MAXIM MAX5033CASA

19-2979; Rev 2; 5/04
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
Features
The MAX5033 easy-to-use, high-efficiency, high-voltage,
step-down DC-DC converter operates from an input voltage up to 76V and consumes only 270µA quiescent current at no load. This pulse-width modulated (PWM)
converter operates at a fixed 125kHz switching frequency at heavy loads, and automatically switches to pulseskipping mode to provide low quiescent current and
high efficiency at light loads. The MAX5033 includes
internal frequency compensation simplifying circuit
implementation. The device uses an internal low-onresistance, high-voltage, DMOS transistor to obtain high
efficiency and reduce overall system cost. This device
includes undervoltage lockout, cycle-by-cycle current
limit, hiccup-mode output short-circuit protection, and
thermal shutdown.
♦ Wide 7.5V to 76V Input Voltage Range
♦ Fixed (3.3V, 5V, 12V) and Adjustable (1.25V to
13.2V) Voltage Versions
♦ 500mA Output Current
♦ Efficiency Up to 94%
♦ Internal 0.4Ω High-Side DMOS FET
♦ 270µA Quiescent Current at No Load, 10µA
Shutdown Current
♦ Internal Frequency Compensation
♦ Fixed 125kHz Switching Frequency
♦ Thermal Shutdown and Short-Circuit Current Limit
♦ 8-Pin SO and PDIP Packages
The MAX5033 delivers up to 500mA output current.
The output current may be limited by the maximum
power dissipation capability of the package. External
shutdown is included, featuring 10µA (typ) shutdown
current. The MAX5033A/B/C versions have fixed output
voltages of 3.3V, 5V, and 12V, respectively, while the
MAX5033D features an adjustable output voltage, from
1.25V to 13.2V.
Ordering Information
OUTPUT
PINVOLTAGE
PACKAGE
(V)
PART
TEMP RANGE
MAX5033AUSA
0°C to +85°C
8 SO
MAX5033AUPA
0°C to +85°C
8 PDIP
MAX5033AASA
-40°C to +125°C
MAX5033BUSA
0°C to +85°C
8 SO
MAX5033BUPA
0°C to +85°C
8 PDIP
MAX5033BASA
-40°C to +125°C
MAX5033CUSA
0°C to +85°C
8 SO
MAX5033CUPA
0°C to +85°C
8 PDIP
Automotive
MAX5033CASA
-40°C to +125°C
Consumer Electronics
MAX5033DUSA
0°C to +85°C
8 SO
MAX5033DUPA
0°C to +85°C
8 PDIP
MAX5033DASA
-40°C to +125°C
The MAX5033 is available in space-saving 8-pin SO
and 8-pin plastic DIP packages and operates over the
automotive (-40°C to +125°C) temperature range.
Applications
Industrial
Distributed Power
3.3
8 SO
5.0
8 SO
12
8 SO
ADJ
8 SO
Pin Configuration
Typical Operating Circuit
VIN
7.5V TO 76V
VIN
47µF
BST
0.1µF
220µH
MAX5033
LX
R1
D1
50SQ100
ON/OFF
33µF
ON
FB
R2
OFF
VD
SGND
VOUT
5V, 0.5A
GND
0.1µF
BST
1
8
LX
VD
2
7
VIN
SGND
3
6
GND
FB
4
5
ON/OFF
MAX5033
SO/PDIP
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX5033
General Description
MAX5033
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
ABSOLUTE MAXIMUM RATINGS
(Voltages referenced to GND, unless otherwise specified.)
VIN .........................................................................-0.3V to +80V
SGND ....................................................................-0.3V to +0.3V
LX.................................................................-0.8V to (VIN + 0.3V)
BST ...............................................................-0.3V to (VIN + 10V)
BST (transient < 100ns) ................................-0.3V to (VIN + 15V)
BST to LX................................................................-0.3V to +10V
BST to LX (transient < 100ns) ................................-0.3V to +15V
ON/OFF........................................................-0.3V to (VIN + 0.3V)
VD...........................................................................-0.3V to +12V
FB
MAX5033A/MAX5033B/MAX5033C ...................-0.3V to +15V
MAX5033D .........................................................-0.3V to +12V
VOUT Short-Circuit Duration...........................................Indefinite
VD Short-Circuit Duration ..............................................Indefinite
Continuous Power Dissipation (TA = +70°C)
8-Pin PDIP (derate 9.1mW/°C above +70°C)...............727mW
8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW
Operating Temperature Range
MAX5033_U_ _ ...................................................0°C to +85°C
MAX5033_A_ _ ..............................................-40°C to +125°C
Storage Temperature Range .............................-65°C to +150°C
Junction Temperature ......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (MAX5033_U_ _)
(VIN = +12V, VON/OFF = +12V, IOUT = 0, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C. See the
Typical Application Circuit.)
PARAMETER
Input Voltage Range
Undervoltage Lockout
Output Voltage
Feedback Voltage
Efficiency
Quiescent Supply Current
Shutdown Current
SYMBOL
VIN
CONDITIONS
VFB
η
IQ
ISHDN
MAX
76.0
MAX5033B
7.5
76.0
MAX5033C
15
76
MAX5033D
7.5
76.0
UVLO
VOUT
TYP
7.5
5.2
3.185
3.3
3.415
MAX5033B, VIN = 7.5V to 76V,
IOUT = 20mA to 500mA
4.85
5.0
5.15
MAX5033C, VIN = 15V to 76V,
IOUT = 20mA to 500mA
11.64
12
12.36
VIN = 7.5V to 76V, MAX5033D
1.192
1.221
1.250
VIN = 12V, ILOAD = 500mA, MAX5033A
86
VIN = 12V, ILOAD = 500mA, MAX5033B
90
VIN = 24V, ILOAD = 500mA, MAX5033C
94
VIN = 12V, VOUT = 5V, ILOAD = 500mA,
MAX5033D
90
VFB = 3.5V, VIN = 7.5V to 76V, MAX5033A
270
440
VFB = 5.5V, VIN = 7.5V to 76V, MAX5033B
270
440
VFB = 13V, VIN = 15V to 76V, MAX5033C
270
440
VFB = 1.3V, MAX5033D
270
440
VON/OFF = 0V, VIN = 7.5V to 76V
10
45
1.5
2.1
ILIM
(Note 1)
Switch Leakage Current
IOL
VIN = 76V, VON/OFF = 0V, VLX = 0V
0.95
1
_______________________________________________________________________________________
UNITS
V
V
MAX5033A, VIN = 7.5V to 76V,
IOUT = 20mA to 500mA
Peak Switch Current Limit
2
MIN
MAX5033A
V
V
%
µA
µA
A
µA
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
(VIN = +12V, VON/OFF = +12V, IOUT = 0, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C. See the
Typical Application Circuit.)
PARAMETER
Switch On-Resistance
PFM Threshold
SYMBOL
RDS(ON)
IPFM
FB Input Bias Current
IB
CONDITIONS
MIN
TYP
MAX
UNITS
0.4
0.80
Ω
35
65
95
mA
MAX5033D
-150
+0.01
+150
nA
Rising trip point
1.53
1.69
1.85
ISWITCH = 500mA
Minimum switch current in any cycle
ON/OFF CONTROL INPUT
ON/OFF Input-Voltage Threshold
VON/OFF
ON/OFF Input-Voltage Hysteresis
VHYST
ON/OFF Input Current
ION/OFF
100
VON/OFF = 0V to VIN
V
mV
10
150
nA
125
135
kHz
OSCILLATOR
Oscillator Frequency
fOSC
Maximum Duty Cycle
DMAX
109
MAX5033D
95
%
VOLTAGE REGULATOR
Regulator Output Voltage
VD
Dropout Voltage
∆VD/∆IVD
Load Regulation
VIN = 8.5V to 76V, IL = 0mA
6.9
7.8
8.8
V
7.5V ≤ VIN ≤ 8.5V, IL = 1mA
2.0
V
0 to 5mA
150
Ω
SO package (JEDEC 51)
170
DIP package (JEDEC 51)
110
PACKAGE THERMAL CHARACTERISTICS
Thermal Resistance
(Junction to Ambient)
θJA
°C/W
THERMAL SHUTDOWN
Thermal-Shutdown Junction
Temperature
Thermal-Shutdown Hysteresis
TSH
+160
°C
THYST
20
°C
ELECTRICAL CHARACTERISTICS (MAX5033_A_ _)
(VIN = +12V, VON/ OFF = +12V, IOUT = 0, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. See
the Typical Application Circuit.) (Note 2)
PARAMETER
Input Voltage Range
Undervoltage Lockout
Output Voltage
SYMBOL
VIN
CONDITIONS
MIN
MAX
MAX5033A
7.5
76.0
MAX5033B
7.5
76.0
MAX5033C
15
76
MAX5033D
7.5
UVLO
VOUT
TYP
UNITS
V
76.0
5.2
V
MAX5033A, VIN = 7.5V to 76V,
IOUT = 20mA to 500mA
3.185
3.3
3.415
MAX5033B, VIN = 7.5V to 76V,
IOUT = 20mA to 500mA
4.825
5.0
5.175
MAX5033C, VIN = 15V to 76V,
IOUT = 20mA to 500mA
11.58
12
12.42
V
_______________________________________________________________________________________
3
MAX5033
ELECTRICAL CHARACTERISTICS (MAX5033_U_ _) (continued)
MAX5033
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
ELECTRICAL CHARACTERISTICS (MAX5033_A_ _)
(VIN = +12V, VON/ OFF = +12V, IOUT = 0, TA = TJ = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. See
the Typical Application Circuit.) (Note 2)
PARAMETER
Feedback Voltage
Efficiency
Quiescent Supply Current
Shutdown Current
SYMBOL
VFB
η
IQ
ISHDN
CONDITIONS
VIN = 7.5V to 76V, MAX5033D
90
94
VIN = 12V, VOUT = 5V, ILOAD = 500mA,
MAX5033D
90
VFB = 3.5V, VIN = 7.5V to 76V, MAX5033A
270
440
VFB = 5.5V, VIN = 7.5V to 76V, MAX5033B
270
440
VFB = 13V, VIN = 15V to 76V, MAX5033C
270
440
VFB = 1.3V, MAX5033D
270
440
VON/OFF = 0V, VIN = 7.5V to 76V
10
45
1.5
2.20
(Note 1)
VIN = 76V, VON/OFF = 0V, VLX = 0V
IPFM
IB
V
VIN = 24V, ILOAD = 500mA, MAX5033C
IOL
FB Input Bias Current
UNITS
VIN = 12V, ILOAD = 500mA, MAX5033B
ILIM
PFM Threshold
MAX
1.250
86
Switch Leakage Current
RDS(ON)
TYP
1.221
VIN = 12V, ILOAD = 500mA, MAX5033A
Peak Switch Current Limit
Switch On-Resistance
MIN
1.192
0.95
1
ISWITCH = 500mA
Minimum switch current in any cycle
%
0.4
µA
µA
A
µA
0.80
Ω
35
65
110
mA
MAX5033D
-150
+0.01
+150
nA
Rising trip point
1.50
1.69
1.85
ON/OFF CONTROL INPUT
ON/OFF Input-Voltage Threshold
VON/OFF
ON/OFF Input-Voltage Hysteresis
VHYST
ON/OFF Input Current
ION/OFF
100
VON/OFF = 0V to VIN
V
mV
10
150
nA
125
137
kHz
OSCILLATOR
Oscillator Frequency
fOSC
Maximum Duty Cycle
DMAX
105
MAX5033D
95
%
VOLTAGE REGULATOR
Regulator Output Voltage
VD
Dropout Voltage
Load Regulation
∆VD/∆IVD
VIN = 8.5V to 76V, IL = 0mA
6.5
7.8
9.0
V
7.5V ≤ VIN ≤ 8.5V, IL = 1mA
2.0
V
0 to 5mA
150
Ω
SO package (JEDEC 51)
170
DIP package (JEDEC 51)
110
PACKAGE THERMAL CHARACTERISTICS
Thermal Resistance
(Junction to Ambient)
θJA
°C/W
THERMAL SHUTDOWN
Thermal-Shutdown Junction
Temperature
Thermal-Shutdown Hysteresis
TSH
+160
°C
THYST
20
°C
Note 1: Switch current at which the current limit is activated.
Note 2: All limits at -40°C are guaranteed by design, not production tested.
4
_______________________________________________________________________________________
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
12.3
IOUT = 0.1A
5.05
LINE REGULATION
(MAX5033CASA, VOUT = 12V)
12.4
MAX5033 toc02
5.10
MAX5033 toc01
12.4
VOUT vs. TEMPERATURE
(MAX5033BASA, VOUT = 5V)
12.3
12.1
VOUT (V)
12.2
IOUT = 0.1A
VOUT (V)
5.00
IOUT = 0.5A
12.0
IOUT = 0A
12.1
12.0
IOUT = 0.5A
IOUT = 0.5A
4.95
11.9
11.9
11.8
4.90
-50 -25
25
0
100 125 150
75
50
11.8
-50 -25
0
TEMPERATURE (°C)
10
12.3
20
30
40
VIN = 24V
VOUT (V)
VOUT (V)
IOUT = 0.5A
12.1
12.0
VIN = 76V
4.95
70
80
5.10
VIN = 7.5V, 24V
5.05
5.00
60
LOAD REGULATION
(MAX5033BASA, VOUT = 5V)
5.05
12.2
50
INPUT VOLTAGE (V)
MAX5033 toc05
12.4
MAX5033 toc04
IOUT = 0A
50 75 100 125 150
TEMPERATURE (°C)
LOAD REGULATION
(MAX5033CASA, VOUT = 12V)
LINE REGULATION
(MAX5033BASA, VOUT = 5V)
5.10
25
MAX5033 toc06
VOUT (V)
12.2
VOUT (V)
MAX5033 toc03
VOUT vs. TEMPERATURE
(MAX5033CASA, VOUT = 12V)
5.00
VIN = 76V
4.95
11.9
11.8
4.90
16
26
36
46
56
66
200
300
400
500
100
200
300
400
ILOAD (mA)
EFFICIENCY vs. LOAD CURRENT
(MAX5033BASA, VOUT = 5V)
EFFICIENCY vs. LOAD CURRENT
(MAX5033CASA, VOUT = 12V)
OUTPUT CURRENT LIMIT
vs. TEMPERATURE
60
VIN = 24V
50
VIN = 76V
VIN = 48V
VIN = 24V
60
VIN = 76V
50
VIN = 48V
40
30
30
20
20
10
10
0
VIN = 15V
70
200
300
LOAD CURRENT (mA)
400
500
2.0
1.7
1.4
1.1
0.8
MAX5033BASA
5% DROP IN VOUT
0.5
0
100
500
MAX5033 toc09
80
EFFICIENCY (%)
VIN = 7.5V
VIN = 12V
90
OUTPUT CURRENT LIMIT (A)
100
MAX5033 toc07
80
70
0
0
ILOAD (mA)
90
EFFICIENCY (%)
100
INPUT VOLTAGE (V)
100
40
4.90
0
76
MAX5033 toc08
6
0
100
200
300
LOAD CURRENT (mA)
400
500
-50 -25
0
25 50 75 100 125 150
TEMPERATURE (°C)
_______________________________________________________________________________________
5
MAX5033
Typical Operating Characteristics
(VIN = 12V, VON/OFF = 12V, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. See the Typical
Application Circuit, if applicable.)
Typical Operating Characteristics (continued)
(VIN = 12V, VON/OFF = 12V, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. See the Typical
Application Circuit, if applicable.)
OUTPUT CURRENT LIMIT
vs. INPUT VOLTAGE
1.1
MAX5033BASA
VOUT = 5V
5% DROP IN VOUT
0.5
320
280
240
16
26
36
46
56
66
76
290
260
230
-50 -25
25
0
6
100 125 150
75
50
16
26
36
56
46
INPUT VOLTAGE (V)
TEMPERATURE (°C)
INPUT VOLTAGE (V)
SHUTDOWN CURRENT
vs. TEMPERATURE
SHUTDOWN CURRENT
vs. INPUT VOLTAGE
OUTPUT VOLTAGE
vs. INPUT VOLTAGE
15
10
5
15
0
50 75 100 125 150
TEMPERATURE (°C)
9
6
5
3
IOUT = 0.3A
IOUT = 0.5A
0
6
25
MAX5033CASA
VOUT = 12V
VON/OFF = VIN
12
10
0
0
16
26
36
46
56
66
76
0
3
6
MAX5033BASA
LOAD-TRANSIENT RESPONSE
MAX5033 toc16
9
15
MAX5033BASA
LOAD-TRANSIENT RESPONSE
MAX5033 toc17
VOUT = 5V
12
VIN (V)
INPUT VOLTAGE (V)
MAX5033BASA
LOAD-TRANSIENT RESPONSE
76
MAX5033 toc15
20
VOUT (V)
SHUTDOWN CURRENT (µA)
20
66
15
MAX5033 toc14
25
MAX5033 toc13
25
-50 -25
320
200
200
6
MAX5033 toc12
MAX5033 toc11
360
350
QUIESCENT SUPPLY CURRENT (µA)
1.4
400
QUIESCENT SUPPLY CURRENT (µA)
MAX5033 toc10
OUTPUT CURRENT LIMIT (A)
1.7
0.8
QUIESCENT SUPPLY CURRENT
vs. INPUT VOLTAGE
QUIESCENT SUPPLY CURRENT
vs. TEMPERATURE
2.0
SHUTDOWN CURRENT (µA)
MAX5033
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
MAX5033 toc18
VOUT = 5V
VOUT = 5V
A
A
A
B
B
B
400µs/div
A: VOUT, 200mV/div, AC-COUPLED
B: IOUT, 500mA/div, 100mA TO 500mA
6
400µs/div
A: VOUT, 100mV/div, AC-COUPLED
B: IOUT, 200mA/div, 100mA TO 250mA
400µs/div
A: VOUT, 100mV/div, AC-COUPLED
B: IOUT, 500mA/div, 250mA TO 500mA
_______________________________________________________________________________________
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
MAX5033BASA
LX WAVEFORMS
MAX5033BASA LX WAVEFORMS
MAX5033 toc19
MAX5033BASA LX WAVEFORMS
MAX5033 toc20
MAX5033 toc21
A
A
A
0
0
0
B
B
B
0
0
4µs/div
MAX5033BASA STARTUP WAVEFORM
(IO = 0)
4µs/div
4µs/div
A: SWITCH VOLTAGE, 20V/div, VIN = 48V
B: INDUCTOR CURRENT, 100mA/div (IOUT = 30mA)
A: SWITCH VOLTAGE (LX PIN), 20V/div, VIN = 48V
B: INDUCTOR CURRENT, 100mA/div (IOUT = 0)
MAX5033BASA STARTUP WAVEFORM
(IO = 0.5A)
PEAK SWITCH CURRENT LIMIT
vs. INPUT VOLTAGE
MAX5033 toc23
2.0
A
A
B
B
PEAK SWITCH CURRENT LIMIT (A)
MAX5033 toc22
MAX5033 toc24
A: SWITCH VOLTAGE (LX PIN) 20V/div, VIN = 48V
B: INDUCTOR CURRENT, 200mA/div, (IOUT = 500mA)
1.7
1.4
1.1
0.8
MAX5033BASA
VOUT = 5V
5% DROP IN VOUT
0.5
1ms/div
1ms/div
A: VON/OFF, 2V/div
B: VOUT, 2V/div
A: VON/OFF, 2V/div
B: VOUT, 2V/div
6
16
26
36
46
56
66
76
INPUT VOLTAGE (V)
_______________________________________________________________________________________
7
MAX5033
Typical Operating Characteristics (continued)
(VIN = 12V, VON/OFF = 12V, TA = -40°C to +125°C, unless otherwise noted. Typical values are at TA = +25°C. See the Typical
Application Circuit, if applicable.)
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
MAX5033
Pin Description
PIN
NAME
1
BST
Boost Capacitor Connection. Connect a 0.1µF ceramic capacitor from BST to LX.
FUNCTION
2
VD
Internal Regulator Output. Bypass VD to GND with a 0.1µF ceramic capacitor.
3
SGND
Internal Connection. SGND must be connected to GND.
Output Sense Feedback Connection. For fixed output voltage (MAX5033A, MAX5033B, MAX5033C),
connect FB to VOUT. For adjustable output voltage (MAX5033D), use an external resistive voltage-divider to
set VOUT. VFB regulating set point is 1.22V.
4
FB
5
ON/OFF
6
GND
7
VIN
Input Voltage. Bypass VIN to GND with a low-ESR capacitor as close to the device as possible.
8
LX
Source Connection of Internal High-Side Switch
Shutdown Control Input. Pull ON/OFF low to put the device in shutdown mode. Drive ON/OFF high for
normal operation.
Ground
Simplified Block Diagram
VIN
ON/OFF
ENABLE
REGULATOR
(FOR ANALOG)
1.69V
REGULATOR
(FOR DRIVER)
VD
CPFM
IREF-PFM
HIGH-SIDE
CURRENT
SENSE
CILIM
OSC
VREF
RAMP
IREF-LIM
BST
MAX5033
CLK
FB
RAMP
CONTROL
LOGIC
Rh
x1
Rl
TYPE 3
COMPENSATION
VREF
THERMAL
SHUTDOWN
CPWM
EAMP
GND
LX
SGND
8
_______________________________________________________________________________________
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
The MAX5033 step-down DC-DC converter operates
from a 7.5V to 76V input voltage range. A unique voltage-mode control scheme with voltage feed-forward
and an internal switching DMOS FET provides high efficiency over a wide input voltage range. This pulsewidth modulated converter operates at a fixed 125kHz
switching frequency. The device also features automatic pulse-skipping mode to provide low quiescent current and high efficiency at light loads. Under no load,
the MAX5033 consumes only 270µA, and in shutdown
mode, consumes only 10µA. The MAX5033 also features undervoltage lockout, hiccup-mode output shortcircuit protection, and thermal shutdown.
Shutdown Mode
Drive ON/OFF to ground to shut down the MAX5033.
Shutdown forces the internal power MOSFET off, turns
off all internal circuitry, and reduces the VIN supply current to 10µA (typ). The ON/OFF rising threshold is
1.69V (typ). Before any operation begins, the voltage at
ON/OFF must exceed 1.69V (typ). The ON/OFF input
has 100mV hysteresis.
Undervoltage Lockout (UVLO)
Use the ON/OFF function to program the UVLO threshold at the input. Connect a resistive voltage-divider
from VIN to GND with the center node to ON/OFF as
shown in Figure 1. Calculate the threshold value by
using the following formula:
On startup, an internal low-side switch connects LX to
ground and charges the BST capacitor to VD. Once the
BST capacitor is charged, the internal low-side switch
is turned off and the BST capacitor voltage provides
the necessary enhancement voltage to turn on the
high-side switch.
Thermal-Overload Protection
The MAX5033 features integrated thermal-overload
protection. Thermal-overload protection limits total
power dissipation in the device, and protects the
device in the event of a fault condition. When the die
temperature exceeds +160°C, an internal thermal sensor signals the shutdown logic, turning off the internal
power MOSFET and allowing the IC to cool. The thermal sensor turns the internal power MOSFET back on
after the IC’s die temperature cools down to +140°C,
resulting in a pulsed output under continuous thermaloverload conditions.
Applications Information
Setting the Output Voltage
The MAX5033A/B/C have preset output voltages of 3.3V,
5.0V, and 12V, respectively. Connect FB to the preset
output voltage (see the Typical Operating Circuit).
The MAX5033D offers an adjustable output voltage. Set
the output voltage with a resistive voltage-divider connected from the circuit’s output to ground (Figure 1).
Connect the center node of the divider to FB. Choose
R4 less than 15kΩ, then calculate R3 as follows:
R1 

VUVLO(TH) = 1 +
 × 1.85V

R2 
The minimum recommended VUVLO(TH) is 6.5V, 7.5V,
and 13V for the output voltages of 3.3V, 5V, and 12V,
respectively. The recommended value for R2 is less
than 1MΩ.
If the external UVLO threshold-setting divider is not used,
an internal undervoltage-lockout feature monitors the
supply voltage at VIN and allows operation to start when
VIN rises above 5.2V (typ). This feature can be used only
when VIN rise time is faster than 2ms. For slower VIN rise
time, use the resistive divider at ON/OFF.
R3 =
(VOUT − 1.22)
× R4
1.22
VIN
7.5V TO 76V
47µF
R1
220µH
VIN
LX
ON/OFF
BST
0.1µF
R2
COUT
33µF
R3
41.2kΩ
MAX5033D
Boost High-Side Gate Drive (BST)
Connect a flying bootstrap capacitor between LX and
BST to provide the gate-drive voltage to the high-side
n-channel DMOS switch. The capacitor is alternately
charged from the internally regulated output-voltage VD
and placed across the high-side DMOS driver. Use a
0.1µF, 16V ceramic capacitor located as close to the
device as possible.
D1
50SQ100
VOUT
5V, 0.5A
FB
VD
SGND
GND
0.1µF
R4
13.3kΩ
Figure 1. Adjustable Output Voltage
_______________________________________________________________________________________
9
MAX5033
Detailed Description
MAX5033
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
The MAX5033 features internal compensation for optimum closed-loop bandwidth and phase margin. With
the preset compensation, it is strongly advised to sense
the output immediately after the primary LC.
Inductor Selection
The choice of an inductor is guided by the voltage difference between VIN and VOUT, the required output
current, and the operating frequency of the circuit. Use
an inductor with a minimum value given by:
L=
(VIN − VOUT ) × D
0.3 × IOUTMAX × fSW
where: D = VOUT/VIN, IOUTMAX is the maximum output
current required, and fSW is the operating frequency of
125kHz. Use an inductor with a maximum saturation
current rating equal to at least the peak switch current
limit (ILIM). Use inductors with low DC resistance for
higher efficiency.
Selecting a Rectifier
The MAX5033 requires an external Schottky rectifier as
a freewheeling diode. Connect this rectifier close to the
device using short leads and short PC board traces.
Choose a rectifier with a continuous current rating
greater than the highest expected output current. Use a
rectifier with a voltage rating greater than the maximum
expected input voltage, VIN. Use a low forward-voltage
Schottky rectifier for proper operation and high efficiency. Avoid higher than necessary reverse-voltage
Schottky rectifiers that have higher forward-voltage
drops. Use a Schottky rectifier with forward-voltage
drop (VFB) less than 0.45V at +25°C and maximum
Table 1. Diode Selection
VIN (V)
7.5 to 36
7.5 to 56
7.5 to 76
10
DIODE PART NUMBER
MANUFACTURER
15MQ040N
IR
B240A
Diodes, Inc.
B240
Central Semiconductor
MBRS240, MBRS1540
ON Semiconductor
30BQ060
IR
B360A
Diodes, Inc.
CMSH3-60
Central Semiconductor
MBRD360, MBR3060
ON Semiconductor
50SQ100, 50SQ80
IR
MBRM5100
Diodes, Inc.
load current to avoid forward biasing of the internal
body diode (LX to ground). Internal body-diode conduction may cause excessive junction temperature rise
and thermal shutdown. Use Table 1 to choose the
proper rectifier at different input voltages and output
current.
Input Bypass Capacitor
The discontinuous input-current waveform of the buck
converter causes large ripple currents in the input
capacitor. The switching frequency, peak inductor current, and the allowable peak-to-peak voltage ripple that
reflects back to the source dictate the capacitance
requirement. The MAX5033 high switching frequency
allows the use of smaller-value input capacitors.
The input ripple is comprised of ∆VQ (caused by the
capacitor discharge) and ∆VESR (caused by the ESR of
the capacitor). Use low-ESR aluminum electrolytic
capacitors with high ripple-current capability at the input.
Assuming that the contribution from the ESR and capacitor discharge is equal to 90% and 10%, respectively, calculate the input capacitance and the ESR required for a
specified ripple using the following equations:
ESRIN =
∆VESR
∆IL 

 IOUT +


2 
I
× D(1− D)
CIN = OUT
∆VQ × fSW
where
∆IL =
(VIN − VOUT ) × VOUT
VIN × fSW × L
V
D = OUT
VIN
IOUT is the maximum output current of the converter and
fSW is the oscillator switching frequency (125kHz). For
example, at VIN = 48V and VOUT = 3.3V, the ESR and
input capacitance are calculated for the input peak-topeak ripple of 100mV or less, yielding an ESR and
capacitance value of 130mΩ and 27µF, respectively.
Low-ESR, ceramic, multilayer chip capacitors are recommended for size-optimized application. For ceramic
capacitors, assume the contribution from ESR and capacitor discharge is equal to 10% and 90%, respectively.
The input capacitor must handle the RMS ripple current
without significant rise in temperature. The maximum
capacitor RMS current occurs at about 50% duty cycle.
______________________________________________________________________________________
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
ICRMS =
capacitance and the ESR required for a specified ripple using the following equations:
ESROUT =
IPRMS2 − IAVGIN2
where
COUT ≈
D
IPRMS = IPK 2 + IDC2 + (IPK × IDC ) ×
3
V
×I
IAVGIN = OUT OUT
VIN × η
∆I
∆I
IPK = IOUT + L , IDC = IOUT − L
2
2
VOUT
and D =
VIN
IPRMS is the input switch RMS current, IAVGIN is the
input average current, and η is the converter efficiency.
The ESR of aluminum electrolytic capacitors increases
significantly at cold temperatures. Use a 1µF or greater
value ceramic capacitor in parallel with the aluminum
electrolytic input capacitor, especially for input voltages
below 8V.
Output Filter Capacitor
The worst-case peak-to-peak and RMS capacitor ripple
current, allowable peak-to-peak output ripple voltage,
and the maximum deviation of the output voltage during load steps determine the capacitance and the ESR
requirements for the output capacitors.
The output capacitance and its ESR form a zero, which
improves the closed-loop stability of the buck regulator.
Choose the output capacitor so the ESR zero frequency
(fZ) occurs between 20kHz to 40kHz. Use the following
equation to verify the value of fZ. Capacitors with 100mΩ
to 250mΩ ESR are recommended to ensure the closedloop stability while keeping the output ripple low.
fZ =
1
2 × π × COUT × ESROUT
The output ripple is comprised of ∆VOQ (caused by the
capacitor discharge) and ∆VOESR (caused by the ESR
of the capacitor). Use low-ESR tantalum or aluminum
electrolytic capacitors at the output. Assuming that the
contributions from the ESR and capacitor discharge
equal 80% and 20%, respectively, calculate the output
∆VOESR
∆IL
∆IL
2.2 × ∆VOQ × fSW
The MAX5033 has an internal soft-start time (tSS) of
400µs. It is important to keep the output rise time at
startup below tSS to avoid output overshoot. The output
rise time is directly proportional to the output capacitor.
Use 68µF or lower capacitance at the output to control
the overshoot below 5%.
In a dynamic load application, the allowable deviation
of the output voltage during the fast-transient load dictates the output capacitance value and the ESR. The
output capacitors supply the step load current until the
controller responds with a greater duty cycle. The
response time (tRESPONSE) depends on the closedloop bandwidth of the converter. The resistive drop
across the capacitor ESR and capacitor discharge
cause a voltage droop during a step load. Use a combination of low-ESR tantalum and ceramic capacitors
for better transient load and ripple/noise performance.
Keep the maximum output-voltage deviation above the
tolerable limits of the electronics being powered.
Assuming a 50% contribution from the output capacitance discharge and the ESR drop, use the following
equations to calculate the required ESR and capacitance value:
ESROUT =
∆VOESR
ISTEP
I
×t
COUT = STEP RESPONSE
∆VOQ
where I STEP is the load step and t RESPONSE is the
response time of the controller. Controller response
time is approximately one-third of the reciprocal of the
closed-loop unity-gain bandwidth, 20kHz (typ).
PC Board Layout Considerations
Proper PC board layout is essential. Minimize ground
noise by connecting the anode of the Schottky rectifier,
the input bypass-capacitor ground lead, and the output
filter-capacitor ground lead to a single point (star-
______________________________________________________________________________________
11
MAX5033
Ensure that the ripple specification of the input capacitor exceeds the worst-case capacitor RMS ripple current. Use the following equations to calculate the input
capacitor RMS current:
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
MAX5033
Application Circuits
VIN
CIN
VIN
BST
0.1µF
L1
VOUT
LX
D1
R1
MAX5033
COUT
FB
ON/OFF
VD
R2
SGND
GND
0.1µF
Figure 2. Fixed Output Voltages
Table 2. Typical External Components Selection (Circuit of Figure 2)
VIN (V)
7.5 to 76
7.5 to 76
15 to 76
VOUT (V)
3.3
5
12
IOUT (A)
EXTERNAL COMPONENTS
0.5
CIN = 47µF, Panasonic, EEVFK2A470Q
COUT = 47µF, Vishay Sprague, 594D476X_016C2T
CBST = 0.1µF, 0805
R1 = 1MΩ ±1%, 0805
R2 = 384kΩ ±1%, 0805
D1 = 50SQ100, IR
L1 = 150µH, Coilcraft Inc., DO5022P-154
0.5
CIN = 47µF, Panasonic, EEVFK2A470Q
COUT = 33µF, Vishay Sprague, 594D336X_016C2T
CBST = 0.1µF, 0805
R1 = 1MΩ ±1%, 0805
R2 = 384kΩ ±1%, 0805
D1 = 50SQ100, IR
L1 = 220µH, Coilcraft Inc., DO5022P-224
0.5
CIN = 47µF, Panasonic, EEVFK2A470Q
COUT = 15µF, Vishay Sprague, 594D156X_025C2T
CBST = 0.1µF, 0805
R1 = 1MΩ ±1%, 0805
R2 = 384kΩ ±1%, 0805
D1 = 50SQ100, IR
L1 = 330µH, Coilcraft Inc., DO5022P-334
ground configuration). A ground plane is required.
Minimize lead lengths to reduce stray capacitance,
trace resistance, and radiated noise. In particular,
place the Schottky rectifier diode right next to the
12
device. Also, place BST and VD bypass capacitors
very close to the device. Use the PC board copper
plane connecting to VIN and LX for heatsinking.
______________________________________________________________________________________
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
MAX5033
Table 2. Typical External Components Selection (Circuit of Figure 2) (continued)
VIN (V)
VOUT (V)
3.3
IOUT (A)
EXTERNAL COMPONENTS
0.5
CIN = 100µF, Panasonic, EEVFK1E101P
COUT = 47µF, Vishay Sprague, 594D476X_016C2T
CBST = 0.1µF, 0805
R1 = 1MΩ ±1%, 0805
R2 = 274kΩ ±1%, 0805
D1 = B220/A, Diodes Inc.
L1 = 150µH, Coilcraft Inc., DO5022P-154
0.5
CIN = 100µF, Panasonic, EEVFK1E101P
COUT = 33µF, Vishay Sprague, 594D336X_016C2T
CBST = 0.1µF, 0805
R1 = 1MΩ ±1%, 0805
R2 = 274kΩ ±1%, 0805
D1 = B220/A, Diodes Inc.
L1 = 220µH, Coilcraft Inc., DO5022P-224
0.5
CIN = 100µF, Panasonic, EEVFK1H101P
COUT = 47µF, Vishay Sprague, 594D476X_016C2T
CBST = 0.1µF, 0805
R1 = 1MΩ ±1%, 0805
R2 = 130kΩ ±1%, 0805
D1 = B240/A, Diodes Inc.
L1 = 150µH, Coilcraft Inc., DO5022P-154
0.5
CIN = 100µF, Panasonic, EEVFK1H101P
COUT = 33µF, Vishay Sprague, 594D336X_016C2T
CBST = 0.1µF, 0805
R1 = 1MΩ ±1%, 0805
R2 = 130kΩ ±1%, 0805
D1 = B240/A, Diodes Inc.
L1 = 220µH, Coilcraft Inc., DO5022P-224
0.5
CIN = 100µF, Panasonic, EEVFK1H101P
COUT = 15µF, Vishay Sprague, 594D156X_025C2T
CBST = 0.1µF, 0805
R1 = 1MΩ ±1%, 0805
R2 = 130kΩ ±1%, 0805
D1 = B240/A, Diodes Inc.
L1 = 330µH, Coilcraft Inc., DO5022P-334
9 to 14
5
3.3
18 to 36
5
12
______________________________________________________________________________________
13
MAX5033
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
Table 3. Component Suppliers
PHONE
FAX
AVX
SUPPLIER
843-946-0238
843-626-3123
www.avxcorp.com
Coilcraft
847-639-6400
847-639-1469
www.coilcraft.com
Diodes Incorporated
805-446-4800
805-446-4850
www.diodes.com
Nichicon
858-824-1515
858-824-1525
www.nichicon.com
Panasonic
714-373-7366
714-737-7323
www.panasonic.com
Sanyo
619-661-6835
619-661-1055
www.sanyo.com
TDK
847-803-6100
847-390-4405
www.component.tdk.com
Vishay
402-563-6866
402-563-6296
www.vishay.com
MAX5033
PTC*
ON/OFF
VIN
12V
VIN
CIN
47µF
Ct
Rt
WEBSITE
FB
BST
0.1µF
L1
220µH
VOUT
5V AT 0.5A
LX
VD
SGND GND
0.1µF
D1
B240
COUT
33µF
*LOCATE PTC AS CLOSE TO HEAT-DISSIPATING COMPONENTS AS POSSIBLE.
Figure 3. Load Temperature Monitoring with ON/OFF (Requires Accurate VIN)
14
______________________________________________________________________________________
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
R1
VIN
7.5V TO 36V
0.1µF
VIN
CIN
47µF
Ct
FB
BST
ON/OFF
L1
220µH
VOUT
5V AT 0.5A
LX
VD
Rt
MAX5033
MAX5033B
COUT
68µF
D1
B240
SGND GND
0.1µF
MAX5033A
R1*
BST
ON/OFF
0.1µF
VIN
C'IN
68µF
Ct'
Rt'
FB
L1'
150µH
V'OUT
3.3V AT 0.5A
LX
VD
SGND GND
C'OUT
68µF
D1'
B240
0.1µF
Figure 4. Dual-Sequenced DC-DC Converters (Startup Delay Determined by R1/R1’, Ct/Ct’ and Rt/Rt’)
Chip Information
TRANSISTOR COUNT: 4344
PROCESS: BiCMOS
______________________________________________________________________________________
15
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
DIM
A
A1
B
C
e
E
H
L
N
E
H
INCHES
MILLIMETERS
MAX
MIN
0.069
0.053
0.010
0.004
0.014
0.019
0.007
0.010
0.050 BSC
0.150
0.157
0.228
0.244
0.016
0.050
MAX
MIN
1.35
1.75
0.10
0.25
0.35
0.49
0.19
0.25
1.27 BSC
3.80
4.00
5.80
6.20
0.40
SOICN .EPS
MAX5033
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
1.27
VARIATIONS:
1
INCHES
TOP VIEW
DIM
D
D
D
MIN
0.189
0.337
0.386
MAX
0.197
0.344
0.394
MILLIMETERS
MIN
4.80
8.55
9.80
MAX
5.00
8.75
10.00
N MS012
8
AA
14
AB
16
AC
D
A
B
e
C
0 -8
A1
L
FRONT VIEW
SIDE VIEW
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, .150" SOIC
APPROVAL
DOCUMENT CONTROL NO.
21-0041
16
______________________________________________________________________________________
REV.
B
1
1
500mA, 76V, High-Efficiency, MAXPower
Step-Down DC-DC Converter
PDIPN.EPS
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17
© 2004 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
MAX5033
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)