREQUENCY
VCC = 3.6V
VCC = 3.3V
125
120
115
VCC = 3.0V
110
105
30
2500
3000
3500
LO FREQUENCY (MHz)
4000
-40
-15
10
35
60
85
TEMPERATURE (°C)
______________________________________________________________________________________ 33
MAX2044
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC = 3.3V, fRF = 3000MHz to 4000MHz,
LO is low-side injected, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
Pin Configuration/Functional Diagram
VCC
1
RF
GND
IF+
IF-
GND
GND
+
TOP VIEW
20
19
18
17
16
15
GND
2
14
VCC
GND
3
13
GND
GND
4
12
GND
GND
5
11
LO
MAX2044
6
7
8
9
10
VCC
LOBIAS
VCC
GND
GND
EP*
*EXPOSED PAD
Pin Description
PIN
NAME
1, 6, 8, 14
VCC
FUNCTION
2
RF
3, 9, 13, 15
GND
Ground. Not internally connected. Pins can be grounded.
4, 5, 10,
12, 17
GND
Ground. Internally connected to the exposed pad (EP). Connect all ground pins and the exposed
pad together.
7
LOBIAS
LO Output Bias Resistor for LO Buffer. Connect a 698I 1% resistor (138mA bias condition) from
LOBIAS to ground.
11
LO
16, 20
GND
18, 19
IF-, IF+
—
EP
Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.
Single-Ended 50I RF Input/Output. Internally matched and DC shorted to GND through a balun.
Provide an input DC-blocking capacitor if required.
Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking
capacitor.
Ground. Connect pins to ground.
Mixer Differential IF Output/Input. Provide DC-blocking capacitors if required. These ports are
internally biased to VCC/2.
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These
multiple via grounds are also required to achieve the noted RF performance.
34 �������������������������������������������������������������������������������������
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
The MAX2044 is a high-linearity passive mixer targeting
2.5GHz and 3.5GHz wireless infrastructure applications.
With an ultra-wide 2600MHz to 4300MHz LO frequency
range, the MAX2044 can be used in either low-side or
high-side LO injection architectures for virtually all WiMAX,
LTE, and MMDS receive and transmit applications.
When used as a low-side LO injection downconverting
mixer in the 3000MHz to 4000MHz band, the MAX2044
provides +32.5dBm of input IP3, with typical conversion
loss and noise figure values of only 7.7dB and 8.5dB,
respectively. The integrated baluns and matching circuitry allow for 50I single-ended interfaces to the RF
and the LO port. The integrated LO buffer provides
a high drive level to the mixer core, reducing the LO
drive required at the MAX2044’s input to a -3dBm to
+3dBm range. The IF port incorporates a differential
output, which is ideal for providing enhanced 2RF - 2LO
or 2LO - 2RF performance.
Specifications are guaranteed over broad frequency ranges
to allow for use in WiMAX, LTE, and MMDS base stations.
The MAX2044 is specified to operate over a 2300MHz
to 4000MHz RF input range, a 2600MHz to 4300MHz
LO range, and a 50MHz to 500MHz IF range. Operation
beyond these ranges is possible (see the Typical Operating
Characteristics for additional information).
RF Input and Balun
The MAX2044 RF input provides a 50I match when
combined with a series DC-blocking capacitor. This
DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun.
When using an 8.2pF DC-blocking capacitor, the RF
port input return loss is typically better than 13dB over
the 3300MHz to 3900MHz RF frequency range. A return
loss of 15dB over the 2400MHz to 2700MHz range is
achievable by changing the input matching components
per Tables 1 and 2. Other combinations of C1 and C12
can be used to optimize RF return loss in the 2300MHz
to 4000MHz band.
LO Inputs, Buffer, and Balun
With a broadband LO drive circuit spanning 2600MHz to
4300MHz, the MAX2044 can be used in either low-side
or high-side LO injection architectures for virtually all
2.5GHz and 3.5GHz applications. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking
capacitor. A two-stage internal LO buffer allows for a
-3dBm to +3dBm LO input power range. The on-chip
low-loss balun, along with an LO buffer, drives the
double-balanced mixer. All interfacing and matching
components from the LO inputs to the IF outputs are
integrated on-chip.
High-Linearity Mixer
The core of the MAX2044 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer.
IIP3, 2RF - 2LO rejection, and noise figure performance
are typically +32.5dBm, 68dBc, and 8.5dB, respectively.
Differential IF Output
The MAX2044 has a 50MHz to 500MHz IF frequency
range, where the low-end frequency depends on the
frequency response of the external IF components.
The MAX2044’s differential ports are ideal for providing enhanced 2RF - 2LO and 2LO - 2RF performance.
Single-ended IF applications require a 1:1 (impedance
ratio) balun to transform the 50I differential IF impedance to a 50I single-ended system. An MABAES0029
1:1 transformer is used to characterize the part and its
loss is included in the data presented in this data sheet.
The user can connect a differential IF amplifier or SAW
filter to the mixer IF port, but a DC block is required on
both IF+/IF- ports to keep external DC from entering the
IF ports of the mixer. Capacitors C4 and C7 are required
DC blocks since the IF+ and IF- terminals are internally
biased to VCC/2.
Applications Information
Input and Output Matching
The RF input provides a 50I match when combined with
a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 3000MHz to
4000MHz. See Tables 1 and 2 for alternative components that provide an excellent match over the 2300MHz
to 3000MHz band. The LO input is internally matched to
50I; use a 2pF DC-blocking capacitor to cover operations spanning the 2600MHz to 4300MHz range. The
IF output impedance is 50I (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun
transforms this impedance down to a 50I single-ended
output (see the Typical Application Circuit).
______________________________________________________________________________________ 35
MAX2044
Detailed Description
MAX2044
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
Reduced-Power Mode
The MAX2044 has one pin (LOBIAS) that allows an
external resistor to set the internal bias current. Nominal
values for this resistor are shown in Tables 1 and 2.
Larger value resistors can be used to reduce power
dissipation at the expense of some performance loss. If
Q1% resistors are not readily available, substitute with
Q5% resistors.
Significant reductions in power consumption can also
be realized by operating the mixer at a supply voltage
of 3.3V. Doing so reduces the overall power consumption by typically 42%. See the 3.3V Supply AC Electrical
Characteristics table and the relevant 3.3V curves in the
Typical Operating Characteristics section to evaluate the
power vs. performance trade-offs.
Layout Considerations
A properly designed PCB is an essential part of any RF/
microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The
load impedance presented to the mixer must be such
that any capacitance from both IF- and IF+ to ground
does not exceed several picofarads. For the best performance, route the ground pin traces directly to the
exposed pad under the package. The PCB exposed pad
MUST be connected to the ground plane of the PCB. It is
suggested that multiple vias be used to connect this pad
to the lower level ground planes. This method provides a
good RF/thermal-conduction path for the device. Solder
the exposed pad on the bottom of the device package
to the PCB.
Power-Supply Bypassing
Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the
capacitors shown in the Typical Application Circuit and
see Table 1.
Table 1. Downconverter Mode Component Values
DESIGNATION
C1
QTY
1
DESCRIPTION
COMPONENT SUPPLIER
3.3nH microwave inductor (0402). Use for RF
frequencies ranging from 2300MHz to 3000MHz.
Coilcraft, Inc.
8.2pF microwave capacitor (0402). Use for RF
frequencies ranging from 3000MHz to 4000MHz.
Murata Electronics North America, Inc.
C2, C6, C8, C11
4
0.01FF microwave capacitors (0402)
Murata Electronics North America, Inc.
C3, C9
0
Not installed, microwave capacitors (0402)
—
C4, C7
2
470pF microwave capacitors (0402)
Murata Electronics North America, Inc.
C5
0
Not installed, microwave capacitor (0402)
—
C10
1
2pF microwave capacitor (0402)
Murata Electronics North America, Inc.
1
0.3pF microwave capacitor (0402). Use for RF
frequencies ranging from 2300MHz to 3000MHz.
Murata Electronics North America, Inc.
0
Microwave capacitor (0402) not installed for RF
frequencies ranging from 3000MHz to 4000MHz.
—
698I ±1% resistor (0402). Use for VCC = +5.0V
applications.
Digi-Key Corp.
698I ±1% resistor (0402). Use for VCC = +3.3V
applications.
Digi-Key Corp.
C12
R1
1
T1
1
1:1 IF balun MABAES0029
M/A-Com
U1
1
MAX2044 IC (20 TQFN)
Maxim Integrated Products, Inc.
36 �������������������������������������������������������������������������������������
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
the EP. In addition, provide the EP with a low-inductance
path to electrical ground. The EP MUST be soldered to
a ground plane on the PCB, either directly or through an
array of plated via holes.
Table 2. Upconverter Mode Component Values
DESIGNATION
C1
QTY
1
DESCRIPTION
COMPONENT SUPPLIER
3.3nH microwave inductor (0402). Use for RF
frequencies ranging from 2300MHz to 3000MHz.
Coilcraft, Inc.
8.2pF microwave capacitor (0402). Use for RF
frequencies ranging from 3000MHz to 4000MHz.
Murata Electronics North America, Inc.
C2, C6, C8, C11
4
0.01FF microwave capacitors (0402)
Murata Electronics North America, Inc.
C3, C9
0
Not installed, microwave capacitors (0402)
—
C4, C7
2
470pF microwave capacitors (0402)
Murata Electronics North America, Inc.
C5
0
Not installed, microwave capacitor (0402)
—
C10
1
2pF microwave capacitor (0402)
Murata Electronics North America, Inc.
1
0.3pF microwave capacitor (0402). Use for RF
frequencies ranging from 2300MHz to 3000MHz.
Murata Electronics North America, Inc.
0
Microwave capacitor (0402) not installed for RF
frequencies ranging from 3000MHz to 4000MHz.
—
698I ±1% resistor (0402). Use for VCC = +5.0V
applications.
Digi-Key Corp.
698I ±1% resistor (0402). Use for VCC = +3.3V
applications.
Digi-Key Corp.
C12
R1
1
T1
1
1:1 IF balun MABAES0029
M/A-Com
U1
1
MAX2044 IC (20 TQFN)
Maxim Integrated Products, Inc.
______________________________________________________________________________________ 37
MAX2044
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2044’s 20-pin thin
QFN package provides a low thermal-resistance path
to the die. It is important that the PCB on which the
MAX2044 is mounted be designed to conduct heat from
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
MAX2044
Typical Application Circuit
N.C.
3
5
2
T1
IF
1
C7
C4
4
1:1
20
C3
C2
C1
VCC
RF
RF
19
18
GND
GND
IF-
IF+
GND
C5
VCC
17
1
16
15
U1
MAX2044
2
GND
VCC
14
C11
C12*
GND
GND
3
13
4
12
GND
GND
EP
11
5
VCC
C6
9
LO
C10
LO
INPUT
10
GND
8
GND
7
LOBIAS
VCC
6
VCC
GND
R1
NOTE: PINS 4, 5, 10, 12, AND 17 ARE ALL INTERNALLY
CONNECTED TO THE EXPOSED GROUND PAD. CONNECT
THESE PINS TO GROUND TO IMPROVE ISOLATION.
C8
VCC
C9
PINS 3, 9, 13, AND 15 HAVE NO INTERNAL CONNECTION, BUT CAN BE
EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
*C12 NOT USED FOR 3000MHz TO 4000MHz APPLICATIONS.
38 �������������������������������������������������������������������������������������
SiGe, High-Linearity, 2300MHz to 4000MHz
Upconversion/Downconversion Mixer with LO Buffer
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that
a “+”, “#”, or “-” in the package code indicates RoHS
status only. Package drawings may show a different suffix character, but the drawing pertains to the package
regardless of RoHS status.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
20 TQFN-EP
T2055+3
21-0140
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009
Maxim Integrated Products 39
Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX2044
Chip Information