19-5902; Rev 0; 6/11 EVALUATION KIT AVAILABLE MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer General Description The MAX2042A single, high-linearity upconversion/ downconversion mixer provides up to +33dBm input IP3, 7.25dB noise figure, and 7.2dB conversion loss for 1600MHz to 3900MHz GSM/EDGE, CDMA, TD-SCDMA, WCDMA, LTE, TD-LTE, WiMAXK, and MMDS wireless infrastructure applications. With an ultra-wide 1300MHz to 4000MHz LO frequency range, the IC can be used in either low-side or high-side LO injection architectures for virtually all 1.7GHz to 3.5GHz applications (for a 2.5GHz variant tuned specifically for low-side LO injection, refer to the MAX2042). In addition to offering excellent linearity and noise performance, the IC also yields a high level of component integration. This device includes a double-balanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The IC requires a nominal LO drive of 0dBm, and supply current is typically 140mA at VCC = 5.0V or 122mA at VCC = 3.3V. The MAX2042A is pin compatible with the MAX2042 2000MHz to 3000MHz mixer. The MAX2042A is also pin similar with the MAX2029/MAX2031/MAX2033 650MHz to 1550MHz mixers, the MAX2039/MAX2041 1700MHz to 3000MHz mixers, and the MAX2044 2300MHz to 4000MHz mixer, making the entire family of upconverters/ downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX2042A is available in a compact, 20-pin TQFN package (5mm x 5mm) with an exposed pad. Electrical performance is guaranteed over the extended TC = -40NC to +85NC temperature range. Applications 1.8GHz/1.9GHz GSM/EDGE/CDMA Base Stations 2.1GHz WCDMA/LTE Base Stations Benefits and Features SWide-Band Coverage 1600MHz to 3900MHz RF Frequency Range 1300MHz to 4000MHz LO Frequency Range 50MHz to 500MHz IF Frequency Range S7.2dB Conversion Loss S7.25dB Noise Figure SHigh Linearity +33dBm Input IP3 +21.7dBm Input 1dB Compression Point 72dBc Typical 2LO - 2RF Spurious Rejection at PRF = -10dBm SSimple PCB Layout Integrated LO Buffer Integrated LO and RF Baluns for Single-Ended Inputs SLow -6dBm to +3dBm LO Drive SPin Compatible with the MAX2042 2000MHz to 3000MHz Mixer SPin-Similar with the MAX2029/MAX2031/MAX2033 650MHz to 1550MHz Mixers, MAX2039/MAX2041 1700MHz to 3000MHz Mixers, and MAX2044 2300MHz to 4000MHz Mixer SSingle +5.0V or +3.3V Supply SExternal Current-Setting Resistor Provides Option for Operating Device in Reduced-Power/ReducedPerformance Mode Ordering Information appears at end of data sheet. For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX2042A.related. 2.3GHz TD-SCDMA/TD-LTE Base Stations 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations 3.5GHz WiMAX and LTE Base Stations Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Military Systems WiMAX is a trademark of WiMAX Forum. ����������������������������������������������������������������� Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer TABLE OF CONTENTS Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5.0V Supply DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3V Supply DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Recommended AC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 RF Input and Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LO Inputs, Buffer, and Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 High-Linearity Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Differential IF Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Input and Output Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Reduced-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Power-Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Exposed Pad RF/Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ����������������������������������������������������������������� Maxim Integrated Products 2 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer TABLE OF CONTENTS (continued) Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 LIST OF TABLES Table 1. Downconverter Mode Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 2. Upconverter Mode Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ����������������������������������������������������������������� Maxim Integrated Products 3 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer ABSOLUTE MAXIMUM RATINGS VCC to GND...........................................................-0.3V to +5.5V IF+, IF-, LOBIAS to GND . ........................ -0.3V to (VCC + 0.3V) RF, LO Input Power........................................................ +20dBm IF Input Power (50ω source).......................................... +18dBm RF, LO Current (RF and LO are DC shorted to GND through a balun).....................................................50mA Operating Case Temperature Range (Note 1)........ -40NC to +85NC Continuous Power Dissipation (Note 2)...............................5.0W Junction Temperature......................................................+150NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering 10s)..................................+300NC Soldering Temperature (reflow).......................................+260NC Note 1: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Note 2: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. PACKAGE THERMAL CHARACTERISTICS TQFN Junction-to-Ambient Thermal Resistance BJA (Notes 3, 4)........................ +38°C/W Junction-to-Case Thermal Resistance BJC (Notes 2, 4)........................ +13°C/W Note 3: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150NC. Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. 5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 4.75V to 5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 5.0V, TC = +25NC.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX UNITS 4.75 5 5.25 V 140 162 mA 3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = 3.0V to 3.6V, no input AC applied. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 3.3V, TC = +25NC.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX UNITS 3.0 3.3 3.6 V 122 mA ����������������������������������������������������������������� Maxim Integrated Products 4 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer RECOMMENDED AC OPERATING CONDITIONS PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS RF Frequency Range Without Tuning fRF1 Typical Application Circuit with C1 = 8.2pF (Table 1) (Notes 5, 6) 2000 2900 MHz RF Frequency Range With Low-Band Tuning fRF2 Typical Application Circuit with C1 = 1.8pF, L1 = 12nH (Table 1) (Notes 5, 6) 1600 2000 MHz RF Frequency Range With High-Band Tuning fRF3 Typical Application Circuit with C1 = 1.5pF (Table 1) (Notes 5, 6) 3000 3900 MHz LO Frequency fLO (Note 5, 6) 1300 4000 MHz fIF Using M/A-Com MABACT0069 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) 50 500 MHz +3 dBm IF Frequency LO Drive PLO -6 0 5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz.) (Note 7) PARAMETER Small-Signal Conversion Loss Loss Variation vs. Frequency SYMBOL LC DLC CONDITIONS fRF = 2600MHz, fLO = 2900MHz fRF = 2900MHz, fLO = 3200MHz (Note 8) MIN TYP MAX UNITS 7.2 7.8 fRF = 2010MHz to 2025MHz Q0.05 dB fRF = 2305MHz to 2360MHz Q0.05 dB fRF = 2500MHz to 2570MHz Q0.05 dB fRF = 2570MHz to 2620MHz Q0.05 dB fRF = 2500MHz to 2690MHz Q0.13 dB fRF = 2700MHz to 2900MHz Q0.02 dB Conversion Loss Temperature Coefficient TCCL TC = -40NC to +85NC 0.007 dB/NC Single Sideband Noise Figure NFSSB No blockers present 7.25 dB Noise Figure Temperature Coefficient TCNF fRF = 2600MHz, single sideband, no blockers present, TC = -40NC to +85NC 0.022 dB/NC 18 dB Noise Figure Under Blocking NFBlocking +8dBm blocker tone applied to RF port, fRF = 2600MHz, fLO = 2900MHz, fBLOCKER = 2400MHz (Note 9) ����������������������������������������������������������������� Maxim Integrated Products 5 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from 50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz, fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz.) (Note 7) PARAMETER Input 1dB Compression Point Third-Order Input Intercept Point SYMBOL IP1dB IIP3 IIP3 Variation with TC CONDITIONS (Note 10) MIN TYP MAX UNITS 21.7 dBm fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm (Note 8) 33 dBm fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC Q0.3 dB 2LO - 2RF Spur Rejection 2x2 fRF = 2600MHz, fLO = 2900MHz, fSPUR = 2750MHz PRF = -10dBm 72 PRF = 0dBm 62 3LO - 3RF Spur Rejection 3x3 fRF = 2600MHz, fLO = 2900MHz, fSPUR = 2800MHz PRF = -10dBm 91 PRF = 0dBm 71 RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 20 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 19 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 50 I RLIF RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I using external components shown in the Typical Application Circuit 17.5 dB 38 dB IF Return Loss RF-to-IF Isolation PLO = +3dBm (Note 8) LO Leakage at RF Port PLO = +3dBm (Note 8) 2LO Leakage at RF Port PLO = +3dBm LO Leakage at IF Port PLO = +3dBm (Note 8) dBc dBc -29 dBm -30.1 dBm -31 dBm ����������������������������������������������������������������� Maxim Integrated Products 6 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer 3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources, Typical values are for TC = +25NC, VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) PARAMETER SYMBOL Small-Signal Conversion Loss LC Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient CONDITIONS MIN TYP MAX UNITS 7.4 dB fRF = 2000MHz to 2900MHz, any 100MHz band Q0.25 dB TCCL TC = -40NC to +85NC 0.0079 dB/NC Single Sideband Noise Figure NFSSB No blockers present 7.4 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 0.022 dB/NC Input 1dB Compression Point IP1dB (Note 10) 19.7 dBm 31 dBm Q0.1 dB Third-Order Input Intercept Point IIP3 (Note 8) fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC IIP3 Variation with TC 2LO - 2RF Spur Rejection 2x2 fRF = 2600MHz, fLO = 2900MHz, fSPUR = 2750MHz PRF = -10dBm 72 PRF = 0dBm 62 3LO - 3RF Spur Rejection 3x3 fRF = 2600MHz, fLO = 2900MHz, fSPUR = 2800MHz PRF = -10dBm 85 PRF = 0dBm 65 RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 16 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 32 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 50 I RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I using external components shown in the Typical Application Circuit 18 dB RF-to-IF Isolation PLO = +3dBm 38 dB LO Leakage at RF Port PLO = +3dBm -31.5 dBm 2LO Leakage at RF Port PLO = +3dBm -30 dBm LO Leakage at IF Port PLO = +3dBm -31.4 dBm IF Return Loss RLIF dBc dBc ����������������������������������������������������������������� Maxim Integrated Products 7 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.) PARAMETER SYMBOL Small-Signal Conversion Loss LC Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient CONDITIONS MIN TYP MAX UNITS 8.2 dB fRF = 3450MHz to 3750MHz, any 100MHz band Q0.085 dB fRF = 3450MHz to 3750MHz, any 200MHz band Q0.17 dB TCCL TC = -40NC to +85NC 0.0091 dB/NC Single Sideband Noise Figure NFSSB No blockers present 7.6 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 0.025 dB/NC Input 1dB Compression Point IP1dB (Note 10) 20.6 dBm fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm 31 dBm fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC Q0.5 dB Third-Order Input Intercept Point IIP3 IIP3 Variation with TC 2RF - 2LO Spur Rejection 2x2 fRF = 3500MHz, fLO = 3200MHz, fSPUR = 3350MHz PRF = -10dBm 71 PRF = 0dBm 61 3RF - 3LO Spur Rejection 3x3 fRF = 3500MHz, fLO = 3200MHz, fSPUR = 3300MHz PRF = -10dBm 87 PRF = 0dBm 67 RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 15 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 20 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 50 I 16.5 dB IF Return Loss RLIF RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I using external components shown in the Typical Application Circuit dBc dBc RF-to-IF Isolation PLO = +3dBm 35 dB LO Leakage at RF Port PLO = +3dBm -29.5 dBm 2LO Leakage at RF Port PLO = +3dBm -23 dBm LO Leakage at IF Port PLO = +3dBm -31.5 dBm ����������������������������������������������������������������� Maxim Integrated Products 8 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.) PARAMETER SYMBOL Small-Signal Conversion Loss LC Loss Variation vs. Frequency DLC CONDITIONS MIN TYP MAX UNITS 8.6 dB fRF = 3450MHz to 3750MHz, any 100MHz band Q0.1 dB fRF = 3450MHz to 3750MHz, any 200MHz band Q0.2 dB Conversion Loss Temperature Coefficient TCCL TC = -40NC to +85NC 0.01 dB/NC Single Sideband Noise Figure NFSSB No blockers present 9 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 0.025 dB/NC Input 1dB Compression Point IP1dB (Note 10) Third-Order Input Intercept Point IIP3 IIP3 Variation with TC 18 dBm fRF1 = 3500MHz, fRF2 = 3501MHz, PRF1 = PRF2 = 0dBm 28.6 dBm fRF1 = 3500MHz, fRF2 = 3501MHz, PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC Q0.5 dB 2LO - 2RF Spur Rejection 2x2 fRF = 3500MHz, fLO = 3800MHz, fSPUR = 3650MHz PRF = -10dBm 70 PRF = 0dBm 60 3LO - 3RF Spur Rejection 3x3 fRF = 3500MHz, fLO = 3800MHz, fSPUR = 3700MHz PRF = -10dBm 83 PRF = 0dBm 63 RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 15.5 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 18.5 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 50 I RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I using external components shown in the Typical Application Circuit 16 dB IF Return Loss RLIF dBc dBc RF-to-IF Isolation PLO = +3dBm 35 dB LO Leakage at RF Port PLO = +3dBm -36.4 dBm 2LO Leakage at RF Port PLO = +3dBm -12.8 dBm LO Leakage at IF Port PLO = +3dBm -31 dBm ����������������������������������������������������������������� Maxim Integrated Products 9 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 1850MHz, fLO = 2150MHz, fIF = 300MHz, unless otherwise noted.) PARAMETER SYMBOL Small-Signal Conversion Loss LC Loss Variation vs. Frequency DLC CONDITIONS MIN TYP 7.5 fRF = 1650MHz to 1850MHz, any 100MHz band Q0.18 fRF = 1850MHz to 2250MHz, any 100MHz band Q0.15 fRF = 1650MHz to 1850MHz, any 200MHz band Q0.36 fRF = 1850MHz to 2250MHz, any 200MHz band Q0.3 MAX UNITS dB dB Conversion Loss Temperature Coefficient TCCL TC = -40NC to +85NC 0.0067 dB/NC Single Sideband Noise Figure NFSSB No blockers present 7 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 0.021 dB/NC Input 1dB Compression Point IP1dB (Note 10) 23 dBm fRF1 = 1850MHz, fRF2 = 1851MHz, PRF1 = PRF2 = 0dBm 34.8 dBm fRF1 = 1850MHz, fRF2 = 1851MHz, PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC Q0.5 dB Third-Order Input Intercept Point IIP3 IIP3 Variation with TC 2LO - 2RF Spur Rejection 2x2 fRF = 1850MHz, fLO = 2150MHz, fSPUR = 2000MHz PRF = -10dBm 83 PRF = 0dBm 73 3LO - 3RF Spur Rejection 3x3 fRF = 1850MHz, fLO = 2150MHz, fSPUR = 2050MHz PRF = -10dBm 94 PRF = 0dBm 74 RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 16.4 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 25.2 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 50 I RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I using external components shown in the Typical Application Circuit 17 dB IF Return Loss RLIF dBc dBc RF-to-IF Isolation PLO = +3dBm 48.7 dB LO Leakage at RF Port PLO = +3dBm -28.8 dBm 2LO Leakage at RF Port PLO = +3dBm -35.3 dBm LO Leakage at IF Port PLO = +3dBm -20.8 dBm ���������������������������������������������������������������� Maxim Integrated Products 10 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 1850MHz, fLO = 1550MHz, fIF = 300MHz, unless otherwise noted.) PARAMETER SYMBOL Small-Signal Conversion Loss LC Loss Variation vs. Frequency DLC CONDITIONS MIN TYP 8.5 fRF = 1650MHz to 1850MHz, any 100MHz band Q0.35 fRF = 1850MHz to 2250MHz, any 100MHz band Q0.075 fRF = 1650MHz to 1850MHz, any 200MHz band Q0.7 fRF = 1850MHz to 2250MHz, any 200MHz band Q0.15 MAX UNITS dB dB Conversion Loss Temperature Coefficient TCCL TC = -40NC to +85NC 0.0095 dB/NC Single Sideband Noise Figure NFSSB No blockers present 8.95 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 0.024 dB/NC Input 1dB Compression Point IP1dB (Note 10) 17.2 dBm fRF1 = 1850MHz, fRF2 = 1851MHz, PRF1 = PRF2 = 0dBm 26.7 dBm fRF1 = 1850MHz, fRF2 = 1851MHz, PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC Q0.5 dB Third-Order Input Intercept Point IIP3 IIP3 Variation with TC 2RF - 2LO Spur Rejection 2x2 fRF = 1850MHz, fLO = 1550MHz, fSPUR = 1700MHz PRF = -10dBm 71 PRF = 0dBm 61 3RF - 3LO Spur Rejection 3x3 fRF = 1850MHz, fLO = 1550MHz, fSPUR = 1650MHz PRF = -10dBm 83 PRF = 0dBm 63 RF Input Return Loss RLRF LO on and IF terminated into a matched impedance 12.4 dB LO Input Return Loss RLLO RF and IF terminated into a matched impedance 17.3 dB IF Output Impedance ZIF 50 I 19.3 dB IF Return Loss RLIF Nominal differential impedance at the IC’s IF outputs RF terminated into 50I, LO driven by 50I source, IF transformed to single-ended 50I using external components shown in the Typical Application Circuit dBc dBc RF-to-IF Isolation PLO = +3dBm 44.6 dB LO Leakage at RF Port PLO = +3dBm -29.5 dBm 2LO Leakage at RF Port PLO = +3dBm -29.5 dBm LO Leakage at IF Port PLO = +3dBm -29.7 dBm ���������������������������������������������������������������� Maxim Integrated Products 11 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer 5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 2. Typical values are for TC = +25NC, VCC = 5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) PARAMETER Conversion Loss SYMBOL CONDITIONS LC Conversion Loss Variation vs. Frequency DLC MIN TYP 7.3 MAX UNITS dB fRF = 2010MHz to 2025MHz Q0.05 fRF = 2305MHz to 2360MHz Q0.05 fRF = 2500MHz to 2570MHz Q0.05 fRF = 2570MHz to 2620MHz Q0.05 fRF = 2500MHz to 2690MHz Q0.15 fRF = 2700MHz to 2900MHz Q0.2 0.007 dB/NC 22 dBm Conversion Loss Temperature Coefficient TCCL TC = -40NC to +85NC Input 1dB Compression Point IP1dB (Note 10) dB Input Third-Order Intercept Point IIP3 fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone 32.8 dBm IIP3 Variation with TC IIP3 fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone, TC = -40NC to +85NC Q0.5 dB LO Q 2IF Spur LO Q 3IF Spur Output Noise Floor LO - 2IF 61 LO + 2IF 62 LO - 3IF 72 LO + 3IF 85 POUT = 0dBm (Note 9) -163 dBc dBc dBm/Hz ���������������������������������������������������������������� Maxim Integrated Products 12 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer 3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 2. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.) PARAMETER Conversion Loss SYMBOL CONDITIONS LC Conversion Loss Variation vs. Frequency DLC MIN TYP MAX UNITS 7.3 dB fRF = 2000MHz to 2900MHz, any 100MHz band Q0.25 dB Conversion Loss Temperature Coefficient TCCL TC = -40NC to +85NC 0.008 dB/NC Input 1dB Compression Point IP1dB (Note 10) 20.5 dBm Input Third-Order Intercept Point IIP3 fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone 30 dBm IIP3 Variation with TC IIP3 fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone, TC = -40NC to +85NC Q0.6 dB LO Q 2IF Spur LO Q 3IF Spur Output Noise Floor LO - 2IF 60 LO + 2IF 64 LO - 3IF 68 LO + 3IF 80 POUT = 0dBm (Note 9) -160 dBc dBc dBm/Hz Note 5: Not production tested. Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 8: 100% production tested for functional performance. Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz at 100MHz offset. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Note 10: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50I source. ���������������������������������������������������������������� Maxim Integrated Products 13 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 7 TC = -40°C 6 5 7 PLO = -6dBm, -3dBm, 0dBm, +3dBm 6 5 2900 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 35 INPUT IP3 (dBm) TC = -40°C TC = +85°C 2000 PLO = -3dBm, 0dBm, +3dBm 2900 PLO = -6dBm 40 PRF = 0dBm/TONE VCC = 5.25V 2300 2600 VCC = 5.0V 30 2900 VCC = 4.75V 2000 TC = -40°C 60 55 PRF = 0dBm 70 PLO = 0dBm 65 60 2600 2900 PLO = -3dBm 55 2LO - 2RF RESPONSE vs. RF FREQUENCY 75 PRF = 0dBm 2LO - 2RF RESPONSE (dBc) 65 2LO - 2RF RESPONSE vs. RF FREQUENCY PLO = +3dBm 2300 RF FREQUENCY (MHz) 75 2LO - 2RF RESPONSE (dBc) 70 PRF = 0dBm TC = +25°C MAX2042A toc07 TC = +85°C 35 RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY 2900 25 2000 RF FREQUENCY (MHz) 75 2600 INPUT IP3 vs. RF FREQUENCY 35 30 2300 RF FREQUENCY (MHz) 25 2600 6 2900 MAX2042A toc08 INPUT IP3 (dBm) 2600 PRF = 0dBm/TONE 25 2LO - 2RF RESPONSE (dBc) 2300 40 MAX2042A toc04 PRF = 0dBm/TONE 2300 VCC = 4.75V, 5.0V, 5.25V INPUT IP3 vs. RF FREQUENCY TC = +25°C 2000 7 RF FREQUENCY (MHz) 40 30 8 5 2000 INPUT IP3 (dBm) 2600 MAX2042A toc05 2300 2000 MAX2042A toc03 8 MAX2042A toc06 CONVERSION LOSS (dB) TC = +25°C CONVERSION LOSS (dB) 8 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042A toc02 MAX2042A toc01 TC = +85°C CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY 9 70 MAX2042A toc09 CONVERSION LOSS vs. RF FREQUENCY 9 65 60 VCC = 4.75V, 5.0V, 5.25V 55 PLO = -6dBm 50 50 2000 2300 2600 RF FREQUENCY (MHz) 2900 50 2000 2300 2600 RF FREQUENCY (MHz) 2900 2000 2300 2600 2900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 14 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = -40°C, +25°C, +85°C 55 65 PLO = -6dBm, -3dBm, 0dBm, +3dBm 55 2300 2600 2900 RF FREQUENCY (MHz) 2600 2900 2000 2300 TC = +25°C 5 MAX2042A toc12 2900 NOISE FIGURE vs. RF FREQUENCY 8 7 PLO = -6dBm, -3dBm, 0dBm, +3dBm 6 2600 RF FREQUENCY (MHz) 10 MAX2042A toc14 9 NOISE FIGURE (dB) 7 VCC = 5.0V VCC = 4.75V NOISE FIGURE vs. RF FREQUENCY 8 6 2300 10 MAX2042A toc13 TC = +85°C 9 65 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY 10 VCC = 5.25V 75 55 2000 9 NOISE FIGURE (dB) 2000 NOISE FIGURE (dB) MAX2042A toc11 75 PRF = 0dBm MAX2042A toc15 65 PRF = 0dBm 3LO - 3RF RESPONSE vs. RF FREQUENCY 85 3LO - 3RF RESPONSE (dBc) 75 3LO - 3RF RESPONSE vs. RF FREQUENCY 85 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) PRF = 0dBm MAX2042A toc10 3LO - 3RF RESPONSE vs. RF FREQUENCY 85 5 8 7 VCC = 4.75V, 5.0V, 5.25V 6 5 TC = -40°C 4 2300 2600 2900 4 2000 RF FREQUENCY (MHz) 21 TC = +25°C 19 17 21 2600 RF FREQUENCY (MHz) 2900 2600 2900 INPUT P1dB vs. RF FREQUENCY PLO = -6dBm, -3dBm, 0dBm, +3dBm 25 VCC = 5.25V 23 21 VCC = 5.0V VCC = 4.75V 19 17 2300 2300 RF FREQUENCY (MHz) 19 TC = +85°C 2000 2000 MAX2042A toc17 23 P1dB (dBm) P1dB (dBm) 23 2900 INPUT P1dB vs. RF FREQUENCY 25 MAX2042A toc16 TC = -40°C 2600 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 25 2300 P1dB (dBm) 2000 MAX2042A toc18 4 17 2000 2300 2600 RF FREQUENCY (MHz) 2900 2000 2300 2600 2900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 15 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25°C -30 TC = -40°C TC = +85°C -20 -30 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 MAX2042A toc21 MAX2042A toc20 LO LEAKAGE AT IF PORT (dBm) MAX2042A toc19 LO LEAKAGE AT IF PORT (dBm) -20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 -20 -30 VCC = 4.75V, 5.0V, 5.25V PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 -40 3200 -40 2300 LO FREQUENCY (MHz) 40 TC = +25°C TC = -40°C 20 50 2600 40 PLO = -6dBm, -3dBm, 0dBm, +3dBm 30 2900 RF-TO-IF ISOLATION vs. RF FREQUENCY 2300 2600 -30 TC = -40°C, +25°C, +85°C -35 -40 2600 2900 LO FREQUENCY (MHz) VCC = 4.75V, 5.0V, 5.25V 30 2000 MAX2042A toc26 -25 3200 -30 PLO = -6dBm, -3dBm, 0dBm, +3dBm -35 2300 2600 2900 LO FREQUENCY (MHz) 2300 2600 2900 RF FREQUENCY (MHz) -40 2300 40 2900 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 LO LEAKAGE AT RF PORT (dBm) MAX2042A toc25 -25 50 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY 3200 20 2000 RF FREQUENCY (MHz) -20 2900 60 3200 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 LO LEAKAGE AT RF PORT (dBm) 2300 2600 LO FREQUENCY (MHz) 20 2000 LO LEAKAGE AT RF PORT (dBm) 2300 MAX2042A toc23 MAX2042A toc22 TC = +85°C 30 3200 RF-TO-IF ISOLATION vs. RF FREQUENCY 60 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) 50 2900 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY 60 2600 MAX2042A toc24 2900 MAX2042A toc27 2600 RF-TO-IF ISOLATION (dB) 2300 -25 VCC = 5.25V -30 VCC = 4.75V VCC = 5.0V -35 -40 2300 2600 2900 3200 LO FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 16 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -35 TC = +85°C -40 -45 -50 -30 -35 PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 -45 -50 2600 2900 3200 -35 VCC = 5.0V -40 VCC = 5.25V -45 2600 2900 3200 2300 LO FREQUENCY (MHz) 10 15 20 2900 3200 IF PORT RETURN LOSS vs. IF FREQUENCY 0 LO = 2900MHz 5 IF PORT RETURN LOSS (dB) MAX2042A toc31 IF = 300MHz 5 2600 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 0 RF PORT RETURN LOSS (dB) VCC = 4.75V -30 -50 2300 LO FREQUENCY (MHz) 25 -25 10 VCC = 4.75V, 5.0V, 5.25V 15 20 25 PLO = -6dBm, -3dBm, 0dBm, +3dBm 30 30 2000 2200 2400 2600 2800 3000 50 140 RF FREQUENCY (MHz) LO RETURN LOSS vs. LO FREQUENCY 320 410 500 PLO = +3dBm SUPPLY CURRENT vs. TEMPERATURE (TC) 155 MAX2042A toc33 0 10 230 IF FREQUENCY (MHz) 150 SUPPLY CURRENT (mA) PLO = -6dBm 20 30 PLO = -3dBm 40 MAX2042A toc34 2300 MAX2042A toc30 -25 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 MAX2042A toc32 TC = -40°C -30 MAX2042A toc29 2LO LEAKAGE AT RF PORT (dBm) MAX2042A toc28 TC = +25°C LO RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) -25 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 VCC = 5.25V VCC = 5.0V 145 140 135 VCC = 4.75V 130 PLO = 0dBm 50 125 1000 1600 2200 2800 LO FREQUENCY (MHz) 3400 4000 -40 -15 10 35 60 85 EXPOSED PAD TEMPERATURE (°C) ���������������������������������������������������������������� Maxim Integrated Products 17 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 5 7 PLO = -6dBm, -3dBm, 0dBm, +3dBm 6 5 2600 2900 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 2600 2900 MAX2042A toc38 31 TC = -40°C, +25°C, +85°C 25 31 PLO = -6dBm, -3dBm, 0dBm, +3dBm 33 2300 2600 TC = -40°C, +25°C, +85°C 70 PLO = +3dBm MAX2042A toc42 PRF = 0dBm PLO = 0dBm 65 60 PLO = -6dBm RF FREQUENCY (MHz) 2300 2600 2900 2LO - 2RF RESPONSE vs. RF FREQUENCY 75 PRF = 0dBm VCC = 3.6V 70 VCC = 3.3V 65 60 55 PLO = -3dBm 50 2900 VCC = 3.0V RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY 55 50 2600 2000 2LO - 2RF RESPONSE (dBc) 60 2300 VCC = 3.3V 2900 75 2LO - 2RF RESPONSE (dBc) MAX2042A toc41 65 2000 29 RF FREQUENCY (MHz) PRF = 0dBm 55 31 25 2000 2LO - 2RF RESPONSE vs. RF FREQUENCY 70 VCC = 3.6V 27 RF FREQUENCY (MHz) 75 2900 PRF = 0dBm/TONE 25 2900 2600 INPUT IP3 vs. RF FREQUENCY 33 29 2300 35 27 2600 MAX2042A toc37 2000 RF FREQUENCY (MHz) PRF = 0dBm/TONE 27 2LO - 2RF RESPONSE (dBc) 2300 35 INPUT IP3 (dBm) INPUT IP3 (dBm) 33 2300 6 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE 2000 VCC = 3.0V, 3.3V, 3.6V RF FREQUENCY (MHz) 35 29 7 5 2000 INPUT IP3 (dBm) 2300 MAX2042A toc39 2000 8 MAX2042A toc40 TC = -40°C 6 8 CONVERSION LOSS (dB) 7 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042A toc36 MAX2042A toc35 TC = +25°C 8 CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85°C CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042A toc43 CONVERSION LOSS vs. RF FREQUENCY 9 VCC = 3.0V 50 2000 2300 2600 RF FREQUENCY (MHz) 2900 2000 2300 2600 2900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 18 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 55 65 PLO = -6dBm, -3dBm, 0dBm, +3dBm 60 55 2600 2900 2600 2900 6 TC = -40°C 2600 7 2900 PLO = -6dBm, -3dBm, 0dBm, +3dBm 7 2300 2600 2900 2000 20 18 16 22 RF FREQUENCY (MHz) 2900 MAX2042A toc46 VCC = 3.6V 20 VCC = 3.3V VCC = 3.0V 18 16 2600 2900 INPUT P1dB vs. RF FREQUENCY P1dB (dBm) 22 2600 24 MAX2042A toc51 24 P1dB (dBm) TC = +85°C 2300 2300 RF FREQUENCY (MHz) PLO = -6dBm, -3dBm, 0dBm, +3dBm 2000 VCC = 3.6V 6 INPUT P1dB vs. RF FREQUENCY 20 18 VCC = 3.3V RF FREQUENCY (MHz) MAX2042A toc50 TC = -40°C TC = +25°C 8 4 2000 INPUT P1dB vs. RF FREQUENCY 22 VCC = 3.0V 9 5 RF FREQUENCY (MHz) 24 2900 NOISE FIGURE vs. RF FREQUENCY 8 6 2600 10 4 2300 2300 RF FREQUENCY (MHz) 5 4 2000 VCC = 3.0V 2000 MAX2042A toc48 9 NOISE FIGURE (dB) NOISE FIGURE (dB) TC = +25°C 5 60 NOISE FIGURE vs. RF FREQUENCY 8 7 2300 10 MAX2042A toc47 TC = +85°C VCC = 3.3V 65 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY 9 VCC = 3.6V 55 2000 RF FREQUENCY (MHz) 10 70 MAX2042A toc52 2300 NOISE FIGURE (dB) 2000 P1dB (dBm) PRF = 0dBm MAX2042A toc49 TC = -40°C, +25°C, +85°C 60 70 3LO - 3RF RESPONSE vs. RF FREQUENCY 75 3LO - 3RF RESPONSE (dBc) 65 PRF = 0dBm MAX2042A toc45 70 3LO - 3RF RESPONSE vs. RF FREQUENCY 75 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) PRF = 0dBm MAX2042A toc44 3LO - 3RF RESPONSE vs. RF FREQUENCY 75 16 2000 2300 2600 RF FREQUENCY (MHz) 2900 2000 2300 2600 2900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 19 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25°C -30 TC = +85°C -20 -30 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 MAX2042A toc55 MAX2042A toc54 LO LEAKAGE AT IF PORT (dBm) MAX2042A toc53 LO LEAKAGE AT IF PORT (dBm) TC = -40°C -20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 -20 -30 VCC = 3.0V, 3.3V, 3.6V PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 -40 3200 -40 2300 LO FREQUENCY (MHz) 2300 40 TC = -40°C TC = +25°C 30 50 2600 40 PLO = -6dBm, -3dBm, 0dBm, +3dBm 30 2900 2300 2600 VCC = 3.0V, 3.3V, 3.6V 30 2900 2000 -35 MAX2042A toc60 -25 PLO = -6dBm, -3dBm, 0dBm, +3dBm -30 2300 -35 -40 2300 2600 2900 LO FREQUENCY (MHz) 3200 2900 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 -25 VCC = 3.6V -30 -35 VCC = 3.0V -40 2600 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 LO LEAKAGE AT RF PORT (dBm) MAX2042A toc59 TC = -40°C, +25°C, +85°C -30 40 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 50 20 2000 RF FREQUENCY (MHz) -20 3200 RF-TO-IF ISOLATION vs. RF FREQUENCY LO LEAKAGE AT RF PORT (dBm) 2300 2900 60 20 2000 2600 LO FREQUENCY (MHz) MAX2042A toc57 MAX2042A toc56 TC = +85°C 20 LO LEAKAGE AT RF PORT (dBm) 3200 RF-TO-IF ISOLATION vs. RF FREQUENCY 60 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) 50 2900 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY 60 2600 MAX2042A toc58 2900 MAX2042A toc61 2600 RF-TO-IF ISOLATION (dB) 2300 VCC = 3.3V -40 2300 2600 2900 LO FREQUENCY (MHz) 3200 2300 2600 2900 3200 LO FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 20 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25°C TC = +85°C -40 -45 -50 -30 -35 PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 -45 -50 2300 2600 2900 3200 -30 VCC = 3.3V -35 VCC = 3.6V -40 -45 2600 2900 3200 2300 2600 LO FREQUENCY (MHz) 10 15 PLO = -6dBm, -3dBm, 0dBm, +3dBm 3200 IF PORT RETURN LOSS vs. IF FREQUENCY 0 LO = 2900MHz 5 IF PORT RETURN LOSS (dB) MAX2042A toc65 IF = 300MHz 5 2900 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 0 RF PORT RETURN LOSS (dB) VCC = 3.0V -25 -50 2300 LO FREQUENCY (MHz) 20 MAX2042A toc64 -25 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 2LO LEAKAGE AT RF PORT (dBm) -35 MAX2042A toc63 2LO LEAKAGE AT RF PORT (dBm) MAX2042A toc62 -30 25 10 VCC = 3.0V, 3.3V, 3.6V 15 20 25 30 30 2000 2200 2400 2600 2800 3000 50 140 RF FREQUENCY (MHz) LO RETURN LOSS vs. LO FREQUENCY 410 500 30 PLO = +3dBm PLO = -3dBm 50 MAX2042A toc68 135 SUPPLY CURRENT (mA) PLO = -6dBm SUPPLY CURRENT vs. TEMPERATURE (TC) 20 40 320 140 MAX2042A toc67 PLO = 0dBm 10 230 IF FREQUENCY (MHz) 0 LO RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) TC = -40°C -25 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 MAX2042A toc66 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 VCC = 3.6V 130 VCC = 3.3V 125 120 115 60 VCC = 3.0V 110 1000 1600 2200 2800 LO FREQUENCY (MHz) 3400 4000 -40 -15 10 35 60 85 EXPOSED PAD TEMPERATURE (°C) ���������������������������������������������������������������� Maxim Integrated Products 21 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25°C 8 7 10 CONVERSION LOSS (dB) 9 10 CONVERSION LOSS (dB) TC = +85°C CONVERSION LOSS vs. RF FREQUENCY 11 MAX2042A toc70 MAX2042A toc69 10 CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY 11 9 8 PLO = -6dBm, -3dBm, 0dBm, +3dBm MAX2042A toc71 CONVERSION LOSS vs. RF FREQUENCY 11 7 9 8 VCC = 4.75V, 5.0V, 5.25V 7 TC = -40°C 6 3700 3900 6 3100 RF FREQUENCY (MHz) MAX2042A toc72 40 INPUT IP3 (dBm) TC = +25°C TC = +85°C 3100 3500 3700 PRF = 0dBm/TONE 35 PLO = -3dBm, 0dBm, +3dBm 30 3900 TC = +25°C T = +85°C C 60 TC = -40°C 55 VCC = 5.25V 30 VCC = 5.0V VCC = 4.75V 3300 3500 3700 3900 3100 PRF = 0dBm 70 PLO = +3dBm PLO = 0dBm 65 60 PLO = -3dBm 55 3300 3500 3700 3900 RF FREQUENCY (MHz) 2RF - 2LO RESPONSE vs. RF FREQUENCY 75 2RF - 2LO RESPONSE (dBc) 70 MAX2042A toc75 PRF = 0dBm 65 35 PRF = 0dBm/TONE RF FREQUENCY (MHz) 2RF - 2LO RESPONSE vs. RF FREQUENCY 3900 25 3100 RF FREQUENCY (MHz) 75 3700 INPUT IP3 vs. RF FREQUENCY 2RF - 2LO RESPONSE vs. RF FREQUENCY 75 2RF - 2LO RESPONSE (dBc) 3300 3500 40 25 3100 3300 RF FREQUENCY (MHz) PLO = -6dBm 25 2RF - 2LO RESPONSE (dBc) 3900 MAX2042A toc76 INPUT IP3 (dBm) TC = -40°C 30 3700 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE 35 3500 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 40 3300 MAX2042A toc74 3500 INPUT IP3 (dBm) 3300 MAX2042A toc73 3100 PRF = 0dBm 70 MAX2042A toc77 6 65 60 VCC = 4.75V, 5.0V, 5.25V 55 PLO = -6dBm 50 50 3100 3300 3500 3700 RF FREQUENCY (MHz) 3900 50 3100 3300 3500 3700 RF FREQUENCY (MHz) 3900 3100 3300 3500 3700 3900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 22 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 65 TC = -40°C, +25°C, +85°C 75 65 55 3300 3500 3700 3900 NOISE FIGURE vs. RF FREQUENCY 3300 3500 3700 3900 3100 8 TC = +25°C 8 10 PLO = -6dBm, -3dBm, 0dBm, +3dBm 6 3700 3900 NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE (dB) NOISE FIGURE (dB) 10 3500 12 MAX2042A toc82 MAX2042A toc81 12 3300 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY TC = +85°C MAX2042A toc80 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) 12 6 65 55 3100 RF FREQUENCY (MHz) 10 75 MAX2042A toc83 3100 PRF = 0dBm PLO = -6dBm, -3dBm, 0dBm, +3dBm 55 NOISE FIGURE (dB) MAX2042A toc79 PRF = 0dBm 3RF - 3LO RESPONSE vs. RF FREQUENCY 85 3RF - 3LO RESPONSE (dBc) 75 3RF - 3LO RESPONSE vs. RF FREQUENCY 85 3RF - 3LO RESPONSE (dBc) 3RF - 3LO RESPONSE (dBc) PRF = 0dBm MAX2042A toc78 3RF - 3LO RESPONSE vs. RF FREQUENCY 85 8 VCC = 4.75V, 5.0V, 5.25V 6 TC = -40°C 4 3100 3300 3500 3700 3900 4 3100 RF FREQUENCY (MHz) 3100 3900 INPUT P1dB vs. RF FREQUENCY VCC = 5.25V 23 21 21 19 19 PLO = -6dBm, -3dBm, 0dBm, +3dBm VCC = 4.75V TC = +85°C 17 17 3300 3700 VCC = 5.0V TC = +25°C 3100 3500 25 MAX2042A toc85 23 3300 RF FREQUENCY (MHz) P1dB (dBm) 21 19 3900 INPUT P1dB vs. RF FREQUENCY P1dB (dBm) P1dB (dBm) 23 3700 25 MAX2042A toc84 TC = -40°C 3500 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 25 3300 MAX2042A toc86 4 3500 3700 RF FREQUENCY (MHz) 3900 17 3100 3300 3500 3700 RF FREQUENCY (MHz) 3900 3100 3300 3500 3700 3900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 23 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = -40°C TC = +25°C -30 -20 PLO = -6dBm, -3dBm, 0dBm, +3dBm -30 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 MAX2042A toc89 MAX2042A toc88 LO LEAKAGE AT IF PORT (dBm) MAX2042A toc87 LO LEAKAGE AT IF PORT (dBm) -20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 -20 VCC = 4.75V, 5.0V, 5.25V -30 TC = +85°C -40 -40 3200 3400 3600 -40 2800 LO FREQUENCY (MHz) 3600 2800 TC = +25°C 30 PLO = -6dBm, -3dBm, 0dBm, +3dBm 40 3200 3400 3600 RF-TO-IF ISOLATION vs. RF FREQUENCY 60 MAX2042A toc91 50 3000 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY MAX2042A toc90 TC = +85°C 40 3400 60 RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) 50 3200 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY 60 3000 30 MAX2042A toc92 3000 RF-TO-IF ISOLATION (dB) 2800 50 VCC = 4.75V, 5.0V, 5.25V 40 30 TC = -40°C 20 20 3700 3900 20 3100 RF FREQUENCY (MHz) TC = -40°C 3700 3900 TC = +25°C -30 TC = +85°C -35 -40 -25 PLO = -6dBm, -3dBm, 0dBm, +3dBm 3000 3200 3400 LO FREQUENCY (MHz) 3600 3300 3500 3700 3900 RF FREQUENCY (MHz) -30 -35 -40 2800 3100 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 LO LEAKAGE AT RF PORT (dBm) MAX2042A toc93 LO LEAKAGE AT RF PORT (dBm) -25 3500 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 3300 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 MAX2042A toc95 3500 LO LEAKAGE AT RF PORT (dBm) 3300 MAX2042A toc94 3100 -25 -30 VCC = 4.75V, 5.0V, 5.25V -35 -40 2800 3000 3200 3400 LO FREQUENCY (MHz) 3600 2800 3000 3200 3400 3600 LO FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 24 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -25 TC = +85°C TC = +25°C -35 -40 -20 PLO = -0dBm -25 PLO = -6dBm, -3dBm -30 -35 -40 3000 3200 3400 3600 3000 3200 VCC = 4.75V, 5.0V, 5.25V -30 -35 3600 3400 2800 PLO = -6dBm, -3dBm, 0dBm, +3dBm 15 20 3200 3400 3600 IF PORT RETURN LOSS vs. IF FREQUENCY 0 LO = 3200MHz 5 IF PORT RETURN LOSS (dB) MAX2042A toc99 IF = 300MHz 5 3000 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 25 10 VCC = 4.75V, 5.0V, 5.25V 15 20 25 30 30 3000 3200 3400 3600 3800 50 4000 140 RF FREQUENCY (MHz) LO RETURN LOSS vs. LO FREQUENCY 410 500 SUPPLY CURRENT vs. TEMPERATURE (TC) MAX2042A toc101 PLO = -0dBm 20 PLO = +3dBm 30 320 155 150 SUPPLY CURRENT (mA) PLO = -6dBm PLO = -3dBm 230 IF FREQUENCY (MHz) 0 10 MAX2042A toc98 -25 LO FREQUENCY (MHz) 0 10 -20 -40 2800 LO FREQUENCY (MHz) RF PORT RETURN LOSS (dB) 2800 -15 MAX2042A toc102 -30 PLO = 3dBm 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 MAX2042A toc100 -20 -15 MAX2042A toc97 2LO LEAKAGE AT RF PORT (dBm) MAX2042A toc96 TC = -40°C LO RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) -15 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 VCC = 5.25V 145 VCC = 5.0V 140 135 VCC = 4.75V 130 125 40 2700 2900 3100 3300 LO FREQUENCY (MHz) 3500 3700 -40 -15 10 35 60 85 EXPOSED PAD TEMPERATURE (°C) ���������������������������������������������������������������� Maxim Integrated Products 25 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 10 7 8 PLO = -6dBm, -3dBm, 0dBm, +3dBm 7 6 3700 3900 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 3700 3900 3100 MAX2042A toc106 TC = +25°C TC = +85°C 20 PLO = -3dBm, 0dBm, +3dBm PLO = -6dBm 25 3700 3900 3300 3500 3700 3900 3100 TC = +25°C TC = +85°C 60 TC = -40°C PRF = 0dBm 70 65 PLO = 0dBm PLO = +3dBm 3300 3500 3700 3900 RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY 75 2LO - 2RF RESPONSE (dBc) 70 MAX2042A toc109 PRF = 0dBm 55 VCC = 4.75V, 5.0V, 5.25V 25 RF FREQUENCY (MHz) 2LO - 2RF RESPONSE vs. RF FREQUENCY 65 30 20 3100 RF FREQUENCY (MHz) 75 3900 PRF = 0dBm/TONE PLO = -3dBm 60 55 2LO - 2RF RESPONSE vs. RF FREQUENCY 75 2LO - 2RF RESPONSE (dBc) 3500 MAX2042A toc110 3300 3700 35 20 3100 3500 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE 30 3300 RF FREQUENCY (MHz) 35 INPUT IP3 (dBm) INPUT IP3 (dBm) TC = -40°C 2LO - 2RF RESPONSE (dBc) 3500 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE 25 3300 RF FREQUENCY (MHz) 35 30 VCC = 4.75V, 5.0V, 5.25V 6 3100 INPUT IP3 (dBm) 3500 MAX2042A toc107 3300 8 7 6 3100 9 MAX2042A toc108 TC = -40°C 9 PRF = 0dBm 70 MAX2042A toc111 8 10 CONVERSION LOSS (dB) 9 CONVERSION LOSS vs. RF FREQUENCY 11 MAX2042A toc104 MAX2042A toc103 TC = +25°C TC = +85°C CONVERSION LOSS (dB) CONVERSION LOSS (dB) 10 CONVERSION LOSS vs. RF FREQUENCY 11 MAX2042A toc105 CONVERSION LOSS vs. RF FREQUENCY 11 65 60 VCC = 4.75V, 5.0V, 5.25V 55 PLO = -6dBm 50 50 3100 3300 3500 3700 RF FREQUENCY (MHz) 3900 50 3100 3300 3500 3700 RF FREQUENCY (MHz) 3900 3100 3300 3500 3700 3900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 26 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = -40°C, +25°C, +85°C 55 65 60 PLO = -6dBm, -3dBm, 0dBm, +3dBm 3900 3100 RF FREQUENCY (MHz) 8 3700 PLO = -6dBm 10 TC = -40°C TC = +25°C 6 3500 3100 3900 PLO = -3dBm 8 10 PLO = 0dBm, +3dBm 3400 3550 3700 3250 3400 3550 3700 3100 MAX2042A toc118 PLO = -3dBm, 0dBm, +3dBm VCC = 5.25V P1dB (dBm) P1dB (dBm) P1dB (dBm) 3500 3700 RF FREQUENCY (MHz) 3900 MAX2042A toc114 VCC = 5.0V 17 PLO = -6dBm VCC = 4.75V 15 3300 3700 INPUT P1dB vs. RF FREQUENCY 17 15 3550 19 TC = +85°C 3100 3400 21 19 TC = +25°C 3250 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 21 19 17 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY TC = -40°C 8 4 3100 RF FREQUENCY (MHz) 21 3900 6 MAX2042A toc119 3250 3700 NOISE FIGURE vs. RF FREQUENCY 4 3100 3500 12 6 4 3300 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE (dB) NOISE FIGURE (dB) 10 3300 12 MAX2042A toc115 TC = +85°C VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY 12 60 MAX2042A toc117 3700 NOISE FIGURE (dB) 3500 MAX2042A toc116 3300 65 50 50 3100 70 55 55 50 PRF = 0dBm MAX2042A toc120 60 70 3LO - 3RF RESPONSE vs. RF FREQUENCY 75 3LO - 3RF RESPONSE (dBc) 65 PRF = 0dBm MAX2042A toc113 70 3LO - 3RF RESPONSE vs. RF FREQUENCY 75 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) PRF = 0dBm MAX2042A toc112 3LO - 3RF RESPONSE vs. RF FREQUENCY 75 15 3100 3300 3500 3700 RF FREQUENCY (MHz) 3900 3100 3300 3500 3700 3900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 27 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = -40°C -30 TC = +25°C TC = +85°C -50 PLO = -6dBm, -3dBm, 0dBm, +3dBm -30 -40 -50 3800 4000 4200 TC = +25°C 30 TC = -40°C 3800 4000 4200 3400 MAX2042A toc125 50 PLO = -6dBm, -3dBm, 0dBm, +3dBm 40 3500 3700 30 3900 TC = -40°C -35 TC = +85°C -40 3300 3500 3700 TC = +25°C -45 3600 3800 4000 LO FREQUENCY (MHz) VCC = 4.75V, 5.0V, 5.25V 40 30 3100 MAX2042A toc128 -30 -35 PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 4200 3300 3500 3700 3900 RF FREQUENCY (MHz) -45 3400 50 3900 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 LO LEAKAGE AT RF PORT (dBm) MAX2042A toc127 -30 4200 RF-TO-IF ISOLATION vs. RF FREQUENCY RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY 4000 20 3100 RF FREQUENCY (MHz) -25 3800 60 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 LO LEAKAGE AT RF PORT (dBm) 3300 3600 LO FREQUENCY (MHz) 20 3100 -40 RF-TO-IF ISOLATION vs. RF FREQUENCY 20 LO LEAKAGE AT RF PORT (dBm) 3600 60 RF-TO-IF ISOLATION (dB) MAX2042A toc124 RF-TO-IF ISOLATION (dB) TC = +85°C 40 -30 LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY 50 VCC = 4.75V, 5.0V, 5.25V -50 3400 LO FREQUENCY (MHz) 60 -20 MAX2042A toc126 3600 RF-TO-IF ISOLATION (dB) 3400 MAX2042A toc123 MAX2042A toc122 -20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 MAX2042A toc129 -40 LO LEAKAGE AT IF PORT (dBm) MAX2042A toc121 LO LEAKAGE AT IF PORT (dBm) -20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 -30 -35 VCC = 4.75V, 5.0V, 5.25V -40 -45 3400 3600 3800 4000 LO FREQUENCY (MHz) 4200 3400 3600 3800 4000 4200 LO FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 28 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) -15 TC = +25°C -20 TC = +85°C -25 PLO = 3dBm -10 PLO = 0dBm -15 PLO = -6dBm, -3dBm -20 -25 -30 -30 3600 3800 -15 VCC = 4.75V, 5.0V, 5.25V -20 -25 3600 3800 4000 4200 3400 3600 LO FREQUENCY (MHz) 10 15 PLO = -6dBm, -3dBm, 0dBm, +3dBm 4000 4200 IF PORT RETURN LOSS vs. IF FREQUENCY 0 LO = 3800MHz 5 IF PORT RETURN LOSS (dB) MAX2042A toc133 IF = 300MHz 5 3800 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 0 20 -10 -30 3400 4200 4000 LO FREQUENCY (MHz) RF PORT RETURN LOSS (dB) 25 10 15 20 VCC = 4.75V, 5.0V, 5.25V 25 30 30 3000 3200 3400 3600 3800 50 4000 140 RF FREQUENCY (MHz) LO RETURN LOSS vs. LO FREQUENCY 0 410 500 SUPPLY CURRENT vs.TEMPERATURE (TC) PLO = +3dBm 20 PLO = 0dBm 320 155 150 SUPPLY CURRENT (mA) PLO = -6dBm 10 230 IF FREQUENCY (MHz) MAX2042A toc135 3400 -5 PLO = -3dBm 30 MAX2042A toc136 -10 -5 MAX2042A toc134 TC = -40°C 2LO LEAKAGE AT RF PORT (dBm) -5 MAX2042A toc132 0 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 0 MAX2042A toc131 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 0 MAX2042A toc130 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) VCC = 5.25V VCC = 5.0V 145 140 135 VCC = 4.75V 130 40 125 3300 3500 3700 3900 LO FREQUENCY (MHz) 4100 4300 -40 -15 10 35 60 85 EXPOSED PAD TEMPERATURE (°C) ���������������������������������������������������������������� Maxim Integrated Products 29 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25°C 8 7 9 CONVERSION LOSS (dB) TC = +85°C CONVERSION LOSS vs. RF FREQUENCY 10 MAX2042A toc138 MAX2042A toc137 9 CONVERSION LOSS (dB) CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY 10 8 PLO = -6dBm, -3dBm, 0dBm, +3dBm 7 MAX2042A toc139 CONVERSION LOSS vs. RF FREQUENCY 10 9 8 VCC = 4.75V, 5.0V, 5.25V 7 TC = -40°C 6 2250 6 1650 INPUT IP3 vs. RF FREQUENCY TC = +85°C 35 25 PLO = -6dBm, -3dBm, 0dBm, +3dBm 30 35 2050 2250 20 1650 RF FREQUENCY (MHz) 1850 2050 2250 TC = +25°C TC = -40°C 60 50 2LO - 2RF RESPONSE vs. RF FREQUENCY PRF = 0dBm PLO = +3dBm PLO = 0dBm 70 PLO = -3dBm 60 PLO = -6dBm 50 1850 2050 RF FREQUENCY (MHz) 2250 2050 2250 2LO - 2RF RESPONSE vs. RF FREQUENCY 80 PRF = 0dBm 2LO - 2RF RESPONSE (dBc) TC = +85°C 1850 RF FREQUENCY (MHz) 80 2LO - 2RF RESPONSE (dBc) PRF = 0dBm MAX2042A toc143 2LO - 2RF RESPONSE vs. RF FREQUENCY 1650 1650 RF FREQUENCY (MHz) 80 70 VCC = 4.75V, 5.0V, 5.25V 30 25 MAX2042A toc144 1850 2250 PRF = 0dBm/TONE 20 1650 2050 40 25 20 1850 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE INPUT IP3 (dBm) INPUT IP3 (dBm) 1650 RF FREQUENCY (MHz) 40 MAX2042A toc140 PRF = 0dBm/TONE TC = +25°C 35 2LO - 2RF RESPONSE (dBc) 2250 INPUT IP3 vs. RF FREQUENCY 40 30 2050 RF FREQUENCY (MHz) RF FREQUENCY (MHz) TC = -40°C 1850 MAX2042A toc142 2050 INPUT IP3 (dBm) 1850 MAX2042A toc141 1650 MAX2042A toc145 6 70 VCC = 4.75V, 5.0V, 5.25V 60 50 1650 1850 2050 RF FREQUENCY (MHz) 2250 1650 1850 2050 2250 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 30 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 60 50 PLO = -6dBm, -3dBm, 0dBm, +3dBm 60 50 1850 2050 2250 2250 1650 7 TC = -40°C 5 9 7 PLO = -6dBm, -3dBm, 0dBm, +3dBm 1850 2050 2250 1850 2050 2250 1650 MAX2042A toc153 MAX2042A toc152 VCC = 5.25V P1dB (dBm) PLO = -6dBm, -3dBm, 0dBm, +3dBm 1850 2050 RF FREQUENCY (MHz) 2250 VCC = 4.75V VCC = 5.0V 21 19 1650 MAX2042A toc148 INPUT P1dB vs. RF FREQUENCY 21 19 2250 23 P1dB (dBm) P1dB (dBm) 21 2050 25 23 TC = +85°C 1850 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 25 23 TC = +25°C VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY TC = -40°C 7 5 1650 RF FREQUENCY (MHz) 25 8 6 5 1650 2250 NOISE FIGURE vs. RF FREQUENCY 8 6 2050 10 MAX2042A toc150 9 1850 RF FREQUENCY (MHz) NOISE FIGURE (dB) TC = +25°C 6 2050 NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE (dB) 8 1850 10 MAX2042A toc149 TC = +85°C 60 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY 9 VCC = 4.75V, 5.0V, 5.25V 50 1650 RF FREQUENCY (MHz) 10 70 MAX2042A toc151 1650 NOISE FIGURE (dB) MAX2042A toc147 70 PRF = 0dBm MAX2042A toc154 TC = +25°C TC = +85°C PRF = 0dBm 3LO - 3RF RESPONSE vs. RF FREQUENCY 80 3LO - 3RF RESPONSE (dBc) 70 PRF = 0dBm 3LO - 3RF RESPONSE vs. RF FREQUENCY 80 3LO - 3RF RESPONSE (dBc) 3LO - 3RF RESPONSE (dBc) TC = -40°C MAX2042A toc146 3LO - 3RF RESPONSE vs. RF FREQUENCY 80 19 1650 1850 2050 RF FREQUENCY (MHz) 2250 1650 1850 2050 2250 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 31 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -40 -20 PLO = -6dBm, -3dBm, 0dBm, +3dBm -30 -40 2350 2550 RF-TO-IF ISOLATION vs. RF FREQUENCY 2150 2350 2550 TC = +25°C TC = -40°C 30 20 MAX2042A toc159 50 40 PLO = -6dBm, -3dBm, 0dBm, +3dBm 30 2250 RF-TO-IF ISOLATION vs. RF FREQUENCY VCC = 5.25V VCC = 5.0V 1850 2050 -30 TC = -40°C, +25°C, +85°C -40 2350 LO FREQUENCY (MHz) VCC = 4.75V 30 1650 2550 1850 2050 2250 RF FREQUENCY (MHz) MAX2042A toc162 -20 -30 PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 2150 40 2250 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT RF PORT (dBm) MAX2042A toc161 -20 1950 50 RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2550 20 1650 RF FREQUENCY (MHz) -10 2350 60 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT RF PORT (dBm) 2050 2150 LO FREQUENCY (MHz) 20 1850 MAX2042A toc157 1950 RF-TO-IF ISOLATION vs. RF FREQUENCY 60 RF-TO-IF ISOLATION (dB) MAX2042A toc158 RF-TO-IF ISOLATION (dB) TC = +85°C 1650 -30 LO FREQUENCY (MHz) 60 40 VCC = 4.75V, 5.0V, 5.25V -40 1950 LO FREQUENCY (MHz) 50 -20 MAX2042A toc163 2150 RF-TO-IF ISOLATION (dB) 1950 LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 MAX2042A toc160 TC = +85°C -30 MAX2042A toc156 TC = +25°C -20 LO LEAKAGE AT IF PORT (dBm) MAX2042A toc155 LO LEAKAGE AT IF PORT (dBm) TC = -40°C LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 -20 VCC = 5.0V VCC = 5.25V -30 VCC = 4.75V -40 1950 2150 2350 LO FREQUENCY (MHz) 2550 1950 2150 2350 2550 LO FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 32 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = +25°C -40 -20 PLO = -6dBm, -3dBm, 0dBm, +3dBm -30 -40 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 MAX2042A toc166 MAX2042A toc165 2LO LEAKAGE AT RF PORT (dBm) MAX2042A toc164 -20 -30 VCC = 5.0V -40 VCC = 5.25V TC = +85°C -50 -50 2150 2550 2350 -50 1950 LO FREQUENCY (MHz) 2150 2550 2350 10 15 PLO = -6dBm, -3dBm, 0dBm, +3dBm 2350 2550 IF PORT RETURN LOSS vs. IF FREQUENCY 0 LO = 2150MHz 5 IF PORT RETURN LOSS (dB) MAX2042A toc167 RF PORT RETURN LOSS (dB) IF = 300MHz 5 2150 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 0 20 1950 LO FREQUENCY (MHz) 25 10 15 20 VCC = 4.75V, 5.0V, 5.25V 25 30 30 1550 1750 1950 2150 50 2350 140 RF FREQUENCY (MHz) LO RETURN LOSS vs. LO FREQUENCY PLO = +3dBm PLO = 0dBm 20 30 PLO = -6dBm 40 410 500 SUPPLY CURRENT vs. TEMPERATURE (TC) 150 SUPPLY CURRENT (mA) 10 320 155 MAX2042A toc169 0 230 IF FREQUENCY (MHz) MAX2042A toc170 1950 VCC = 4.75V MAX2042A toc168 TC = -40°C -30 LO RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) -20 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 VCC = 5.25V VCC = 5.0V 145 140 135 VCC = 4.75V 130 PLO = -3dBm 50 125 1850 2050 2250 2450 LO FREQUENCY (MHz) 2650 -40 -15 10 35 60 85 EXPOSED PAD TEMPERATURE (°C) ���������������������������������������������������������������� Maxim Integrated Products 33 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) CONVERSION LOSS vs. RF FREQUENCY TC = +85°C 8 7 9 8 PLO = -6dBm, -3dBm, 0dBm, +3dBm 7 10 CONVERSION LOSS (dB) 10 CONVERSION LOSS (dB) TC = +25°C 9 CONVERSION LOSS vs. RF FREQUENCY 11 MAX2042A toc172 MAX2042A toc171 10 CONVERSION LOSS (dB) 11 MAX2042A toc173 CONVERSION LOSS vs. RF FREQUENCY 11 9 8 VCC = 4.75V, 5.0V, 5.25V 7 TC = -40°C 6 6 2250 1650 1850 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY MAX2042A toc174 TC = +25°C 25 PRF = 0dBm/TONE 30 25 PLO = -6dBm, -3dBm, 0dBm, +3dBm TC = +85°C 20 PRF = 0dBm/TONE 2050 2250 1850 2050 2250 TC = +85°C 60 TC = +25°C 2RF - 2LO RESPONSE vs. RF FREQUENCY PRF = 0dBm 70 PLO = 0dBm 50 PLO = +3dBm 65 60 PLO = -3dBm 55 2050 RF FREQUENCY (MHz) 2250 2050 2250 2RF - 2LO RESPONSE vs. RF FREQUENCY PRF = 0dBm 70 VCC = 5.25V VCC = 5.0V 65 60 VCC = 4.75V 55 PLO = -6dBm 50 1850 1850 75 2RF - 2LO RESPONSE (dBc) 70 1650 1650 RF FREQUENCY (MHz) 75 2RF - 2LO RESPONSE (dBc) PRF = 0dBm MAX2042A toc177 2RF - 2LO RESPONSE vs. RF FREQUENCY 55 25 RF FREQUENCY (MHz) 75 TC = -40°C VCC = 5.0V 20 1650 RF FREQUENCY (MHz) 65 VCC = 5.25V 30 VCC = 4.75V MAX2042A toc178 1850 2250 35 20 1650 2050 INPUT IP3 vs. RF FREQUENCY 35 INPUT IP3 (dBm) INPUT IP3 (dBm) 30 1850 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE 2RF - 2LO RESPONSE (dBc) 1650 2250 RF FREQUENCY (MHz) 35 TC = -40°C 2050 MAX2042A toc176 2050 INPUT IP3 (dBm) 1850 MAX2042A toc175 1650 MAX2042A toc179 6 50 1650 1850 2050 RF FREQUENCY (MHz) 2250 1650 1850 2050 2250 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 34 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) TC = -40°C 60 TC = +85°C 50 60 PLO = -6dBm, -3dBm, 0dBm, +3dBm 50 1850 2050 2250 2050 2250 1650 9 7 5 13 2050 2250 2050 2250 22 16 14 18 2050 RF FREQUENCY (MHz) 2250 24 22 MAX2042A toc182 2250 20 18 VCC = 4.75V, 5.0V, 5.25V 16 PLO = -6dBm, -3dBm, 0dBm, +3dBm 14 1850 2050 INPUT P1dB vs. RF FREQUENCY 20 16 1850 RF FREQUENCY (MHz) P1dB (dBm) P1dB (dBm) TC = -40°C 1650 1650 MAX2042A toc187 24 MAX2042A toc186 TC = +85°C 18 1850 INPUT P1dB vs. RF FREQUENCY TC = +25°C 20 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 22 9 5 1650 RF FREQUENCY (MHz) 24 2250 11 7 PLO = -6dBm, -3dBm, 0dBm, +3dBm 5 1850 2050 NOISE FIGURE vs. RF FREQUENCY 11 TC = -40°C 1850 15 NOISE FIGURE (dB) 13 7 VCC = 5.0V RF FREQUENCY (MHz) MAX2042A toc184 MAX2042A toc183 9 1650 VCC = 4.75V NOISE FIGURE vs. RF FREQUENCY TC = +85°C 11 1850 15 NOISE FIGURE (dB) NOISE FIGURE (dB) TC = +25°C 60 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY 13 VCC = 5.25V 50 1650 RF FREQUENCY (MHz) 15 70 MAX2042A toc185 1650 P1dB (dBm) MAX2042A toc181 70 PRF = 0dBm MAX2042A toc188 TC = +25°C PRF = 0dBm 3RF - 3LO RESPONSE vs. RF FREQUENCY 80 3RF - 3LO RESPONSE (dBc) 70 3RF - 3LO RESPONSE vs. RF FREQUENCY 80 3RF - 3LO RESPONSE (dBc) 3RF - 3LO RESPONSE (dBc) PRF = 0dBm MAX2042A toc180 3RF - 3LO RESPONSE vs. RF FREQUENCY 80 14 1650 1850 2050 RF FREQUENCY (MHz) 2250 1650 1850 2050 2250 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 35 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -20 TC = -40°C TC = +85°C -40 -30 PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 1750 1950 TC = +85°C TC = -40°C 30 RF-TO-IF ISOLATION (dB) MAX2042A toc192 1950 1350 PLO = -3dBm, 0dBm, +3dBm 50 1850 2050 40 PLO = -6dBm 30 RF-TO-IF ISOLATION vs. RF FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY 1850 2050 -30 TC = -40°C, +25°C, +85°C -40 1750 LO FREQUENCY (MHz) VCC = 4.75V, 5.0V, 5.25V 30 1650 1950 1850 2050 2250 RF FREQUENCY (MHz) MAX2042A toc196 -20 -30 PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 1550 40 2250 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT RF PORT (dBm) MAX2042A toc195 -20 1350 50 RF FREQUENCY (MHz) RF FREQUENCY (MHz) -10 1950 20 1650 2250 1750 60 20 1650 1550 LO FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT RF PORT (dBm) RF-TO-IF ISOLATION (dB) 1750 60 20 LO LEAKAGE AT RF PORT (dBm) 1550 RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY TC = +25°C VCC = 4.75V, 5.0V, 5.25V LO FREQUENCY (MHz) 60 40 -30 MAX2042A toc194 LO FREQUENCY (MHz) 50 -20 -40 1350 RF-TO-IF ISOLATION (dB) 1550 MAX2042A toc193 1350 MAX2042A toc191 MAX2042A toc190 -20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 MAX2042A toc197 -30 LO LEAKAGE AT IF PORT (dBm) MAX2042A toc189 LO LEAKAGE AT IF PORT (dBm) TC = +25°C LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY -10 -20 -30 VCC = 4.75V, 5.0V, 5.25V -40 1350 1550 1750 LO FREQUENCY (MHz) 1950 1350 1550 1750 1950 LO FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 36 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -40 -50 -30 PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 -50 1550 1750 1950 -30 VCC = 4.75V, 5.0V, 5.25V -40 -50 1350 LO FREQUENCY (MHz) 1550 1750 1950 1350 LO FREQUENCY (MHz) 5 10 15 PLO = -6dBm, -3dBm, 0dBm, +3dBm 1750 1950 IF PORT RETURN LOSS vs. IF FREQUENCY 0 LO = 1950MHz 5 IF PORT RETURN LOSS (dB) MAX2042A toc201 IF = 300MHz 1550 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 0 RF PORT RETURN LOSS (dB) -20 20 10 15 20 VCC = 4.75V, 5.0V, 5.25V 25 25 30 1550 1750 1950 2150 2350 50 140 RF FREQUENCY (MHz) LO RETURN LOSS vs. LO FREQUENCY 410 500 SUPPLY CURRENT vs. TEMPERATURE (TC) 150 SUPPLY CURRENT (mA) PLO = -3dBm PLO = -6dBm 20 30 40 320 155 MAX2042A toc203 0 10 230 IF FREQUENCY (MHz) PLO = 0dBm MAX2042A toc204 1350 MAX2042A toc200 -20 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 MAX2042A toc202 TC = -40°C, +25°C, +85°C MAX2042A toc199 2LO LEAKAGE AT RF PORT (dBm) MAX2042A toc198 -30 LO RETURN LOSS (dB) 2LO LEAKAGE AT RF PORT (dBm) -20 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 2LO LEAKAGE AT RF PORT (dBm) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -10 VCC = 5.25V 145 VCC = 5.0V 140 135 VCC = 4.75V 130 PLO = +3dBm 50 125 1250 1450 1650 1850 LO FREQUENCY (MHz) 2050 -40 -15 10 35 60 85 EXPOSED PAD TEMPERATURE (°C) ���������������������������������������������������������������� Maxim Integrated Products 37 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 6 5 7 PLO = -6dBm, 3dBm, 0dBm, +3dBm 6 5 2600 2900 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 2600 2900 MAX2042A toc208 TC = -40°C 34 32 PLO = -3dBm, 0dBm, +3dBm 36 34 32 PLO = -6dBm 2900 TC = +25°C 55 2300 2600 TC = -40°C 85 PIF = 0dBm LO - 2IF RESPONSE (dBc) 65 2900 2000 PLO = 0dBm 75 2600 2900 LO - 2IF RESPONSE vs. RF FREQUENCY PLO = +3dBm 65 PLO = -3dBm 55 2300 RF FREQUENCY (MHz) 85 PIF = 0dBm 75 65 VCC = 4.75V, 5.0V, 5.25V 55 PLO = -6dBm 45 45 2000 VCC = 5.25V 32 LO - 2IF RESPONSE vs. RF FREQUENCY MAX2042A toc211 TC = +85°C 75 VCC = 4.75V RF FREQUENCY (MHz) LO - 2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm 34 28 2000 RF FREQUENCY (MHz) 85 36 30 LO - 2IF RESPONSE (dBc) 2600 MAX2042A toc207 PIF = 0dBm/TONE VCC = 5.0V 38 30 MAX2042A toc212 2300 2900 40 28 2000 2600 INPUT IP3 vs. RF FREQUENCY PIF = 0dBm/TONE TC = +85°C 2300 2000 RF FREQUENCY (MHz) 38 28 LO - 2IF RESPONSE (dBc) 2300 40 INPUT IP3 (dBm) INPUT IP3 (dBm) TC = +25°C 30 6 INPUT IP3 vs. RF FREQUENCY PIF = 0dBm/TONE 36 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) 40 38 7 5 2000 INPUT IP3 (dBm) 2300 MAX2042A toc209 2000 8 MAX2042A toc210 TC = -40°C 8 CONVERSION LOSS (dB) 7 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042A toc206 MAX2042A toc205 TC = +25°C CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85°C 8 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042A toc213 CONVERSION LOSS vs. RF FREQUENCY 9 2300 2600 RF FREQUENCY (MHz) 2900 45 2000 2300 2600 RF FREQUENCY (MHz) 2900 2000 2300 2600 2900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 38 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) LO + 2IF RESPONSE vs. RF FREQUENCY 65 TC = +25°C 55 TC = -40°C LO + 2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm 75 PLO = 0dBm 65 PLO = -3dBm 55 85 VCC = 5.0V 75 MAX2042A toc216 MAX2042A toc215 75 PLO = +3dBm LO + 2IF RESPONSE (dBc) MAX2042A toc214 LO + 2IF RESPONSE (dBc) PIF = 0dBm TC = +85°C 85 LO + 2IF RESPONSE (dBc) LO + 2IF RESPONSE vs. RF FREQUENCY 85 PIF = 0dBm VCC = 4.75V 65 VCC = 5.25V 55 PLO = -6dBm 45 45 LO - 3IF RESPONSE vs. RF FREQUENCY 90 80 PIF = 0dBm TC = -40°C, +25°C, +85°C 90 80 70 PIF = 0dBm 2900 2600 2900 TC = +85°C 70 60 PIF = 0dBm 90 2300 2600 RF FREQUENCY (MHz) 2900 2300 2600 2900 RF FREQUENCY (MHz) LO + 3IF RESPONSE vs. RF FREQUENCY 80 PLO = -6dBm, -3dBm, 0dBm, +3dBm 70 60 2000 2000 100 PIF = 0dBm LO + 3IF RESPONSE (dBc) 80 100 LO + 3IF RESPONSE (dBc) TC = +25°C TC = -40°C 2300 LO + 3IF RESPONSE vs. RF FREQUENCY MAX2042A toc220 90 70 RF FREQUENCY (MHz) LO + 3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm 80 60 2000 RF FREQUENCY (MHz) 100 90 VCC = 4.75V, 5.0V, 5.25V MAX2042A toc221 2600 2900 LO - 3IF RESPONSE vs. RF FREQUENCY 60 2300 2000 2600 100 PLO = -6dBm, -3dBm, 0dBm, +3dBm 60 2300 2000 RF FREQUENCY (MHz) 100 LO - 3IF RESPONSE (dBc) PIF = 0dBm LO - 3IF RESPONSE (dBc) 2900 LO - 3IF RESPONSE vs. RF FREQUENCY MAX2042A toc217 100 LO + 3IF RESPONSE (dBc) 2600 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 70 2300 MAX2042A toc219 2000 2900 LO - 3IF RESPONSE (dBc) 2600 MAX2042A toc218 2300 2000 90 VCC = 5.25V MAX2042A toc222 45 80 VCC = 5.0V 70 VCC = 4.75V 60 2000 2300 2600 RF FREQUENCY (MHz) 2900 2000 2300 2600 2900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 39 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -30 -35 -30 PLO = -6dBm, -3dBm, 0dBm, +3dBm -35 2600 2900 3200 LO FREQUENCY (MHz) TC = +25°C -60 -70 TC = +85°C -80 2900 3200 -90 2600 2900 LO FREQUENCY (MHz) VCC = 5.0V VCC = 4.75V 2300 IF LEAKAGE AT RF PORT vs. LO FREQUENCY -50 PLO = +3dBm PLO = -3dBm -60 -70 PLO = 0dBm -80 PLO = -6dBm -90 2300 -30 3200 2600 2900 3200 LO FREQUENCY (MHz) MAX2042A toc227 -50 2600 -40 IF LEAKAGE AT RF PORT (dBm) MAX2042A toc226 IF LEAKAGE AT RF PORT (dBm) TC = -40°C VCC = 5.25V LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY -40 -25 -35 2300 IF LEAKAGE AT RF PORT vs. LO FREQUENCY -40 VCC = 5.25V IF LEAKAGE AT RF PORT (dBm) 2300 MAX2042A toc225 MAX2042A toc224 -25 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 MAX2042A toc228 TC = -40°C, +25°C, +85°C LO LEAKAGE AT RF PORT (dBm) MAX2042A toc223 LO LEAKAGE AT RF PORT (dBm) -25 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 -50 VCC = 5.0V -60 -70 -80 VCC = 4.75V -90 2300 2600 2900 LO FREQUENCY (MHz) 3200 2300 2600 2900 3200 LO FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 40 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) PLO = -6dBm, -3dBm, 0dBm, +3dBm 10 15 20 LO = 2900MHz 5 IF PORT RETURN LOSS (dB) MAX2042A toc229 25 10 VCC = 4.75V, 5.0V, 5.25V 15 20 25 30 30 2000 2200 2400 2600 2800 3000 50 140 RF FREQUENCY (MHz) LO RETURN LOSS vs. LO FREQUENCY 410 500 PLO = +3dBm PLO = -6dBm SUPPLY CURRENT vs. TEMPERATURE (TC) 150 SUPPLY CURRENT (mA) LO RETURN LOSS (dB) 320 155 MAX2042A toc231 0 10 230 IF FREQUENCY (MHz) 20 30 PLO = -3dBm 40 MAX2042A toc232 RF PORT RETURN LOSS (dB) IF = 300MHz 5 IF PORT RETURN LOSS vs. IF FREQUENCY 0 MAX2042A toc230 RF PORT RETURN LOSS vs. RF FREQUENCY 0 VCC = 5.25V VCC = 5.0V 145 140 135 VCC = 4.75V 130 PLO = 0dBm 50 125 1000 1600 2200 2800 LO FREQUENCY (MHz) 3400 4000 -40 -15 10 35 60 85 EXPOSED PAD TEMPERATURE (°C) ���������������������������������������������������������������� Maxim Integrated Products 41 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 6 5 7 PLO = -6dBm, 3dBm, 0dBm, +3dBm 6 5 2300 2600 2900 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 2900 29 TC = +25°C 33 31 29 2900 2300 TC = -40°C 45 75 65 PLO = -3dBm 55 2300 2600 RF FREQUENCY (MHz) 2900 2900 LO - 2IF RESPONSE vs. RF FREQUENCY PLO = +3dBm PLO = 0dBm 2600 PLO = -6dBm 85 PIF = 0dBm LO - 2IF RESPONSE (dBc) PIF = 0dBm 2300 RF FREQUENCY (MHz) 45 2000 VCC = 3.0V 2000 LO - 2IF RESPONSE vs. RF FREQUENCY 65 55 2900 MAX2042A toc240 TC = +25°C 2600 85 LO - 2IF RESPONSE (dBc) 75 29 RF FREQUENCY (MHz) MAX2042A toc239 PIF = 0dBm VCC = 3.3V 25 2000 LO - 2IF RESPONSE vs. RF FREQUENCY TC = +85°C 31 27 RF FREQUENCY (MHz) 85 VCC = 3.6V PLO = -6dBm, -3dBm, 0dBm, +3dBm 25 2600 MAX2042A toc235 PIF = 0dBm/TONE 27 25 2900 INPUT IP3 vs. RF FREQUENCY 33 TC = +85°C 2600 35 INPUT IP3 (dBm) 31 2300 2000 RF FREQUENCY (MHz) PIF = 0dBm/TONE INPUT IP3 (dBm) INPUT IP3 (dBm) TC = -40°C LO - 2IF RESPONSE (dBc) 2600 35 MAX2042A toc236 33 2300 6 INPUT IP3 vs. RF FREQUENCY PIF = 0dBm/TONE 2000 VCC = 3.0V, 3.3V, 3.6V RF FREQUENCY (MHz) 35 27 7 5 2300 2000 MAX2042A toc237 2000 8 MAX2042A toc238 TC = -40°C 8 CONVERSION LOSS (dB) 7 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042A toc234 MAX2042A toc233 TC = +25°C CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85°C 8 CONVERSION LOSS vs. RF FREQUENCY 9 75 MAX2042A toc241 CONVERSION LOSS vs. RF FREQUENCY 9 65 55 VCC = 3.0V, 3.3V, 3.6V 45 2000 2300 2600 RF FREQUENCY (MHz) 2900 2000 2300 2600 2900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 42 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) 65 TC = +25°C 55 TC = -40°C PLO = 0dBm 65 PLO = -3dBm 55 85 MAX2042A toc244 PLO = +3dBm 75 LO + 2IF RESPONSE vs. RF FREQUENCY MAX2042A toc243 TC = +85°C PIF = 0dBm LO + 2IF RESPONSE (dBc) MAX2042A toc242 LO + 2IF RESPONSE (dBc) PIF = 0dBm 75 LO + 2IF RESPONSE vs. RF FREQUENCY 85 PIF = 0dBm VCC = 3.3V LO + 2IF RESPONSE (dBc) LO + 2IF RESPONSE vs. RF FREQUENCY 85 75 VCC = 3.6V 65 VCC = 3.0V 55 PLO = -6dBm 45 2900 45 2000 RF FREQUENCY (MHz) LO - 3IF RESPONSE vs. RF FREQUENCY 2900 70 TC = -40°C, +25°C, +85°C PIF = 0dBm 50 2600 80 LO - 3IF RESPONSE vs. RF FREQUENCY 70 PLO = -6dBm, -3dBm, 0dBm, +3dBm 60 PIF = 0dBm RF FREQUENCY (MHz) 2300 2600 TC = +85°C 60 PIF = 0dBm 90 2600 RF FREQUENCY (MHz) 2900 2300 2600 2900 RF FREQUENCY (MHz) LO + 3IF RESPONSE vs. RF FREQUENCY PLO = -6dBm, -3dBm, 0dBm, +3dBm 80 70 60 2300 2000 100 PIF = 0dBm LO + 3IF RESPONSE (dBc) 80 2000 VCC = 3.0V 60 2900 MAX2042A toc249 TC = +25°C 100 LO + 3IF RESPONSE (dBc) TC = -40°C 70 VCC = 3.3V LO + 3IF RESPONSE vs. RF FREQUENCY MAX2042A toc248 PIF = 0dBm 90 70 RF FREQUENCY (MHz) LO + 3IF RESPONSE vs. RF FREQUENCY 100 VCC = 3.6V 80 50 2000 2900 2900 90 50 2300 2600 RF FREQUENCY (MHz) 90 LO - 3IF RESPONSE (dBc) 80 2000 2300 2000 LO - 3IF RESPONSE vs. RF FREQUENCY MAX2042A toc245 LO - 3IF RESPONSE (dBc) PIF = 0dBm LO + 3IF RESPONSE (dBc) 2600 RF FREQUENCY (MHz) 90 60 2300 MAX2042A toc247 2600 LO - 3IF RESPONSE (dBc) 2300 MAX2042A toc246 2000 VCC = 3.3V 90 MAX2042A toc250 45 VCC = 3.6V 80 70 VCC = 3.0V 60 2000 2300 2600 RF FREQUENCY (MHz) 2900 2000 2300 2600 2900 RF FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 43 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) -35 -40 -30 -35 PLO = -6dBm, -3dBm, 0dBm, +3dBm -40 2900 3200 TC = +25°C -60 -70 TC = -40°C -80 2600 2900 3200 -90 MAX2042A toc255 -50 2600 2900 LO FREQUENCY (MHz) 3200 2600 2900 3200 LO FREQUENCY (MHz) PLO = -6dBm -60 -70 PLO = -3dBm, 0dBm, +3dBm -80 -90 2300 2300 IF LEAKAGE AT RF PORT vs. LO FREQUENCY -40 IF LEAKAGE AT RF PORT (dBm) MAX2042A toc254 TC = +85°C VCC = 3.3V LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY -50 VCC = 3.0V -35 -40 2300 LO FREQUENCY (MHz) -40 VCC = 3.6V -30 IF LEAKAGE AT RF PORT vs. LO FREQUENCY -40 MAX2042A toc256 2600 IF LEAKAGE AT RF PORT (dBm) 2300 IF LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 MAX2042A toc253 MAX2042A toc252 LO LEAKAGE AT RF PORT (dBm) MAX2042A toc251 LO LEAKAGE AT RF PORT (dBm) TC = -40°C, +25°C, +85°C -30 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 -50 VCC = 3.0V, 3.3V, 3.6V -60 -70 -80 -90 2300 2600 2900 LO FREQUENCY (MHz) 3200 2300 2600 2900 3200 LO FREQUENCY (MHz) ���������������������������������������������������������������� Maxim Integrated Products 44 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) PLO = -6dBm, -3dBm, 0dBm, +3dBm 10 15 20 LO = 2900MHz 5 IF PORT RETURN LOSS (dB) MAX2042A toc257 RF PORT RETURN LOSS (dB) IF = 300MHz 5 IF PORT RETURN LOSS vs. IF FREQUENCY 0 25 10 VCC = 3.0V, 3.3V, 3.6V 15 20 25 30 30 2000 2200 2400 2600 2800 3000 50 140 RF FREQUENCY (MHz) LO RETURN LOSS vs. LO FREQUENCY 410 500 20 PLO = +3dBm 40 MAX2042A toc260 135 SUPPLY CURRENT (mA) PLO = -3dBm SUPPLY CURRENT vs. TEMPERATURE (TC) PLO = 0dBm 30 320 140 MAX2042A toc259 PLO = -6dBm 10 230 IF FREQUENCY (MHz) 0 LO RETURN LOSS (dB) MAX2042A toc258 RF PORT RETURN LOSS vs. RF FREQUENCY 0 VCC = 3.6V 130 VCC = 3.3V 125 120 115 50 VCC = 3.0V 110 1000 1600 2200 2800 LO FREQUENCY (MHz) 3400 4000 -40 -15 10 35 60 85 EXPOSED PAD TEMPERATURE (°C) ���������������������������������������������������������������� Maxim Integrated Products 45 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer VCC GND GND LO TOP VIEW GND Pin Configuration 15 14 13 12 11 GND 16 10 GND GND 17 9 GND 8 VCC 7 LOBIAS 6 VCC IF- 18 MAX2042A IF+ 19 2 3 4 5 GND GND VCC 1 GND + RF GND 20 TQFN 5mm x 5mm Pin Description PIN NAME 1, 6, 8,14 VCC 2 RF 3, 4, 5, 10, 12, 13, 17 GND 7 LOBIAS 9, 15 GND 11 LO 16, 20 GND 18, 19 IF-, IF+ — EP FUNCTION Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin. Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide a DC-blocking capacitor if required. Capacitor also provides some RF match tuning. Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 698I Q1% resistor (nominal bias condition) from LOBIAS to ground. The maximum current seen by this resistor is 3mA. Ground. Not internally connected. Ground these pins or leave unconnected. Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. Capacitor also provides some LO match tuning. Ground. Connect all ground pins and the exposed pad (EP) together. Mixer Differential IF Output/Input Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance (see the Layout Considerations section). ���������������������������������������������������������������� Maxim Integrated Products 46 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Functional Diagram RF RF BALUN IF LO DRIVER LO LO BALUN MAX2042A Detailed Description When used as a high-side LO injection mixer in the 2300MHz to 2900MHz band, the MAX2042A provides +33dBm of IIP3, with typical conversion loss and noise figure values of only 7.2dB and 7.25dB, respectively. The integrated baluns and matching circuitry allow for 50I single-ended interfaces to the RF and the LO port. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the IC’s input to a -6dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced 2LO - 2RF performance. Specifications are over broad frequency ranges to allow for use in GSM/EDGE, CDMA, TD-SCDMA, WCDMA, LTE, TD-LTE, WiMAX, and MMDS base stations. The device is specified to operate over a 1600MHz to 3900MHz RF input range, a 1300MHz to 4000MHz LO range, and a 50MHz to 500MHz IF range. The external IF components set the lower frequency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information). RF Input and Balun The IC’s RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 17dB over the 2300MHz to 2900MHz RF frequency range. A return loss of 14dB over the 3000MHz to 3900MHz range is achieved by changing the DC-blocking capacitor to 1.5pF. For applications spanning the 1700MHz to 2200MHz frequency range, a 12nH shunt inductor can be used in conjunction with a 1.8pF DC-blocking capacitor to provide a typical return loss of 12dB. See the Typical Application Circuit and Table 1 for details. LO Inputs, Buffer, and Balun With a broadband LO drive circuit spanning 1300MHz to 4000MHz, the device can be used in either low- or highside LO injection architectures for virtually all 1.7GHz to 3.5GHz receiver and transmitter applications. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -6dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. High-Linearity Mixer The core of the device is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. IIP3, 2LO - 2RF rejection, and noise-figure performance are typically 33dBm, 72dBc, and 7.25dB, respectively. Differential IF Ports The device has a 50MHz to 500MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components. The device’s differential IF ports are ideal for providing enhanced 2LO - 2RF performance. The user can connect a differential IF amplifier or SAW filter to the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. To characterize the part, an external MABACT0069 1:1 transformer is used to transform the 50I differential IF interface to 50I single-ended. Its loss is included in the data presented in this data sheet. This transformer also supplies a needed IF pin ground return for the on-chip circuitry. If a ground return is not available on the IF pins, the return is achievable through some off-chip resistance to ground or large-value inductors. A 1kI to ground on each IF pin can be used for such an application. In addition, the IF interface directly supports singleended, AC-coupled signals into or out of IF+ by shorting IF- to ground and using a 1kI resistor from IF+ to ground. ���������������������������������������������������������������� Maxim Integrated Products 47 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Applications Information Input and Output Matching The RF input provides a 50I match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to 2900MHz. Use a 1.5pF capacitor value to match the RF port for the 3000MHz to 3900MHz band. For RF frequencies in the 1650MHz to 2250MHz range, use C1 = 1.8pF and L1 = 12nH. The LO input is internally matched to 50I, so use a 2pF DC-blocking capacitor to cover operations spanning the 1300MHz to 4000MHz range. The IF output impedance is 50I (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit). Reduced-Power Mode The device includes a pin (LOBIAS) that allows an external resistor to set the internal bias current. A nominal value for this resistor is given in Tables 1 and 2. Largervalue resistors can be used to reduce power dissipation at the expense of some performance loss. If Q1% resistors are not readily available, substitute with Q5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of 3.3V. Doing so reduces the overall power consumption by up to 42%. See the 3.3V Supply AC Electrical Characteristics tables and the relevant 3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs. Layout Considerations A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. Power-Supply Bypassing Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Table 1. Exposed Pad RF/Thermal Considerations The exposed pad (EP) of the device’s 20-pin TQFN package provides a low thermal-resistance path to the die. It is important that the PCB on which the device is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. ���������������������������������������������������������������� Maxim Integrated Products 48 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Table 1. Component Values—Downconverter Mode DESIGNATION C1 QTY 1 DESCRIPTION COMPONENT SUPPLIER 8.2pF microwave capacitor (0402); use for 2000MHz to 2900MHz RF frequencies Murata Electronics North America, Inc. 1.5pF microwave capacitor (0402); use for 3000MHz to 3900MHz RF frequencies Murata Electronics North America, Inc. 1.8pF microwave capacitor (0402); use for 1600MHz to 2000MHz RF frequencies Murata Electronics North America, Inc. C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc. C3, C9 0 Not installed, capacitors — C5 0 Not installed, capacitor — C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc. L1 1 12nH microwave inductor (0402); use for 1600MHz to 2000MHz RF frequencies (this inductor is not used for other RF bands noted above) TOKO America, Inc. R1 1 698I Q1% resistor (0402) — T1 1 1:1 IF balun MABACT0069 M/A-Com, Inc. U1 1 MAX2042A IC (20 TQFN) Maxim Integrated Products, Inc. Table 2. Component Values—Upconverter Mode DESIGNATION C1 QTY 1 DESCRIPTION COMPONENT SUPPLIER 8.2pF microwave capacitor (0402); use for 2000MHz to 2900MHz RF frequencies Murata Electronics North America, Inc. 1.5pF microwave capacitor (0402); use for 3000MHz to 3900MHz RF frequencies Murata Electronics North America, Inc. 1.8pF microwave capacitor (0402); use for 1600MHz to 2000MHz RF frequencies Murata Electronics North America, Inc. C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc. C3, C9 0 Not installed, capacitors — C5 0 Not installed, capacitor — C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc. L1 1 12nH microwave inductor (0402); use for 1600MHz to 2000MHz RF frequencies (this inductor is not used for other RF bands noted above) TOKO America, Inc. R1 1 698I Q1% resistor (0402) — T1 1 1:1 IF balun MABACT0069 M/A-Com, Inc. U1 1 MAX2042A IC (20 TQFN) Maxim Integrated Products, Inc. ���������������������������������������������������������������� Maxim Integrated Products 49 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Typical Application Circuit LO INPUT +5.0V C11 IF 5 GND VCC 15 T1 4 GND 14 C10 GND 13 LO GND 12 11 10 16 GND 1:1 GND 3 2 1 N.C. IF- MAX2042A 17 9 8 18 GND +5.0V VCC C8 C5 IF+ 7 19 LOBIAS +5.0V EP GND 6 20 C9 R1 VCC C6 1 2 VCC RF +5.0V L1 C3 C2 C1 RF 4 3 GND GND 5 GND NOTES: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. THESE PINS CAN BE EXTERNALLY GROUNDED IN AN ATTEMPT TO IMPROVE ISOLATION. PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE EXTERNALLY GROUNDED IN AN ATTEMPT TO IMPROVE ISOLATION. ���������������������������������������������������������������� Maxim Integrated Products 50 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Ordering Information PART TEMP RANGE PIN-PACKAGE MAX2042AETP+ -40NC to +85NC 20 TQFN-EP* MAX2042AETP+T -40NC to +85NC 20 TQFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. Chip Information Package Information For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 20 TQFN-EP T2055+3 21-0140 90-0008 PROCESS: SiGe BiCMOS ���������������������������������������������������������������� Maxim Integrated Products 51 MAX2042A SiGe High-Linearity, 1600MHz to 3900MHz Upconversion/Downconversion Mixer with LO Buffer Revision History REVISION NUMBER REVISION DATE 0 6/11 DESCRIPTION Initial release PAGES CHANGED — Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2011 Maxim Integrated Products 52 Maxim is a registered trademark of Maxim Integrated Products, Inc.