MAXIM MAX2042AETP

19-5902; Rev 0; 6/11
EVALUATION KIT AVAILABLE
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
General Description
The MAX2042A single, high-linearity upconversion/
downconversion mixer provides up to +33dBm input
IP3, 7.25dB noise figure, and 7.2dB conversion loss for
1600MHz to 3900MHz GSM/EDGE, CDMA, TD-SCDMA,
WCDMA, LTE, TD-LTE, WiMAXK, and MMDS wireless
infrastructure applications. With an ultra-wide 1300MHz
to 4000MHz LO frequency range, the IC can be used in
either low-side or high-side LO injection architectures for
virtually all 1.7GHz to 3.5GHz applications (for a 2.5GHz
variant tuned specifically for low-side LO injection, refer
to the MAX2042).
In addition to offering excellent linearity and noise
performance, the IC also yields a high level of component
integration. This device includes a double-balanced
passive mixer core, an LO buffer, and on-chip baluns
that allow for single-ended RF and LO inputs. The
IC requires a nominal LO drive of 0dBm, and supply
current is typically 140mA at VCC = 5.0V or 122mA at
VCC = 3.3V.
The MAX2042A is pin compatible with the MAX2042
2000MHz to 3000MHz mixer. The MAX2042A is also pin
similar with the MAX2029/MAX2031/MAX2033 650MHz
to 1550MHz mixers, the MAX2039/MAX2041 1700MHz
to 3000MHz mixers, and the MAX2044 2300MHz to
4000MHz mixer, making the entire family of upconverters/
downconverters ideal for applications where a common
PCB layout is used for multiple frequency bands.
The MAX2042A is available in a compact, 20-pin TQFN
package (5mm x 5mm) with an exposed pad. Electrical
performance is guaranteed over the extended TC = -40NC
to +85NC temperature range.
Applications
1.8GHz/1.9GHz GSM/EDGE/CDMA Base Stations
2.1GHz WCDMA/LTE Base Stations
Benefits and Features
SWide-Band Coverage
1600MHz to 3900MHz RF Frequency Range
1300MHz to 4000MHz LO Frequency Range
50MHz to 500MHz IF Frequency Range
S7.2dB Conversion Loss
S7.25dB Noise Figure
SHigh Linearity
+33dBm Input IP3
+21.7dBm Input 1dB Compression Point
72dBc Typical 2LO - 2RF Spurious Rejection at PRF = -10dBm
SSimple PCB Layout
Integrated LO Buffer
Integrated LO and RF Baluns for Single-Ended Inputs
SLow -6dBm to +3dBm LO Drive
SPin Compatible with the MAX2042 2000MHz to
3000MHz Mixer
SPin-Similar with the MAX2029/MAX2031/MAX2033
650MHz to 1550MHz Mixers, MAX2039/MAX2041
1700MHz to 3000MHz Mixers, and MAX2044
2300MHz to 4000MHz Mixer
SSingle +5.0V or +3.3V Supply
SExternal Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/ReducedPerformance Mode
Ordering Information appears at end of data sheet.
For related parts and recommended products to use with this part,
refer to www.maxim-ic.com/MAX2042A.related.
2.3GHz TD-SCDMA/TD-LTE Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
WiMAX is a trademark of WiMAX Forum.
����������������������������������������������������������������� Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
TABLE OF CONTENTS
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5.0V Supply DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3V Supply DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Recommended AC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
RF Input and Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
LO Inputs, Buffer, and Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
High-Linearity Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Differential IF Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Input and Output Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Reduced-Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Power-Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Exposed Pad RF/Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
����������������������������������������������������������������� Maxim Integrated Products 2
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
TABLE OF CONTENTS (continued)
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
LIST OF TABLES
Table 1. Downconverter Mode Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 2. Upconverter Mode Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
����������������������������������������������������������������� Maxim Integrated Products 3
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND...........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS to GND . ........................ -0.3V to (VCC + 0.3V)
RF, LO Input Power........................................................ +20dBm
IF Input Power (50ω source).......................................... +18dBm
RF, LO Current (RF and LO are DC shorted to
GND through a balun).....................................................50mA
Operating Case Temperature Range (Note 1)........ -40NC to +85NC
Continuous Power Dissipation (Note 2)...............................5.0W
Junction Temperature......................................................+150NC
Storage Temperature Range............................. -65NC to +150NC
Lead Temperature (soldering 10s)..................................+300NC
Soldering Temperature (reflow).......................................+260NC
Note 1: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Note 2: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.
The junction temperature must not exceed +150NC.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
PACKAGE THERMAL CHARACTERISTICS
TQFN
Junction-to-Ambient
Thermal Resistance BJA (Notes 3, 4)........................ +38°C/W
Junction-to-Case
Thermal Resistance BJC (Notes 2, 4)........................ +13°C/W
Note 3: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 4: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 4.75V to 5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values
are at VCC = 5.0V, TC = +25NC.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
UNITS
4.75
5
5.25
V
140
162
mA
3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 3.0V to 3.6V, no input AC applied. TC = -40NC to +85NC, unless otherwise noted. Typical values
are at VCC = 3.3V, TC = +25NC.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
UNITS
3.0
3.3
3.6
V
122
mA
����������������������������������������������������������������� Maxim Integrated Products 4
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
RF Frequency Range Without
Tuning
fRF1
Typical Application Circuit with C1 = 8.2pF
(Table 1) (Notes 5, 6)
2000
2900
MHz
RF Frequency Range With
Low-Band Tuning
fRF2
Typical Application Circuit with C1 = 1.8pF,
L1 = 12nH (Table 1) (Notes 5, 6)
1600
2000
MHz
RF Frequency Range With
High-Band Tuning
fRF3
Typical Application Circuit with C1 = 1.5pF
(Table 1) (Notes 5, 6)
3000
3900
MHz
LO Frequency
fLO
(Note 5, 6)
1300
4000
MHz
fIF
Using M/A-Com MABACT0069 1:1
transformer as defined in the Typical
Application Circuit, IF matching components
affect the IF frequency range (Notes 5, 6)
50
500
MHz
+3
dBm
IF Frequency
LO Drive
PLO
-6
0
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from
50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz,
fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz,
fIF = 300MHz.) (Note 7)
PARAMETER
Small-Signal Conversion Loss
Loss Variation vs. Frequency
SYMBOL
LC
DLC
CONDITIONS
fRF = 2600MHz, fLO = 2900MHz
fRF = 2900MHz, fLO = 3200MHz (Note 8)
MIN
TYP
MAX
UNITS
7.2
7.8
fRF = 2010MHz to 2025MHz
Q0.05
dB
fRF = 2305MHz to 2360MHz
Q0.05
dB
fRF = 2500MHz to 2570MHz
Q0.05
dB
fRF = 2570MHz to 2620MHz
Q0.05
dB
fRF = 2500MHz to 2690MHz
Q0.13
dB
fRF = 2700MHz to 2900MHz
Q0.02
dB
Conversion Loss Temperature
Coefficient
TCCL
TC = -40NC to +85NC
0.007
dB/NC
Single Sideband Noise Figure
NFSSB
No blockers present
7.25
dB
Noise Figure Temperature
Coefficient
TCNF
fRF = 2600MHz, single sideband,
no blockers present, TC = -40NC to +85NC
0.022
dB/NC
18
dB
Noise Figure Under Blocking
NFBlocking
+8dBm blocker tone applied to RF port,
fRF = 2600MHz, fLO = 2900MHz,
fBLOCKER = 2400MHz (Note 9)
����������������������������������������������������������������� Maxim Integrated Products 5
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 4.75V to 5.25V, RF and LO ports are driven from
50I sources, PLO = -6dBm to +3dBm, PRF = 0dBm, fRF = 2000MHz to 2900MHz, fLO = 2300MHz to 3200MHz, fIF = 300MHz,
fRF < fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = 5.0V, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz,
fIF = 300MHz.) (Note 7)
PARAMETER
Input 1dB Compression Point
Third-Order Input Intercept
Point
SYMBOL
IP1dB
IIP3
IIP3 Variation with TC
CONDITIONS
(Note 10)
MIN
TYP
MAX
UNITS
21.7
dBm
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm
(Note 8)
33
dBm
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm,
TC = -40NC to +85NC
Q0.3
dB
2LO - 2RF Spur Rejection
2x2
fRF = 2600MHz,
fLO = 2900MHz,
fSPUR = 2750MHz
PRF = -10dBm
72
PRF = 0dBm
62
3LO - 3RF Spur Rejection
3x3
fRF = 2600MHz,
fLO = 2900MHz,
fSPUR = 2800MHz
PRF = -10dBm
91
PRF = 0dBm
71
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
20
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
19
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s IF
outputs
50
I
RLIF
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the
Typical Application Circuit
17.5
dB
38
dB
IF Return Loss
RF-to-IF Isolation
PLO = +3dBm (Note 8)
LO Leakage at RF Port
PLO = +3dBm (Note 8)
2LO Leakage at RF Port
PLO = +3dBm
LO Leakage at IF Port
PLO = +3dBm (Note 8)
dBc
dBc
-29
dBm
-30.1
dBm
-31
dBm
����������������������������������������������������������������� Maxim Integrated Products 6
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources, Typical values
are for TC = +25NC, VCC = 3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER
SYMBOL
Small-Signal Conversion Loss
LC
Loss Variation vs. Frequency
DLC
Conversion Loss Temperature
Coefficient
CONDITIONS
MIN
TYP
MAX
UNITS
7.4
dB
fRF = 2000MHz to 2900MHz, any 100MHz band
Q0.25
dB
TCCL
TC = -40NC to +85NC
0.0079
dB/NC
Single Sideband Noise Figure
NFSSB
No blockers present
7.4
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
0.022
dB/NC
Input 1dB Compression Point
IP1dB
(Note 10)
19.7
dBm
31
dBm
Q0.1
dB
Third-Order Input Intercept
Point
IIP3
(Note 8)
fRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = 0dBm
fRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC
IIP3 Variation with TC
2LO - 2RF Spur Rejection
2x2
fRF = 2600MHz,
fLO = 2900MHz,
fSPUR = 2750MHz
PRF = -10dBm
72
PRF = 0dBm
62
3LO - 3RF Spur Rejection
3x3
fRF = 2600MHz,
fLO = 2900MHz,
fSPUR = 2800MHz
PRF = -10dBm
85
PRF = 0dBm
65
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
16
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
32
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s IF
outputs
50
I
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the Typical
Application Circuit
18
dB
RF-to-IF Isolation
PLO = +3dBm
38
dB
LO Leakage at RF Port
PLO = +3dBm
-31.5
dBm
2LO Leakage at RF Port
PLO = +3dBm
-30
dBm
LO Leakage at IF Port
PLO = +3dBm
-31.4
dBm
IF Return Loss
RLIF
dBc
dBc
����������������������������������������������������������������� Maxim Integrated Products 7
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 3100MHz to 3900MHz, LOW-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 3500MHz, fLO = 3200MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER
SYMBOL
Small-Signal Conversion Loss
LC
Loss Variation vs. Frequency
DLC
Conversion Loss Temperature
Coefficient
CONDITIONS
MIN
TYP
MAX
UNITS
8.2
dB
fRF = 3450MHz to 3750MHz, any 100MHz band
Q0.085
dB
fRF = 3450MHz to 3750MHz, any 200MHz band
Q0.17
dB
TCCL
TC = -40NC to +85NC
0.0091
dB/NC
Single Sideband Noise Figure
NFSSB
No blockers present
7.6
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
0.025
dB/NC
Input 1dB Compression Point
IP1dB
(Note 10)
20.6
dBm
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm
31
dBm
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm,
TC = -40NC to +85NC
Q0.5
dB
Third-Order Input Intercept
Point
IIP3
IIP3 Variation with TC
2RF - 2LO Spur Rejection
2x2
fRF = 3500MHz,
fLO = 3200MHz,
fSPUR = 3350MHz
PRF = -10dBm
71
PRF = 0dBm
61
3RF - 3LO Spur Rejection
3x3
fRF = 3500MHz,
fLO = 3200MHz,
fSPUR = 3300MHz
PRF = -10dBm
87
PRF = 0dBm
67
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
15
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
20
dB
IF Output Impedance
ZIF
Nominal differential impedance at the
IC’s IF outputs
50
I
16.5
dB
IF Return Loss
RLIF
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the
Typical Application Circuit
dBc
dBc
RF-to-IF Isolation
PLO = +3dBm
35
dB
LO Leakage at RF Port
PLO = +3dBm
-29.5
dBm
2LO Leakage at RF Port
PLO = +3dBm
-23
dBm
LO Leakage at IF Port
PLO = +3dBm
-31.5
dBm
����������������������������������������������������������������� Maxim Integrated Products 8
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 3100MHz to 3900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 3500MHz, fLO = 3800MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER
SYMBOL
Small-Signal Conversion Loss
LC
Loss Variation vs. Frequency
DLC
CONDITIONS
MIN
TYP
MAX
UNITS
8.6
dB
fRF = 3450MHz to 3750MHz, any 100MHz band
Q0.1
dB
fRF = 3450MHz to 3750MHz, any 200MHz band
Q0.2
dB
Conversion Loss
Temperature Coefficient
TCCL
TC = -40NC to +85NC
0.01
dB/NC
Single Sideband Noise
Figure
NFSSB
No blockers present
9
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
0.025
dB/NC
Input 1dB Compression Point
IP1dB
(Note 10)
Third-Order Input Intercept
Point
IIP3
IIP3 Variation with TC
18
dBm
fRF1 = 3500MHz, fRF2 = 3501MHz,
PRF1 = PRF2 = 0dBm
28.6
dBm
fRF1 = 3500MHz, fRF2 = 3501MHz,
PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC
Q0.5
dB
2LO - 2RF Spur Rejection
2x2
fRF = 3500MHz,
fLO = 3800MHz,
fSPUR = 3650MHz
PRF = -10dBm
70
PRF = 0dBm
60
3LO - 3RF Spur Rejection
3x3
fRF = 3500MHz,
fLO = 3800MHz,
fSPUR = 3700MHz
PRF = -10dBm
83
PRF = 0dBm
63
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
15.5
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched impedance
18.5
dB
IF Output Impedance
ZIF
Nominal differential impedance at the
IC’s IF outputs
50
I
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the Typical
Application Circuit
16
dB
IF Return Loss
RLIF
dBc
dBc
RF-to-IF Isolation
PLO = +3dBm
35
dB
LO Leakage at RF Port
PLO = +3dBm
-36.4
dBm
2LO Leakage at RF Port
PLO = +3dBm
-12.8
dBm
LO Leakage at IF Port
PLO = +3dBm
-31
dBm
����������������������������������������������������������������� Maxim Integrated Products 9
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 1650MHz to 2250MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 1850MHz, fLO = 2150MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER
SYMBOL
Small-Signal Conversion Loss
LC
Loss Variation vs. Frequency
DLC
CONDITIONS
MIN
TYP
7.5
fRF = 1650MHz to 1850MHz, any 100MHz band
Q0.18
fRF = 1850MHz to 2250MHz, any 100MHz band
Q0.15
fRF = 1650MHz to 1850MHz, any 200MHz band
Q0.36
fRF = 1850MHz to 2250MHz, any 200MHz band
Q0.3
MAX
UNITS
dB
dB
Conversion Loss
Temperature Coefficient
TCCL
TC = -40NC to +85NC
0.0067
dB/NC
Single Sideband Noise Figure
NFSSB
No blockers present
7
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
0.021
dB/NC
Input 1dB Compression Point
IP1dB
(Note 10)
23
dBm
fRF1 = 1850MHz, fRF2 = 1851MHz,
PRF1 = PRF2 = 0dBm
34.8
dBm
fRF1 = 1850MHz, fRF2 = 1851MHz,
PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC
Q0.5
dB
Third-Order Input Intercept
Point
IIP3
IIP3 Variation with TC
2LO - 2RF Spur Rejection
2x2
fRF = 1850MHz,
fLO = 2150MHz,
fSPUR = 2000MHz
PRF = -10dBm
83
PRF = 0dBm
73
3LO - 3RF Spur Rejection
3x3
fRF = 1850MHz,
fLO = 2150MHz,
fSPUR = 2050MHz
PRF = -10dBm
94
PRF = 0dBm
74
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
16.4
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched impedance
25.2
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s IF
outputs
50
I
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the Typical
Application Circuit
17
dB
IF Return Loss
RLIF
dBc
dBc
RF-to-IF Isolation
PLO = +3dBm
48.7
dB
LO Leakage at RF Port
PLO = +3dBm
-28.8
dBm
2LO Leakage at RF Port
PLO = +3dBm
-35.3
dBm
LO Leakage at IF Port
PLO = +3dBm
-20.8
dBm
���������������������������������������������������������������� Maxim Integrated Products 10
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 1650MHz to 2250MHz, LOW-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1. Typical values are for TC = +25NC, VCC = 5.0V, PRF = 0dBm,
PLO = 0dBm, fRF = 1850MHz, fLO = 1550MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER
SYMBOL
Small-Signal Conversion Loss
LC
Loss Variation vs. Frequency
DLC
CONDITIONS
MIN
TYP
8.5
fRF = 1650MHz to 1850MHz, any 100MHz band
Q0.35
fRF = 1850MHz to 2250MHz, any 100MHz band
Q0.075
fRF = 1650MHz to 1850MHz, any 200MHz band
Q0.7
fRF = 1850MHz to 2250MHz, any 200MHz band
Q0.15
MAX
UNITS
dB
dB
Conversion Loss
Temperature Coefficient
TCCL
TC = -40NC to +85NC
0.0095
dB/NC
Single Sideband Noise
Figure
NFSSB
No blockers present
8.95
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
0.024
dB/NC
Input 1dB Compression Point
IP1dB
(Note 10)
17.2
dBm
fRF1 = 1850MHz, fRF2 = 1851MHz,
PRF1 = PRF2 = 0dBm
26.7
dBm
fRF1 = 1850MHz, fRF2 = 1851MHz,
PRF1 = PRF2 = 0dBm, TC = -40NC to +85NC
Q0.5
dB
Third-Order Input Intercept
Point
IIP3
IIP3 Variation with TC
2RF - 2LO Spur Rejection
2x2
fRF = 1850MHz,
fLO = 1550MHz,
fSPUR = 1700MHz
PRF = -10dBm
71
PRF = 0dBm
61
3RF - 3LO Spur Rejection
3x3
fRF = 1850MHz,
fLO = 1550MHz,
fSPUR = 1650MHz
PRF = -10dBm
83
PRF = 0dBm
63
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
12.4
dB
LO Input Return Loss
RLLO
RF and IF terminated into a matched impedance
17.3
dB
IF Output Impedance
ZIF
50
I
19.3
dB
IF Return Loss
RLIF
Nominal differential impedance at the IC’s IF
outputs
RF terminated into 50I, LO driven by 50I
source, IF transformed to single-ended 50I
using external components shown in the Typical
Application Circuit
dBc
dBc
RF-to-IF Isolation
PLO = +3dBm
44.6
dB
LO Leakage at RF Port
PLO = +3dBm
-29.5
dBm
2LO Leakage at RF Port
PLO = +3dBm
-29.5
dBm
LO Leakage at IF Port
PLO = +3dBm
-29.7
dBm
���������������������������������������������������������������� Maxim Integrated Products 11
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
5.0V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2. Typical values are for TC = +25NC, VCC = 5.0V, PIF = 0dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
LC
Conversion Loss Variation
vs. Frequency
DLC
MIN
TYP
7.3
MAX
UNITS
dB
fRF = 2010MHz to 2025MHz
Q0.05
fRF = 2305MHz to 2360MHz
Q0.05
fRF = 2500MHz to 2570MHz
Q0.05
fRF = 2570MHz to 2620MHz
Q0.05
fRF = 2500MHz to 2690MHz
Q0.15
fRF = 2700MHz to 2900MHz
Q0.2
0.007
dB/NC
22
dBm
Conversion Loss
Temperature Coefficient
TCCL
TC = -40NC to +85NC
Input 1dB Compression Point
IP1dB
(Note 10)
dB
Input Third-Order Intercept
Point
IIP3
fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone
32.8
dBm
IIP3 Variation with TC
IIP3
fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone,
TC = -40NC to +85NC
Q0.5
dB
LO Q 2IF Spur
LO Q 3IF Spur
Output Noise Floor
LO - 2IF
61
LO + 2IF
62
LO - 3IF
72
LO + 3IF
85
POUT = 0dBm (Note 9)
-163
dBc
dBc
dBm/Hz
���������������������������������������������������������������� Maxim Integrated Products 12
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
3.3V Supply, RF = 2000MHz to 2900MHz, HIGH-SIDE LO INJECTION AC ELECTRICAL
CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2. Typical values are for TC = +25NC, VCC = 3.3V, PIF = 0dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2900MHz, fIF = 300MHz, unless otherwise noted.)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
LC
Conversion Loss Variation vs.
Frequency
DLC
MIN
TYP
MAX
UNITS
7.3
dB
fRF = 2000MHz to 2900MHz, any 100MHz band
Q0.25
dB
Conversion Loss
Temperature Coefficient
TCCL
TC = -40NC to +85NC
0.008
dB/NC
Input 1dB Compression Point
IP1dB
(Note 10)
20.5
dBm
Input Third-Order Intercept
Point
IIP3
fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone
30
dBm
IIP3 Variation with TC
IIP3
fIF1 = 300MHz, fIF2 = 301MHz, PIF = 0dBm/tone,
TC = -40NC to +85NC
Q0.6
dB
LO Q 2IF Spur
LO Q 3IF Spur
Output Noise Floor
LO - 2IF
60
LO + 2IF
64
LO - 3IF
68
LO + 3IF
80
POUT = 0dBm (Note 9)
-160
dBc
dBc
dBm/Hz
Note 5: Not production tested.
Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance
transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: 100% production tested for functional performance.
Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz at 100MHz offset. This specification
reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021:
Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 10: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50I source.
���������������������������������������������������������������� Maxim Integrated Products 13
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
7
TC = -40°C
6
5
7
PLO = -6dBm, -3dBm, 0dBm, +3dBm
6
5
2900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
35
INPUT IP3 (dBm)
TC = -40°C
TC = +85°C
2000
PLO = -3dBm, 0dBm, +3dBm
2900
PLO = -6dBm
40
PRF = 0dBm/TONE
VCC = 5.25V
2300
2600
VCC = 5.0V
30
2900
VCC = 4.75V
2000
TC = -40°C
60
55
PRF = 0dBm
70
PLO = 0dBm
65
60
2600
2900
PLO = -3dBm
55
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
PRF = 0dBm
2LO - 2RF RESPONSE (dBc)
65
2LO - 2RF RESPONSE vs. RF FREQUENCY
PLO = +3dBm
2300
RF FREQUENCY (MHz)
75
2LO - 2RF RESPONSE (dBc)
70
PRF = 0dBm
TC = +25°C
MAX2042A toc07
TC = +85°C
35
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE vs. RF FREQUENCY
2900
25
2000
RF FREQUENCY (MHz)
75
2600
INPUT IP3 vs. RF FREQUENCY
35
30
2300
RF FREQUENCY (MHz)
25
2600
6
2900
MAX2042A toc08
INPUT IP3 (dBm)
2600
PRF = 0dBm/TONE
25
2LO - 2RF RESPONSE (dBc)
2300
40
MAX2042A toc04
PRF = 0dBm/TONE
2300
VCC = 4.75V, 5.0V, 5.25V
INPUT IP3 vs. RF FREQUENCY
TC = +25°C
2000
7
RF FREQUENCY (MHz)
40
30
8
5
2000
INPUT IP3 (dBm)
2600
MAX2042A toc05
2300
2000
MAX2042A toc03
8
MAX2042A toc06
CONVERSION LOSS (dB)
TC = +25°C
CONVERSION LOSS (dB)
8
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042A toc02
MAX2042A toc01
TC = +85°C
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
9
70
MAX2042A toc09
CONVERSION LOSS vs. RF FREQUENCY
9
65
60
VCC = 4.75V, 5.0V, 5.25V
55
PLO = -6dBm
50
50
2000
2300
2600
RF FREQUENCY (MHz)
2900
50
2000
2300
2600
RF FREQUENCY (MHz)
2900
2000
2300
2600
2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 14
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = -40°C, +25°C, +85°C
55
65
PLO = -6dBm, -3dBm, 0dBm, +3dBm
55
2300
2600
2900
RF FREQUENCY (MHz)
2600
2900
2000
2300
TC = +25°C
5
MAX2042A toc12
2900
NOISE FIGURE vs. RF FREQUENCY
8
7
PLO = -6dBm, -3dBm, 0dBm, +3dBm
6
2600
RF FREQUENCY (MHz)
10
MAX2042A toc14
9
NOISE FIGURE (dB)
7
VCC = 5.0V
VCC = 4.75V
NOISE FIGURE vs. RF FREQUENCY
8
6
2300
10
MAX2042A toc13
TC = +85°C
9
65
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
10
VCC = 5.25V
75
55
2000
9
NOISE FIGURE (dB)
2000
NOISE FIGURE (dB)
MAX2042A toc11
75
PRF = 0dBm
MAX2042A toc15
65
PRF = 0dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
3LO - 3RF RESPONSE (dBc)
75
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
PRF = 0dBm
MAX2042A toc10
3LO - 3RF RESPONSE vs. RF FREQUENCY
85
5
8
7
VCC = 4.75V, 5.0V, 5.25V
6
5
TC = -40°C
4
2300
2600
2900
4
2000
RF FREQUENCY (MHz)
21
TC = +25°C
19
17
21
2600
RF FREQUENCY (MHz)
2900
2600
2900
INPUT P1dB vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
25
VCC = 5.25V
23
21
VCC = 5.0V
VCC = 4.75V
19
17
2300
2300
RF FREQUENCY (MHz)
19
TC = +85°C
2000
2000
MAX2042A toc17
23
P1dB (dBm)
P1dB (dBm)
23
2900
INPUT P1dB vs. RF FREQUENCY
25
MAX2042A toc16
TC = -40°C
2600
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
25
2300
P1dB (dBm)
2000
MAX2042A toc18
4
17
2000
2300
2600
RF FREQUENCY (MHz)
2900
2000
2300
2600
2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 15
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
-30
TC = -40°C
TC = +85°C
-20
-30
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc21
MAX2042A toc20
LO LEAKAGE AT IF PORT (dBm)
MAX2042A toc19
LO LEAKAGE AT IF PORT (dBm)
-20
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-20
-30
VCC = 4.75V, 5.0V, 5.25V
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
-40
3200
-40
2300
LO FREQUENCY (MHz)
40
TC = +25°C
TC = -40°C
20
50
2600
40
PLO = -6dBm, -3dBm, 0dBm, +3dBm
30
2900
RF-TO-IF ISOLATION vs. RF FREQUENCY
2300
2600
-30
TC = -40°C, +25°C, +85°C
-35
-40
2600
2900
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
30
2000
MAX2042A toc26
-25
3200
-30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-35
2300
2600
2900
LO FREQUENCY (MHz)
2300
2600
2900
RF FREQUENCY (MHz)
-40
2300
40
2900
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc25
-25
50
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
3200
20
2000
RF FREQUENCY (MHz)
-20
2900
60
3200
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
LO LEAKAGE AT RF PORT (dBm)
2300
2600
LO FREQUENCY (MHz)
20
2000
LO LEAKAGE AT RF PORT (dBm)
2300
MAX2042A toc23
MAX2042A toc22
TC = +85°C
30
3200
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
50
2900
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
2600
MAX2042A toc24
2900
MAX2042A toc27
2600
RF-TO-IF ISOLATION (dB)
2300
-25
VCC = 5.25V
-30
VCC = 4.75V VCC = 5.0V
-35
-40
2300
2600
2900
3200
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 16
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-35
TC = +85°C
-40
-45
-50
-30
-35
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
-45
-50
2600
2900
3200
-35
VCC = 5.0V
-40
VCC = 5.25V
-45
2600
2900
3200
2300
LO FREQUENCY (MHz)
10
15
20
2900
3200
IF PORT RETURN LOSS vs. IF FREQUENCY
0
LO = 2900MHz
5
IF PORT RETURN LOSS (dB)
MAX2042A toc31
IF = 300MHz
5
2600
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
0
RF PORT RETURN LOSS (dB)
VCC = 4.75V
-30
-50
2300
LO FREQUENCY (MHz)
25
-25
10
VCC = 4.75V, 5.0V, 5.25V
15
20
25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
30
30
2000
2200
2400
2600
2800
3000
50
140
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
320
410
500
PLO = +3dBm
SUPPLY CURRENT vs. TEMPERATURE (TC)
155
MAX2042A toc33
0
10
230
IF FREQUENCY (MHz)
150
SUPPLY CURRENT (mA)
PLO = -6dBm
20
30
PLO = -3dBm
40
MAX2042A toc34
2300
MAX2042A toc30
-25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc32
TC = -40°C
-30
MAX2042A toc29
2LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc28
TC = +25°C
LO RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
-25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
VCC = 5.25V
VCC = 5.0V
145
140
135
VCC = 4.75V
130
PLO = 0dBm
50
125
1000
1600
2200
2800
LO FREQUENCY (MHz)
3400
4000
-40
-15
10
35
60
85
EXPOSED PAD TEMPERATURE (°C)
���������������������������������������������������������������� Maxim Integrated Products 17
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
5
7
PLO = -6dBm, -3dBm, 0dBm, +3dBm
6
5
2600
2900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
2600
2900
MAX2042A toc38
31
TC = -40°C, +25°C, +85°C
25
31
PLO = -6dBm, -3dBm, 0dBm, +3dBm
33
2300
2600
TC = -40°C, +25°C, +85°C
70
PLO = +3dBm
MAX2042A toc42
PRF = 0dBm
PLO = 0dBm
65
60
PLO = -6dBm
RF FREQUENCY (MHz)
2300
2600
2900
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
PRF = 0dBm
VCC = 3.6V
70
VCC = 3.3V
65
60
55
PLO = -3dBm
50
2900
VCC = 3.0V
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE vs. RF FREQUENCY
55
50
2600
2000
2LO - 2RF RESPONSE (dBc)
60
2300
VCC = 3.3V
2900
75
2LO - 2RF RESPONSE (dBc)
MAX2042A toc41
65
2000
29
RF FREQUENCY (MHz)
PRF = 0dBm
55
31
25
2000
2LO - 2RF RESPONSE vs. RF FREQUENCY
70
VCC = 3.6V
27
RF FREQUENCY (MHz)
75
2900
PRF = 0dBm/TONE
25
2900
2600
INPUT IP3 vs. RF FREQUENCY
33
29
2300
35
27
2600
MAX2042A toc37
2000
RF FREQUENCY (MHz)
PRF = 0dBm/TONE
27
2LO - 2RF RESPONSE (dBc)
2300
35
INPUT IP3 (dBm)
INPUT IP3 (dBm)
33
2300
6
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
2000
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
35
29
7
5
2000
INPUT IP3 (dBm)
2300
MAX2042A toc39
2000
8
MAX2042A toc40
TC = -40°C
6
8
CONVERSION LOSS (dB)
7
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042A toc36
MAX2042A toc35
TC = +25°C
8
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TC = +85°C
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042A toc43
CONVERSION LOSS vs. RF FREQUENCY
9
VCC = 3.0V
50
2000
2300
2600
RF FREQUENCY (MHz)
2900
2000
2300
2600
2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 18
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
55
65
PLO = -6dBm, -3dBm, 0dBm, +3dBm
60
55
2600
2900
2600
2900
6
TC = -40°C
2600
7
2900
PLO = -6dBm, -3dBm, 0dBm, +3dBm
7
2300
2600
2900
2000
20
18
16
22
RF FREQUENCY (MHz)
2900
MAX2042A toc46
VCC = 3.6V
20
VCC = 3.3V
VCC = 3.0V
18
16
2600
2900
INPUT P1dB vs. RF FREQUENCY
P1dB (dBm)
22
2600
24
MAX2042A toc51
24
P1dB (dBm)
TC = +85°C
2300
2300
RF FREQUENCY (MHz)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2000
VCC = 3.6V
6
INPUT P1dB vs. RF FREQUENCY
20
18
VCC = 3.3V
RF FREQUENCY (MHz)
MAX2042A toc50
TC = -40°C
TC = +25°C
8
4
2000
INPUT P1dB vs. RF FREQUENCY
22
VCC = 3.0V
9
5
RF FREQUENCY (MHz)
24
2900
NOISE FIGURE vs. RF FREQUENCY
8
6
2600
10
4
2300
2300
RF FREQUENCY (MHz)
5
4
2000
VCC = 3.0V
2000
MAX2042A toc48
9
NOISE FIGURE (dB)
NOISE FIGURE (dB)
TC = +25°C
5
60
NOISE FIGURE vs. RF FREQUENCY
8
7
2300
10
MAX2042A toc47
TC = +85°C
VCC = 3.3V
65
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
9
VCC = 3.6V
55
2000
RF FREQUENCY (MHz)
10
70
MAX2042A toc52
2300
NOISE FIGURE (dB)
2000
P1dB (dBm)
PRF = 0dBm
MAX2042A toc49
TC = -40°C, +25°C, +85°C
60
70
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
3LO - 3RF RESPONSE (dBc)
65
PRF = 0dBm
MAX2042A toc45
70
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
PRF = 0dBm
MAX2042A toc44
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
16
2000
2300
2600
RF FREQUENCY (MHz)
2900
2000
2300
2600
2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 19
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
-30
TC = +85°C
-20
-30
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc55
MAX2042A toc54
LO LEAKAGE AT IF PORT (dBm)
MAX2042A toc53
LO LEAKAGE AT IF PORT (dBm)
TC = -40°C
-20
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-20
-30
VCC = 3.0V, 3.3V, 3.6V
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
-40
3200
-40
2300
LO FREQUENCY (MHz)
2300
40
TC = -40°C
TC = +25°C
30
50
2600
40
PLO = -6dBm, -3dBm, 0dBm, +3dBm
30
2900
2300
2600
VCC = 3.0V, 3.3V, 3.6V
30
2900
2000
-35
MAX2042A toc60
-25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-30
2300
-35
-40
2300
2600
2900
LO FREQUENCY (MHz)
3200
2900
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-25
VCC = 3.6V
-30
-35
VCC = 3.0V
-40
2600
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc59
TC = -40°C, +25°C, +85°C
-30
40
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
50
20
2000
RF FREQUENCY (MHz)
-20
3200
RF-TO-IF ISOLATION vs. RF FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
2300
2900
60
20
2000
2600
LO FREQUENCY (MHz)
MAX2042A toc57
MAX2042A toc56
TC = +85°C
20
LO LEAKAGE AT RF PORT (dBm)
3200
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
50
2900
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
2600
MAX2042A toc58
2900
MAX2042A toc61
2600
RF-TO-IF ISOLATION (dB)
2300
VCC = 3.3V
-40
2300
2600
2900
LO FREQUENCY (MHz)
3200
2300
2600
2900
3200
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 20
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 3.3V, fRF = 2000MHz to 2900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
TC = +85°C
-40
-45
-50
-30
-35
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
-45
-50
2300
2600
2900
3200
-30
VCC = 3.3V
-35
VCC = 3.6V
-40
-45
2600
2900
3200
2300
2600
LO FREQUENCY (MHz)
10
15
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3200
IF PORT RETURN LOSS vs. IF FREQUENCY
0
LO = 2900MHz
5
IF PORT RETURN LOSS (dB)
MAX2042A toc65
IF = 300MHz
5
2900
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
0
RF PORT RETURN LOSS (dB)
VCC = 3.0V
-25
-50
2300
LO FREQUENCY (MHz)
20
MAX2042A toc64
-25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
2LO LEAKAGE AT RF PORT (dBm)
-35
MAX2042A toc63
2LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc62
-30
25
10
VCC = 3.0V, 3.3V, 3.6V
15
20
25
30
30
2000
2200
2400
2600
2800
3000
50
140
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
410
500
30
PLO = +3dBm
PLO = -3dBm
50
MAX2042A toc68
135
SUPPLY CURRENT (mA)
PLO = -6dBm
SUPPLY CURRENT vs. TEMPERATURE (TC)
20
40
320
140
MAX2042A toc67
PLO = 0dBm
10
230
IF FREQUENCY (MHz)
0
LO RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
TC = -40°C
-25
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc66
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
VCC = 3.6V
130
VCC = 3.3V
125
120
115
60
VCC = 3.0V
110
1000
1600
2200
2800
LO FREQUENCY (MHz)
3400
4000
-40
-15
10
35
60
85
EXPOSED PAD TEMPERATURE (°C)
���������������������������������������������������������������� Maxim Integrated Products 21
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
8
7
10
CONVERSION LOSS (dB)
9
10
CONVERSION LOSS (dB)
TC = +85°C
CONVERSION LOSS vs. RF FREQUENCY
11
MAX2042A toc70
MAX2042A toc69
10
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
11
9
8
PLO = -6dBm, -3dBm, 0dBm, +3dBm
MAX2042A toc71
CONVERSION LOSS vs. RF FREQUENCY
11
7
9
8
VCC = 4.75V, 5.0V, 5.25V
7
TC = -40°C
6
3700
3900
6
3100
RF FREQUENCY (MHz)
MAX2042A toc72
40
INPUT IP3 (dBm)
TC = +25°C
TC = +85°C
3100
3500
3700
PRF = 0dBm/TONE
35
PLO = -3dBm, 0dBm, +3dBm
30
3900
TC = +25°C T = +85°C
C
60
TC = -40°C
55
VCC = 5.25V
30
VCC = 5.0V
VCC = 4.75V
3300
3500
3700
3900
3100
PRF = 0dBm
70
PLO = +3dBm
PLO = 0dBm
65
60
PLO = -3dBm
55
3300
3500
3700
3900
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
2RF - 2LO RESPONSE (dBc)
70
MAX2042A toc75
PRF = 0dBm
65
35
PRF = 0dBm/TONE
RF FREQUENCY (MHz)
2RF - 2LO RESPONSE vs. RF FREQUENCY
3900
25
3100
RF FREQUENCY (MHz)
75
3700
INPUT IP3 vs. RF FREQUENCY
2RF - 2LO RESPONSE vs. RF FREQUENCY
75
2RF - 2LO RESPONSE (dBc)
3300
3500
40
25
3100
3300
RF FREQUENCY (MHz)
PLO = -6dBm
25
2RF - 2LO RESPONSE (dBc)
3900
MAX2042A toc76
INPUT IP3 (dBm)
TC = -40°C
30
3700
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
35
3500
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
3300
MAX2042A toc74
3500
INPUT IP3 (dBm)
3300
MAX2042A toc73
3100
PRF = 0dBm
70
MAX2042A toc77
6
65
60
VCC = 4.75V, 5.0V, 5.25V
55
PLO = -6dBm
50
50
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
50
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
3100
3300
3500
3700
3900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 22
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
65
TC = -40°C, +25°C, +85°C
75
65
55
3300
3500
3700
3900
NOISE FIGURE vs. RF FREQUENCY
3300
3500
3700
3900
3100
8
TC = +25°C
8
10
PLO = -6dBm, -3dBm, 0dBm, +3dBm
6
3700
3900
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE (dB)
NOISE FIGURE (dB)
10
3500
12
MAX2042A toc82
MAX2042A toc81
12
3300
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
TC = +85°C
MAX2042A toc80
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
12
6
65
55
3100
RF FREQUENCY (MHz)
10
75
MAX2042A toc83
3100
PRF = 0dBm
PLO = -6dBm, -3dBm, 0dBm, +3dBm
55
NOISE FIGURE (dB)
MAX2042A toc79
PRF = 0dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
3RF - 3LO RESPONSE (dBc)
75
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
3RF - 3LO RESPONSE (dBc)
3RF - 3LO RESPONSE (dBc)
PRF = 0dBm
MAX2042A toc78
3RF - 3LO RESPONSE vs. RF FREQUENCY
85
8
VCC = 4.75V, 5.0V, 5.25V
6
TC = -40°C
4
3100
3300
3500
3700
3900
4
3100
RF FREQUENCY (MHz)
3100
3900
INPUT P1dB vs. RF FREQUENCY
VCC = 5.25V
23
21
21
19
19
PLO = -6dBm, -3dBm, 0dBm, +3dBm
VCC = 4.75V
TC = +85°C
17
17
3300
3700
VCC = 5.0V
TC = +25°C
3100
3500
25
MAX2042A toc85
23
3300
RF FREQUENCY (MHz)
P1dB (dBm)
21
19
3900
INPUT P1dB vs. RF FREQUENCY
P1dB (dBm)
P1dB (dBm)
23
3700
25
MAX2042A toc84
TC = -40°C
3500
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
25
3300
MAX2042A toc86
4
3500
3700
RF FREQUENCY (MHz)
3900
17
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
3100
3300
3500
3700
3900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 23
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = -40°C
TC = +25°C
-30
-20
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-30
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc89
MAX2042A toc88
LO LEAKAGE AT IF PORT (dBm)
MAX2042A toc87
LO LEAKAGE AT IF PORT (dBm)
-20
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-20
VCC = 4.75V, 5.0V, 5.25V
-30
TC = +85°C
-40
-40
3200
3400
3600
-40
2800
LO FREQUENCY (MHz)
3600
2800
TC = +25°C
30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
40
3200
3400
3600
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2042A toc91
50
3000
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
MAX2042A toc90
TC = +85°C
40
3400
60
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
50
3200
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
3000
30
MAX2042A toc92
3000
RF-TO-IF ISOLATION (dB)
2800
50
VCC = 4.75V, 5.0V, 5.25V
40
30
TC = -40°C
20
20
3700
3900
20
3100
RF FREQUENCY (MHz)
TC = -40°C
3700
3900
TC = +25°C
-30
TC = +85°C
-35
-40
-25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3000
3200
3400
LO FREQUENCY (MHz)
3600
3300
3500
3700
3900
RF FREQUENCY (MHz)
-30
-35
-40
2800
3100
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc93
LO LEAKAGE AT RF PORT (dBm)
-25
3500
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
3300
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc95
3500
LO LEAKAGE AT RF PORT (dBm)
3300
MAX2042A toc94
3100
-25
-30
VCC = 4.75V, 5.0V, 5.25V
-35
-40
2800
3000
3200
3400
LO FREQUENCY (MHz)
3600
2800
3000
3200
3400
3600
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 24
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-25
TC = +85°C
TC = +25°C
-35
-40
-20
PLO = -0dBm
-25
PLO = -6dBm, -3dBm
-30
-35
-40
3000
3200
3400
3600
3000
3200
VCC = 4.75V, 5.0V, 5.25V
-30
-35
3600
3400
2800
PLO = -6dBm, -3dBm, 0dBm, +3dBm
15
20
3200
3400
3600
IF PORT RETURN LOSS vs. IF FREQUENCY
0
LO = 3200MHz
5
IF PORT RETURN LOSS (dB)
MAX2042A toc99
IF = 300MHz
5
3000
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
25
10
VCC = 4.75V, 5.0V, 5.25V
15
20
25
30
30
3000
3200
3400
3600
3800
50
4000
140
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
410
500
SUPPLY CURRENT vs. TEMPERATURE (TC)
MAX2042A toc101
PLO = -0dBm
20
PLO = +3dBm
30
320
155
150
SUPPLY CURRENT (mA)
PLO = -6dBm
PLO = -3dBm
230
IF FREQUENCY (MHz)
0
10
MAX2042A toc98
-25
LO FREQUENCY (MHz)
0
10
-20
-40
2800
LO FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
2800
-15
MAX2042A toc102
-30
PLO = 3dBm
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc100
-20
-15
MAX2042A toc97
2LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc96
TC = -40°C
LO RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
-15
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
VCC = 5.25V
145
VCC = 5.0V
140
135
VCC = 4.75V
130
125
40
2700
2900
3100
3300
LO FREQUENCY (MHz)
3500
3700
-40
-15
10
35
60
85
EXPOSED PAD TEMPERATURE (°C)
���������������������������������������������������������������� Maxim Integrated Products 25
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
10
7
8
PLO = -6dBm, -3dBm, 0dBm, +3dBm
7
6
3700
3900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
3700
3900
3100
MAX2042A toc106
TC = +25°C
TC = +85°C
20
PLO = -3dBm, 0dBm, +3dBm
PLO = -6dBm
25
3700
3900
3300
3500
3700
3900
3100
TC = +25°C
TC = +85°C
60
TC = -40°C
PRF = 0dBm
70
65
PLO = 0dBm
PLO = +3dBm
3300
3500
3700
3900
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
2LO - 2RF RESPONSE (dBc)
70
MAX2042A toc109
PRF = 0dBm
55
VCC = 4.75V, 5.0V, 5.25V
25
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE vs. RF FREQUENCY
65
30
20
3100
RF FREQUENCY (MHz)
75
3900
PRF = 0dBm/TONE
PLO = -3dBm
60
55
2LO - 2RF RESPONSE vs. RF FREQUENCY
75
2LO - 2RF RESPONSE (dBc)
3500
MAX2042A toc110
3300
3700
35
20
3100
3500
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
30
3300
RF FREQUENCY (MHz)
35
INPUT IP3 (dBm)
INPUT IP3 (dBm)
TC = -40°C
2LO - 2RF RESPONSE (dBc)
3500
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
25
3300
RF FREQUENCY (MHz)
35
30
VCC = 4.75V, 5.0V, 5.25V
6
3100
INPUT IP3 (dBm)
3500
MAX2042A toc107
3300
8
7
6
3100
9
MAX2042A toc108
TC = -40°C
9
PRF = 0dBm
70
MAX2042A toc111
8
10
CONVERSION LOSS (dB)
9
CONVERSION LOSS vs. RF FREQUENCY
11
MAX2042A toc104
MAX2042A toc103
TC = +25°C
TC = +85°C
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
10
CONVERSION LOSS vs. RF FREQUENCY
11
MAX2042A toc105
CONVERSION LOSS vs. RF FREQUENCY
11
65
60
VCC = 4.75V, 5.0V, 5.25V
55
PLO = -6dBm
50
50
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
50
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
3100
3300
3500
3700
3900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 26
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = -40°C, +25°C, +85°C
55
65
60
PLO = -6dBm, -3dBm, 0dBm, +3dBm
3900
3100
RF FREQUENCY (MHz)
8
3700
PLO = -6dBm
10
TC = -40°C
TC = +25°C
6
3500
3100
3900
PLO = -3dBm
8
10
PLO = 0dBm, +3dBm
3400
3550
3700
3250
3400
3550
3700
3100
MAX2042A toc118
PLO = -3dBm, 0dBm, +3dBm
VCC = 5.25V
P1dB (dBm)
P1dB (dBm)
P1dB (dBm)
3500
3700
RF FREQUENCY (MHz)
3900
MAX2042A toc114
VCC = 5.0V
17
PLO = -6dBm
VCC = 4.75V
15
3300
3700
INPUT P1dB vs. RF FREQUENCY
17
15
3550
19
TC = +85°C
3100
3400
21
19
TC = +25°C
3250
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
21
19
17
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
TC = -40°C
8
4
3100
RF FREQUENCY (MHz)
21
3900
6
MAX2042A toc119
3250
3700
NOISE FIGURE vs. RF FREQUENCY
4
3100
3500
12
6
4
3300
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE (dB)
NOISE FIGURE (dB)
10
3300
12
MAX2042A toc115
TC = +85°C
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
12
60
MAX2042A toc117
3700
NOISE FIGURE (dB)
3500
MAX2042A toc116
3300
65
50
50
3100
70
55
55
50
PRF = 0dBm
MAX2042A toc120
60
70
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
3LO - 3RF RESPONSE (dBc)
65
PRF = 0dBm
MAX2042A toc113
70
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
PRF = 0dBm
MAX2042A toc112
3LO - 3RF RESPONSE vs. RF FREQUENCY
75
15
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
3100
3300
3500
3700
3900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 27
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = -40°C
-30
TC = +25°C
TC = +85°C
-50
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-30
-40
-50
3800
4000
4200
TC = +25°C
30
TC = -40°C
3800
4000
4200
3400
MAX2042A toc125
50
PLO = -6dBm, -3dBm, 0dBm, +3dBm
40
3500
3700
30
3900
TC = -40°C
-35
TC = +85°C
-40
3300
3500
3700
TC = +25°C
-45
3600
3800
4000
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
40
30
3100
MAX2042A toc128
-30
-35
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
4200
3300
3500
3700
3900
RF FREQUENCY (MHz)
-45
3400
50
3900
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc127
-30
4200
RF-TO-IF ISOLATION vs. RF FREQUENCY
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
4000
20
3100
RF FREQUENCY (MHz)
-25
3800
60
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
LO LEAKAGE AT RF PORT (dBm)
3300
3600
LO FREQUENCY (MHz)
20
3100
-40
RF-TO-IF ISOLATION vs. RF FREQUENCY
20
LO LEAKAGE AT RF PORT (dBm)
3600
60
RF-TO-IF ISOLATION (dB)
MAX2042A toc124
RF-TO-IF ISOLATION (dB)
TC = +85°C
40
-30
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
50
VCC = 4.75V, 5.0V, 5.25V
-50
3400
LO FREQUENCY (MHz)
60
-20
MAX2042A toc126
3600
RF-TO-IF ISOLATION (dB)
3400
MAX2042A toc123
MAX2042A toc122
-20
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc129
-40
LO LEAKAGE AT IF PORT (dBm)
MAX2042A toc121
LO LEAKAGE AT IF PORT (dBm)
-20
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-30
-35
VCC = 4.75V, 5.0V, 5.25V
-40
-45
3400
3600
3800
4000
LO FREQUENCY (MHz)
4200
3400
3600
3800
4000
4200
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 28
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
-15
TC = +25°C
-20
TC = +85°C
-25
PLO = 3dBm
-10
PLO = 0dBm
-15
PLO = -6dBm, -3dBm
-20
-25
-30
-30
3600
3800
-15
VCC = 4.75V, 5.0V, 5.25V
-20
-25
3600
3800
4000
4200
3400
3600
LO FREQUENCY (MHz)
10
15
PLO = -6dBm, -3dBm, 0dBm, +3dBm
4000
4200
IF PORT RETURN LOSS vs. IF FREQUENCY
0
LO = 3800MHz
5
IF PORT RETURN LOSS (dB)
MAX2042A toc133
IF = 300MHz
5
3800
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
0
20
-10
-30
3400
4200
4000
LO FREQUENCY (MHz)
RF PORT RETURN LOSS (dB)
25
10
15
20
VCC = 4.75V, 5.0V, 5.25V
25
30
30
3000
3200
3400
3600
3800
50
4000
140
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
0
410
500
SUPPLY CURRENT vs.TEMPERATURE (TC)
PLO = +3dBm
20
PLO = 0dBm
320
155
150
SUPPLY CURRENT (mA)
PLO = -6dBm
10
230
IF FREQUENCY (MHz)
MAX2042A toc135
3400
-5
PLO = -3dBm
30
MAX2042A toc136
-10
-5
MAX2042A toc134
TC = -40°C
2LO LEAKAGE AT RF PORT (dBm)
-5
MAX2042A toc132
0
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
0
MAX2042A toc131
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
0
MAX2042A toc130
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
LO RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 3100MHz to 3900MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
VCC = 5.25V
VCC = 5.0V
145
140
135
VCC = 4.75V
130
40
125
3300
3500
3700
3900
LO FREQUENCY (MHz)
4100
4300
-40
-15
10
35
60
85
EXPOSED PAD TEMPERATURE (°C)
���������������������������������������������������������������� Maxim Integrated Products 29
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
8
7
9
CONVERSION LOSS (dB)
TC = +85°C
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2042A toc138
MAX2042A toc137
9
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
10
8
PLO = -6dBm, -3dBm, 0dBm, +3dBm
7
MAX2042A toc139
CONVERSION LOSS vs. RF FREQUENCY
10
9
8
VCC = 4.75V, 5.0V, 5.25V
7
TC = -40°C
6
2250
6
1650
INPUT IP3 vs. RF FREQUENCY
TC = +85°C
35
25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
30
35
2050
2250
20
1650
RF FREQUENCY (MHz)
1850
2050
2250
TC = +25°C
TC = -40°C
60
50
2LO - 2RF RESPONSE vs. RF FREQUENCY
PRF = 0dBm
PLO = +3dBm
PLO = 0dBm
70
PLO = -3dBm
60
PLO = -6dBm
50
1850
2050
RF FREQUENCY (MHz)
2250
2050
2250
2LO - 2RF RESPONSE vs. RF FREQUENCY
80
PRF = 0dBm
2LO - 2RF RESPONSE (dBc)
TC = +85°C
1850
RF FREQUENCY (MHz)
80
2LO - 2RF RESPONSE (dBc)
PRF = 0dBm
MAX2042A toc143
2LO - 2RF RESPONSE vs. RF FREQUENCY
1650
1650
RF FREQUENCY (MHz)
80
70
VCC = 4.75V, 5.0V, 5.25V
30
25
MAX2042A toc144
1850
2250
PRF = 0dBm/TONE
20
1650
2050
40
25
20
1850
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
INPUT IP3 (dBm)
INPUT IP3 (dBm)
1650
RF FREQUENCY (MHz)
40
MAX2042A toc140
PRF = 0dBm/TONE
TC = +25°C
35
2LO - 2RF RESPONSE (dBc)
2250
INPUT IP3 vs. RF FREQUENCY
40
30
2050
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
TC = -40°C
1850
MAX2042A toc142
2050
INPUT IP3 (dBm)
1850
MAX2042A toc141
1650
MAX2042A toc145
6
70
VCC = 4.75V, 5.0V, 5.25V
60
50
1650
1850
2050
RF FREQUENCY (MHz)
2250
1650
1850
2050
2250
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 30
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
60
50
PLO = -6dBm, -3dBm, 0dBm, +3dBm
60
50
1850
2050
2250
2250
1650
7
TC = -40°C
5
9
7
PLO = -6dBm, -3dBm, 0dBm, +3dBm
1850
2050
2250
1850
2050
2250
1650
MAX2042A toc153
MAX2042A toc152
VCC = 5.25V
P1dB (dBm)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
1850
2050
RF FREQUENCY (MHz)
2250
VCC = 4.75V
VCC = 5.0V
21
19
1650
MAX2042A toc148
INPUT P1dB vs. RF FREQUENCY
21
19
2250
23
P1dB (dBm)
P1dB (dBm)
21
2050
25
23
TC = +85°C
1850
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
25
23
TC = +25°C
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
TC = -40°C
7
5
1650
RF FREQUENCY (MHz)
25
8
6
5
1650
2250
NOISE FIGURE vs. RF FREQUENCY
8
6
2050
10
MAX2042A toc150
9
1850
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
TC = +25°C
6
2050
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE (dB)
8
1850
10
MAX2042A toc149
TC = +85°C
60
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
9
VCC = 4.75V, 5.0V, 5.25V
50
1650
RF FREQUENCY (MHz)
10
70
MAX2042A toc151
1650
NOISE FIGURE (dB)
MAX2042A toc147
70
PRF = 0dBm
MAX2042A toc154
TC = +25°C
TC = +85°C
PRF = 0dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
80
3LO - 3RF RESPONSE (dBc)
70
PRF = 0dBm
3LO - 3RF RESPONSE vs. RF FREQUENCY
80
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
TC = -40°C
MAX2042A toc146
3LO - 3RF RESPONSE vs. RF FREQUENCY
80
19
1650
1850
2050
RF FREQUENCY (MHz)
2250
1650
1850
2050
2250
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 31
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-40
-20
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-30
-40
2350
2550
RF-TO-IF ISOLATION vs. RF FREQUENCY
2150
2350
2550
TC = +25°C
TC = -40°C
30
20
MAX2042A toc159
50
40
PLO = -6dBm, -3dBm, 0dBm, +3dBm
30
2250
RF-TO-IF ISOLATION vs. RF FREQUENCY
VCC = 5.25V
VCC = 5.0V
1850
2050
-30
TC = -40°C, +25°C, +85°C
-40
2350
LO FREQUENCY (MHz)
VCC = 4.75V
30
1650
2550
1850
2050
2250
RF FREQUENCY (MHz)
MAX2042A toc162
-20
-30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
2150
40
2250
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc161
-20
1950
50
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
2550
20
1650
RF FREQUENCY (MHz)
-10
2350
60
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT RF PORT (dBm)
2050
2150
LO FREQUENCY (MHz)
20
1850
MAX2042A toc157
1950
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
RF-TO-IF ISOLATION (dB)
MAX2042A toc158
RF-TO-IF ISOLATION (dB)
TC = +85°C
1650
-30
LO FREQUENCY (MHz)
60
40
VCC = 4.75V, 5.0V, 5.25V
-40
1950
LO FREQUENCY (MHz)
50
-20
MAX2042A toc163
2150
RF-TO-IF ISOLATION (dB)
1950
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc160
TC = +85°C
-30
MAX2042A toc156
TC = +25°C
-20
LO LEAKAGE AT IF PORT (dBm)
MAX2042A toc155
LO LEAKAGE AT IF PORT (dBm)
TC = -40°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-20
VCC = 5.0V
VCC = 5.25V
-30
VCC = 4.75V
-40
1950
2150
2350
LO FREQUENCY (MHz)
2550
1950
2150
2350
2550
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 32
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is high-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = +25°C
-40
-20
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-30
-40
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc166
MAX2042A toc165
2LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc164
-20
-30
VCC = 5.0V
-40
VCC = 5.25V
TC = +85°C
-50
-50
2150
2550
2350
-50
1950
LO FREQUENCY (MHz)
2150
2550
2350
10
15
PLO = -6dBm, -3dBm, 0dBm, +3dBm
2350
2550
IF PORT RETURN LOSS vs. IF FREQUENCY
0
LO = 2150MHz
5
IF PORT RETURN LOSS (dB)
MAX2042A toc167
RF PORT RETURN LOSS (dB)
IF = 300MHz
5
2150
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
0
20
1950
LO FREQUENCY (MHz)
25
10
15
20
VCC = 4.75V, 5.0V, 5.25V
25
30
30
1550
1750
1950
2150
50
2350
140
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
PLO = +3dBm
PLO = 0dBm
20
30
PLO = -6dBm
40
410
500
SUPPLY CURRENT vs. TEMPERATURE (TC)
150
SUPPLY CURRENT (mA)
10
320
155
MAX2042A toc169
0
230
IF FREQUENCY (MHz)
MAX2042A toc170
1950
VCC = 4.75V
MAX2042A toc168
TC = -40°C
-30
LO RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
-20
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
VCC = 5.25V
VCC = 5.0V
145
140
135
VCC = 4.75V
130
PLO = -3dBm
50
125
1850
2050
2250
2450
LO FREQUENCY (MHz)
2650
-40
-15
10
35
60
85
EXPOSED PAD TEMPERATURE (°C)
���������������������������������������������������������������� Maxim Integrated Products 33
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
CONVERSION LOSS vs. RF FREQUENCY
TC = +85°C
8
7
9
8
PLO = -6dBm, -3dBm, 0dBm, +3dBm
7
10
CONVERSION LOSS (dB)
10
CONVERSION LOSS (dB)
TC = +25°C
9
CONVERSION LOSS vs. RF FREQUENCY
11
MAX2042A toc172
MAX2042A toc171
10
CONVERSION LOSS (dB)
11
MAX2042A toc173
CONVERSION LOSS vs. RF FREQUENCY
11
9
8
VCC = 4.75V, 5.0V, 5.25V
7
TC = -40°C
6
6
2250
1650
1850
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
MAX2042A toc174
TC = +25°C
25
PRF = 0dBm/TONE
30
25
PLO = -6dBm, -3dBm, 0dBm, +3dBm
TC = +85°C
20
PRF = 0dBm/TONE
2050
2250
1850
2050
2250
TC = +85°C
60
TC = +25°C
2RF - 2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
70
PLO = 0dBm
50
PLO = +3dBm
65
60
PLO = -3dBm
55
2050
RF FREQUENCY (MHz)
2250
2050
2250
2RF - 2LO RESPONSE vs. RF FREQUENCY
PRF = 0dBm
70
VCC = 5.25V
VCC = 5.0V
65
60
VCC = 4.75V
55
PLO = -6dBm
50
1850
1850
75
2RF - 2LO RESPONSE (dBc)
70
1650
1650
RF FREQUENCY (MHz)
75
2RF - 2LO RESPONSE (dBc)
PRF = 0dBm
MAX2042A toc177
2RF - 2LO RESPONSE vs. RF FREQUENCY
55
25
RF FREQUENCY (MHz)
75
TC = -40°C
VCC = 5.0V
20
1650
RF FREQUENCY (MHz)
65
VCC = 5.25V
30
VCC = 4.75V
MAX2042A toc178
1850
2250
35
20
1650
2050
INPUT IP3 vs. RF FREQUENCY
35
INPUT IP3 (dBm)
INPUT IP3 (dBm)
30
1850
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
2RF - 2LO RESPONSE (dBc)
1650
2250
RF FREQUENCY (MHz)
35
TC = -40°C
2050
MAX2042A toc176
2050
INPUT IP3 (dBm)
1850
MAX2042A toc175
1650
MAX2042A toc179
6
50
1650
1850
2050
RF FREQUENCY (MHz)
2250
1650
1850
2050
2250
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 34
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
TC = -40°C
60
TC = +85°C
50
60
PLO = -6dBm, -3dBm, 0dBm, +3dBm
50
1850
2050
2250
2050
2250
1650
9
7
5
13
2050
2250
2050
2250
22
16
14
18
2050
RF FREQUENCY (MHz)
2250
24
22
MAX2042A toc182
2250
20
18
VCC = 4.75V, 5.0V, 5.25V
16
PLO = -6dBm, -3dBm, 0dBm, +3dBm
14
1850
2050
INPUT P1dB vs. RF FREQUENCY
20
16
1850
RF FREQUENCY (MHz)
P1dB (dBm)
P1dB (dBm)
TC = -40°C
1650
1650
MAX2042A toc187
24
MAX2042A toc186
TC = +85°C
18
1850
INPUT P1dB vs. RF FREQUENCY
TC = +25°C
20
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
22
9
5
1650
RF FREQUENCY (MHz)
24
2250
11
7
PLO = -6dBm, -3dBm, 0dBm, +3dBm
5
1850
2050
NOISE FIGURE vs. RF FREQUENCY
11
TC = -40°C
1850
15
NOISE FIGURE (dB)
13
7
VCC = 5.0V
RF FREQUENCY (MHz)
MAX2042A toc184
MAX2042A toc183
9
1650
VCC = 4.75V
NOISE FIGURE vs. RF FREQUENCY
TC = +85°C
11
1850
15
NOISE FIGURE (dB)
NOISE FIGURE (dB)
TC = +25°C
60
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
13
VCC = 5.25V
50
1650
RF FREQUENCY (MHz)
15
70
MAX2042A toc185
1650
P1dB (dBm)
MAX2042A toc181
70
PRF = 0dBm
MAX2042A toc188
TC = +25°C
PRF = 0dBm
3RF - 3LO RESPONSE vs. RF FREQUENCY
80
3RF - 3LO RESPONSE (dBc)
70
3RF - 3LO RESPONSE vs. RF FREQUENCY
80
3RF - 3LO RESPONSE (dBc)
3RF - 3LO RESPONSE (dBc)
PRF = 0dBm
MAX2042A toc180
3RF - 3LO RESPONSE vs. RF FREQUENCY
80
14
1650
1850
2050
RF FREQUENCY (MHz)
2250
1650
1850
2050
2250
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 35
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-20
TC = -40°C
TC = +85°C
-40
-30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
1750
1950
TC = +85°C
TC = -40°C
30
RF-TO-IF ISOLATION (dB)
MAX2042A toc192
1950
1350
PLO = -3dBm, 0dBm, +3dBm
50
1850
2050
40
PLO = -6dBm
30
RF-TO-IF ISOLATION vs. RF FREQUENCY
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
1850
2050
-30
TC = -40°C, +25°C, +85°C
-40
1750
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
30
1650
1950
1850
2050
2250
RF FREQUENCY (MHz)
MAX2042A toc196
-20
-30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
1550
40
2250
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc195
-20
1350
50
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
-10
1950
20
1650
2250
1750
60
20
1650
1550
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT RF PORT (dBm)
RF-TO-IF ISOLATION (dB)
1750
60
20
LO LEAKAGE AT RF PORT (dBm)
1550
RF-TO-IF ISOLATION vs. RF FREQUENCY
RF-TO-IF ISOLATION vs. RF FREQUENCY
TC = +25°C
VCC = 4.75V, 5.0V, 5.25V
LO FREQUENCY (MHz)
60
40
-30
MAX2042A toc194
LO FREQUENCY (MHz)
50
-20
-40
1350
RF-TO-IF ISOLATION (dB)
1550
MAX2042A toc193
1350
MAX2042A toc191
MAX2042A toc190
-20
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
MAX2042A toc197
-30
LO LEAKAGE AT IF PORT (dBm)
MAX2042A toc189
LO LEAKAGE AT IF PORT (dBm)
TC = +25°C
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
-10
-20
-30
VCC = 4.75V, 5.0V, 5.25V
-40
1350
1550
1750
LO FREQUENCY (MHz)
1950
1350
1550
1750
1950
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 36
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = 5.0V, fRF = 1650MHz to 2250MHz, LO is low-side
injected for a 300MHz IF, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-40
-50
-30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
-50
1550
1750
1950
-30
VCC = 4.75V, 5.0V, 5.25V
-40
-50
1350
LO FREQUENCY (MHz)
1550
1750
1950
1350
LO FREQUENCY (MHz)
5
10
15
PLO = -6dBm, -3dBm, 0dBm, +3dBm
1750
1950
IF PORT RETURN LOSS vs. IF FREQUENCY
0
LO = 1950MHz
5
IF PORT RETURN LOSS (dB)
MAX2042A toc201
IF = 300MHz
1550
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
0
RF PORT RETURN LOSS (dB)
-20
20
10
15
20
VCC = 4.75V, 5.0V, 5.25V
25
25
30
1550
1750
1950
2150
2350
50
140
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
410
500
SUPPLY CURRENT vs. TEMPERATURE (TC)
150
SUPPLY CURRENT (mA)
PLO = -3dBm
PLO = -6dBm
20
30
40
320
155
MAX2042A toc203
0
10
230
IF FREQUENCY (MHz)
PLO = 0dBm
MAX2042A toc204
1350
MAX2042A toc200
-20
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
MAX2042A toc202
TC = -40°C, +25°C, +85°C
MAX2042A toc199
2LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc198
-30
LO RETURN LOSS (dB)
2LO LEAKAGE AT RF PORT (dBm)
-20
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
2LO LEAKAGE AT RF PORT (dBm)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-10
VCC = 5.25V
145
VCC = 5.0V
140
135
VCC = 4.75V
130
PLO = +3dBm
50
125
1250
1450
1650
1850
LO FREQUENCY (MHz)
2050
-40
-15
10
35
60
85
EXPOSED PAD TEMPERATURE (°C)
���������������������������������������������������������������� Maxim Integrated Products 37
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25NC, unless otherwise noted.)
6
5
7
PLO = -6dBm, 3dBm, 0dBm, +3dBm
6
5
2600
2900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
2600
2900
MAX2042A toc208
TC = -40°C
34
32
PLO = -3dBm, 0dBm, +3dBm
36
34
32
PLO = -6dBm
2900
TC = +25°C
55
2300
2600
TC = -40°C
85
PIF = 0dBm
LO - 2IF RESPONSE (dBc)
65
2900
2000
PLO = 0dBm
75
2600
2900
LO - 2IF RESPONSE vs. RF FREQUENCY
PLO = +3dBm
65
PLO = -3dBm
55
2300
RF FREQUENCY (MHz)
85
PIF = 0dBm
75
65
VCC = 4.75V, 5.0V, 5.25V
55
PLO = -6dBm
45
45
2000
VCC = 5.25V
32
LO - 2IF RESPONSE vs. RF FREQUENCY
MAX2042A toc211
TC = +85°C
75
VCC = 4.75V
RF FREQUENCY (MHz)
LO - 2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
34
28
2000
RF FREQUENCY (MHz)
85
36
30
LO - 2IF RESPONSE (dBc)
2600
MAX2042A toc207
PIF = 0dBm/TONE
VCC = 5.0V
38
30
MAX2042A toc212
2300
2900
40
28
2000
2600
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
TC = +85°C
2300
2000
RF FREQUENCY (MHz)
38
28
LO - 2IF RESPONSE (dBc)
2300
40
INPUT IP3 (dBm)
INPUT IP3 (dBm)
TC = +25°C
30
6
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
36
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
40
38
7
5
2000
INPUT IP3 (dBm)
2300
MAX2042A toc209
2000
8
MAX2042A toc210
TC = -40°C
8
CONVERSION LOSS (dB)
7
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042A toc206
MAX2042A toc205
TC = +25°C
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TC = +85°C
8
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042A toc213
CONVERSION LOSS vs. RF FREQUENCY
9
2300
2600
RF FREQUENCY (MHz)
2900
45
2000
2300
2600
RF FREQUENCY (MHz)
2900
2000
2300
2600
2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 38
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25NC, unless otherwise noted.)
LO + 2IF RESPONSE vs. RF FREQUENCY
65
TC = +25°C
55
TC = -40°C
LO + 2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
75
PLO = 0dBm
65
PLO = -3dBm
55
85
VCC = 5.0V
75
MAX2042A toc216
MAX2042A toc215
75
PLO = +3dBm
LO + 2IF RESPONSE (dBc)
MAX2042A toc214
LO + 2IF RESPONSE (dBc)
PIF = 0dBm
TC = +85°C
85
LO + 2IF RESPONSE (dBc)
LO + 2IF RESPONSE vs. RF FREQUENCY
85
PIF = 0dBm
VCC = 4.75V
65
VCC = 5.25V
55
PLO = -6dBm
45
45
LO - 3IF RESPONSE vs. RF FREQUENCY
90
80
PIF = 0dBm
TC = -40°C, +25°C, +85°C
90
80
70
PIF = 0dBm
2900
2600
2900
TC = +85°C
70
60
PIF = 0dBm
90
2300
2600
RF FREQUENCY (MHz)
2900
2300
2600
2900
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
80
PLO = -6dBm, -3dBm, 0dBm, +3dBm
70
60
2000
2000
100
PIF = 0dBm
LO + 3IF RESPONSE (dBc)
80
100
LO + 3IF RESPONSE (dBc)
TC = +25°C
TC = -40°C
2300
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2042A toc220
90
70
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
80
60
2000
RF FREQUENCY (MHz)
100
90
VCC = 4.75V, 5.0V, 5.25V
MAX2042A toc221
2600
2900
LO - 3IF RESPONSE vs. RF FREQUENCY
60
2300
2000
2600
100
PLO = -6dBm, -3dBm, 0dBm, +3dBm
60
2300
2000
RF FREQUENCY (MHz)
100
LO - 3IF RESPONSE (dBc)
PIF = 0dBm
LO - 3IF RESPONSE (dBc)
2900
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2042A toc217
100
LO + 3IF RESPONSE (dBc)
2600
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
70
2300
MAX2042A toc219
2000
2900
LO - 3IF RESPONSE (dBc)
2600
MAX2042A toc218
2300
2000
90
VCC = 5.25V
MAX2042A toc222
45
80
VCC = 5.0V
70
VCC = 4.75V
60
2000
2300
2600
RF FREQUENCY (MHz)
2900
2000
2300
2600
2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 39
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-30
-35
-30
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-35
2600
2900
3200
LO FREQUENCY (MHz)
TC = +25°C
-60
-70
TC = +85°C
-80
2900
3200
-90
2600
2900
LO FREQUENCY (MHz)
VCC = 5.0V VCC = 4.75V
2300
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-50
PLO = +3dBm
PLO = -3dBm
-60
-70
PLO = 0dBm
-80
PLO = -6dBm
-90
2300
-30
3200
2600
2900
3200
LO FREQUENCY (MHz)
MAX2042A toc227
-50
2600
-40
IF LEAKAGE AT RF PORT (dBm)
MAX2042A toc226
IF LEAKAGE AT RF PORT (dBm)
TC = -40°C
VCC = 5.25V
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
-25
-35
2300
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
VCC = 5.25V
IF LEAKAGE AT RF PORT (dBm)
2300
MAX2042A toc225
MAX2042A toc224
-25
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
MAX2042A toc228
TC = -40°C, +25°C, +85°C
LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc223
LO LEAKAGE AT RF PORT (dBm)
-25
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-20
-50
VCC = 5.0V
-60
-70
-80
VCC = 4.75V
-90
2300
2600
2900
LO FREQUENCY (MHz)
3200
2300
2600
2900
3200
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 40
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25NC, unless otherwise noted.)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
10
15
20
LO = 2900MHz
5
IF PORT RETURN LOSS (dB)
MAX2042A toc229
25
10
VCC = 4.75V, 5.0V, 5.25V
15
20
25
30
30
2000
2200
2400
2600
2800
3000
50
140
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
410
500
PLO = +3dBm
PLO = -6dBm
SUPPLY CURRENT vs. TEMPERATURE (TC)
150
SUPPLY CURRENT (mA)
LO RETURN LOSS (dB)
320
155
MAX2042A toc231
0
10
230
IF FREQUENCY (MHz)
20
30
PLO = -3dBm
40
MAX2042A toc232
RF PORT RETURN LOSS (dB)
IF = 300MHz
5
IF PORT RETURN LOSS vs. IF FREQUENCY
0
MAX2042A toc230
RF PORT RETURN LOSS vs. RF FREQUENCY
0
VCC = 5.25V
VCC = 5.0V
145
140
135
VCC = 4.75V
130
PLO = 0dBm
50
125
1000
1600
2200
2800
LO FREQUENCY (MHz)
3400
4000
-40
-15
10
35
60
85
EXPOSED PAD TEMPERATURE (°C)
���������������������������������������������������������������� Maxim Integrated Products 41
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25NC, unless otherwise noted.)
6
5
7
PLO = -6dBm, 3dBm, 0dBm, +3dBm
6
5
2300
2600
2900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
2900
29
TC = +25°C
33
31
29
2900
2300
TC = -40°C
45
75
65
PLO = -3dBm
55
2300
2600
RF FREQUENCY (MHz)
2900
2900
LO - 2IF RESPONSE vs. RF FREQUENCY
PLO = +3dBm
PLO = 0dBm
2600
PLO = -6dBm
85
PIF = 0dBm
LO - 2IF RESPONSE (dBc)
PIF = 0dBm
2300
RF FREQUENCY (MHz)
45
2000
VCC = 3.0V
2000
LO - 2IF RESPONSE vs. RF FREQUENCY
65
55
2900
MAX2042A toc240
TC = +25°C
2600
85
LO - 2IF RESPONSE (dBc)
75
29
RF FREQUENCY (MHz)
MAX2042A toc239
PIF = 0dBm
VCC = 3.3V
25
2000
LO - 2IF RESPONSE vs. RF FREQUENCY
TC = +85°C
31
27
RF FREQUENCY (MHz)
85
VCC = 3.6V
PLO = -6dBm, -3dBm, 0dBm, +3dBm
25
2600
MAX2042A toc235
PIF = 0dBm/TONE
27
25
2900
INPUT IP3 vs. RF FREQUENCY
33
TC = +85°C
2600
35
INPUT IP3 (dBm)
31
2300
2000
RF FREQUENCY (MHz)
PIF = 0dBm/TONE
INPUT IP3 (dBm)
INPUT IP3 (dBm)
TC = -40°C
LO - 2IF RESPONSE (dBc)
2600
35
MAX2042A toc236
33
2300
6
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
2000
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
35
27
7
5
2300
2000
MAX2042A toc237
2000
8
MAX2042A toc238
TC = -40°C
8
CONVERSION LOSS (dB)
7
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042A toc234
MAX2042A toc233
TC = +25°C
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TC = +85°C
8
CONVERSION LOSS vs. RF FREQUENCY
9
75
MAX2042A toc241
CONVERSION LOSS vs. RF FREQUENCY
9
65
55
VCC = 3.0V, 3.3V, 3.6V
45
2000
2300
2600
RF FREQUENCY (MHz)
2900
2000
2300
2600
2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 42
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25NC, unless otherwise noted.)
65
TC = +25°C
55
TC = -40°C
PLO = 0dBm
65
PLO = -3dBm
55
85
MAX2042A toc244
PLO = +3dBm
75
LO + 2IF RESPONSE vs. RF FREQUENCY
MAX2042A toc243
TC = +85°C
PIF = 0dBm
LO + 2IF RESPONSE (dBc)
MAX2042A toc242
LO + 2IF RESPONSE (dBc)
PIF = 0dBm
75
LO + 2IF RESPONSE vs. RF FREQUENCY
85
PIF = 0dBm
VCC = 3.3V
LO + 2IF RESPONSE (dBc)
LO + 2IF RESPONSE vs. RF FREQUENCY
85
75
VCC = 3.6V
65
VCC = 3.0V
55
PLO = -6dBm
45
2900
45
2000
RF FREQUENCY (MHz)
LO - 3IF RESPONSE vs. RF FREQUENCY
2900
70
TC = -40°C, +25°C, +85°C
PIF = 0dBm
50
2600
80
LO - 3IF RESPONSE vs. RF FREQUENCY
70
PLO = -6dBm, -3dBm, 0dBm, +3dBm
60
PIF = 0dBm
RF FREQUENCY (MHz)
2300
2600
TC = +85°C
60
PIF = 0dBm
90
2600
RF FREQUENCY (MHz)
2900
2300
2600
2900
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
PLO = -6dBm, -3dBm, 0dBm, +3dBm
80
70
60
2300
2000
100
PIF = 0dBm
LO + 3IF RESPONSE (dBc)
80
2000
VCC = 3.0V
60
2900
MAX2042A toc249
TC = +25°C
100
LO + 3IF RESPONSE (dBc)
TC = -40°C
70
VCC = 3.3V
LO + 3IF RESPONSE vs. RF FREQUENCY
MAX2042A toc248
PIF = 0dBm
90
70
RF FREQUENCY (MHz)
LO + 3IF RESPONSE vs. RF FREQUENCY
100
VCC = 3.6V
80
50
2000
2900
2900
90
50
2300
2600
RF FREQUENCY (MHz)
90
LO - 3IF RESPONSE (dBc)
80
2000
2300
2000
LO - 3IF RESPONSE vs. RF FREQUENCY
MAX2042A toc245
LO - 3IF RESPONSE (dBc)
PIF = 0dBm
LO + 3IF RESPONSE (dBc)
2600
RF FREQUENCY (MHz)
90
60
2300
MAX2042A toc247
2600
LO - 3IF RESPONSE (dBc)
2300
MAX2042A toc246
2000
VCC = 3.3V
90
MAX2042A toc250
45
VCC = 3.6V
80
70
VCC = 3.0V
60
2000
2300
2600
RF FREQUENCY (MHz)
2900
2000
2300
2600
2900
RF FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 43
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25NC, unless otherwise noted.)
-35
-40
-30
-35
PLO = -6dBm, -3dBm, 0dBm, +3dBm
-40
2900
3200
TC = +25°C
-60
-70
TC = -40°C
-80
2600
2900
3200
-90
MAX2042A toc255
-50
2600
2900
LO FREQUENCY (MHz)
3200
2600
2900
3200
LO FREQUENCY (MHz)
PLO = -6dBm
-60
-70
PLO = -3dBm, 0dBm, +3dBm
-80
-90
2300
2300
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
IF LEAKAGE AT RF PORT (dBm)
MAX2042A toc254
TC = +85°C
VCC = 3.3V
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-50
VCC = 3.0V
-35
-40
2300
LO FREQUENCY (MHz)
-40
VCC = 3.6V
-30
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
-40
MAX2042A toc256
2600
IF LEAKAGE AT RF PORT (dBm)
2300
IF LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
MAX2042A toc253
MAX2042A toc252
LO LEAKAGE AT RF PORT (dBm)
MAX2042A toc251
LO LEAKAGE AT RF PORT (dBm)
TC = -40°C, +25°C, +85°C
-30
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
-25
-50
VCC = 3.0V, 3.3V, 3.6V
-60
-70
-80
-90
2300
2600
2900
LO FREQUENCY (MHz)
3200
2300
2600
2900
3200
LO FREQUENCY (MHz)
���������������������������������������������������������������� Maxim Integrated Products 44
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO - fIF, fIF = 300MHz, PIF = 0dBm,
PLO = 0dBm, TC = +25NC, unless otherwise noted.)
PLO = -6dBm, -3dBm, 0dBm, +3dBm
10
15
20
LO = 2900MHz
5
IF PORT RETURN LOSS (dB)
MAX2042A toc257
RF PORT RETURN LOSS (dB)
IF = 300MHz
5
IF PORT RETURN LOSS vs. IF FREQUENCY
0
25
10
VCC = 3.0V, 3.3V, 3.6V
15
20
25
30
30
2000
2200
2400
2600
2800
3000
50
140
RF FREQUENCY (MHz)
LO RETURN LOSS vs. LO FREQUENCY
410
500
20
PLO = +3dBm
40
MAX2042A toc260
135
SUPPLY CURRENT (mA)
PLO = -3dBm
SUPPLY CURRENT vs. TEMPERATURE (TC)
PLO = 0dBm
30
320
140
MAX2042A toc259
PLO = -6dBm
10
230
IF FREQUENCY (MHz)
0
LO RETURN LOSS (dB)
MAX2042A toc258
RF PORT RETURN LOSS vs. RF FREQUENCY
0
VCC = 3.6V
130
VCC = 3.3V
125
120
115
50
VCC = 3.0V
110
1000
1600
2200
2800
LO FREQUENCY (MHz)
3400
4000
-40
-15
10
35
60
85
EXPOSED PAD TEMPERATURE (°C)
���������������������������������������������������������������� Maxim Integrated Products 45
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
VCC
GND
GND
LO
TOP VIEW
GND
Pin Configuration
15
14
13
12
11
GND 16
10
GND
GND 17
9
GND
8
VCC
7
LOBIAS
6
VCC
IF- 18
MAX2042A
IF+ 19
2
3
4
5
GND
GND
VCC
1
GND
+
RF
GND 20
TQFN
5mm x 5mm
Pin Description
PIN
NAME
1, 6, 8,14
VCC
2
RF
3, 4, 5, 10,
12, 13, 17
GND
7
LOBIAS
9, 15
GND
11
LO
16, 20
GND
18, 19
IF-, IF+
—
EP
FUNCTION
Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.
Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide a
DC-blocking capacitor if required. Capacitor also provides some RF match tuning.
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad
(EP) together.
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 698I Q1% resistor
(nomi­nal bias condition) from LOBIAS to ground. The maximum current seen by this resistor is 3mA.
Ground. Not internally connected. Ground these pins or leave unconnected.
Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking
capacitor. Capacitor also provides some LO match tuning.
Ground. Connect all ground pins and the exposed pad (EP) together.
Mixer Differential IF Output/Input
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These
multiple via grounds are also required to achieve the noted RF performance (see the Layout
Considerations section).
���������������������������������������������������������������� Maxim Integrated Products 46
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Functional Diagram
RF
RF BALUN
IF
LO DRIVER
LO
LO BALUN
MAX2042A
Detailed Description
When used as a high-side LO injection mixer in the
2300MHz to 2900MHz band, the MAX2042A provides
+33dBm of IIP3, with typical conversion loss and noise
figure values of only 7.2dB and 7.25dB, respectively.
The integrated baluns and matching circuitry allow for
50I single-ended interfaces to the RF and the LO port.
The integrated LO buffer provides a high drive level to
the mixer core, reducing the LO drive required at the
IC’s input to a -6dBm to +3dBm range. The IF port incorporates a differential output, which is ideal for providing
enhanced 2LO - 2RF performance.
Specifications are over broad frequency ranges to allow
for use in GSM/EDGE, CDMA, TD-SCDMA, WCDMA, LTE,
TD-LTE, WiMAX, and MMDS base stations. The device
is specified to operate over a 1600MHz to 3900MHz
RF input range, a 1300MHz to 4000MHz LO range,
and a 50MHz to 500MHz IF range. The external IF
components set the lower frequency range (see the
Typical Operating Characteristics for details). Operation
beyond these ranges is possible (see the Typical
Operating Characteristics for additional information).
RF Input and Balun
The IC’s RF input provides a 50I match when combined
with a series DC-blocking capacitor. This DC-blocking
capacitor is required as the input is internally DC shorted
to ground through the on-chip balun. When using an
8.2pF DC-blocking capacitor, the RF port input return
loss is typically 17dB over the 2300MHz to 2900MHz
RF frequency range. A return loss of 14dB over the
3000MHz to 3900MHz range is achieved by changing
the DC-blocking capacitor to 1.5pF.
For applications spanning the 1700MHz to 2200MHz
frequency range, a 12nH shunt inductor can be used
in conjunction with a 1.8pF DC-blocking capacitor to
provide a typical return loss of 12dB. See the Typical
Application Circuit and Table 1 for details.
LO Inputs, Buffer, and Balun
With a broadband LO drive circuit spanning 1300MHz to
4000MHz, the device can be used in either low- or highside LO injection architectures for virtually all 1.7GHz to
3.5GHz receiver and transmitter applications. The LO
input is internally matched to 50I, requiring only a 2pF
DC-blocking capacitor. A two-stage internal LO buffer
allows for a -6dBm to +3dBm LO input power range. The
on-chip low-loss balun, along with an LO buffer, drives
the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are
integrated on-chip.
High-Linearity Mixer
The core of the device is a double-balanced, highperformance passive mixer. Exceptional linearity is
provided by the large LO swing from the on-chip LO buffer.
IIP3, 2LO - 2RF rejection, and noise-figure performance
are typically 33dBm, 72dBc, and 7.25dB, respectively.
Differential IF Ports
The device has a 50MHz to 500MHz IF frequency range,
where the low-end frequency depends on the frequency
response of the external IF components.
The device’s differential IF ports are ideal for providing
enhanced 2LO - 2RF performance. The user can connect
a differential IF amplifier or SAW filter to the mixer IF
port, but a DC block is required on both IF+/IF- ports to
keep external DC from entering the IF ports of the mixer.
To characterize the part, an external MABACT0069 1:1
transformer is used to transform the 50I differential IF
interface to 50I single-ended. Its loss is included in the
data presented in this data sheet. This transformer also
supplies a needed IF pin ground return for the on-chip
circuitry. If a ground return is not available on the IF pins,
the return is achievable through some off-chip resistance
to ground or large-value inductors. A 1kI to ground
on each IF pin can be used for such an application.
In addition, the IF interface directly supports singleended, AC-coupled signals into or out of IF+ by shorting
IF- to ground and using a 1kI resistor from IF+ to ground.
���������������������������������������������������������������� Maxim Integrated Products 47
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Applications Information
Input and Output Matching
The RF input provides a 50I match when combined
with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to
2900MHz. Use a 1.5pF capacitor value to match the
RF port for the 3000MHz to 3900MHz band. For RF
frequencies in the 1650MHz to 2250MHz range, use
C1 = 1.8pF and L1 = 12nH. The LO input is internally
matched to 50I, so use a 2pF DC-blocking capacitor
to cover operations spanning the 1300MHz to 4000MHz
range. The IF output impedance is 50I (differential).
For evaluation, an external low-loss 1:1 (impedance
ratio) balun transforms this impedance down to a 50I
single-ended output (see the Typical Application Circuit).
Reduced-Power Mode
The device includes a pin (LOBIAS) that allows an external resistor to set the internal bias current. A nominal
value for this resistor is given in Tables 1 and 2. Largervalue resistors can be used to reduce power dissipation at the expense of some performance loss. If Q1%
resistors are not readily available, substitute with Q5%
resistors.
Significant reductions in power consumption can also be
realized by operating the mixer with an optional supply
voltage of 3.3V. Doing so reduces the overall power
consumption by up to 42%. See the 3.3V Supply AC
Electrical Characteristics tables and the relevant 3.3V
curves in the Typical Operating Characteristics section to
evaluate the power vs. performance tradeoffs.
Layout Considerations
A properly designed PCB is an essential part of any
RF/microwave circuit. Keep RF signal lines as short as
possible to reduce losses, radiation, and inductance.
For the best performance, route the ground pin traces
directly to the exposed pad under the package. The PCB
exposed pad MUST be connected to the ground plane
of the PCB. It is suggested that multiple vias be used to
connect this pad to the lower-level ground planes. This
method provides a good RF/thermal conduction path for
the device. Solder the exposed pad on the bottom of the
device package to the PCB.
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the
capacitors shown in the Typical Application Circuit and
see Table 1.
Exposed Pad RF/Thermal
Considerations
The exposed pad (EP) of the device’s 20-pin TQFN
package provides a low thermal-resistance path to the
die. It is important that the PCB on which the device is
mounted be designed to conduct heat from the EP. In
addition, provide the EP with a low-inductance path to
electrical ground. The EP MUST be soldered to a ground
plane on the PCB, either directly or through an array of
plated via holes.
���������������������������������������������������������������� Maxim Integrated Products 48
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Table 1. Component Values—Downconverter Mode
DESIGNATION
C1
QTY
1
DESCRIPTION
COMPONENT SUPPLIER
8.2pF microwave capacitor (0402); use for
2000MHz to 2900MHz RF frequencies
Murata Electronics North America, Inc.
1.5pF microwave capacitor (0402); use for
3000MHz to 3900MHz RF frequencies
Murata Electronics North America, Inc.
1.8pF microwave capacitor (0402); use for
1600MHz to 2000MHz RF frequencies
Murata Electronics North America, Inc.
C2, C6, C8, C11
4
0.01FF microwave capacitors (0402)
Murata Electronics North America, Inc.
C3, C9
0
Not installed, capacitors
—
C5
0
Not installed, capacitor
—
C10
1
2pF microwave capacitor (0402)
Murata Electronics North America, Inc.
L1
1
12nH microwave inductor (0402); use for 1600MHz
to 2000MHz RF frequencies (this inductor is not
used for other RF bands noted above)
TOKO America, Inc.
R1
1
698I Q1% resistor (0402)
—
T1
1
1:1 IF balun MABACT0069
M/A-Com, Inc.
U1
1
MAX2042A IC (20 TQFN)
Maxim Integrated Products, Inc.
Table 2. Component Values—Upconverter Mode
DESIGNATION
C1
QTY
1
DESCRIPTION
COMPONENT SUPPLIER
8.2pF microwave capacitor (0402); use for
2000MHz to 2900MHz RF frequencies
Murata Electronics North America, Inc.
1.5pF microwave capacitor (0402); use for
3000MHz to 3900MHz RF frequencies
Murata Electronics North America, Inc.
1.8pF microwave capacitor (0402); use for
1600MHz to 2000MHz RF frequencies
Murata Electronics North America, Inc.
C2, C6, C8, C11
4
0.01FF microwave capacitors (0402)
Murata Electronics North America, Inc.
C3, C9
0
Not installed, capacitors
—
C5
0
Not installed, capacitor
—
C10
1
2pF microwave capacitor (0402)
Murata Electronics North America, Inc.
L1
1
12nH microwave inductor (0402); use for 1600MHz
to 2000MHz RF frequencies (this inductor is not
used for other RF bands noted above)
TOKO America, Inc.
R1
1
698I Q1% resistor (0402)
—
T1
1
1:1 IF balun MABACT0069
M/A-Com, Inc.
U1
1
MAX2042A IC (20 TQFN)
Maxim Integrated Products, Inc.
���������������������������������������������������������������� Maxim Integrated Products 49
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Application Circuit
LO
INPUT
+5.0V
C11
IF
5
GND
VCC
15
T1 4
GND
14
C10
GND
13
LO
GND
12
11
10
16
GND
1:1
GND
3
2
1
N.C.
IF-
MAX2042A
17
9
8
18
GND
+5.0V
VCC
C8
C5
IF+
7
19
LOBIAS
+5.0V
EP
GND
6
20
C9
R1
VCC
C6
1
2
VCC
RF
+5.0V
L1
C3
C2
C1
RF
4
3
GND
GND
5
GND
NOTES:
PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY
CONNECTED TO THE EXPOSED GROUND PAD.
THESE PINS CAN BE EXTERNALLY GROUNDED IN AN ATTEMPT
TO IMPROVE ISOLATION.
PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE
EXTERNALLY GROUNDED IN AN ATTEMPT TO IMPROVE ISOLATION.
���������������������������������������������������������������� Maxim Integrated Products 50
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Ordering Information
PART
TEMP RANGE
PIN-PACKAGE
MAX2042AETP+
-40NC to +85NC
20 TQFN-EP*
MAX2042AETP+T
-40NC to +85NC
20 TQFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
Chip Information
Package Information
For the latest package outline information and land patterns
(footprints), go to www.maxim-ic.com/packages. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
20 TQFN-EP
T2055+3
21-0140
90-0008
PROCESS: SiGe BiCMOS
���������������������������������������������������������������� Maxim Integrated Products 51
MAX2042A
SiGe High-Linearity, 1600MHz to 3900MHz
Upconversion/Downconversion Mixer with LO Buffer
Revision History
REVISION
NUMBER
REVISION
DATE
0
6/11
DESCRIPTION
Initial release
PAGES
CHANGED
—
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2011
Maxim Integrated Products 52
Maxim is a registered trademark of Maxim Integrated Products, Inc.